Image Preprocessing with Enhanced Feature Matching for Map Merging in the Presence of Sensing Error

Autonomous robots heavily rely on simultaneous localization and mapping (SLAM) techniques and sensor data to create accurate maps of their surroundings. When multiple robots are employed to expedite exploration, the resulting maps often have varying coordinates and scales. To achieve a comprehensive...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 16; p. 7303
Main Authors Chen, Yu-Lin, Chan, Kuei-Yuan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Autonomous robots heavily rely on simultaneous localization and mapping (SLAM) techniques and sensor data to create accurate maps of their surroundings. When multiple robots are employed to expedite exploration, the resulting maps often have varying coordinates and scales. To achieve a comprehensive global view, the utilization of map merging techniques becomes necessary. Previous studies have typically depended on extracting image features from maps to establish connections. However, it is important to note that maps of the same location can exhibit inconsistencies due to sensing errors. Additionally, robot-generated maps are commonly represented in an occupancy grid format, which limits the availability of features for extraction and matching. Therefore, feature extraction and matching play crucial roles in map merging, particularly when dealing with uncertain sensing data. In this study, we introduce a novel method that addresses image noise resulting from sensing errors and applies additional corrections before performing feature extraction. This approach allows for the collection of features from corresponding locations in different maps, facilitating the establishment of connections between different coordinate systems and enabling effective map merging. Evaluation results demonstrate the significant reduction of sensing errors during the image stitching process, thanks to the proposed image pre-processing technique.
AbstractList Autonomous robots heavily rely on simultaneous localization and mapping (SLAM) techniques and sensor data to create accurate maps of their surroundings. When multiple robots are employed to expedite exploration, the resulting maps often have varying coordinates and scales. To achieve a comprehensive global view, the utilization of map merging techniques becomes necessary. Previous studies have typically depended on extracting image features from maps to establish connections. However, it is important to note that maps of the same location can exhibit inconsistencies due to sensing errors. Additionally, robot-generated maps are commonly represented in an occupancy grid format, which limits the availability of features for extraction and matching. Therefore, feature extraction and matching play crucial roles in map merging, particularly when dealing with uncertain sensing data. In this study, we introduce a novel method that addresses image noise resulting from sensing errors and applies additional corrections before performing feature extraction. This approach allows for the collection of features from corresponding locations in different maps, facilitating the establishment of connections between different coordinate systems and enabling effective map merging. Evaluation results demonstrate the significant reduction of sensing errors during the image stitching process, thanks to the proposed image pre-processing technique.
Autonomous robots heavily rely on simultaneous localization and mapping (SLAM) techniques and sensor data to create accurate maps of their surroundings. When multiple robots are employed to expedite exploration, the resulting maps often have varying coordinates and scales. To achieve a comprehensive global view, the utilization of map merging techniques becomes necessary. Previous studies have typically depended on extracting image features from maps to establish connections. However, it is important to note that maps of the same location can exhibit inconsistencies due to sensing errors. Additionally, robot-generated maps are commonly represented in an occupancy grid format, which limits the availability of features for extraction and matching. Therefore, feature extraction and matching play crucial roles in map merging, particularly when dealing with uncertain sensing data. In this study, we introduce a novel method that addresses image noise resulting from sensing errors and applies additional corrections before performing feature extraction. This approach allows for the collection of features from corresponding locations in different maps, facilitating the establishment of connections between different coordinate systems and enabling effective map merging. Evaluation results demonstrate the significant reduction of sensing errors during the image stitching process, thanks to the proposed image pre-processing technique.Autonomous robots heavily rely on simultaneous localization and mapping (SLAM) techniques and sensor data to create accurate maps of their surroundings. When multiple robots are employed to expedite exploration, the resulting maps often have varying coordinates and scales. To achieve a comprehensive global view, the utilization of map merging techniques becomes necessary. Previous studies have typically depended on extracting image features from maps to establish connections. However, it is important to note that maps of the same location can exhibit inconsistencies due to sensing errors. Additionally, robot-generated maps are commonly represented in an occupancy grid format, which limits the availability of features for extraction and matching. Therefore, feature extraction and matching play crucial roles in map merging, particularly when dealing with uncertain sensing data. In this study, we introduce a novel method that addresses image noise resulting from sensing errors and applies additional corrections before performing feature extraction. This approach allows for the collection of features from corresponding locations in different maps, facilitating the establishment of connections between different coordinate systems and enabling effective map merging. Evaluation results demonstrate the significant reduction of sensing errors during the image stitching process, thanks to the proposed image pre-processing technique.
Audience Academic
Author Chan, Kuei-Yuan
Chen, Yu-Lin
AuthorAffiliation Department of Mechanical Engineering, National Taiwan University, Taipei 106319, Taiwan; chenyl@solab.me.ntu.edu.tw
AuthorAffiliation_xml – name: Department of Mechanical Engineering, National Taiwan University, Taipei 106319, Taiwan; chenyl@solab.me.ntu.edu.tw
Author_xml – sequence: 1
  givenname: Yu-Lin
  surname: Chen
  fullname: Chen, Yu-Lin
– sequence: 2
  givenname: Kuei-Yuan
  surname: Chan
  fullname: Chan, Kuei-Yuan
BookMark eNpdkk1vEzEQhleoiH7AgX-wEhc4pHhn7F37hKoqhUitQALOltee3ThK7GBvivj3OElVtZUP9sy87zO2NefVSYiBqup9wy4RFfucAZu2Q4avqrOGA59JAHby5Hxanee8YgwQUb6pTrFrsZEozyq72JiR6h-JtilaytmHsf7rp2U9D0sTLLn6hsy0S1Tfmcku9-UhphJs6ztK4z72oZ6WB0am4qjjUP-kcCDNU4rpbfV6MOtM7x72i-r3zfzX9bfZ7fevi-ur25nlvJ1mxvUAUvVcIO_ZQIqBwKEVTDnmUDnZKzBWcedUR-gG3reAAOQsAwtK4kW1OHJdNCu9TX5j0j8djdeHREyjNmnydk1aCZBG8h4l77jpTS8bKR0gB2oN401hfTmytrt-U1pQmJJZP4M-rwS_1GO81w3jQgrFCuHjAyHFPzvKk974bGm9NoHiLmuQopMchRBF-uGFdBV3KZS_Oqg471gHRXV5VI2mvMCHIZbGtixHG2_LRAy-5K-6FgSX0O4Nn44Gm2LOiYbH6zdM7wdHPw4O_gfV17PG
Cites_doi 10.1109/ICCV.1999.790410
10.1109/BRACIS.2017.69
10.1109/URAI.2012.6462995
10.1109/70.938381
10.1109/IROS.2009.5354435
10.1007/s10846-018-0895-4
10.1109/TPAMI.1987.4767941
10.1109/MRA.2006.1678144
10.1145/358669.358692
10.1016/j.imavis.2009.03.004
10.1023/B:VISI.0000029664.99615.94
10.1023/A:1025584807625
10.3390/s20236988
10.4249/scholarpedia.10491
10.1007/s10514-008-9097-4
10.1007/978-1-4899-6765-7
10.1007/s11042-018-7109-8
10.1109/MRA.2010.936956
10.1109/MITS.2010.939925
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/s23167303
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef



MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_9528a84b38474abab8188d2342e6a041
PMC10458590
A762548262
10_3390_s23167303
GrantInformation_xml – fundername: National Science and Technology Council
  grantid: NSTC-110-2221-E-002-136-MY3
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c446t-adb2289b4534b0fe90253f6509d0d39d8b92ac94dd97e3df4b62322edc02c2983
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:31:10 EDT 2025
Thu Aug 21 18:36:45 EDT 2025
Mon Jul 21 09:28:02 EDT 2025
Fri Jul 25 02:18:57 EDT 2025
Tue Jun 10 21:26:19 EDT 2025
Tue Jul 01 01:20:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-adb2289b4534b0fe90253f6509d0d39d8b92ac94dd97e3df4b62322edc02c2983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23167303
PMID 37631838
PQID 2857447072
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_9528a84b38474abab8188d2342e6a041
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10458590
proquest_miscellaneous_2857843555
proquest_journals_2857447072
gale_infotracacademiconefile_A762548262
crossref_primary_10_3390_s23167303
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_12
Arya (ref_14) 2015; 5
ref_10
Fischler (ref_20) 1981; 24
Grisetti (ref_5) 2010; 2
ref_18
ref_17
Thrun (ref_21) 2003; 15
Lowe (ref_19) 2004; 60
Jiang (ref_15) 2019; 94
Haralick (ref_23) 1987; PAMI-9
Jiang (ref_7) 2020; 79
Dissanayake (ref_3) 2001; 17
ref_25
Besl (ref_24) 1992; Volume 1611
Bailey (ref_2) 2006; 13
ref_22
Bailey (ref_1) 2006; 13
ref_27
ref_26
ref_9
Bradski (ref_28) 2000; 25
ref_8
Lindeberg (ref_13) 2012; 7
Mills (ref_16) 2009; 27
ref_4
Carpin (ref_11) 2008; 25
ref_6
References_xml – ident: ref_9
– ident: ref_18
  doi: 10.1109/ICCV.1999.790410
– ident: ref_12
  doi: 10.1109/BRACIS.2017.69
– volume: 25
  start-page: 120
  year: 2000
  ident: ref_28
  article-title: The openCV library
  publication-title: Dobb’S J. Softw. Tools Prof. Program.
– ident: ref_8
  doi: 10.1109/URAI.2012.6462995
– volume: 17
  start-page: 229
  year: 2001
  ident: ref_3
  article-title: A solution to the simultaneous localization and map building (SLAM) problem
  publication-title: IEEE Trans. Robot. Autom.
  doi: 10.1109/70.938381
– ident: ref_10
  doi: 10.1109/IROS.2009.5354435
– volume: 94
  start-page: 655
  year: 2019
  ident: ref_15
  article-title: Simultaneous merging multiple grid maps using the robust motion averaging
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-018-0895-4
– volume: PAMI-9
  start-page: 532
  year: 1987
  ident: ref_23
  article-title: Image analysis using mathematical morphology
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1987.4767941
– volume: 13
  start-page: 108
  year: 2006
  ident: ref_2
  article-title: Simultaneous localization and mapping (SLAM): Part II
  publication-title: IEEE Robot. Autom. Mag.
  doi: 10.1109/MRA.2006.1678144
– volume: 24
  start-page: 381
  year: 1981
  ident: ref_20
  article-title: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography
  publication-title: Commun. ACM
  doi: 10.1145/358669.358692
– volume: 27
  start-page: 1593
  year: 2009
  ident: ref_16
  article-title: Image stitching with dynamic elements
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2009.03.004
– volume: 60
  start-page: 91
  year: 2004
  ident: ref_19
  article-title: Distinctive image features from scale-invariant keypoints
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000029664.99615.94
– volume: 15
  start-page: 111
  year: 2003
  ident: ref_21
  article-title: Learning occupancy grid maps with forward sensor models
  publication-title: Auton. Robot.
  doi: 10.1023/A:1025584807625
– ident: ref_6
  doi: 10.3390/s20236988
– ident: ref_25
– ident: ref_4
– ident: ref_27
– volume: Volume 1611
  start-page: 586
  year: 1992
  ident: ref_24
  article-title: Method for registration of 3-D shapes
  publication-title: Sensor Fusion IV: Control Paradigms and Data Structures
– volume: 7
  start-page: 10491
  year: 2012
  ident: ref_13
  article-title: Scale invariant feature transform
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.10491
– volume: 13
  start-page: 99
  year: 2006
  ident: ref_1
  article-title: Simultaneous localization and mapping: Part I
  publication-title: IEEE Robot. Autom. Mag.
  doi: 10.1109/MRA.2006.1678144
– volume: 25
  start-page: 305
  year: 2008
  ident: ref_11
  article-title: Fast and accurate map merging for multi-robot systems
  publication-title: Auton. Robot.
  doi: 10.1007/s10514-008-9097-4
– ident: ref_22
  doi: 10.1007/978-1-4899-6765-7
– volume: 5
  start-page: 299
  year: 2015
  ident: ref_14
  article-title: A review on image stitching and its different methods
  publication-title: Int. J. Adv. Res. Comput. Sci. Softw. Eng.
– volume: 79
  start-page: 14553
  year: 2020
  ident: ref_7
  article-title: Simultaneously merging multi-robot grid maps at different resolutions
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-7109-8
– ident: ref_17
– ident: ref_26
  doi: 10.1109/MRA.2010.936956
– volume: 2
  start-page: 31
  year: 2010
  ident: ref_5
  article-title: A tutorial on graph-based SLAM
  publication-title: IEEE Intell. Transp. Syst. Mag.
  doi: 10.1109/MITS.2010.939925
SSID ssj0023338
Score 2.3941257
Snippet Autonomous robots heavily rely on simultaneous localization and mapping (SLAM) techniques and sensor data to create accurate maps of their surroundings. When...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 7303
SubjectTerms Algorithms
Equipment and supplies
Image processing
image stitching
map merge
Methods
occupancy grid map
Robots
simultaneous localization and mapping
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_iE6tVogielm7z2M0eq7RUoSJoobeQbLK0B7dl2_5_Z_ZRWj148bhJWLIzm5lvksk3hDyISNpUuSiIhcfdKpcExsc84MJFoQeEHHO8KDx6i4Zj8TqRk61SX5gTVtEDV4LrJJIpo4TlYEaFscaCh1GOccF8ZMLyyjoDn9cEU3WoxSHyqniEOAT1nSXDC9-8qYxVe5-SpP-3Kf6ZHrnlbwbH5KgGirRXTfCE7Pn8lBxu0QeekfTlC6wBfUdiyjLdH1opbqzSfj4tT_YpIrx14ekILC7uNVHAqPCwoCNfYHkiOsspQEB8xxLXOJ1n9ANz2qGrXxTz4pyMB_3P52FQF00IUojsVoFxlkEQZYXkwoaZx2NEniFPngsdT5yyCTNpIpxLYs9dJiwAIMbga0OWskTxC7Kfz3N_SWjXGGF9nKVSGvD7wvgu2E4fRgxQofCsRe4bYepFxY2hIaZAieuNxFvkCcW8GYB01mUDKFnXStZ_KblFHlFJGhcdqCQ19d0BmCfSV-kemHQIvVgEc2o3etT1alxqpmQsRBzG0H236YZ1hIcjJvfzdTVGAXaUskXUjv53pr7bk8-mJSN3F4-bZRJe_cfHXpMDrGlfZRm2yf6qWPsbQD4re1v-5N_B3gDH
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucAB0RZESqlcVIlT1MSPxDmhgnbbIi1Cgkq9WXbs0B6abLO7_5-ZxLt0qdRjYitxPJmZbx6eATiRhXK19kVaykDeKl-lNpQiFdIXWUCEXAo6KDz7UVxcye_X6jo63BYxrXItEwdB7buafOSnXKtSyjIr-Zf5fUpdoyi6GltoPIcXOWoaSunS0_ONwSXQ_hqrCQk07U8XnI59i3V_rKiDhlL9jwXy_0mSD7TO9A28jnCRnY303YVnod2DVw-KCO5DfXmHMoH9pPKUQ9I_3mXkXmWT9maI7zPCeas-sBnKXfI4MUSqeDFns9BTkyJ22zIEgvSMBXE66xr2izLbcWjS913_Fq6mk9_fLtLYOiGt0b5bptY7jqaUk0pIlzWBgomioWp5PvOi8tpV3NaV9L4qg_CNdAiDOMevzXjNKy3ewU7bteE9sNxa6ULZ1EpZ1P7ShhwlaMgKjthQBp7Ap_VmmvlYIcOgZUE7bjY7nsBX2ubNBCpqPdzo-j8m8oipFNdWSydQY0rrrEMwoT2-hIfCZjJP4DMRyRDrIUlqG08Q4DqpiJU5Q8GOBhgvcE2HazqayJML8-8PSuB4M4zcRCES24ZuNc7RiCCVSkBv0X9r6dsj7e3NUJc7p6CzqrKDp9_-AV5Sz_oxi_AQdpb9KnxEZLN0R8Pv-xf6R_lM
  priority: 102
  providerName: ProQuest
Title Image Preprocessing with Enhanced Feature Matching for Map Merging in the Presence of Sensing Error
URI https://www.proquest.com/docview/2857447072
https://www.proquest.com/docview/2857843555
https://pubmed.ncbi.nlm.nih.gov/PMC10458590
https://doaj.org/article/9528a84b38474abab8188d2342e6a041
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N7QUeJj5FYVQGIfEUSP0ROw8IbahlIHWagEp9s-zYYZMg2dJWgv-euyStFuCBl0qJk9a9s32_8_l-B_BSZsoXJmSJlpF2q0KeuKhFImTI0ogIWQtKFJ6fZacL-WmplnuwrbHZC3D1T9eO6kktmu-vf17_eocT_i15nOiyv1lxSucWxPl5gAZJUyGDudwFE7gQbUFryulK0B6mHcHQ8NWBWWrZ-_9eo_88N3nDEM3uwmGPINlxp_J7sBer-3DnBq_gAyg-_sBlgp0TY2WbB4B3Ge24sml10Yb8GUG_TRPZHJdi2oRiCF7x4orNY0N1i9hlxRAb0nesaPKzumRf6LA7Nk2bpm4ewmI2_fr-NOmrKSQFunzrxAXP0bvyUgnp0zJSfFGURKAX0iDyYHzOXZHLEHIdRSilR2TEOf7blBc8N-IR7Fd1FR8DmzgnfdRloZRDQCBdnOCiGtOMI1yUkY_gxVaY9qojzbDobJDE7U7iIzghMe8eIJ7r9kbdfLP9tLG54sYZ6QUaUem884gvTMAf4TFzqZyM4BUpydL4QJUUrk8qwH4Sr5U9xrUefTKeYZ-Otnq021FmuVFaSp1qbH6-a8YJRlETV8V60z1jEFQqNQIz0P-g68OW6vKipeqeUBxa5emT_-7nU7hNFe27M4ZHsL9uNvEZ4p61H8MtvdT4aWYfxnBwMj07_zxu9xDG7Xj_DYgHBQs
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKeaUsAgEKeoWT_yOCBUYJdd2q2QaKXeXDt2aA9NluyuEH-K38hMHkuXSr31mNhKrJnxzDf2PADeyFjZPHVxmEhPp1UuC41PRCikiyOPCDkRlCg8PYzHx_LriTrZgD99LgyFVfY6sVHUrsrpjHyXpyqRMokS_mH2M6SuUXS72rfQaMVi3__-hS7b_P3kM_L3Leej4dGncdh1FQhzdH0WoXGWo5dhpRLSRoWnezZRUCE5FzmRudRm3OSZdC5LvHCFtIgQOPcuj3jOs1Tgd2_BbSnQklNm-ujLysET6O-11YtwMNqdc0ozF30_rs7mNa0BrhqA_4MyL1m50QO438FTttfK00PY8OUjuHepaOFjyCcXqIPYNyqH2SQZ4FtGx7lsWJ418QSMcOWy9myKep5OuBgiY3yYsamvqSkSOy8ZAk_6xpw0C6sK9p0i6XFoWNdV_QSOb4SoT2GzrEq_BWxgjLQ-KXKlDKINafwANbaPYo5YVHoewOuemHrWVuTQ6MkQxfWK4gF8JDKvJlAR7eZFVf_Q3Z7UmeKpSaUVaKGlscYieEkd_oT72ERyEMA7YpKmrY4syU2XsYDrpKJZeg8NCTp8PMY17fR81J0OmOt_EhvAq9Uw7l66kjGlr5btnBQRq1IBpGv8X1v6-kh5ftbUAR_QJbfKou3r__4S7oyPpgf6YHK4_wzucpTTNoJxBzYX9dI_R1S1sC8aUWZwetN75y-DTDYT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDxFSoEFgThZcfbhxwGhliZqKIkioFJvy653TXuoHZxEiL_Gr2PGj9CAxK1He1f2ap7f7M7OALySkbJZ4qIglp52q1waGB-LQEgXhR4RcizoovB0Fh2fyg9n6mwHfnV3YSitsrOJtaF2ZUZ75AOeqFjKOIz5IG_TIuZH43eL7wF1kKKT1q6dRiMiJ_7nDwzflm8nR8jr15yPR1_eHwdth4EgwzBoFRhnOUYcViohbZh7OnMTORWVc6ETqUtsyk2WSufS2AuXS4togXPvspBnPE0EfvcG7MYUFfVg93A0m3_ahHsCo7-mlpEQaThYcrp0LrruXK0HrBsF_OsO_k7RvOLzxnfhTgtW2UEjXfdgxxf34faVEoYPIJtcokVicyqOWV85wLeMNnfZqDivswsYocx15dkUrT7tdzHEyfiwYFNfUYskdlEwhKH0jSXZGVbm7DPl1ePQqKrK6iGcXgtZH0GvKAv_GNjQGGl9nGdKGcQe0vgh2m8fRhyRqfS8Dy87YupFU59DY1xDFNcbivfhkMi8mUAltesXZfVNtxqqU8UTk0gr0F9LY41FKJM4_An3kQnlsA9viEmaFB9Zkpn2_gKuk0po6QN0Kxj-8QjXtN_xUbcWYan_yG8fXmyGUZfpgMYUvlw3cxLEr0r1Idni_9bSt0eKi_O6KviQjrxVGu79_-_P4Sbqjf44mZ08gVscxbRJZ9yH3qpa-6cIsVb2WSvLDL5et_r8BvOGO6U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Preprocessing+with+Enhanced+Feature+Matching+for+Map+Merging+in+the+Presence+of+Sensing+Error&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Yu-Lin&rft.au=Chan%2C+Kuei-Yuan&rft.date=2023-08-01&rft.pub=MDPI+AG&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=16&rft_id=info:doi/10.3390%2Fs23167303&rft.externalDocID=A762548262
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon