Discovery of a novel EGFR ligand DPBA that degrades EGFR and suppresses EGFR-positive NSCLC growth

Epidermal growth factor receptor (EGFR) activation plays a pivotal role in EGFR-driven non-small cell lung cancer (NSCLC) and is considered as a key target of molecular targeted therapy. EGFR tyrosine kinase inhibitors (TKIs) have been canonically used in NSCLC treatment. However, prevalent innate a...

Full description

Saved in:
Bibliographic Details
Published inSignal transduction and targeted therapy Vol. 5; no. 1; p. 214
Main Authors Yao, Nan, Wang, Chen-Ran, Liu, Ming-Qun, Li, Ying-Jie, Chen, Wei-Min, Li, Zheng-Qiu, Qi, Qi, Lu, Jin-Jian, Fan, Chun-Lin, Chen, Min-Feng, Qi, Ming, Li, Xiao-Bo, Hong, Jian, Zhang, Dong-Mei, Ye, Wen-Cai
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Epidermal growth factor receptor (EGFR) activation plays a pivotal role in EGFR-driven non-small cell lung cancer (NSCLC) and is considered as a key target of molecular targeted therapy. EGFR tyrosine kinase inhibitors (TKIs) have been canonically used in NSCLC treatment. However, prevalent innate and acquired resistances and EGFR kinase-independent pro-survival properties limit the clinical efficacy of EGFR TKIs. Therefore, the discovery of novel EGFR degraders is a promising approach towards improving therapeutic efficacy and overcoming drug resistance. Here, we identified a 23-hydroxybetulinic acid derivative, namely DPBA, as a novel EGFR small-molecule ligand. It exerted potent in vitro and in vivo anticancer activity in both EGFR wild type and mutant NSCLC by degrading EGFR. Mechanistic studies disclosed that DPBA binds to the EGFR extracellular domain at sites differing from those of EGF and EGFR. DPBA did not induce EGFR dimerization, phosphorylation, and ubiquitination, but it significantly promoted EGFR degradation and repressed downstream survival pathways. Further analyses showed that DPBA induced clathrin-independent EGFR endocytosis mediated by flotillin-dependent lipid rafts and unaffected by EGFR TKIs. Activation of the early and late endosome markers rab5 and rab7 but not the recycling endosome marker rab11 was involved in DPBA-induced EGFR lysosomal degradation. The present study offers a new EGFR ligand for EGFR pharmacological degradation and proposes it as a potential treatment for EGFR-positive NSCLC, particularly NSCLC with innate or acquired EGFR TKI resistance. DPBA can also serve as a chemical probe in the studies on EGFR trafficking and degradation.
AbstractList Epidermal growth factor receptor (EGFR) activation plays a pivotal role in EGFR-driven non-small cell lung cancer (NSCLC) and is considered as a key target of molecular targeted therapy. EGFR tyrosine kinase inhibitors (TKIs) have been canonically used in NSCLC treatment. However, prevalent innate and acquired resistances and EGFR kinase-independent pro-survival properties limit the clinical efficacy of EGFR TKIs. Therefore, the discovery of novel EGFR degraders is a promising approach towards improving therapeutic efficacy and overcoming drug resistance. Here, we identified a 23-hydroxybetulinic acid derivative, namely DPBA, as a novel EGFR small-molecule ligand. It exerted potent in vitro and in vivo anticancer activity in both EGFR wild type and mutant NSCLC by degrading EGFR. Mechanistic studies disclosed that DPBA binds to the EGFR extracellular domain at sites differing from those of EGF and EGFR. DPBA did not induce EGFR dimerization, phosphorylation, and ubiquitination, but it significantly promoted EGFR degradation and repressed downstream survival pathways. Further analyses showed that DPBA induced clathrin-independent EGFR endocytosis mediated by flotillin-dependent lipid rafts and unaffected by EGFR TKIs. Activation of the early and late endosome markers rab5 and rab7 but not the recycling endosome marker rab11 was involved in DPBA-induced EGFR lysosomal degradation. The present study offers a new EGFR ligand for EGFR pharmacological degradation and proposes it as a potential treatment for EGFR-positive NSCLC, particularly NSCLC with innate or acquired EGFR TKI resistance. DPBA can also serve as a chemical probe in the studies on EGFR trafficking and degradation.
Epidermal growth factor receptor (EGFR) activation plays a pivotal role in EGFR-driven non-small cell lung cancer (NSCLC) and is considered as a key target of molecular targeted therapy. EGFR tyrosine kinase inhibitors (TKIs) have been canonically used in NSCLC treatment. However, prevalent innate and acquired resistances and EGFR kinase-independent pro-survival properties limit the clinical efficacy of EGFR TKIs. Therefore, the discovery of novel EGFR degraders is a promising approach towards improving therapeutic efficacy and overcoming drug resistance. Here, we identified a 23-hydroxybetulinic acid derivative, namely DPBA, as a novel EGFR small-molecule ligand. It exerted potent in vitro and in vivo anticancer activity in both EGFR wild type and mutant NSCLC by degrading EGFR. Mechanistic studies disclosed that DPBA binds to the EGFR extracellular domain at sites differing from those of EGF and EGFR. DPBA did not induce EGFR dimerization, phosphorylation, and ubiquitination, but it significantly promoted EGFR degradation and repressed downstream survival pathways. Further analyses showed that DPBA induced clathrin-independent EGFR endocytosis mediated by flotillin-dependent lipid rafts and unaffected by EGFR TKIs. Activation of the early and late endosome markers rab5 and rab7 but not the recycling endosome marker rab11 was involved in DPBA-induced EGFR lysosomal degradation. The present study offers a new EGFR ligand for EGFR pharmacological degradation and proposes it as a potential treatment for EGFR-positive NSCLC, particularly NSCLC with innate or acquired EGFR TKI resistance. DPBA can also serve as a chemical probe in the studies on EGFR trafficking and degradation.Epidermal growth factor receptor (EGFR) activation plays a pivotal role in EGFR-driven non-small cell lung cancer (NSCLC) and is considered as a key target of molecular targeted therapy. EGFR tyrosine kinase inhibitors (TKIs) have been canonically used in NSCLC treatment. However, prevalent innate and acquired resistances and EGFR kinase-independent pro-survival properties limit the clinical efficacy of EGFR TKIs. Therefore, the discovery of novel EGFR degraders is a promising approach towards improving therapeutic efficacy and overcoming drug resistance. Here, we identified a 23-hydroxybetulinic acid derivative, namely DPBA, as a novel EGFR small-molecule ligand. It exerted potent in vitro and in vivo anticancer activity in both EGFR wild type and mutant NSCLC by degrading EGFR. Mechanistic studies disclosed that DPBA binds to the EGFR extracellular domain at sites differing from those of EGF and EGFR. DPBA did not induce EGFR dimerization, phosphorylation, and ubiquitination, but it significantly promoted EGFR degradation and repressed downstream survival pathways. Further analyses showed that DPBA induced clathrin-independent EGFR endocytosis mediated by flotillin-dependent lipid rafts and unaffected by EGFR TKIs. Activation of the early and late endosome markers rab5 and rab7 but not the recycling endosome marker rab11 was involved in DPBA-induced EGFR lysosomal degradation. The present study offers a new EGFR ligand for EGFR pharmacological degradation and proposes it as a potential treatment for EGFR-positive NSCLC, particularly NSCLC with innate or acquired EGFR TKI resistance. DPBA can also serve as a chemical probe in the studies on EGFR trafficking and degradation.
ArticleNumber 214
Author Lu, Jin-Jian
Ye, Wen-Cai
Chen, Wei-Min
Li, Xiao-Bo
Wang, Chen-Ran
Yao, Nan
Liu, Ming-Qun
Zhang, Dong-Mei
Qi, Ming
Qi, Qi
Hong, Jian
Li, Ying-Jie
Li, Zheng-Qiu
Chen, Min-Feng
Fan, Chun-Lin
Author_xml – sequence: 1
  givenname: Nan
  surname: Yao
  fullname: Yao, Nan
  organization: College of Pharmacy, Jinan University, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University
– sequence: 2
  givenname: Chen-Ran
  surname: Wang
  fullname: Wang, Chen-Ran
  organization: College of Pharmacy, Jinan University, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University
– sequence: 3
  givenname: Ming-Qun
  surname: Liu
  fullname: Liu, Ming-Qun
  organization: College of Pharmacy, Jinan University
– sequence: 4
  givenname: Ying-Jie
  surname: Li
  fullname: Li, Ying-Jie
  organization: College of Pharmacy, Jinan University
– sequence: 5
  givenname: Wei-Min
  surname: Chen
  fullname: Chen, Wei-Min
  organization: College of Pharmacy, Jinan University
– sequence: 6
  givenname: Zheng-Qiu
  surname: Li
  fullname: Li, Zheng-Qiu
  organization: College of Pharmacy, Jinan University
– sequence: 7
  givenname: Qi
  orcidid: 0000-0003-4460-0713
  surname: Qi
  fullname: Qi, Qi
  organization: School of Medicine, Jinan University
– sequence: 8
  givenname: Jin-Jian
  orcidid: 0000-0001-6703-3120
  surname: Lu
  fullname: Lu, Jin-Jian
  organization: State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau
– sequence: 9
  givenname: Chun-Lin
  surname: Fan
  fullname: Fan, Chun-Lin
  organization: College of Pharmacy, Jinan University, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University
– sequence: 10
  givenname: Min-Feng
  surname: Chen
  fullname: Chen, Min-Feng
  organization: College of Pharmacy, Jinan University, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University
– sequence: 11
  givenname: Ming
  surname: Qi
  fullname: Qi, Ming
  organization: College of Pharmacy, Jinan University, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University
– sequence: 12
  givenname: Xiao-Bo
  surname: Li
  fullname: Li, Xiao-Bo
  organization: College of Pharmacy, Jinan University, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University
– sequence: 13
  givenname: Jian
  surname: Hong
  fullname: Hong, Jian
  organization: School of Medicine, Jinan University
– sequence: 14
  givenname: Dong-Mei
  surname: Zhang
  fullname: Zhang, Dong-Mei
  email: dmzhang701@jnu.edu.cn
  organization: College of Pharmacy, Jinan University, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University
– sequence: 15
  givenname: Wen-Cai
  surname: Ye
  fullname: Ye, Wen-Cai
  email: chywc@aliyun.com
  organization: College of Pharmacy, Jinan University, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33033232$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1P3DAQtSqqAlv-AAfkYy-h9tjJbi5IdPlopVVBtD1bjuNkjbJ2sJ2t-Pd1yBYBB04e-c2bN_PeIdqzzmqEjik5pYQtvgZOWQkZAZIRAjnN4AM6AJKXGStYvvei3kdHIdwTQmjB5vOcf0L7jBHGgMEBqi5MUG6r_SN2DZbYprrDl9dXd7gzrbQ1vrj9do7jWkZc69bLWocJHrEw9L3XIez-st4FE81W45-_lqslbr37G9ef0cdGdkEf7d4Z-nN1-Xv5PVvdXP9Ynq8yxXkRMymBaFY187xa1LyhZcmgkoXikjLF-LySGqDWUqkGFiqdDBx4QSteQTMS2AydTXP7odroWmkbvexE781G-kfhpBGvEWvWonVbkTzhRUnTgC-7Ad49DDpEsUnm6K6TVrshCOC8LHOWp81m6OSl1rPIf2NTA0wNyrsQvG6eWygRY4BiClCkAMVTgGIkLd6QlIkyGjfua7r3qWyihqRjW-3FvRu8TX6_x_oHO7aukw
CitedBy_id crossref_primary_10_1016_j_neo_2021_05_011
crossref_primary_10_1111_nyas_14623
crossref_primary_10_3390_ijms26020629
crossref_primary_10_1038_s41467_023_42979_9
crossref_primary_10_1038_s41598_024_78146_3
crossref_primary_10_1111_cbdd_14517
crossref_primary_10_1016_j_bioorg_2023_106499
crossref_primary_10_1021_acs_jnatprod_3c00276
crossref_primary_10_1016_j_jep_2023_117209
crossref_primary_10_1038_s41416_023_02196_z
crossref_primary_10_1016_j_heliyon_2024_e33358
crossref_primary_10_2147_IJGM_S350228
crossref_primary_10_1007_s00210_023_02510_9
crossref_primary_10_1016_j_tranon_2021_101140
crossref_primary_10_1016_j_ejmech_2022_114533
crossref_primary_10_2147_CMAR_S457221
crossref_primary_10_1021_acs_jmedchem_3c01889
crossref_primary_10_1186_s12964_023_01083_7
crossref_primary_10_1021_acs_jmedchem_0c02005
crossref_primary_10_3389_fonc_2023_1258371
crossref_primary_10_1016_j_canlet_2023_216458
crossref_primary_10_1016_j_ijpharm_2022_121746
crossref_primary_10_1124_pharmrev_123_000906
crossref_primary_10_1016_j_cbi_2021_109735
crossref_primary_10_1016_j_envint_2024_108886
crossref_primary_10_1158_1078_0432_CCR_22_3484
crossref_primary_10_1021_jacs_4c14650
crossref_primary_10_3390_cancers14153647
crossref_primary_10_3389_fnano_2023_1220514
crossref_primary_10_1038_s41388_024_03241_8
crossref_primary_10_1016_j_chembiol_2022_08_003
Cites_doi 10.1016/S0024-3205(02)02176-8
10.1016/j.ebiom.2020.102689
10.1242/jcs.00793
10.1158/2159-8290.CD-14-0337
10.1016/j.cell.2014.12.006
10.1056/NEJMoa0810699
10.1593/neo.12986
10.18632/oncotarget.5736
10.1158/0008-5472.CAN-09-0049
10.1038/sj.gt.3302703
10.1016/j.ejmech.2011.03.038
10.1016/j.devcel.2008.06.012
10.1073/pnas.0409817102
10.1016/j.ccr.2008.03.015
10.1038/nm.3854
10.1158/0008-5472.CAN-17-2195
10.1039/C5NP00101C
10.1038/s41392-019-0101-6
10.1021/acs.jmedchem.9b01566
10.1074/jbc.M117.811299
10.1038/ncomms8324
10.3390/pharmaceutics5030498
10.1089/ars.2015.6420
10.1038/nrc2947
10.1164/rccm.201502-0250OC
10.1038/sj.emboj.7601297
10.1200/JCO.2013.50.2617
10.1074/jbc.M113.492280
10.1016/j.tcb.2013.11.002
10.1091/mbc.01-08-0403
10.1038/nrclinonc.2013.154
10.1042/BJ20121456
10.3389/fonc.2019.00800
10.21037/tlcr.2018.01.06
10.3390/cancers11081094
10.1074/mcp.M900148-MCP200
10.4161/cbt.11.9.15050
10.1016/j.tcb.2015.12.006
10.1242/jcs.092015
10.1016/j.chembiol.2017.09.009
10.1073/pnas.1307224110
10.1016/S0025-6196(11)60735-0
10.1074/jbc.M301326200
10.1016/j.yexcr.2006.05.008
10.1021/mp300249s
10.3892/ijo.2016.3644
10.1002/1878-0261.12155
10.1002/pmic.201300154
10.1074/jbc.M117.802884
10.1016/j.febslet.2012.08.022
10.1038/mt.2013.54
10.1038/srep03977
10.1038/nrc2088
10.1186/s13046-016-0457-1
ContentType Journal Article
Copyright The Author(s) 2020
Copyright_xml – notice: The Author(s) 2020
DBID C6C
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1038/s41392-020-00251-2
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 2059-3635
ExternalDocumentID PMC7544691
33033232
10_1038_s41392_020_00251_2
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
3V.
5VS
7X7
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSMW
ADBBV
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
EBLON
EBS
EJD
EMOBN
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
M7P
NAO
OK1
PIMPY
PQQKQ
PROAC
RNT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7X8
5PM
ID FETCH-LOGICAL-c446t-aa20e3bf75b8d4f19932ba6c4a13c347bae22deaccf28c025242461b4b2f8d4f3
IEDL.DBID C6C
ISSN 2059-3635
2095-9907
IngestDate Thu Aug 21 18:34:05 EDT 2025
Fri Jul 11 04:29:50 EDT 2025
Mon Jul 21 05:32:17 EDT 2025
Thu Apr 24 22:56:15 EDT 2025
Tue Jul 01 03:15:13 EDT 2025
Fri Feb 21 02:39:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-aa20e3bf75b8d4f19932ba6c4a13c347bae22deaccf28c025242461b4b2f8d4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6703-3120
0000-0003-4460-0713
OpenAccessLink https://www.nature.com/articles/s41392-020-00251-2
PMID 33033232
PQID 2449953599
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7544691
proquest_miscellaneous_2449953599
pubmed_primary_33033232
crossref_primary_10_1038_s41392_020_00251_2
crossref_citationtrail_10_1038_s41392_020_00251_2
springer_journals_10_1038_s41392_020_00251_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-09
PublicationDateYYYYMMDD 2020-10-09
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-09
  day: 09
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Signal transduction and targeted therapy
PublicationTitleAbbrev Sig Transduct Target Ther
PublicationTitleAlternate Signal Transduct Target Ther
PublicationYear 2020
Publisher Nature Publishing Group UK
Publisher_xml – name: Nature Publishing Group UK
References Burslem (CR33) 2018; 25
Mao (CR21) 2018; 9
Tan, Thapa, Sun, Anderson (CR47) 2015; 160
Thress (CR6) 2015; 21
Oksvold, Pedersen, Forfang, Smeland (CR53) 2012; 586
Yu, Pao (CR4) 2013; 10
Zwang, Yarden (CR48) 2006; 25
Xu (CR22) 2016; 49
Tomas (CR49) 2015; 6
Sharma, Bell, Settleman, Haber (CR36) 2007; 7
Tong (CR28) 2009; 8
Foerster (CR61) 2013; 13
Lee (CR19) 2011; 6
Che (CR11) 2015; 6
Gu (CR17) 2018; 40
Itchins, Clarke, Pavlakis (CR9) 2018; 7
Zhao (CR43) 2020; 53
Thomas, Weihua (CR40) 2019; 9
Uemura, Kametaka, Waguri (CR42) 2018; 8
Alwan, van Zoelen, van Leeuwen (CR38) 2003; 278
Graves, Duncan, Whittle, Johnson (CR7) 2013; 450
Leung (CR18) 2016; 24
Jaramillo (CR52) 2006; 312
Cheng (CR16) 2020; 63
Ahsan (CR41) 2012; 14
Tanaka (CR54) 2018; 293
Sakanyan (CR34) 2014; 4
Gelsomino (CR8) 2013; 31
Tan, Lambert, Rapraeger, Anderson (CR25) 2016; 26
Lan (CR24) 2011; 46
Menard, Floc’h, Martin, Cross (CR23) 2018; 78
Yao (CR55) 2016; 35
Molina (CR1) 2008; 83
Cao, Zhu, Ali-Osman, Lo (CR12) 2011; 10
Yao (CR56) 2019; 10
Sigismund, Avanzato, Lanzetti (CR39) 2018; 12
Otto, Nichols (CR32) 2011; 124
Heukers (CR27) 2013; 126
El-Sayed, Harashima (CR31) 2013; 21
Weihua (CR10) 2008; 13
Na (CR20) 2012; 7
Sigismund (CR30) 2005; 102
Wang, Yu (CR60) 2013; 110
Pan (CR62) 2016; 33
Ahsan (CR45) 2013; 288
Cross (CR5) 2014; 4
Kitai (CR44) 2017; 292
Odintsova, Voortman, Gilbert, Berditchevski (CR63) 2003; 116
Zhang (CR57) 2012; 9
Tanaka (CR29) 2018; 293
Huang (CR37) 2016; 193
Ji, Ye, Liu, Hsiao (CR58) 2002; 72
Dykxhoorn, Palliser, Lieberman (CR13) 2006; 13
Tomas, Futter, Eden (CR26) 2014; 24
Pao, Chmielecki (CR2) 2010; 10
Sun (CR15) 2019; 4
Liao, Carpenter (CR50) 2009; 69
Tam, Chen, Cullis (CR14) 2013; 5
Sigismund (CR46) 2008; 15
Mok (CR3) 2009; 361
Iradyan (CR35) 2019; 11
Brand, Iida, Wheeler (CR51) 2011; 11
Salazar, Gonzalez (CR59) 2002; 13
A Ahsan (251_CR41) 2012; 14
S Sigismund (251_CR30) 2005; 102
A El-Sayed (251_CR31) 2013; 21
SV Sharma (251_CR36) 2007; 7
XC Zhao (251_CR43) 2020; 53
TS Mok (251_CR3) 2009; 361
SW Xu (251_CR22) 2016; 49
X Tan (251_CR25) 2016; 26
S Sigismund (251_CR46) 2008; 15
J Wang (251_CR60) 2013; 110
T Tanaka (251_CR54) 2018; 293
V Sakanyan (251_CR34) 2014; 4
A Ahsan (251_CR45) 2013; 288
X Tan (251_CR47) 2015; 160
ZN Ji (251_CR58) 2002; 72
E Odintsova (251_CR63) 2003; 116
JR Molina (251_CR1) 2008; 83
DM Dykxhoorn (251_CR13) 2006; 13
G Salazar (251_CR59) 2002; 13
N Yao (251_CR56) 2019; 10
HA Alwan (251_CR38) 2003; 278
X Sun (251_CR15) 2019; 4
TM Brand (251_CR51) 2011; 11
JY Lee (251_CR19) 2011; 6
R Thomas (251_CR40) 2019; 9
LM Graves (251_CR7) 2013; 450
N Yao (251_CR55) 2016; 35
TF Che (251_CR11) 2015; 6
S Pan (251_CR62) 2016; 33
T Uemura (251_CR42) 2018; 8
P Lan (251_CR24) 2011; 46
Y Kitai (251_CR44) 2017; 292
DA Cross (251_CR5) 2014; 4
GP Otto (251_CR32) 2011; 124
A Tomas (251_CR49) 2015; 6
M Iradyan (251_CR35) 2019; 11
MP Oksvold (251_CR53) 2012; 586
Y Zwang (251_CR48) 2006; 25
F Gelsomino (251_CR8) 2013; 31
KY Huang (251_CR37) 2016; 193
R Heukers (251_CR27) 2013; 126
KS Thress (251_CR6) 2015; 21
J Tong (251_CR28) 2009; 8
J Mao (251_CR21) 2018; 9
X Cao (251_CR12) 2011; 10
L Menard (251_CR23) 2018; 78
YY Tam (251_CR14) 2013; 5
T Tanaka (251_CR29) 2018; 293
S Gu (251_CR17) 2018; 40
S Foerster (251_CR61) 2013; 13
DM Zhang (251_CR57) 2012; 9
S Sigismund (251_CR39) 2018; 12
M Cheng (251_CR16) 2020; 63
HJ Liao (251_CR50) 2009; 69
HA Yu (251_CR4) 2013; 10
ML Jaramillo (251_CR52) 2006; 312
EL Leung (251_CR18) 2016; 24
YS Na (251_CR20) 2012; 7
M Itchins (251_CR9) 2018; 7
GM Burslem (251_CR33) 2018; 25
A Tomas (251_CR26) 2014; 24
W Pao (251_CR2) 2010; 10
Z Weihua (251_CR10) 2008; 13
References_xml – volume: 6
  year: 2011
  ident: CR19
  article-title: Curcumin induces EGFR degradation in lung adenocarcinoma and modulates p38 activation in intestine: the versatile adjuvant for gefitinib therapy
  publication-title: PLoS ONE
– volume: 78
  start-page: 3267
  year: 2018
  end-page: 3279
  ident: CR23
  article-title: Reactivation of mutant-EGFR degradation through clathrin inhibition overcomes resistance to EGFR tyrosine kinase inhibitors
  publication-title: Cancer Res.
– volume: 25
  start-page: 67
  year: 2018
  end-page: 77 e63
  ident: CR33
  article-title: The advantages of targeted protein degradation over inhibition: an RTK case study
  publication-title: Cell Chem. Biol.
– volume: 361
  start-page: 947
  year: 2009
  end-page: 957
  ident: CR3
  article-title: Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma
  publication-title: N. Engl. J. Med.
– volume: 6
  year: 2015
  ident: CR49
  article-title: WASH and Tsg101/ALIX-dependent diversion of stress-internalized EGFR from the canonical endocytic pathway
  publication-title: Nat. Commun.
– volume: 5
  start-page: 498
  year: 2013
  end-page: 507
  ident: CR14
  article-title: Advances in lipid nanoparticles for siRNA delivery
  publication-title: Pharmaceutics
– volume: 586
  start-page: 3575
  year: 2012
  end-page: 3581
  ident: CR53
  article-title: Effect of cycloheximide on epidermal growth factor receptor trafficking and signaling
  publication-title: FEBS Lett.
– volume: 24
  start-page: 263
  year: 2016
  end-page: 279
  ident: CR18
  article-title: Targeting tyrosine kinase inhibitor-resistant non-small cell lung cancer by inducing epidermal growth factor receptor degradation via methionine 790 oxidation
  publication-title: Antioxid. Redox Signal.
– volume: 63
  start-page: 1216
  year: 2020
  end-page: 1232
  ident: CR16
  article-title: Discovery of potent and selective epidermal growth factor receptor (EGFR) bifunctional small-molecule degraders
  publication-title: J. Med. Chem.
– volume: 4
  year: 2014
  ident: CR34
  article-title: Screening and discovery of nitro-benzoxadiazole compounds activating epidermal growth factor receptor (EGFR) in cancer cells
  publication-title: Sci. Rep.
– volume: 8
  year: 2018
  ident: CR42
  article-title: GGA2 interacts with EGFR cytoplasmic domain to stabilize the receptor expression and promote cell growth
  publication-title: Sci. Rep.
– volume: 9
  start-page: 800
  year: 2019
  ident: CR40
  article-title: Rethink of EGFR in cancer with its kinase independent function on board
  publication-title: Front. Oncol.
– volume: 21
  start-page: 560
  year: 2015
  end-page: 562
  ident: CR6
  article-title: Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M
  publication-title: Nat. Med.
– volume: 26
  start-page: 352
  year: 2016
  end-page: 366
  ident: CR25
  article-title: Stress-induced EGFR trafficking: mechanisms, functions, and therapeutic implications
  publication-title: Trends Cell Biol.
– volume: 13
  start-page: 385
  year: 2008
  end-page: 393
  ident: CR10
  article-title: Survival of cancer cells is maintained by EGFR independent of its kinase activity
  publication-title: Cancer Cell
– volume: 6
  start-page: 37349
  year: 2015
  end-page: 37366
  ident: CR11
  article-title: Mitochondrial translocation of EGFR regulates mitochondria dynamics and promotes metastasis in NSCLC
  publication-title: Oncotarget
– volume: 83
  start-page: 584
  year: 2008
  end-page: 594
  ident: CR1
  article-title: Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship
  publication-title: Mayo Clin. Proc.
– volume: 102
  start-page: 2760
  year: 2005
  end-page: 2765
  ident: CR30
  article-title: Clathrin-independent endocytosis of ubiquitinated cargos
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 160
  start-page: 145
  year: 2015
  end-page: 160
  ident: CR47
  article-title: A kinase-independent role for EGF receptor in autophagy initiation
  publication-title: Cell
– volume: 10
  year: 2019
  ident: CR56
  article-title: Inhibition of PINK1/Parkin-dependent mitophagy sensitizes multidrug-resistant cancer cells to B5G1, a new betulinic acid analog
  publication-title: Cell Death Dis.
– volume: 31
  start-page: 3291
  year: 2013
  end-page: 3293
  ident: CR8
  article-title: Epidermal growth factor receptor tyrosine kinase inhibitor treatment in patients with EGFR wild-type non-small-cell lung cancer: the never-ending story
  publication-title: J. Clin. Oncol.
– volume: 126
  start-page: 4900
  year: 2013
  end-page: 4912
  ident: CR27
  article-title: Endocytosis of EGFR requires its kinase activity and N-terminal transmembrane dimerization motif
  publication-title: J. Cell Sci.
– volume: 293
  start-page: 2288
  year: 2018
  end-page: 2301
  ident: CR29
  article-title: Ligand-activated epidermal growth factor receptor (EGFR) signaling governs endocytic trafficking of unliganded receptor monomers by non-canonical phosphorylation
  publication-title: J. Biol. Chem.
– volume: 292
  start-page: 19392
  year: 2017
  end-page: 19399
  ident: CR44
  article-title: STAP-2 protein promotes prostate cancer growth by enhancing epidermal growth factor receptor stabilization
  publication-title: J. Biol. Chem.
– volume: 21
  start-page: 1118
  year: 2013
  end-page: 1130
  ident: CR31
  article-title: Endocytosis of gene delivery vectors: from clathrin-dependent to lipid raft-mediated endocytosis
  publication-title: Mol. Ther.
– volume: 13
  start-page: 541
  year: 2006
  end-page: 552
  ident: CR13
  article-title: The silent treatment: siRNAs as small molecule drugs
  publication-title: Gene Ther.
– volume: 8
  start-page: 2131
  year: 2009
  end-page: 2144
  ident: CR28
  article-title: Epidermal growth factor receptor phosphorylation sites Ser991 and Tyr998 are implicated in the regulation of receptor endocytosis and phosphorylations at Ser1039 and Thr1041
  publication-title: Mol. Cell Proteom.
– volume: 116
  start-page: 4557
  year: 2003
  end-page: 4566
  ident: CR63
  article-title: Tetraspanin CD82 regulates compartmentalisation and ligand-induced dimerization of EGFR
  publication-title: J. Cell Sci.
– volume: 10
  start-page: 760
  year: 2010
  end-page: 774
  ident: CR2
  article-title: Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer
  publication-title: Nat. Rev. Cancer
– volume: 7
  start-page: S39
  year: 2018
  end-page: S45
  ident: CR9
  article-title: Do EGFR tyrosine kinase inhibitors (TKIs) still have a role in EGFR wild-type pre-treated advanced non-small cell lung cancer (NSCLC)?—the shifting paradigm of therapeutics
  publication-title: Transl. Lung Cancer Res.
– volume: 40
  year: 2018
  ident: CR17
  article-title: PROTACs: an emerging targeting technique for protein degradation in drug discovery
  publication-title: BioEssays
– volume: 7
  year: 2012
  ident: CR20
  article-title: YM155 induces EGFR suppression in pancreatic cancer cells
  publication-title: PLoS ONE
– volume: 312
  start-page: 2778
  year: 2006
  end-page: 2790
  ident: CR52
  article-title: Effect of the anti-receptor ligand-blocking 225 monoclonal antibody on EGF receptor endocytosis and sorting
  publication-title: Exp. Cell Res.
– volume: 72
  start-page: 1
  year: 2002
  end-page: 9
  ident: CR58
  article-title: 23-Hydroxybetulinic acid-mediated apoptosis is accompanied by decreases in bcl-2 expression and telomerase activity in HL-60 Cells
  publication-title: Life Sci.
– volume: 12
  start-page: 3
  year: 2018
  end-page: 20
  ident: CR39
  article-title: Emerging functions of the EGFR in cancer
  publication-title: Mol. Oncol.
– volume: 25
  start-page: 4195
  year: 2006
  end-page: 4206
  ident: CR48
  article-title: p38 MAP kinase mediates stress-induced internalization of EGFR: implications for cancer chemotherapy
  publication-title: EMBO J.
– volume: 13
  start-page: 1677
  year: 2002
  end-page: 1693
  ident: CR59
  article-title: Novel mechanism for regulation of epidermal growth factor receptor endocytosis revealed by protein kinase A inhibition
  publication-title: Mol. Biol. Cell
– volume: 278
  start-page: 35781
  year: 2003
  end-page: 35790
  ident: CR38
  article-title: Ligand-induced lysosomal epidermal growth factor receptor (EGFR) degradation is preceded by proteasome-dependent EGFR de-ubiquitination
  publication-title: J. Biol. Chem.
– volume: 124
  start-page: 3933
  year: 2011
  ident: CR32
  article-title: The roles of flotillin microdomains—endocytosis and beyond
  publication-title: J. Cell Sci.
– volume: 10
  start-page: 551
  year: 2013
  end-page: 552
  ident: CR4
  article-title: Targeted therapies: Afatinib—new therapy option for EGFR-mutant lung cancer
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 69
  start-page: 6179
  year: 2009
  end-page: 6183
  ident: CR50
  article-title: Cetuximab/C225-induced intracellular trafficking of epidermal growth factor receptor
  publication-title: Cancer Res.
– volume: 33
  start-page: 612
  year: 2016
  end-page: 620
  ident: CR62
  article-title: Target identification of natural products and bioactive compounds using affinity-based probes
  publication-title: Nat. Prod. Rep.
– volume: 14
  start-page: 670
  year: 2012
  end-page: 677
  ident: CR41
  article-title: Wild-type EGFR is stabilized by direct interaction with HSP90 in cancer cells and tumors
  publication-title: Neoplasia (New York, N.Y.)
– volume: 53
  start-page: 102689
  year: 2020
  ident: CR43
  article-title: Systematic identification of CDC34 that functions to stabilize EGFR and promote lung carcinogenesis
  publication-title: EBioMedicine
– volume: 4
  start-page: 64
  year: 2019
  ident: CR15
  article-title: PROTACs: great opportunities for academia and industry
  publication-title: Signal Transduct. Target. Ther.
– volume: 11
  start-page: 1094
  year: 2019
  ident: CR35
  article-title: Targeting degradation of EGFR through the allosteric site leads to cancer cell detachment-promoted death
  publication-title: Cancers
– volume: 293
  start-page: 2288
  year: 2018
  end-page: 2301
  ident: CR54
  article-title: Ligand-activated epidermal growth factor receptor (EGFR) signaling governs endocytic trafficking of unliganded receptor monomers by non-canonical phosphorylation
  publication-title: J. Biol. Chem.
– volume: 110
  start-page: 19137
  year: 2013
  end-page: 19142
  ident: CR60
  article-title: Interaction of ganglioside GD3 with an EGF receptor sustains the self-renewal ability of mouse neural stem cells in vitro
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 49
  start-page: 1576
  year: 2016
  end-page: 1588
  ident: CR22
  article-title: Autophagic degradation of epidermal growth factor receptor in gefitinib-resistant lung cancer by celastrol
  publication-title: Int. J. Oncol.
– volume: 7
  start-page: 169
  year: 2007
  end-page: 181
  ident: CR36
  article-title: Epidermal growth factor receptor mutations in lung cancer
  publication-title: Nat. Rev. Cancer
– volume: 4
  start-page: 1046
  year: 2014
  end-page: 1061
  ident: CR5
  article-title: AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer
  publication-title: Cancer Discov.
– volume: 9
  year: 2018
  ident: CR21
  article-title: Arsenic circumvents the gefitinib resistance by binding to P62 and mediating autophagic degradation of EGFR in non-small cell lung cancer
  publication-title: Cell Death Dis.
– volume: 11
  start-page: 777
  year: 2011
  end-page: 792
  ident: CR51
  article-title: Molecular mechanisms of resistance to the EGFR monoclonal antibody cetuximab
  publication-title: Cancer Biol. Ther.
– volume: 46
  start-page: 2490
  year: 2011
  end-page: 2502
  ident: CR24
  article-title: Synthesis and antiproliferative evaluation of 23-hydroxybetulinic acid derivatives
  publication-title: Eur. J. Med. Chem.
– volume: 13
  start-page: 3131
  year: 2013
  end-page: 3144
  ident: CR61
  article-title: Characterization of the EGFR interactome reveals associated protein complex networks and intracellular receptor dynamics
  publication-title: Proteomics
– volume: 24
  start-page: 26
  year: 2014
  end-page: 34
  ident: CR26
  article-title: EGF receptor trafficking: consequences for signaling and cancer
  publication-title: Trends Cell Biol.
– volume: 9
  start-page: 3147
  year: 2012
  end-page: 3159
  ident: CR57
  article-title: BBA, a derivative of 23-hydroxybetulinic acid, potently reverses ABCB1-mediated drug resistance in vitro and in vivo
  publication-title: Mol. Pharm.
– volume: 10
  year: 2011
  ident: CR12
  article-title: EGFR and EGFRvIII undergo stress- and EGFR kinase inhibitor-induced mitochondrial translocalization: a potential mechanism of EGFR-driven antagonism of apoptosis
  publication-title: Mol. Cancer
– volume: 193
  start-page: 753
  year: 2016
  end-page: 766
  ident: CR37
  article-title: Small molecule T315 promotes casitas B-lineage lymphoma-dependent degradation of epidermal growth factor receptor via Y1045 autophosphorylation
  publication-title: Am. J. Respir. Crit. Care Med.
– volume: 450
  start-page: 1
  year: 2013
  end-page: 8
  ident: CR7
  article-title: The dynamic nature of the kinome
  publication-title: Biochem. J.
– volume: 35
  start-page: 192
  year: 2016
  ident: CR55
  article-title: A piperazidine derivative of 23-hydroxy betulinic acid induces a mitochondria-derived ROS burst to trigger apoptotic cell death in hepatocellular carcinoma cells
  publication-title: J. Exp. Clin. Cancer Res.
– volume: 15
  start-page: 209
  year: 2008
  end-page: 219
  ident: CR46
  article-title: Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation
  publication-title: Dev. Cell
– volume: 288
  start-page: 26879
  year: 2013
  end-page: 26886
  ident: CR45
  article-title: Destabilization of the epidermal growth factor receptor (EGFR) by a peptide that inhibits EGFR binding to heat shock protein 90 and receptor dimerization
  publication-title: J. Biol. Chem.
– volume: 72
  start-page: 1
  year: 2002
  ident: 251_CR58
  publication-title: Life Sci.
  doi: 10.1016/S0024-3205(02)02176-8
– volume: 53
  start-page: 102689
  year: 2020
  ident: 251_CR43
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2020.102689
– volume: 116
  start-page: 4557
  year: 2003
  ident: 251_CR63
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.00793
– volume: 4
  start-page: 1046
  year: 2014
  ident: 251_CR5
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-14-0337
– volume: 40
  year: 2018
  ident: 251_CR17
  publication-title: BioEssays
– volume: 160
  start-page: 145
  year: 2015
  ident: 251_CR47
  publication-title: Cell
  doi: 10.1016/j.cell.2014.12.006
– volume: 361
  start-page: 947
  year: 2009
  ident: 251_CR3
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa0810699
– volume: 10
  year: 2019
  ident: 251_CR56
  publication-title: Cell Death Dis.
– volume: 14
  start-page: 670
  year: 2012
  ident: 251_CR41
  publication-title: Neoplasia (New York, N.Y.)
  doi: 10.1593/neo.12986
– volume: 6
  start-page: 37349
  year: 2015
  ident: 251_CR11
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.5736
– volume: 7
  year: 2012
  ident: 251_CR20
  publication-title: PLoS ONE
– volume: 69
  start-page: 6179
  year: 2009
  ident: 251_CR50
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-09-0049
– volume: 13
  start-page: 541
  year: 2006
  ident: 251_CR13
  publication-title: Gene Ther.
  doi: 10.1038/sj.gt.3302703
– volume: 46
  start-page: 2490
  year: 2011
  ident: 251_CR24
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2011.03.038
– volume: 15
  start-page: 209
  year: 2008
  ident: 251_CR46
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2008.06.012
– volume: 102
  start-page: 2760
  year: 2005
  ident: 251_CR30
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0409817102
– volume: 13
  start-page: 385
  year: 2008
  ident: 251_CR10
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2008.03.015
– volume: 9
  year: 2018
  ident: 251_CR21
  publication-title: Cell Death Dis.
– volume: 21
  start-page: 560
  year: 2015
  ident: 251_CR6
  publication-title: Nat. Med.
  doi: 10.1038/nm.3854
– volume: 78
  start-page: 3267
  year: 2018
  ident: 251_CR23
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-2195
– volume: 33
  start-page: 612
  year: 2016
  ident: 251_CR62
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/C5NP00101C
– volume: 4
  start-page: 64
  year: 2019
  ident: 251_CR15
  publication-title: Signal Transduct. Target. Ther.
  doi: 10.1038/s41392-019-0101-6
– volume: 63
  start-page: 1216
  year: 2020
  ident: 251_CR16
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.9b01566
– volume: 293
  start-page: 2288
  year: 2018
  ident: 251_CR54
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.811299
– volume: 6
  year: 2015
  ident: 251_CR49
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8324
– volume: 5
  start-page: 498
  year: 2013
  ident: 251_CR14
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics5030498
– volume: 24
  start-page: 263
  year: 2016
  ident: 251_CR18
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2015.6420
– volume: 10
  start-page: 760
  year: 2010
  ident: 251_CR2
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2947
– volume: 193
  start-page: 753
  year: 2016
  ident: 251_CR37
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.201502-0250OC
– volume: 25
  start-page: 4195
  year: 2006
  ident: 251_CR48
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601297
– volume: 31
  start-page: 3291
  year: 2013
  ident: 251_CR8
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2013.50.2617
– volume: 126
  start-page: 4900
  year: 2013
  ident: 251_CR27
  publication-title: J. Cell Sci.
– volume: 288
  start-page: 26879
  year: 2013
  ident: 251_CR45
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.492280
– volume: 24
  start-page: 26
  year: 2014
  ident: 251_CR26
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2013.11.002
– volume: 10
  year: 2011
  ident: 251_CR12
  publication-title: Mol. Cancer
– volume: 13
  start-page: 1677
  year: 2002
  ident: 251_CR59
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.01-08-0403
– volume: 10
  start-page: 551
  year: 2013
  ident: 251_CR4
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2013.154
– volume: 450
  start-page: 1
  year: 2013
  ident: 251_CR7
  publication-title: Biochem. J.
  doi: 10.1042/BJ20121456
– volume: 9
  start-page: 800
  year: 2019
  ident: 251_CR40
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2019.00800
– volume: 8
  year: 2018
  ident: 251_CR42
  publication-title: Sci. Rep.
– volume: 7
  start-page: S39
  year: 2018
  ident: 251_CR9
  publication-title: Transl. Lung Cancer Res.
  doi: 10.21037/tlcr.2018.01.06
– volume: 11
  start-page: 1094
  year: 2019
  ident: 251_CR35
  publication-title: Cancers
  doi: 10.3390/cancers11081094
– volume: 8
  start-page: 2131
  year: 2009
  ident: 251_CR28
  publication-title: Mol. Cell Proteom.
  doi: 10.1074/mcp.M900148-MCP200
– volume: 11
  start-page: 777
  year: 2011
  ident: 251_CR51
  publication-title: Cancer Biol. Ther.
  doi: 10.4161/cbt.11.9.15050
– volume: 26
  start-page: 352
  year: 2016
  ident: 251_CR25
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2015.12.006
– volume: 124
  start-page: 3933
  year: 2011
  ident: 251_CR32
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.092015
– volume: 25
  start-page: 67
  year: 2018
  ident: 251_CR33
  publication-title: Cell Chem. Biol.
  doi: 10.1016/j.chembiol.2017.09.009
– volume: 110
  start-page: 19137
  year: 2013
  ident: 251_CR60
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1307224110
– volume: 83
  start-page: 584
  year: 2008
  ident: 251_CR1
  publication-title: Mayo Clin. Proc.
  doi: 10.1016/S0025-6196(11)60735-0
– volume: 278
  start-page: 35781
  year: 2003
  ident: 251_CR38
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M301326200
– volume: 293
  start-page: 2288
  year: 2018
  ident: 251_CR29
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.811299
– volume: 312
  start-page: 2778
  year: 2006
  ident: 251_CR52
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2006.05.008
– volume: 9
  start-page: 3147
  year: 2012
  ident: 251_CR57
  publication-title: Mol. Pharm.
  doi: 10.1021/mp300249s
– volume: 6
  year: 2011
  ident: 251_CR19
  publication-title: PLoS ONE
– volume: 49
  start-page: 1576
  year: 2016
  ident: 251_CR22
  publication-title: Int. J. Oncol.
  doi: 10.3892/ijo.2016.3644
– volume: 12
  start-page: 3
  year: 2018
  ident: 251_CR39
  publication-title: Mol. Oncol.
  doi: 10.1002/1878-0261.12155
– volume: 13
  start-page: 3131
  year: 2013
  ident: 251_CR61
  publication-title: Proteomics
  doi: 10.1002/pmic.201300154
– volume: 292
  start-page: 19392
  year: 2017
  ident: 251_CR44
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.802884
– volume: 586
  start-page: 3575
  year: 2012
  ident: 251_CR53
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2012.08.022
– volume: 21
  start-page: 1118
  year: 2013
  ident: 251_CR31
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2013.54
– volume: 4
  year: 2014
  ident: 251_CR34
  publication-title: Sci. Rep.
  doi: 10.1038/srep03977
– volume: 7
  start-page: 169
  year: 2007
  ident: 251_CR36
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2088
– volume: 35
  start-page: 192
  year: 2016
  ident: 251_CR55
  publication-title: J. Exp. Clin. Cancer Res.
  doi: 10.1186/s13046-016-0457-1
SSID ssj0001637754
ssib046561479
ssib044760960
Score 2.304294
Snippet Epidermal growth factor receptor (EGFR) activation plays a pivotal role in EGFR-driven non-small cell lung cancer (NSCLC) and is considered as a key target of...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 214
SubjectTerms 631/67/1059/153
692/699/67/1612
Cancer Research
Cell Biology
Internal Medicine
Medicine
Medicine & Public Health
Oncology
Pathology
Title Discovery of a novel EGFR ligand DPBA that degrades EGFR and suppresses EGFR-positive NSCLC growth
URI https://link.springer.com/article/10.1038/s41392-020-00251-2
https://www.ncbi.nlm.nih.gov/pubmed/33033232
https://www.proquest.com/docview/2449953599
https://pubmed.ncbi.nlm.nih.gov/PMC7544691
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED5KC2MvY2v3w-sWNBh72cRiyZbtR89NVsJSxrpC34Qky00gc8rsFPqyv3062c7IOgp7McaSjKw73Z11nz4BvMVkVuw8HRVcZTRSQtGUGU4Tk6pSOR8jNC4NzM_E6UU0u4wv94ANe2E8aN9TWnozPaDDPjbO2CJOkuE-aOeTqTO7B0jdjlpdiOLPuorgSOrW748Z8_QfTXd90J3A8i4-8q8kqfc908fwqA8aSd518wns2foQjnL3Besft-Qd8TBOvz5-CA_mfbb8CPTJsjEI0bwl64ooUrv7FZl8nn4jq-WVqkty8vVTTtqFakmJpBGlbbpiLGs21x4k2z-jHbzrxpKz8-JLQa7c_3u7eAoX08n34pT2ZypQ48aqpUqxseW6SmKdllGF8D2mlTCRCrnhUaKVZax01thULDVuuHD7iAh1pFmFDfgz2K_XtX0BZGwjk3lyGi4iw0uly1CnJhFCMZskVQDhMMrS9ITjeO7FSvrEN09lJxnpJCO9ZCQL4P22zXVHt3Fv7TeD8KSbFZjqULVdbxrpgpYsi3mcZQE874S5fR93Xpu7QDKAZEfM2wrIuL1bUi8Xnnkb2QJFFgbwYVAI2U_55p5uvvy_6sfwkKGyIkohewX77c-Nfe0in1aP4CDPZ-ezkVf5kV8_cNf5r8lvJyH-Vw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED5NQwJeENuABRgYCfECFo2dOMljl60UaCsEm7Q3y3actVJJJ5Ii7d9zdpJOZWgSb1FsR47Pvjv7vvsM8NYFs2K0dFRwldFICUVTZjhNTKoKhTZGaHc0MJ2J8Xn05SK-2AHW58J40L6ntPRqukeHfaxR2TqcJHN50GiTKarde-hrCwfjykV-c64iuCN16_JjBjz9R9NtG3TLsbyNj_wrSOptz-gxPOqcRjJsu7kHO7bah4Mh_sHq5zV5RzyM05-P78P9aRctPwB9sqiNg2hek1VJFKnweUlOP42-k-XiUlUFOfl2PCTNXDWkcKQRha3bYldWr688SLZ7R1t4129LZj_ySU4ucf_ezJ_A-ej0LB_T7k4FanDj11Cl2MByXSaxTouodPA9ppUwkQq54VGilWWsQG1sSpYaHC6XPiJCHWlWugb8KexWq8oeAhnYyGSenIaLyPBC6SLUqUmEUMwmSRlA2I-yNB3huLv3Yil94JunspWMRMlILxnJAni_aXPV0m3cWftNLzyJq8KFOlRlV-taotOSZTGPsyyAZ60wN9_jaLU5OpIBJFti3lRwjNvbJdVi7pm3HVugyMIAPvQTQnZLvr6jm8__r_preDA-m07k5PPs6wt4yNzEdYiF7CXsNr_W9gi9oEa_8tP-D12__ZQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NIU28INj4CJ9GQryARWMnTvJY0pUBWzUBk_Zm-StrpZJOJEXaf4_PSYrK0CTeotiOHJ_tu_P97meA1xjMSr2mo4KrgiZKKJozw2lmcmWV1zFC49HAyUwcnSWfz9PzHRBDLkwA7QdKy7BND-iw943fbBEnyTAP2utk6v1BW92C297eHqHTVYryz9mK4Ejs1ufIjHj-j-bbeuiacXkdI_lXoDTon-k9uNsbjmTcdfU-7Lh6Hw7G_i9WP67IGxKgnOGMfB_2TvqI-QHoyaIxCNO8IquKKFL75yU5_Dj9SpaLC1VbMjn9MCbtXLXEInGEdU1XjGXN-jIAZft3tIN4_XJk9q08LsmF9-Hb-QM4mx5-L49of68CNd75a6lSbOS4rrJU5zapEMLHtBImUTE3PMm0coxZvyObiuXGDxemkIhYJ5pV2IA_hN16VbvHQEYuMUUgqOEiMdwqbWOdm0wIxVyWVRHEwyhL05OO490XSxmC3zyXnWSkl4wMkpEsgrebNpcd5caNtV8NwpN-ZWC4Q9VutW6kN1yKIuVpUUTwqBPm5nvca27ujckIsi0xbyog6_Z2Sb2YB_ZtZAwURRzBu2FCyH7ZNzd088n_VX8Je6eTqTz-NPvyFO4wnLcIWiiewW77c-2ee0Oo1S_CrP8NAxP-nQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discovery+of+a+novel+EGFR+ligand+DPBA+that+degrades+EGFR+and+suppresses+EGFR-positive+NSCLC+growth&rft.jtitle=Signal+transduction+and+targeted+therapy&rft.au=Yao%2C+Nan&rft.au=Wang%2C+Chen-Ran&rft.au=Liu%2C+Ming-Qun&rft.au=Li%2C+Ying-Jie&rft.date=2020-10-09&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2059-3635&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1038%2Fs41392-020-00251-2&rft.externalDocID=10_1038_s41392_020_00251_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2059-3635&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2059-3635&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2059-3635&client=summon