Image Preprocessing with Enhanced Feature Matching for Map Merging in the Presence of Sensing Error
Autonomous robots heavily rely on simultaneous localization and mapping (SLAM) techniques and sensor data to create accurate maps of their surroundings. When multiple robots are employed to expedite exploration, the resulting maps often have varying coordinates and scales. To achieve a comprehensive...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 16; p. 7303 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Autonomous robots heavily rely on simultaneous localization and mapping (SLAM) techniques and sensor data to create accurate maps of their surroundings. When multiple robots are employed to expedite exploration, the resulting maps often have varying coordinates and scales. To achieve a comprehensive global view, the utilization of map merging techniques becomes necessary. Previous studies have typically depended on extracting image features from maps to establish connections. However, it is important to note that maps of the same location can exhibit inconsistencies due to sensing errors. Additionally, robot-generated maps are commonly represented in an occupancy grid format, which limits the availability of features for extraction and matching. Therefore, feature extraction and matching play crucial roles in map merging, particularly when dealing with uncertain sensing data. In this study, we introduce a novel method that addresses image noise resulting from sensing errors and applies additional corrections before performing feature extraction. This approach allows for the collection of features from corresponding locations in different maps, facilitating the establishment of connections between different coordinate systems and enabling effective map merging. Evaluation results demonstrate the significant reduction of sensing errors during the image stitching process, thanks to the proposed image pre-processing technique. |
---|---|
AbstractList | Autonomous robots heavily rely on simultaneous localization and mapping (SLAM) techniques and sensor data to create accurate maps of their surroundings. When multiple robots are employed to expedite exploration, the resulting maps often have varying coordinates and scales. To achieve a comprehensive global view, the utilization of map merging techniques becomes necessary. Previous studies have typically depended on extracting image features from maps to establish connections. However, it is important to note that maps of the same location can exhibit inconsistencies due to sensing errors. Additionally, robot-generated maps are commonly represented in an occupancy grid format, which limits the availability of features for extraction and matching. Therefore, feature extraction and matching play crucial roles in map merging, particularly when dealing with uncertain sensing data. In this study, we introduce a novel method that addresses image noise resulting from sensing errors and applies additional corrections before performing feature extraction. This approach allows for the collection of features from corresponding locations in different maps, facilitating the establishment of connections between different coordinate systems and enabling effective map merging. Evaluation results demonstrate the significant reduction of sensing errors during the image stitching process, thanks to the proposed image pre-processing technique. Autonomous robots heavily rely on simultaneous localization and mapping (SLAM) techniques and sensor data to create accurate maps of their surroundings. When multiple robots are employed to expedite exploration, the resulting maps often have varying coordinates and scales. To achieve a comprehensive global view, the utilization of map merging techniques becomes necessary. Previous studies have typically depended on extracting image features from maps to establish connections. However, it is important to note that maps of the same location can exhibit inconsistencies due to sensing errors. Additionally, robot-generated maps are commonly represented in an occupancy grid format, which limits the availability of features for extraction and matching. Therefore, feature extraction and matching play crucial roles in map merging, particularly when dealing with uncertain sensing data. In this study, we introduce a novel method that addresses image noise resulting from sensing errors and applies additional corrections before performing feature extraction. This approach allows for the collection of features from corresponding locations in different maps, facilitating the establishment of connections between different coordinate systems and enabling effective map merging. Evaluation results demonstrate the significant reduction of sensing errors during the image stitching process, thanks to the proposed image pre-processing technique.Autonomous robots heavily rely on simultaneous localization and mapping (SLAM) techniques and sensor data to create accurate maps of their surroundings. When multiple robots are employed to expedite exploration, the resulting maps often have varying coordinates and scales. To achieve a comprehensive global view, the utilization of map merging techniques becomes necessary. Previous studies have typically depended on extracting image features from maps to establish connections. However, it is important to note that maps of the same location can exhibit inconsistencies due to sensing errors. Additionally, robot-generated maps are commonly represented in an occupancy grid format, which limits the availability of features for extraction and matching. Therefore, feature extraction and matching play crucial roles in map merging, particularly when dealing with uncertain sensing data. In this study, we introduce a novel method that addresses image noise resulting from sensing errors and applies additional corrections before performing feature extraction. This approach allows for the collection of features from corresponding locations in different maps, facilitating the establishment of connections between different coordinate systems and enabling effective map merging. Evaluation results demonstrate the significant reduction of sensing errors during the image stitching process, thanks to the proposed image pre-processing technique. |
Audience | Academic |
Author | Chan, Kuei-Yuan Chen, Yu-Lin |
AuthorAffiliation | Department of Mechanical Engineering, National Taiwan University, Taipei 106319, Taiwan; chenyl@solab.me.ntu.edu.tw |
AuthorAffiliation_xml | – name: Department of Mechanical Engineering, National Taiwan University, Taipei 106319, Taiwan; chenyl@solab.me.ntu.edu.tw |
Author_xml | – sequence: 1 givenname: Yu-Lin surname: Chen fullname: Chen, Yu-Lin – sequence: 2 givenname: Kuei-Yuan surname: Chan fullname: Chan, Kuei-Yuan |
BookMark | eNpdkk1vEzEQhleoiH7AgX-wEhc4pHhn7F37hKoqhUitQALOltee3ThK7GBvivj3OElVtZUP9sy87zO2NefVSYiBqup9wy4RFfucAZu2Q4avqrOGA59JAHby5Hxanee8YgwQUb6pTrFrsZEozyq72JiR6h-JtilaytmHsf7rp2U9D0sTLLn6hsy0S1Tfmcku9-UhphJs6ztK4z72oZ6WB0am4qjjUP-kcCDNU4rpbfV6MOtM7x72i-r3zfzX9bfZ7fevi-ur25nlvJ1mxvUAUvVcIO_ZQIqBwKEVTDnmUDnZKzBWcedUR-gG3reAAOQsAwtK4kW1OHJdNCu9TX5j0j8djdeHREyjNmnydk1aCZBG8h4l77jpTS8bKR0gB2oN401hfTmytrt-U1pQmJJZP4M-rwS_1GO81w3jQgrFCuHjAyHFPzvKk974bGm9NoHiLmuQopMchRBF-uGFdBV3KZS_Oqg471gHRXV5VI2mvMCHIZbGtixHG2_LRAy-5K-6FgSX0O4Nn44Gm2LOiYbH6zdM7wdHPw4O_gfV17PG |
Cites_doi | 10.1109/ICCV.1999.790410 10.1109/BRACIS.2017.69 10.1109/URAI.2012.6462995 10.1109/70.938381 10.1109/IROS.2009.5354435 10.1007/s10846-018-0895-4 10.1109/TPAMI.1987.4767941 10.1109/MRA.2006.1678144 10.1145/358669.358692 10.1016/j.imavis.2009.03.004 10.1023/B:VISI.0000029664.99615.94 10.1023/A:1025584807625 10.3390/s20236988 10.4249/scholarpedia.10491 10.1007/s10514-008-9097-4 10.1007/978-1-4899-6765-7 10.1007/s11042-018-7109-8 10.1109/MRA.2010.936956 10.1109/MITS.2010.939925 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/s23167303 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_9528a84b38474abab8188d2342e6a041 PMC10458590 A762548262 10_3390_s23167303 |
GrantInformation_xml | – fundername: National Science and Technology Council grantid: NSTC-110-2221-E-002-136-MY3 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M PMFND 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c446t-adb2289b4534b0fe90253f6509d0d39d8b92ac94dd97e3df4b62322edc02c2983 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:31:10 EDT 2025 Thu Aug 21 18:36:45 EDT 2025 Mon Jul 21 09:28:02 EDT 2025 Fri Jul 25 02:18:57 EDT 2025 Tue Jun 10 21:26:19 EDT 2025 Tue Jul 01 01:20:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-adb2289b4534b0fe90253f6509d0d39d8b92ac94dd97e3df4b62322edc02c2983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23167303 |
PMID | 37631838 |
PQID | 2857447072 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9528a84b38474abab8188d2342e6a041 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10458590 proquest_miscellaneous_2857843555 proquest_journals_2857447072 gale_infotracacademiconefile_A762548262 crossref_primary_10_3390_s23167303 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_12 Arya (ref_14) 2015; 5 ref_10 Fischler (ref_20) 1981; 24 Grisetti (ref_5) 2010; 2 ref_18 ref_17 Thrun (ref_21) 2003; 15 Lowe (ref_19) 2004; 60 Jiang (ref_15) 2019; 94 Haralick (ref_23) 1987; PAMI-9 Jiang (ref_7) 2020; 79 Dissanayake (ref_3) 2001; 17 ref_25 Besl (ref_24) 1992; Volume 1611 Bailey (ref_2) 2006; 13 ref_22 Bailey (ref_1) 2006; 13 ref_27 ref_26 ref_9 Bradski (ref_28) 2000; 25 ref_8 Lindeberg (ref_13) 2012; 7 Mills (ref_16) 2009; 27 ref_4 Carpin (ref_11) 2008; 25 ref_6 |
References_xml | – ident: ref_9 – ident: ref_18 doi: 10.1109/ICCV.1999.790410 – ident: ref_12 doi: 10.1109/BRACIS.2017.69 – volume: 25 start-page: 120 year: 2000 ident: ref_28 article-title: The openCV library publication-title: Dobb’S J. Softw. Tools Prof. Program. – ident: ref_8 doi: 10.1109/URAI.2012.6462995 – volume: 17 start-page: 229 year: 2001 ident: ref_3 article-title: A solution to the simultaneous localization and map building (SLAM) problem publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/70.938381 – ident: ref_10 doi: 10.1109/IROS.2009.5354435 – volume: 94 start-page: 655 year: 2019 ident: ref_15 article-title: Simultaneous merging multiple grid maps using the robust motion averaging publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-018-0895-4 – volume: PAMI-9 start-page: 532 year: 1987 ident: ref_23 article-title: Image analysis using mathematical morphology publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1987.4767941 – volume: 13 start-page: 108 year: 2006 ident: ref_2 article-title: Simultaneous localization and mapping (SLAM): Part II publication-title: IEEE Robot. Autom. Mag. doi: 10.1109/MRA.2006.1678144 – volume: 24 start-page: 381 year: 1981 ident: ref_20 article-title: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography publication-title: Commun. ACM doi: 10.1145/358669.358692 – volume: 27 start-page: 1593 year: 2009 ident: ref_16 article-title: Image stitching with dynamic elements publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2009.03.004 – volume: 60 start-page: 91 year: 2004 ident: ref_19 article-title: Distinctive image features from scale-invariant keypoints publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000029664.99615.94 – volume: 15 start-page: 111 year: 2003 ident: ref_21 article-title: Learning occupancy grid maps with forward sensor models publication-title: Auton. Robot. doi: 10.1023/A:1025584807625 – ident: ref_6 doi: 10.3390/s20236988 – ident: ref_25 – ident: ref_4 – ident: ref_27 – volume: Volume 1611 start-page: 586 year: 1992 ident: ref_24 article-title: Method for registration of 3-D shapes publication-title: Sensor Fusion IV: Control Paradigms and Data Structures – volume: 7 start-page: 10491 year: 2012 ident: ref_13 article-title: Scale invariant feature transform publication-title: Scholarpedia doi: 10.4249/scholarpedia.10491 – volume: 13 start-page: 99 year: 2006 ident: ref_1 article-title: Simultaneous localization and mapping: Part I publication-title: IEEE Robot. Autom. Mag. doi: 10.1109/MRA.2006.1678144 – volume: 25 start-page: 305 year: 2008 ident: ref_11 article-title: Fast and accurate map merging for multi-robot systems publication-title: Auton. Robot. doi: 10.1007/s10514-008-9097-4 – ident: ref_22 doi: 10.1007/978-1-4899-6765-7 – volume: 5 start-page: 299 year: 2015 ident: ref_14 article-title: A review on image stitching and its different methods publication-title: Int. J. Adv. Res. Comput. Sci. Softw. Eng. – volume: 79 start-page: 14553 year: 2020 ident: ref_7 article-title: Simultaneously merging multi-robot grid maps at different resolutions publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-018-7109-8 – ident: ref_17 – ident: ref_26 doi: 10.1109/MRA.2010.936956 – volume: 2 start-page: 31 year: 2010 ident: ref_5 article-title: A tutorial on graph-based SLAM publication-title: IEEE Intell. Transp. Syst. Mag. doi: 10.1109/MITS.2010.939925 |
SSID | ssj0023338 |
Score | 2.3941257 |
Snippet | Autonomous robots heavily rely on simultaneous localization and mapping (SLAM) techniques and sensor data to create accurate maps of their surroundings. When... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 7303 |
SubjectTerms | Algorithms Equipment and supplies Image processing image stitching map merge Methods occupancy grid map Robots simultaneous localization and mapping |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_iE6tVogielm7z2M0eq7RUoSJoobeQbLK0B7dl2_5_Z_ZRWj148bhJWLIzm5lvksk3hDyISNpUuSiIhcfdKpcExsc84MJFoQeEHHO8KDx6i4Zj8TqRk61SX5gTVtEDV4LrJJIpo4TlYEaFscaCh1GOccF8ZMLyyjoDn9cEU3WoxSHyqniEOAT1nSXDC9-8qYxVe5-SpP-3Kf6ZHrnlbwbH5KgGirRXTfCE7Pn8lBxu0QeekfTlC6wBfUdiyjLdH1opbqzSfj4tT_YpIrx14ekILC7uNVHAqPCwoCNfYHkiOsspQEB8xxLXOJ1n9ANz2qGrXxTz4pyMB_3P52FQF00IUojsVoFxlkEQZYXkwoaZx2NEniFPngsdT5yyCTNpIpxLYs9dJiwAIMbga0OWskTxC7Kfz3N_SWjXGGF9nKVSGvD7wvgu2E4fRgxQofCsRe4bYepFxY2hIaZAieuNxFvkCcW8GYB01mUDKFnXStZ_KblFHlFJGhcdqCQ19d0BmCfSV-kemHQIvVgEc2o3etT1alxqpmQsRBzG0H236YZ1hIcjJvfzdTVGAXaUskXUjv53pr7bk8-mJSN3F4-bZRJe_cfHXpMDrGlfZRm2yf6qWPsbQD4re1v-5N_B3gDH priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucAB0RZESqlcVIlT1MSPxDmhgnbbIi1Cgkq9WXbs0B6abLO7_5-ZxLt0qdRjYitxPJmZbx6eATiRhXK19kVaykDeKl-lNpQiFdIXWUCEXAo6KDz7UVxcye_X6jo63BYxrXItEwdB7buafOSnXKtSyjIr-Zf5fUpdoyi6GltoPIcXOWoaSunS0_ONwSXQ_hqrCQk07U8XnI59i3V_rKiDhlL9jwXy_0mSD7TO9A28jnCRnY303YVnod2DVw-KCO5DfXmHMoH9pPKUQ9I_3mXkXmWT9maI7zPCeas-sBnKXfI4MUSqeDFns9BTkyJ22zIEgvSMBXE66xr2izLbcWjS913_Fq6mk9_fLtLYOiGt0b5bptY7jqaUk0pIlzWBgomioWp5PvOi8tpV3NaV9L4qg_CNdAiDOMevzXjNKy3ewU7bteE9sNxa6ULZ1EpZ1P7ShhwlaMgKjthQBp7Ap_VmmvlYIcOgZUE7bjY7nsBX2ubNBCpqPdzo-j8m8oipFNdWSydQY0rrrEMwoT2-hIfCZjJP4DMRyRDrIUlqG08Q4DqpiJU5Q8GOBhgvcE2HazqayJML8-8PSuB4M4zcRCES24ZuNc7RiCCVSkBv0X9r6dsj7e3NUJc7p6CzqrKDp9_-AV5Sz_oxi_AQdpb9KnxEZLN0R8Pv-xf6R_lM priority: 102 providerName: ProQuest |
Title | Image Preprocessing with Enhanced Feature Matching for Map Merging in the Presence of Sensing Error |
URI | https://www.proquest.com/docview/2857447072 https://www.proquest.com/docview/2857843555 https://pubmed.ncbi.nlm.nih.gov/PMC10458590 https://doaj.org/article/9528a84b38474abab8188d2342e6a041 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N7QUeJj5FYVQGIfEUSP0ROw8IbahlIHWagEp9s-zYYZMg2dJWgv-euyStFuCBl0qJk9a9s32_8_l-B_BSZsoXJmSJlpF2q0KeuKhFImTI0ogIWQtKFJ6fZacL-WmplnuwrbHZC3D1T9eO6kktmu-vf17_eocT_i15nOiyv1lxSucWxPl5gAZJUyGDudwFE7gQbUFryulK0B6mHcHQ8NWBWWrZ-_9eo_88N3nDEM3uwmGPINlxp_J7sBer-3DnBq_gAyg-_sBlgp0TY2WbB4B3Ge24sml10Yb8GUG_TRPZHJdi2oRiCF7x4orNY0N1i9hlxRAb0nesaPKzumRf6LA7Nk2bpm4ewmI2_fr-NOmrKSQFunzrxAXP0bvyUgnp0zJSfFGURKAX0iDyYHzOXZHLEHIdRSilR2TEOf7blBc8N-IR7Fd1FR8DmzgnfdRloZRDQCBdnOCiGtOMI1yUkY_gxVaY9qojzbDobJDE7U7iIzghMe8eIJ7r9kbdfLP9tLG54sYZ6QUaUem884gvTMAf4TFzqZyM4BUpydL4QJUUrk8qwH4Sr5U9xrUefTKeYZ-Otnq021FmuVFaSp1qbH6-a8YJRlETV8V60z1jEFQqNQIz0P-g68OW6vKipeqeUBxa5emT_-7nU7hNFe27M4ZHsL9uNvEZ4p61H8MtvdT4aWYfxnBwMj07_zxu9xDG7Xj_DYgHBQs |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKeaUsAgEKeoWT_yOCBUYJdd2q2QaKXeXDt2aA9NluyuEH-K38hMHkuXSr31mNhKrJnxzDf2PADeyFjZPHVxmEhPp1UuC41PRCikiyOPCDkRlCg8PYzHx_LriTrZgD99LgyFVfY6sVHUrsrpjHyXpyqRMokS_mH2M6SuUXS72rfQaMVi3__-hS7b_P3kM_L3Leej4dGncdh1FQhzdH0WoXGWo5dhpRLSRoWnezZRUCE5FzmRudRm3OSZdC5LvHCFtIgQOPcuj3jOs1Tgd2_BbSnQklNm-ujLysET6O-11YtwMNqdc0ozF30_rs7mNa0BrhqA_4MyL1m50QO438FTttfK00PY8OUjuHepaOFjyCcXqIPYNyqH2SQZ4FtGx7lsWJ418QSMcOWy9myKep5OuBgiY3yYsamvqSkSOy8ZAk_6xpw0C6sK9p0i6XFoWNdV_QSOb4SoT2GzrEq_BWxgjLQ-KXKlDKINafwANbaPYo5YVHoewOuemHrWVuTQ6MkQxfWK4gF8JDKvJlAR7eZFVf_Q3Z7UmeKpSaUVaKGlscYieEkd_oT72ERyEMA7YpKmrY4syU2XsYDrpKJZeg8NCTp8PMY17fR81J0OmOt_EhvAq9Uw7l66kjGlr5btnBQRq1IBpGv8X1v6-kh5ftbUAR_QJbfKou3r__4S7oyPpgf6YHK4_wzucpTTNoJxBzYX9dI_R1S1sC8aUWZwetN75y-DTDYT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDxFSoEFgThZcfbhxwGhliZqKIkioFJvy653TXuoHZxEiL_Gr2PGj9CAxK1He1f2ap7f7M7OALySkbJZ4qIglp52q1waGB-LQEgXhR4RcizoovB0Fh2fyg9n6mwHfnV3YSitsrOJtaF2ZUZ75AOeqFjKOIz5IG_TIuZH43eL7wF1kKKT1q6dRiMiJ_7nDwzflm8nR8jr15yPR1_eHwdth4EgwzBoFRhnOUYcViohbZh7OnMTORWVc6ETqUtsyk2WSufS2AuXS4togXPvspBnPE0EfvcG7MYUFfVg93A0m3_ahHsCo7-mlpEQaThYcrp0LrruXK0HrBsF_OsO_k7RvOLzxnfhTgtW2UEjXfdgxxf34faVEoYPIJtcokVicyqOWV85wLeMNnfZqDivswsYocx15dkUrT7tdzHEyfiwYFNfUYskdlEwhKH0jSXZGVbm7DPl1ePQqKrK6iGcXgtZH0GvKAv_GNjQGGl9nGdKGcQe0vgh2m8fRhyRqfS8Dy87YupFU59DY1xDFNcbivfhkMi8mUAltesXZfVNtxqqU8UTk0gr0F9LY41FKJM4_An3kQnlsA9viEmaFB9Zkpn2_gKuk0po6QN0Kxj-8QjXtN_xUbcWYan_yG8fXmyGUZfpgMYUvlw3cxLEr0r1Idni_9bSt0eKi_O6KviQjrxVGu79_-_P4Sbqjf44mZ08gVscxbRJZ9yH3qpa-6cIsVb2WSvLDL5et_r8BvOGO6U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Preprocessing+with+Enhanced+Feature+Matching+for+Map+Merging+in+the+Presence+of+Sensing+Error&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Yu-Lin&rft.au=Chan%2C+Kuei-Yuan&rft.date=2023-08-01&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=16&rft_id=info:doi/10.3390%2Fs23167303&rft.externalDocID=A762548262 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |