Discovery of a novel EGFR ligand DPBA that degrades EGFR and suppresses EGFR-positive NSCLC growth
Epidermal growth factor receptor (EGFR) activation plays a pivotal role in EGFR-driven non-small cell lung cancer (NSCLC) and is considered as a key target of molecular targeted therapy. EGFR tyrosine kinase inhibitors (TKIs) have been canonically used in NSCLC treatment. However, prevalent innate a...
Saved in:
Published in | Signal transduction and targeted therapy Vol. 5; no. 1; p. 214 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
09.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Epidermal growth factor receptor (EGFR) activation plays a pivotal role in EGFR-driven non-small cell lung cancer (NSCLC) and is considered as a key target of molecular targeted therapy. EGFR tyrosine kinase inhibitors (TKIs) have been canonically used in NSCLC treatment. However, prevalent innate and acquired resistances and EGFR kinase-independent pro-survival properties limit the clinical efficacy of EGFR TKIs. Therefore, the discovery of novel EGFR degraders is a promising approach towards improving therapeutic efficacy and overcoming drug resistance. Here, we identified a 23-hydroxybetulinic acid derivative, namely DPBA, as a novel EGFR small-molecule ligand. It exerted potent in vitro and in vivo anticancer activity in both EGFR wild type and mutant NSCLC by degrading EGFR. Mechanistic studies disclosed that DPBA binds to the EGFR extracellular domain at sites differing from those of EGF and EGFR. DPBA did not induce EGFR dimerization, phosphorylation, and ubiquitination, but it significantly promoted EGFR degradation and repressed downstream survival pathways. Further analyses showed that DPBA induced clathrin-independent EGFR endocytosis mediated by flotillin-dependent lipid rafts and unaffected by EGFR TKIs. Activation of the early and late endosome markers rab5 and rab7 but not the recycling endosome marker rab11 was involved in DPBA-induced EGFR lysosomal degradation. The present study offers a new EGFR ligand for EGFR pharmacological degradation and proposes it as a potential treatment for EGFR-positive NSCLC, particularly NSCLC with innate or acquired EGFR TKI resistance. DPBA can also serve as a chemical probe in the studies on EGFR trafficking and degradation. |
---|---|
AbstractList | Epidermal growth factor receptor (EGFR) activation plays a pivotal role in EGFR-driven non-small cell lung cancer (NSCLC) and is considered as a key target of molecular targeted therapy. EGFR tyrosine kinase inhibitors (TKIs) have been canonically used in NSCLC treatment. However, prevalent innate and acquired resistances and EGFR kinase-independent pro-survival properties limit the clinical efficacy of EGFR TKIs. Therefore, the discovery of novel EGFR degraders is a promising approach towards improving therapeutic efficacy and overcoming drug resistance. Here, we identified a 23-hydroxybetulinic acid derivative, namely DPBA, as a novel EGFR small-molecule ligand. It exerted potent in vitro and in vivo anticancer activity in both EGFR wild type and mutant NSCLC by degrading EGFR. Mechanistic studies disclosed that DPBA binds to the EGFR extracellular domain at sites differing from those of EGF and EGFR. DPBA did not induce EGFR dimerization, phosphorylation, and ubiquitination, but it significantly promoted EGFR degradation and repressed downstream survival pathways. Further analyses showed that DPBA induced clathrin-independent EGFR endocytosis mediated by flotillin-dependent lipid rafts and unaffected by EGFR TKIs. Activation of the early and late endosome markers rab5 and rab7 but not the recycling endosome marker rab11 was involved in DPBA-induced EGFR lysosomal degradation. The present study offers a new EGFR ligand for EGFR pharmacological degradation and proposes it as a potential treatment for EGFR-positive NSCLC, particularly NSCLC with innate or acquired EGFR TKI resistance. DPBA can also serve as a chemical probe in the studies on EGFR trafficking and degradation. Epidermal growth factor receptor (EGFR) activation plays a pivotal role in EGFR-driven non-small cell lung cancer (NSCLC) and is considered as a key target of molecular targeted therapy. EGFR tyrosine kinase inhibitors (TKIs) have been canonically used in NSCLC treatment. However, prevalent innate and acquired resistances and EGFR kinase-independent pro-survival properties limit the clinical efficacy of EGFR TKIs. Therefore, the discovery of novel EGFR degraders is a promising approach towards improving therapeutic efficacy and overcoming drug resistance. Here, we identified a 23-hydroxybetulinic acid derivative, namely DPBA, as a novel EGFR small-molecule ligand. It exerted potent in vitro and in vivo anticancer activity in both EGFR wild type and mutant NSCLC by degrading EGFR. Mechanistic studies disclosed that DPBA binds to the EGFR extracellular domain at sites differing from those of EGF and EGFR. DPBA did not induce EGFR dimerization, phosphorylation, and ubiquitination, but it significantly promoted EGFR degradation and repressed downstream survival pathways. Further analyses showed that DPBA induced clathrin-independent EGFR endocytosis mediated by flotillin-dependent lipid rafts and unaffected by EGFR TKIs. Activation of the early and late endosome markers rab5 and rab7 but not the recycling endosome marker rab11 was involved in DPBA-induced EGFR lysosomal degradation. The present study offers a new EGFR ligand for EGFR pharmacological degradation and proposes it as a potential treatment for EGFR-positive NSCLC, particularly NSCLC with innate or acquired EGFR TKI resistance. DPBA can also serve as a chemical probe in the studies on EGFR trafficking and degradation.Epidermal growth factor receptor (EGFR) activation plays a pivotal role in EGFR-driven non-small cell lung cancer (NSCLC) and is considered as a key target of molecular targeted therapy. EGFR tyrosine kinase inhibitors (TKIs) have been canonically used in NSCLC treatment. However, prevalent innate and acquired resistances and EGFR kinase-independent pro-survival properties limit the clinical efficacy of EGFR TKIs. Therefore, the discovery of novel EGFR degraders is a promising approach towards improving therapeutic efficacy and overcoming drug resistance. Here, we identified a 23-hydroxybetulinic acid derivative, namely DPBA, as a novel EGFR small-molecule ligand. It exerted potent in vitro and in vivo anticancer activity in both EGFR wild type and mutant NSCLC by degrading EGFR. Mechanistic studies disclosed that DPBA binds to the EGFR extracellular domain at sites differing from those of EGF and EGFR. DPBA did not induce EGFR dimerization, phosphorylation, and ubiquitination, but it significantly promoted EGFR degradation and repressed downstream survival pathways. Further analyses showed that DPBA induced clathrin-independent EGFR endocytosis mediated by flotillin-dependent lipid rafts and unaffected by EGFR TKIs. Activation of the early and late endosome markers rab5 and rab7 but not the recycling endosome marker rab11 was involved in DPBA-induced EGFR lysosomal degradation. The present study offers a new EGFR ligand for EGFR pharmacological degradation and proposes it as a potential treatment for EGFR-positive NSCLC, particularly NSCLC with innate or acquired EGFR TKI resistance. DPBA can also serve as a chemical probe in the studies on EGFR trafficking and degradation. |
ArticleNumber | 214 |
Author | Lu, Jin-Jian Ye, Wen-Cai Chen, Wei-Min Li, Xiao-Bo Wang, Chen-Ran Yao, Nan Liu, Ming-Qun Zhang, Dong-Mei Qi, Ming Qi, Qi Hong, Jian Li, Ying-Jie Li, Zheng-Qiu Chen, Min-Feng Fan, Chun-Lin |
Author_xml | – sequence: 1 givenname: Nan surname: Yao fullname: Yao, Nan organization: College of Pharmacy, Jinan University, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University – sequence: 2 givenname: Chen-Ran surname: Wang fullname: Wang, Chen-Ran organization: College of Pharmacy, Jinan University, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University – sequence: 3 givenname: Ming-Qun surname: Liu fullname: Liu, Ming-Qun organization: College of Pharmacy, Jinan University – sequence: 4 givenname: Ying-Jie surname: Li fullname: Li, Ying-Jie organization: College of Pharmacy, Jinan University – sequence: 5 givenname: Wei-Min surname: Chen fullname: Chen, Wei-Min organization: College of Pharmacy, Jinan University – sequence: 6 givenname: Zheng-Qiu surname: Li fullname: Li, Zheng-Qiu organization: College of Pharmacy, Jinan University – sequence: 7 givenname: Qi orcidid: 0000-0003-4460-0713 surname: Qi fullname: Qi, Qi organization: School of Medicine, Jinan University – sequence: 8 givenname: Jin-Jian orcidid: 0000-0001-6703-3120 surname: Lu fullname: Lu, Jin-Jian organization: State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau – sequence: 9 givenname: Chun-Lin surname: Fan fullname: Fan, Chun-Lin organization: College of Pharmacy, Jinan University, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University – sequence: 10 givenname: Min-Feng surname: Chen fullname: Chen, Min-Feng organization: College of Pharmacy, Jinan University, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University – sequence: 11 givenname: Ming surname: Qi fullname: Qi, Ming organization: College of Pharmacy, Jinan University, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University – sequence: 12 givenname: Xiao-Bo surname: Li fullname: Li, Xiao-Bo organization: College of Pharmacy, Jinan University, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University – sequence: 13 givenname: Jian surname: Hong fullname: Hong, Jian organization: School of Medicine, Jinan University – sequence: 14 givenname: Dong-Mei surname: Zhang fullname: Zhang, Dong-Mei email: dmzhang701@jnu.edu.cn organization: College of Pharmacy, Jinan University, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University – sequence: 15 givenname: Wen-Cai surname: Ye fullname: Ye, Wen-Cai email: chywc@aliyun.com organization: College of Pharmacy, Jinan University, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33033232$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1P3DAQtSqqAlv-AAfkYy-h9tjJbi5IdPlopVVBtD1bjuNkjbJ2sJ2t-Pd1yBYBB04e-c2bN_PeIdqzzmqEjik5pYQtvgZOWQkZAZIRAjnN4AM6AJKXGStYvvei3kdHIdwTQmjB5vOcf0L7jBHGgMEBqi5MUG6r_SN2DZbYprrDl9dXd7gzrbQ1vrj9do7jWkZc69bLWocJHrEw9L3XIez-st4FE81W45-_lqslbr37G9ef0cdGdkEf7d4Z-nN1-Xv5PVvdXP9Ynq8yxXkRMymBaFY187xa1LyhZcmgkoXikjLF-LySGqDWUqkGFiqdDBx4QSteQTMS2AydTXP7odroWmkbvexE781G-kfhpBGvEWvWonVbkTzhRUnTgC-7Ad49DDpEsUnm6K6TVrshCOC8LHOWp81m6OSl1rPIf2NTA0wNyrsQvG6eWygRY4BiClCkAMVTgGIkLd6QlIkyGjfua7r3qWyihqRjW-3FvRu8TX6_x_oHO7aukw |
CitedBy_id | crossref_primary_10_1016_j_neo_2021_05_011 crossref_primary_10_1111_nyas_14623 crossref_primary_10_3390_ijms26020629 crossref_primary_10_1038_s41467_023_42979_9 crossref_primary_10_1038_s41598_024_78146_3 crossref_primary_10_1111_cbdd_14517 crossref_primary_10_1016_j_bioorg_2023_106499 crossref_primary_10_1021_acs_jnatprod_3c00276 crossref_primary_10_1016_j_jep_2023_117209 crossref_primary_10_1038_s41416_023_02196_z crossref_primary_10_1016_j_heliyon_2024_e33358 crossref_primary_10_2147_IJGM_S350228 crossref_primary_10_1007_s00210_023_02510_9 crossref_primary_10_1016_j_tranon_2021_101140 crossref_primary_10_1016_j_ejmech_2022_114533 crossref_primary_10_2147_CMAR_S457221 crossref_primary_10_1021_acs_jmedchem_3c01889 crossref_primary_10_1186_s12964_023_01083_7 crossref_primary_10_1021_acs_jmedchem_0c02005 crossref_primary_10_3389_fonc_2023_1258371 crossref_primary_10_1016_j_canlet_2023_216458 crossref_primary_10_1016_j_ijpharm_2022_121746 crossref_primary_10_1124_pharmrev_123_000906 crossref_primary_10_1016_j_cbi_2021_109735 crossref_primary_10_1016_j_envint_2024_108886 crossref_primary_10_1158_1078_0432_CCR_22_3484 crossref_primary_10_1021_jacs_4c14650 crossref_primary_10_3390_cancers14153647 crossref_primary_10_3389_fnano_2023_1220514 crossref_primary_10_1038_s41388_024_03241_8 crossref_primary_10_1016_j_chembiol_2022_08_003 |
Cites_doi | 10.1016/S0024-3205(02)02176-8 10.1016/j.ebiom.2020.102689 10.1242/jcs.00793 10.1158/2159-8290.CD-14-0337 10.1016/j.cell.2014.12.006 10.1056/NEJMoa0810699 10.1593/neo.12986 10.18632/oncotarget.5736 10.1158/0008-5472.CAN-09-0049 10.1038/sj.gt.3302703 10.1016/j.ejmech.2011.03.038 10.1016/j.devcel.2008.06.012 10.1073/pnas.0409817102 10.1016/j.ccr.2008.03.015 10.1038/nm.3854 10.1158/0008-5472.CAN-17-2195 10.1039/C5NP00101C 10.1038/s41392-019-0101-6 10.1021/acs.jmedchem.9b01566 10.1074/jbc.M117.811299 10.1038/ncomms8324 10.3390/pharmaceutics5030498 10.1089/ars.2015.6420 10.1038/nrc2947 10.1164/rccm.201502-0250OC 10.1038/sj.emboj.7601297 10.1200/JCO.2013.50.2617 10.1074/jbc.M113.492280 10.1016/j.tcb.2013.11.002 10.1091/mbc.01-08-0403 10.1038/nrclinonc.2013.154 10.1042/BJ20121456 10.3389/fonc.2019.00800 10.21037/tlcr.2018.01.06 10.3390/cancers11081094 10.1074/mcp.M900148-MCP200 10.4161/cbt.11.9.15050 10.1016/j.tcb.2015.12.006 10.1242/jcs.092015 10.1016/j.chembiol.2017.09.009 10.1073/pnas.1307224110 10.1016/S0025-6196(11)60735-0 10.1074/jbc.M301326200 10.1016/j.yexcr.2006.05.008 10.1021/mp300249s 10.3892/ijo.2016.3644 10.1002/1878-0261.12155 10.1002/pmic.201300154 10.1074/jbc.M117.802884 10.1016/j.febslet.2012.08.022 10.1038/mt.2013.54 10.1038/srep03977 10.1038/nrc2088 10.1186/s13046-016-0457-1 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 |
Copyright_xml | – notice: The Author(s) 2020 |
DBID | C6C AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1038/s41392-020-00251-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 2059-3635 |
ExternalDocumentID | PMC7544691 33033232 10_1038_s41392_020_00251_2 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 3V. 5VS 7X7 8FI 8FJ AAJSJ ABUWG ACGFS ACSMW ADBBV AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU EBLON EBS EJD EMOBN FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE M7P NAO OK1 PIMPY PQQKQ PROAC RNT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7X8 5PM |
ID | FETCH-LOGICAL-c446t-aa20e3bf75b8d4f19932ba6c4a13c347bae22deaccf28c025242461b4b2f8d4f3 |
IEDL.DBID | C6C |
ISSN | 2059-3635 2095-9907 |
IngestDate | Thu Aug 21 18:34:05 EDT 2025 Fri Jul 11 04:29:50 EDT 2025 Mon Jul 21 05:32:17 EDT 2025 Thu Apr 24 22:56:15 EDT 2025 Tue Jul 01 03:15:13 EDT 2025 Fri Feb 21 02:39:13 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-aa20e3bf75b8d4f19932ba6c4a13c347bae22deaccf28c025242461b4b2f8d4f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6703-3120 0000-0003-4460-0713 |
OpenAccessLink | https://www.nature.com/articles/s41392-020-00251-2 |
PMID | 33033232 |
PQID | 2449953599 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7544691 proquest_miscellaneous_2449953599 pubmed_primary_33033232 crossref_primary_10_1038_s41392_020_00251_2 crossref_citationtrail_10_1038_s41392_020_00251_2 springer_journals_10_1038_s41392_020_00251_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-09 |
PublicationDateYYYYMMDD | 2020-10-09 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Signal transduction and targeted therapy |
PublicationTitleAbbrev | Sig Transduct Target Ther |
PublicationTitleAlternate | Signal Transduct Target Ther |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK |
Publisher_xml | – name: Nature Publishing Group UK |
References | Burslem (CR33) 2018; 25 Mao (CR21) 2018; 9 Tan, Thapa, Sun, Anderson (CR47) 2015; 160 Thress (CR6) 2015; 21 Oksvold, Pedersen, Forfang, Smeland (CR53) 2012; 586 Yu, Pao (CR4) 2013; 10 Zwang, Yarden (CR48) 2006; 25 Xu (CR22) 2016; 49 Tomas (CR49) 2015; 6 Sharma, Bell, Settleman, Haber (CR36) 2007; 7 Tong (CR28) 2009; 8 Foerster (CR61) 2013; 13 Lee (CR19) 2011; 6 Che (CR11) 2015; 6 Gu (CR17) 2018; 40 Itchins, Clarke, Pavlakis (CR9) 2018; 7 Zhao (CR43) 2020; 53 Thomas, Weihua (CR40) 2019; 9 Uemura, Kametaka, Waguri (CR42) 2018; 8 Alwan, van Zoelen, van Leeuwen (CR38) 2003; 278 Graves, Duncan, Whittle, Johnson (CR7) 2013; 450 Leung (CR18) 2016; 24 Jaramillo (CR52) 2006; 312 Cheng (CR16) 2020; 63 Ahsan (CR41) 2012; 14 Tanaka (CR54) 2018; 293 Sakanyan (CR34) 2014; 4 Gelsomino (CR8) 2013; 31 Tan, Lambert, Rapraeger, Anderson (CR25) 2016; 26 Lan (CR24) 2011; 46 Menard, Floc’h, Martin, Cross (CR23) 2018; 78 Yao (CR55) 2016; 35 Molina (CR1) 2008; 83 Cao, Zhu, Ali-Osman, Lo (CR12) 2011; 10 Yao (CR56) 2019; 10 Sigismund, Avanzato, Lanzetti (CR39) 2018; 12 Otto, Nichols (CR32) 2011; 124 Heukers (CR27) 2013; 126 El-Sayed, Harashima (CR31) 2013; 21 Weihua (CR10) 2008; 13 Na (CR20) 2012; 7 Sigismund (CR30) 2005; 102 Wang, Yu (CR60) 2013; 110 Pan (CR62) 2016; 33 Ahsan (CR45) 2013; 288 Cross (CR5) 2014; 4 Kitai (CR44) 2017; 292 Odintsova, Voortman, Gilbert, Berditchevski (CR63) 2003; 116 Zhang (CR57) 2012; 9 Tanaka (CR29) 2018; 293 Huang (CR37) 2016; 193 Ji, Ye, Liu, Hsiao (CR58) 2002; 72 Dykxhoorn, Palliser, Lieberman (CR13) 2006; 13 Tomas, Futter, Eden (CR26) 2014; 24 Pao, Chmielecki (CR2) 2010; 10 Sun (CR15) 2019; 4 Liao, Carpenter (CR50) 2009; 69 Tam, Chen, Cullis (CR14) 2013; 5 Sigismund (CR46) 2008; 15 Mok (CR3) 2009; 361 Iradyan (CR35) 2019; 11 Brand, Iida, Wheeler (CR51) 2011; 11 Salazar, Gonzalez (CR59) 2002; 13 A Ahsan (251_CR41) 2012; 14 S Sigismund (251_CR30) 2005; 102 A El-Sayed (251_CR31) 2013; 21 SV Sharma (251_CR36) 2007; 7 XC Zhao (251_CR43) 2020; 53 TS Mok (251_CR3) 2009; 361 SW Xu (251_CR22) 2016; 49 X Tan (251_CR25) 2016; 26 S Sigismund (251_CR46) 2008; 15 J Wang (251_CR60) 2013; 110 T Tanaka (251_CR54) 2018; 293 V Sakanyan (251_CR34) 2014; 4 A Ahsan (251_CR45) 2013; 288 X Tan (251_CR47) 2015; 160 ZN Ji (251_CR58) 2002; 72 E Odintsova (251_CR63) 2003; 116 JR Molina (251_CR1) 2008; 83 DM Dykxhoorn (251_CR13) 2006; 13 G Salazar (251_CR59) 2002; 13 N Yao (251_CR56) 2019; 10 HA Alwan (251_CR38) 2003; 278 X Sun (251_CR15) 2019; 4 TM Brand (251_CR51) 2011; 11 JY Lee (251_CR19) 2011; 6 R Thomas (251_CR40) 2019; 9 LM Graves (251_CR7) 2013; 450 N Yao (251_CR55) 2016; 35 TF Che (251_CR11) 2015; 6 S Pan (251_CR62) 2016; 33 T Uemura (251_CR42) 2018; 8 P Lan (251_CR24) 2011; 46 Y Kitai (251_CR44) 2017; 292 DA Cross (251_CR5) 2014; 4 GP Otto (251_CR32) 2011; 124 A Tomas (251_CR49) 2015; 6 M Iradyan (251_CR35) 2019; 11 MP Oksvold (251_CR53) 2012; 586 Y Zwang (251_CR48) 2006; 25 F Gelsomino (251_CR8) 2013; 31 KY Huang (251_CR37) 2016; 193 R Heukers (251_CR27) 2013; 126 KS Thress (251_CR6) 2015; 21 J Tong (251_CR28) 2009; 8 J Mao (251_CR21) 2018; 9 X Cao (251_CR12) 2011; 10 L Menard (251_CR23) 2018; 78 YY Tam (251_CR14) 2013; 5 T Tanaka (251_CR29) 2018; 293 S Gu (251_CR17) 2018; 40 S Foerster (251_CR61) 2013; 13 DM Zhang (251_CR57) 2012; 9 S Sigismund (251_CR39) 2018; 12 M Cheng (251_CR16) 2020; 63 HJ Liao (251_CR50) 2009; 69 HA Yu (251_CR4) 2013; 10 ML Jaramillo (251_CR52) 2006; 312 EL Leung (251_CR18) 2016; 24 YS Na (251_CR20) 2012; 7 M Itchins (251_CR9) 2018; 7 GM Burslem (251_CR33) 2018; 25 A Tomas (251_CR26) 2014; 24 W Pao (251_CR2) 2010; 10 Z Weihua (251_CR10) 2008; 13 |
References_xml | – volume: 6 year: 2011 ident: CR19 article-title: Curcumin induces EGFR degradation in lung adenocarcinoma and modulates p38 activation in intestine: the versatile adjuvant for gefitinib therapy publication-title: PLoS ONE – volume: 78 start-page: 3267 year: 2018 end-page: 3279 ident: CR23 article-title: Reactivation of mutant-EGFR degradation through clathrin inhibition overcomes resistance to EGFR tyrosine kinase inhibitors publication-title: Cancer Res. – volume: 25 start-page: 67 year: 2018 end-page: 77 e63 ident: CR33 article-title: The advantages of targeted protein degradation over inhibition: an RTK case study publication-title: Cell Chem. Biol. – volume: 361 start-page: 947 year: 2009 end-page: 957 ident: CR3 article-title: Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma publication-title: N. Engl. J. Med. – volume: 6 year: 2015 ident: CR49 article-title: WASH and Tsg101/ALIX-dependent diversion of stress-internalized EGFR from the canonical endocytic pathway publication-title: Nat. Commun. – volume: 5 start-page: 498 year: 2013 end-page: 507 ident: CR14 article-title: Advances in lipid nanoparticles for siRNA delivery publication-title: Pharmaceutics – volume: 586 start-page: 3575 year: 2012 end-page: 3581 ident: CR53 article-title: Effect of cycloheximide on epidermal growth factor receptor trafficking and signaling publication-title: FEBS Lett. – volume: 24 start-page: 263 year: 2016 end-page: 279 ident: CR18 article-title: Targeting tyrosine kinase inhibitor-resistant non-small cell lung cancer by inducing epidermal growth factor receptor degradation via methionine 790 oxidation publication-title: Antioxid. Redox Signal. – volume: 63 start-page: 1216 year: 2020 end-page: 1232 ident: CR16 article-title: Discovery of potent and selective epidermal growth factor receptor (EGFR) bifunctional small-molecule degraders publication-title: J. Med. Chem. – volume: 4 year: 2014 ident: CR34 article-title: Screening and discovery of nitro-benzoxadiazole compounds activating epidermal growth factor receptor (EGFR) in cancer cells publication-title: Sci. Rep. – volume: 8 year: 2018 ident: CR42 article-title: GGA2 interacts with EGFR cytoplasmic domain to stabilize the receptor expression and promote cell growth publication-title: Sci. Rep. – volume: 9 start-page: 800 year: 2019 ident: CR40 article-title: Rethink of EGFR in cancer with its kinase independent function on board publication-title: Front. Oncol. – volume: 21 start-page: 560 year: 2015 end-page: 562 ident: CR6 article-title: Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M publication-title: Nat. Med. – volume: 26 start-page: 352 year: 2016 end-page: 366 ident: CR25 article-title: Stress-induced EGFR trafficking: mechanisms, functions, and therapeutic implications publication-title: Trends Cell Biol. – volume: 13 start-page: 385 year: 2008 end-page: 393 ident: CR10 article-title: Survival of cancer cells is maintained by EGFR independent of its kinase activity publication-title: Cancer Cell – volume: 6 start-page: 37349 year: 2015 end-page: 37366 ident: CR11 article-title: Mitochondrial translocation of EGFR regulates mitochondria dynamics and promotes metastasis in NSCLC publication-title: Oncotarget – volume: 83 start-page: 584 year: 2008 end-page: 594 ident: CR1 article-title: Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship publication-title: Mayo Clin. Proc. – volume: 102 start-page: 2760 year: 2005 end-page: 2765 ident: CR30 article-title: Clathrin-independent endocytosis of ubiquitinated cargos publication-title: Proc. Natl. Acad. Sci. USA – volume: 160 start-page: 145 year: 2015 end-page: 160 ident: CR47 article-title: A kinase-independent role for EGF receptor in autophagy initiation publication-title: Cell – volume: 10 year: 2019 ident: CR56 article-title: Inhibition of PINK1/Parkin-dependent mitophagy sensitizes multidrug-resistant cancer cells to B5G1, a new betulinic acid analog publication-title: Cell Death Dis. – volume: 31 start-page: 3291 year: 2013 end-page: 3293 ident: CR8 article-title: Epidermal growth factor receptor tyrosine kinase inhibitor treatment in patients with EGFR wild-type non-small-cell lung cancer: the never-ending story publication-title: J. Clin. Oncol. – volume: 126 start-page: 4900 year: 2013 end-page: 4912 ident: CR27 article-title: Endocytosis of EGFR requires its kinase activity and N-terminal transmembrane dimerization motif publication-title: J. Cell Sci. – volume: 293 start-page: 2288 year: 2018 end-page: 2301 ident: CR29 article-title: Ligand-activated epidermal growth factor receptor (EGFR) signaling governs endocytic trafficking of unliganded receptor monomers by non-canonical phosphorylation publication-title: J. Biol. Chem. – volume: 292 start-page: 19392 year: 2017 end-page: 19399 ident: CR44 article-title: STAP-2 protein promotes prostate cancer growth by enhancing epidermal growth factor receptor stabilization publication-title: J. Biol. Chem. – volume: 21 start-page: 1118 year: 2013 end-page: 1130 ident: CR31 article-title: Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis publication-title: Mol. Ther. – volume: 13 start-page: 541 year: 2006 end-page: 552 ident: CR13 article-title: The silent treatment: siRNAs as small molecule drugs publication-title: Gene Ther. – volume: 8 start-page: 2131 year: 2009 end-page: 2144 ident: CR28 article-title: Epidermal growth factor receptor phosphorylation sites Ser991 and Tyr998 are implicated in the regulation of receptor endocytosis and phosphorylations at Ser1039 and Thr1041 publication-title: Mol. Cell Proteom. – volume: 116 start-page: 4557 year: 2003 end-page: 4566 ident: CR63 article-title: Tetraspanin CD82 regulates compartmentalisation and ligand-induced dimerization of EGFR publication-title: J. Cell Sci. – volume: 10 start-page: 760 year: 2010 end-page: 774 ident: CR2 article-title: Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer publication-title: Nat. Rev. Cancer – volume: 7 start-page: S39 year: 2018 end-page: S45 ident: CR9 article-title: Do EGFR tyrosine kinase inhibitors (TKIs) still have a role in EGFR wild-type pre-treated advanced non-small cell lung cancer (NSCLC)?—the shifting paradigm of therapeutics publication-title: Transl. Lung Cancer Res. – volume: 40 year: 2018 ident: CR17 article-title: PROTACs: an emerging targeting technique for protein degradation in drug discovery publication-title: BioEssays – volume: 7 year: 2012 ident: CR20 article-title: YM155 induces EGFR suppression in pancreatic cancer cells publication-title: PLoS ONE – volume: 312 start-page: 2778 year: 2006 end-page: 2790 ident: CR52 article-title: Effect of the anti-receptor ligand-blocking 225 monoclonal antibody on EGF receptor endocytosis and sorting publication-title: Exp. Cell Res. – volume: 72 start-page: 1 year: 2002 end-page: 9 ident: CR58 article-title: 23-Hydroxybetulinic acid-mediated apoptosis is accompanied by decreases in bcl-2 expression and telomerase activity in HL-60 Cells publication-title: Life Sci. – volume: 12 start-page: 3 year: 2018 end-page: 20 ident: CR39 article-title: Emerging functions of the EGFR in cancer publication-title: Mol. Oncol. – volume: 25 start-page: 4195 year: 2006 end-page: 4206 ident: CR48 article-title: p38 MAP kinase mediates stress-induced internalization of EGFR: implications for cancer chemotherapy publication-title: EMBO J. – volume: 13 start-page: 1677 year: 2002 end-page: 1693 ident: CR59 article-title: Novel mechanism for regulation of epidermal growth factor receptor endocytosis revealed by protein kinase A inhibition publication-title: Mol. Biol. Cell – volume: 278 start-page: 35781 year: 2003 end-page: 35790 ident: CR38 article-title: Ligand-induced lysosomal epidermal growth factor receptor (EGFR) degradation is preceded by proteasome-dependent EGFR de-ubiquitination publication-title: J. Biol. Chem. – volume: 124 start-page: 3933 year: 2011 ident: CR32 article-title: The roles of flotillin microdomains—endocytosis and beyond publication-title: J. Cell Sci. – volume: 10 start-page: 551 year: 2013 end-page: 552 ident: CR4 article-title: Targeted therapies: Afatinib—new therapy option for EGFR-mutant lung cancer publication-title: Nat. Rev. Clin. Oncol. – volume: 69 start-page: 6179 year: 2009 end-page: 6183 ident: CR50 article-title: Cetuximab/C225-induced intracellular trafficking of epidermal growth factor receptor publication-title: Cancer Res. – volume: 33 start-page: 612 year: 2016 end-page: 620 ident: CR62 article-title: Target identification of natural products and bioactive compounds using affinity-based probes publication-title: Nat. Prod. Rep. – volume: 14 start-page: 670 year: 2012 end-page: 677 ident: CR41 article-title: Wild-type EGFR is stabilized by direct interaction with HSP90 in cancer cells and tumors publication-title: Neoplasia (New York, N.Y.) – volume: 53 start-page: 102689 year: 2020 ident: CR43 article-title: Systematic identification of CDC34 that functions to stabilize EGFR and promote lung carcinogenesis publication-title: EBioMedicine – volume: 4 start-page: 64 year: 2019 ident: CR15 article-title: PROTACs: great opportunities for academia and industry publication-title: Signal Transduct. Target. Ther. – volume: 11 start-page: 1094 year: 2019 ident: CR35 article-title: Targeting degradation of EGFR through the allosteric site leads to cancer cell detachment-promoted death publication-title: Cancers – volume: 293 start-page: 2288 year: 2018 end-page: 2301 ident: CR54 article-title: Ligand-activated epidermal growth factor receptor (EGFR) signaling governs endocytic trafficking of unliganded receptor monomers by non-canonical phosphorylation publication-title: J. Biol. Chem. – volume: 110 start-page: 19137 year: 2013 end-page: 19142 ident: CR60 article-title: Interaction of ganglioside GD3 with an EGF receptor sustains the self-renewal ability of mouse neural stem cells in vitro publication-title: Proc. Natl. Acad. Sci. USA – volume: 49 start-page: 1576 year: 2016 end-page: 1588 ident: CR22 article-title: Autophagic degradation of epidermal growth factor receptor in gefitinib-resistant lung cancer by celastrol publication-title: Int. J. Oncol. – volume: 7 start-page: 169 year: 2007 end-page: 181 ident: CR36 article-title: Epidermal growth factor receptor mutations in lung cancer publication-title: Nat. Rev. Cancer – volume: 4 start-page: 1046 year: 2014 end-page: 1061 ident: CR5 article-title: AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer publication-title: Cancer Discov. – volume: 9 year: 2018 ident: CR21 article-title: Arsenic circumvents the gefitinib resistance by binding to P62 and mediating autophagic degradation of EGFR in non-small cell lung cancer publication-title: Cell Death Dis. – volume: 11 start-page: 777 year: 2011 end-page: 792 ident: CR51 article-title: Molecular mechanisms of resistance to the EGFR monoclonal antibody cetuximab publication-title: Cancer Biol. Ther. – volume: 46 start-page: 2490 year: 2011 end-page: 2502 ident: CR24 article-title: Synthesis and antiproliferative evaluation of 23-hydroxybetulinic acid derivatives publication-title: Eur. J. Med. Chem. – volume: 13 start-page: 3131 year: 2013 end-page: 3144 ident: CR61 article-title: Characterization of the EGFR interactome reveals associated protein complex networks and intracellular receptor dynamics publication-title: Proteomics – volume: 24 start-page: 26 year: 2014 end-page: 34 ident: CR26 article-title: EGF receptor trafficking: consequences for signaling and cancer publication-title: Trends Cell Biol. – volume: 9 start-page: 3147 year: 2012 end-page: 3159 ident: CR57 article-title: BBA, a derivative of 23-hydroxybetulinic acid, potently reverses ABCB1-mediated drug resistance in vitro and in vivo publication-title: Mol. Pharm. – volume: 10 year: 2011 ident: CR12 article-title: EGFR and EGFRvIII undergo stress- and EGFR kinase inhibitor-induced mitochondrial translocalization: a potential mechanism of EGFR-driven antagonism of apoptosis publication-title: Mol. Cancer – volume: 193 start-page: 753 year: 2016 end-page: 766 ident: CR37 article-title: Small molecule T315 promotes casitas B-lineage lymphoma-dependent degradation of epidermal growth factor receptor via Y1045 autophosphorylation publication-title: Am. J. Respir. Crit. Care Med. – volume: 450 start-page: 1 year: 2013 end-page: 8 ident: CR7 article-title: The dynamic nature of the kinome publication-title: Biochem. J. – volume: 35 start-page: 192 year: 2016 ident: CR55 article-title: A piperazidine derivative of 23-hydroxy betulinic acid induces a mitochondria-derived ROS burst to trigger apoptotic cell death in hepatocellular carcinoma cells publication-title: J. Exp. Clin. Cancer Res. – volume: 15 start-page: 209 year: 2008 end-page: 219 ident: CR46 article-title: Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation publication-title: Dev. Cell – volume: 288 start-page: 26879 year: 2013 end-page: 26886 ident: CR45 article-title: Destabilization of the epidermal growth factor receptor (EGFR) by a peptide that inhibits EGFR binding to heat shock protein 90 and receptor dimerization publication-title: J. Biol. Chem. – volume: 72 start-page: 1 year: 2002 ident: 251_CR58 publication-title: Life Sci. doi: 10.1016/S0024-3205(02)02176-8 – volume: 53 start-page: 102689 year: 2020 ident: 251_CR43 publication-title: EBioMedicine doi: 10.1016/j.ebiom.2020.102689 – volume: 116 start-page: 4557 year: 2003 ident: 251_CR63 publication-title: J. Cell Sci. doi: 10.1242/jcs.00793 – volume: 4 start-page: 1046 year: 2014 ident: 251_CR5 publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-14-0337 – volume: 40 year: 2018 ident: 251_CR17 publication-title: BioEssays – volume: 160 start-page: 145 year: 2015 ident: 251_CR47 publication-title: Cell doi: 10.1016/j.cell.2014.12.006 – volume: 361 start-page: 947 year: 2009 ident: 251_CR3 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0810699 – volume: 10 year: 2019 ident: 251_CR56 publication-title: Cell Death Dis. – volume: 14 start-page: 670 year: 2012 ident: 251_CR41 publication-title: Neoplasia (New York, N.Y.) doi: 10.1593/neo.12986 – volume: 6 start-page: 37349 year: 2015 ident: 251_CR11 publication-title: Oncotarget doi: 10.18632/oncotarget.5736 – volume: 7 year: 2012 ident: 251_CR20 publication-title: PLoS ONE – volume: 69 start-page: 6179 year: 2009 ident: 251_CR50 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-09-0049 – volume: 13 start-page: 541 year: 2006 ident: 251_CR13 publication-title: Gene Ther. doi: 10.1038/sj.gt.3302703 – volume: 46 start-page: 2490 year: 2011 ident: 251_CR24 publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2011.03.038 – volume: 15 start-page: 209 year: 2008 ident: 251_CR46 publication-title: Dev. Cell doi: 10.1016/j.devcel.2008.06.012 – volume: 102 start-page: 2760 year: 2005 ident: 251_CR30 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0409817102 – volume: 13 start-page: 385 year: 2008 ident: 251_CR10 publication-title: Cancer Cell doi: 10.1016/j.ccr.2008.03.015 – volume: 9 year: 2018 ident: 251_CR21 publication-title: Cell Death Dis. – volume: 21 start-page: 560 year: 2015 ident: 251_CR6 publication-title: Nat. Med. doi: 10.1038/nm.3854 – volume: 78 start-page: 3267 year: 2018 ident: 251_CR23 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-2195 – volume: 33 start-page: 612 year: 2016 ident: 251_CR62 publication-title: Nat. Prod. Rep. doi: 10.1039/C5NP00101C – volume: 4 start-page: 64 year: 2019 ident: 251_CR15 publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-019-0101-6 – volume: 63 start-page: 1216 year: 2020 ident: 251_CR16 publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.9b01566 – volume: 293 start-page: 2288 year: 2018 ident: 251_CR54 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.811299 – volume: 6 year: 2015 ident: 251_CR49 publication-title: Nat. Commun. doi: 10.1038/ncomms8324 – volume: 5 start-page: 498 year: 2013 ident: 251_CR14 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics5030498 – volume: 24 start-page: 263 year: 2016 ident: 251_CR18 publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2015.6420 – volume: 10 start-page: 760 year: 2010 ident: 251_CR2 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2947 – volume: 193 start-page: 753 year: 2016 ident: 251_CR37 publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.201502-0250OC – volume: 25 start-page: 4195 year: 2006 ident: 251_CR48 publication-title: EMBO J. doi: 10.1038/sj.emboj.7601297 – volume: 31 start-page: 3291 year: 2013 ident: 251_CR8 publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2013.50.2617 – volume: 126 start-page: 4900 year: 2013 ident: 251_CR27 publication-title: J. Cell Sci. – volume: 288 start-page: 26879 year: 2013 ident: 251_CR45 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.492280 – volume: 24 start-page: 26 year: 2014 ident: 251_CR26 publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2013.11.002 – volume: 10 year: 2011 ident: 251_CR12 publication-title: Mol. Cancer – volume: 13 start-page: 1677 year: 2002 ident: 251_CR59 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.01-08-0403 – volume: 10 start-page: 551 year: 2013 ident: 251_CR4 publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2013.154 – volume: 450 start-page: 1 year: 2013 ident: 251_CR7 publication-title: Biochem. J. doi: 10.1042/BJ20121456 – volume: 9 start-page: 800 year: 2019 ident: 251_CR40 publication-title: Front. Oncol. doi: 10.3389/fonc.2019.00800 – volume: 8 year: 2018 ident: 251_CR42 publication-title: Sci. Rep. – volume: 7 start-page: S39 year: 2018 ident: 251_CR9 publication-title: Transl. Lung Cancer Res. doi: 10.21037/tlcr.2018.01.06 – volume: 11 start-page: 1094 year: 2019 ident: 251_CR35 publication-title: Cancers doi: 10.3390/cancers11081094 – volume: 8 start-page: 2131 year: 2009 ident: 251_CR28 publication-title: Mol. Cell Proteom. doi: 10.1074/mcp.M900148-MCP200 – volume: 11 start-page: 777 year: 2011 ident: 251_CR51 publication-title: Cancer Biol. Ther. doi: 10.4161/cbt.11.9.15050 – volume: 26 start-page: 352 year: 2016 ident: 251_CR25 publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2015.12.006 – volume: 124 start-page: 3933 year: 2011 ident: 251_CR32 publication-title: J. Cell Sci. doi: 10.1242/jcs.092015 – volume: 25 start-page: 67 year: 2018 ident: 251_CR33 publication-title: Cell Chem. Biol. doi: 10.1016/j.chembiol.2017.09.009 – volume: 110 start-page: 19137 year: 2013 ident: 251_CR60 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1307224110 – volume: 83 start-page: 584 year: 2008 ident: 251_CR1 publication-title: Mayo Clin. Proc. doi: 10.1016/S0025-6196(11)60735-0 – volume: 278 start-page: 35781 year: 2003 ident: 251_CR38 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M301326200 – volume: 293 start-page: 2288 year: 2018 ident: 251_CR29 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.811299 – volume: 312 start-page: 2778 year: 2006 ident: 251_CR52 publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2006.05.008 – volume: 9 start-page: 3147 year: 2012 ident: 251_CR57 publication-title: Mol. Pharm. doi: 10.1021/mp300249s – volume: 6 year: 2011 ident: 251_CR19 publication-title: PLoS ONE – volume: 49 start-page: 1576 year: 2016 ident: 251_CR22 publication-title: Int. J. Oncol. doi: 10.3892/ijo.2016.3644 – volume: 12 start-page: 3 year: 2018 ident: 251_CR39 publication-title: Mol. Oncol. doi: 10.1002/1878-0261.12155 – volume: 13 start-page: 3131 year: 2013 ident: 251_CR61 publication-title: Proteomics doi: 10.1002/pmic.201300154 – volume: 292 start-page: 19392 year: 2017 ident: 251_CR44 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.802884 – volume: 586 start-page: 3575 year: 2012 ident: 251_CR53 publication-title: FEBS Lett. doi: 10.1016/j.febslet.2012.08.022 – volume: 21 start-page: 1118 year: 2013 ident: 251_CR31 publication-title: Mol. Ther. doi: 10.1038/mt.2013.54 – volume: 4 year: 2014 ident: 251_CR34 publication-title: Sci. Rep. doi: 10.1038/srep03977 – volume: 7 start-page: 169 year: 2007 ident: 251_CR36 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2088 – volume: 35 start-page: 192 year: 2016 ident: 251_CR55 publication-title: J. Exp. Clin. Cancer Res. doi: 10.1186/s13046-016-0457-1 |
SSID | ssj0001637754 ssib046561479 ssib044760960 |
Score | 2.304294 |
Snippet | Epidermal growth factor receptor (EGFR) activation plays a pivotal role in EGFR-driven non-small cell lung cancer (NSCLC) and is considered as a key target of... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 214 |
SubjectTerms | 631/67/1059/153 692/699/67/1612 Cancer Research Cell Biology Internal Medicine Medicine Medicine & Public Health Oncology Pathology |
Title | Discovery of a novel EGFR ligand DPBA that degrades EGFR and suppresses EGFR-positive NSCLC growth |
URI | https://link.springer.com/article/10.1038/s41392-020-00251-2 https://www.ncbi.nlm.nih.gov/pubmed/33033232 https://www.proquest.com/docview/2449953599 https://pubmed.ncbi.nlm.nih.gov/PMC7544691 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED5KC2MvY2v3w-sWNBh72cRiyZbtR89NVsJSxrpC34Qky00gc8rsFPqyv3062c7IOgp7McaSjKw73Z11nz4BvMVkVuw8HRVcZTRSQtGUGU4Tk6pSOR8jNC4NzM_E6UU0u4wv94ANe2E8aN9TWnozPaDDPjbO2CJOkuE-aOeTqTO7B0jdjlpdiOLPuorgSOrW748Z8_QfTXd90J3A8i4-8q8kqfc908fwqA8aSd518wns2foQjnL3Besft-Qd8TBOvz5-CA_mfbb8CPTJsjEI0bwl64ooUrv7FZl8nn4jq-WVqkty8vVTTtqFakmJpBGlbbpiLGs21x4k2z-jHbzrxpKz8-JLQa7c_3u7eAoX08n34pT2ZypQ48aqpUqxseW6SmKdllGF8D2mlTCRCrnhUaKVZax01thULDVuuHD7iAh1pFmFDfgz2K_XtX0BZGwjk3lyGi4iw0uly1CnJhFCMZskVQDhMMrS9ITjeO7FSvrEN09lJxnpJCO9ZCQL4P22zXVHt3Fv7TeD8KSbFZjqULVdbxrpgpYsi3mcZQE874S5fR93Xpu7QDKAZEfM2wrIuL1bUi8Xnnkb2QJFFgbwYVAI2U_55p5uvvy_6sfwkKGyIkohewX77c-Nfe0in1aP4CDPZ-ezkVf5kV8_cNf5r8lvJyH-Vw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED5NQwJeENuABRgYCfECFo2dOMljl60UaCsEm7Q3y3actVJJJ5Ii7d9zdpJOZWgSb1FsR47Pvjv7vvsM8NYFs2K0dFRwldFICUVTZjhNTKoKhTZGaHc0MJ2J8Xn05SK-2AHW58J40L6ntPRqukeHfaxR2TqcJHN50GiTKarde-hrCwfjykV-c64iuCN16_JjBjz9R9NtG3TLsbyNj_wrSOptz-gxPOqcRjJsu7kHO7bah4Mh_sHq5zV5RzyM05-P78P9aRctPwB9sqiNg2hek1VJFKnweUlOP42-k-XiUlUFOfl2PCTNXDWkcKQRha3bYldWr688SLZ7R1t4129LZj_ySU4ucf_ezJ_A-ej0LB_T7k4FanDj11Cl2MByXSaxTouodPA9ppUwkQq54VGilWWsQG1sSpYaHC6XPiJCHWlWugb8KexWq8oeAhnYyGSenIaLyPBC6SLUqUmEUMwmSRlA2I-yNB3huLv3Yil94JunspWMRMlILxnJAni_aXPV0m3cWftNLzyJq8KFOlRlV-taotOSZTGPsyyAZ60wN9_jaLU5OpIBJFti3lRwjNvbJdVi7pm3HVugyMIAPvQTQnZLvr6jm8__r_preDA-m07k5PPs6wt4yNzEdYiF7CXsNr_W9gi9oEa_8tP-D12__ZQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NIU28INj4CJ9GQryARWMnTvJY0pUBWzUBk_Zm-StrpZJOJEXaf4_PSYrK0CTeotiOHJ_tu_P97meA1xjMSr2mo4KrgiZKKJozw2lmcmWV1zFC49HAyUwcnSWfz9PzHRBDLkwA7QdKy7BND-iw943fbBEnyTAP2utk6v1BW92C297eHqHTVYryz9mK4Ejs1ufIjHj-j-bbeuiacXkdI_lXoDTon-k9uNsbjmTcdfU-7Lh6Hw7G_i9WP67IGxKgnOGMfB_2TvqI-QHoyaIxCNO8IquKKFL75yU5_Dj9SpaLC1VbMjn9MCbtXLXEInGEdU1XjGXN-jIAZft3tIN4_XJk9q08LsmF9-Hb-QM4mx5-L49of68CNd75a6lSbOS4rrJU5zapEMLHtBImUTE3PMm0coxZvyObiuXGDxemkIhYJ5pV2IA_hN16VbvHQEYuMUUgqOEiMdwqbWOdm0wIxVyWVRHEwyhL05OO490XSxmC3zyXnWSkl4wMkpEsgrebNpcd5caNtV8NwpN-ZWC4Q9VutW6kN1yKIuVpUUTwqBPm5nvca27ujckIsi0xbyog6_Z2Sb2YB_ZtZAwURRzBu2FCyH7ZNzd088n_VX8Je6eTqTz-NPvyFO4wnLcIWiiewW77c-2ee0Oo1S_CrP8NAxP-nQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discovery+of+a+novel+EGFR+ligand+DPBA+that+degrades+EGFR+and+suppresses+EGFR-positive+NSCLC+growth&rft.jtitle=Signal+transduction+and+targeted+therapy&rft.au=Yao%2C+Nan&rft.au=Wang%2C+Chen-Ran&rft.au=Liu%2C+Ming-Qun&rft.au=Li%2C+Ying-Jie&rft.date=2020-10-09&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2059-3635&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1038%2Fs41392-020-00251-2&rft.externalDocID=10_1038_s41392_020_00251_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2059-3635&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2059-3635&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2059-3635&client=summon |