Geometric Characteristics of the Wasserstein Metric on SPD(n) and Its Applications on Data Processing
The Wasserstein distance, especially among symmetric positive-definite matrices, has broad and deep influences on the development of artificial intelligence (AI) and other branches of computer science. In this paper, by involving the Wasserstein metric on SPD(n), we obtain computationally feasible e...
Saved in:
Published in | Entropy (Basel, Switzerland) Vol. 23; no. 9; p. 1214 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
14.09.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Wasserstein distance, especially among symmetric positive-definite matrices, has broad and deep influences on the development of artificial intelligence (AI) and other branches of computer science. In this paper, by involving the Wasserstein metric on SPD(n), we obtain computationally feasible expressions for some geometric quantities, including geodesics, exponential maps, the Riemannian connection, Jacobi fields and curvatures, particularly the scalar curvature. Furthermore, we discuss the behavior of geodesics and prove that the manifold is globally geodesic convex. Finally, we design algorithms for point cloud denoising and edge detecting of a polluted image based on the Wasserstein curvature on SPD(n). The experimental results show the efficiency and robustness of our curvature-based methods. |
---|---|
AbstractList | The Wasserstein distance, especially among symmetric positive-definite matrices, has broad and deep influences on the development of artificial intelligence (AI) and other branches of computer science. In this paper, by involving the Wasserstein metric on
S
P
D
(
n
)
, we obtain computationally feasible expressions for some geometric quantities, including geodesics, exponential maps, the Riemannian connection, Jacobi fields and curvatures, particularly the scalar curvature. Furthermore, we discuss the behavior of geodesics and prove that the manifold is globally geodesic convex. Finally, we design algorithms for point cloud denoising and edge detecting of a polluted image based on the Wasserstein curvature on
S
P
D
(
n
)
. The experimental results show the efficiency and robustness of our curvature-based methods. The Wasserstein distance, especially among symmetric positive-definite matrices, has broad and deep influences on the development of artificial intelligence (AI) and other branches of computer science. In this paper, by involving the Wasserstein metric on SPD(n), we obtain computationally feasible expressions for some geometric quantities, including geodesics, exponential maps, the Riemannian connection, Jacobi fields and curvatures, particularly the scalar curvature. Furthermore, we discuss the behavior of geodesics and prove that the manifold is globally geodesic convex. Finally, we design algorithms for point cloud denoising and edge detecting of a polluted image based on the Wasserstein curvature on SPD(n). The experimental results show the efficiency and robustness of our curvature-based methods. The Wasserstein distance, especially among symmetric positive-definite matrices, has broad and deep influences on the development of artificial intelligence (AI) and other branches of computer science. In this paper, by involving the Wasserstein metric on SPD(n), we obtain computationally feasible expressions for some geometric quantities, including geodesics, exponential maps, the Riemannian connection, Jacobi fields and curvatures, particularly the scalar curvature. Furthermore, we discuss the behavior of geodesics and prove that the manifold is globally geodesic convex. Finally, we design algorithms for point cloud denoising and edge detecting of a polluted image based on the Wasserstein curvature on SPD(n). The experimental results show the efficiency and robustness of our curvature-based methods.The Wasserstein distance, especially among symmetric positive-definite matrices, has broad and deep influences on the development of artificial intelligence (AI) and other branches of computer science. In this paper, by involving the Wasserstein metric on SPD(n), we obtain computationally feasible expressions for some geometric quantities, including geodesics, exponential maps, the Riemannian connection, Jacobi fields and curvatures, particularly the scalar curvature. Furthermore, we discuss the behavior of geodesics and prove that the manifold is globally geodesic convex. Finally, we design algorithms for point cloud denoising and edge detecting of a polluted image based on the Wasserstein curvature on SPD(n). The experimental results show the efficiency and robustness of our curvature-based methods. |
Author | Sun, Huafei Luo, Yihao Zhang, Shiqiang Cao, Yueqi |
AuthorAffiliation | 2 Department of Computing, Imperial College London, London SW7 2AZ, UK; s.zhang21@imperial.ac.uk 1 School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China; knowthingless@bit.edu.cn 3 Department of Mathematics, Imperial College London, London SW7 2AZ, UK; y.cao21@imperial.ac.uk |
AuthorAffiliation_xml | – name: 1 School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China; knowthingless@bit.edu.cn – name: 2 Department of Computing, Imperial College London, London SW7 2AZ, UK; s.zhang21@imperial.ac.uk – name: 3 Department of Mathematics, Imperial College London, London SW7 2AZ, UK; y.cao21@imperial.ac.uk |
Author_xml | – sequence: 1 givenname: Yihao surname: Luo fullname: Luo, Yihao – sequence: 2 givenname: Shiqiang surname: Zhang fullname: Zhang, Shiqiang – sequence: 3 givenname: Yueqi surname: Cao fullname: Cao, Yueqi – sequence: 4 givenname: Huafei surname: Sun fullname: Sun, Huafei |
BookMark | eNptkt9rFDEQgINU7A998D8I-NI-nM0ms5vkRShXrQcVCyo-hmwye5djLzmTnOB_716vFFt8ypD55mMmmVNyFFNEQt427L0Qml0iF0w3vIEX5KRhWs9AMHb0T3xMTktZM8YFb7pX5FhAK4US-oTgDaYN1hwcna9stq5iDqUGV2gaaF0h_WlLwVwqhki_HMgU6be76_N4QW30dFELvdpux-BsDSmWffraVkvvcnJYSojL1-TlYMeCbx7OM_Lj08fv88-z2683i_nV7cwBdHVmW94IB36ahEkm9cDcAIMELxUHD9D0UvPOqkY633nmNEfVacGhtVpp2Yszsjh4fbJrs81hY_Mfk2ww9xcpL43N03AjGt5LgF62KISClg_K95YrJjkI6VG4yfXh4Nru-g16h7FmOz6RPs3EsDLL9Nso6CRTMAnOHwQ5_dphqWYTisNxtBHTrhjeSglt17Z8Qt89Q9dpl-P0VHuqAyY47ybq4kC5nErJODw20zCzXwTzuAgTe_mMdaHe_8_Uaxj_U_EX0KOy9Q |
CitedBy_id | crossref_primary_10_3390_e24101450 |
Cites_doi | 10.1162/089976601750265036 10.1007/978-1-4757-2201-7 10.1109/ICSIDP47821.2019.9173017 10.1016/j.neucom.2004.11.035 10.1109/ICRA.2011.5980567 10.1109/JSTSP.2013.2264798 10.1109/JSTSP.2013.2260320 10.1016/j.sigpro.2021.108176 10.1016/S0167-7152(02)00105-0 10.1007/s41884-018-0014-4 10.1109/TSP.2021.3095725 10.1080/0020739910220413 10.1007/978-0-387-21752-9 10.1007/978-1-4612-0653-8 10.1515/9781400827787 10.1007/s11263-005-3222-z 10.1007/978-3-319-13467-3 10.1137/18M1231389 10.1007/0-387-22726-1_7 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.3390/e23091214 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1099-4300 |
ExternalDocumentID | oai_doaj_org_article_2b744b75e338452f8dba28072437de3c PMC8467084 10_3390_e23091214 |
GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RNS RPM TR2 TUS XSB ~8M 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c446t-a5213c4d21407079f0cf4f74d7824d441b7926a817cd6d0c92e8693245a9897b3 |
IEDL.DBID | DOA |
ISSN | 1099-4300 |
IngestDate | Wed Aug 27 01:09:19 EDT 2025 Thu Aug 21 18:04:27 EDT 2025 Thu Jul 10 22:10:33 EDT 2025 Fri Jul 25 12:01:20 EDT 2025 Tue Jul 01 01:58:05 EDT 2025 Thu Apr 24 23:06:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-a5213c4d21407079f0cf4f74d7824d441b7926a817cd6d0c92e8693245a9897b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/2b744b75e338452f8dba28072437de3c |
PMID | 34573839 |
PQID | 2576403226 |
PQPubID | 2032401 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2b744b75e338452f8dba28072437de3c pubmedcentral_primary_oai_pubmedcentral_nih_gov_8467084 proquest_miscellaneous_2577456552 proquest_journals_2576403226 crossref_primary_10_3390_e23091214 crossref_citationtrail_10_3390_e23091214 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210914 |
PublicationDateYYYYMMDD | 2021-09-14 |
PublicationDate_xml | – month: 9 year: 2021 text: 20210914 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Entropy (Basel, Switzerland) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Li (ref_9) 2013; 7 ref_14 Givens (ref_12) 1984; 2 ref_13 ref_10 Arsigny (ref_7) 2010; 2 Fiori (ref_26) 2001; 13 Massart (ref_15) 2020; 1 ref_19 ref_18 ref_16 Nishimori (ref_25) 2005; 67 Nadernejad (ref_24) 2008; 2 Ward (ref_17) 1991; 22 Hua (ref_27) 2021; 69 ref_22 ref_21 ref_20 Masry (ref_23) 2002; 2 ref_1 Gelbrich (ref_11) 2015; 1 ref_3 ref_29 ref_8 Manton (ref_2) 2013; 4 Pennec (ref_6) 2006; 1 ref_5 Hua (ref_28) 2021; 188 ref_4 |
References_xml | – volume: 1 start-page: 185 year: 2015 ident: ref_11 article-title: On a Formula for the L2 Wasserstein Metric between Measures on Euclidean and Hilbert Spaces publication-title: Math. Nachrichten – ident: ref_3 – volume: 2 start-page: 411 year: 2010 ident: ref_7 article-title: Log-Euclidean Metrics for Fast and Simple Calculus on Diffusion Tensors publication-title: Magn. Reson. Med. – volume: 13 start-page: 1625 year: 2001 ident: ref_26 article-title: A Theory for Learning by Weight Flow on Stiefel-Grassman Manifold publication-title: Neural Comput. doi: 10.1162/089976601750265036 – ident: ref_18 doi: 10.1007/978-1-4757-2201-7 – ident: ref_10 doi: 10.1109/ICSIDP47821.2019.9173017 – volume: 67 start-page: 106 year: 2005 ident: ref_25 article-title: Learning Algorithms Utilizing Quasi-geodesic Flows on the Stiefel Manifold publication-title: Neurocomputing doi: 10.1016/j.neucom.2004.11.035 – ident: ref_16 doi: 10.1109/ICRA.2011.5980567 – volume: 4 start-page: 681 year: 2013 ident: ref_2 article-title: A Primer on Stochastic Differential Geometry for Signal Processing publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2013.2264798 – volume: 7 start-page: 655 year: 2013 ident: ref_9 article-title: Riemannian Distances for Signal Classification by Power Spectral Density publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2013.2260320 – ident: ref_14 – volume: 188 start-page: 108176 year: 2021 ident: ref_28 article-title: MIG Median Detectors with Manifold Filter publication-title: Signal Process. doi: 10.1016/j.sigpro.2021.108176 – ident: ref_1 – volume: 2 start-page: 205 year: 2002 ident: ref_23 article-title: Multivariate Probability Density Estimation for Associated Processes: Strong Consistency and Rates publication-title: Stat. Probab. Lett. doi: 10.1016/S0167-7152(02)00105-0 – volume: 2 start-page: 1507 year: 2008 ident: ref_24 article-title: Edge Detection Techniques: Evaluations and Comparisons publication-title: Appl. Math. Sci. – ident: ref_29 doi: 10.1007/s41884-018-0014-4 – volume: 69 start-page: 4326 year: 2021 ident: ref_27 article-title: Target Detection Within Nonhomogeneous Clutter Via Total Bregman Divergence-Based Matrix Information Geometry Detectors publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2021.3095725 – volume: 22 start-page: 615 year: 1991 ident: ref_17 article-title: A General Analysis of Sylvester’s Matrix Equation publication-title: Int. J. Math. Educ. Sci. Technol. doi: 10.1080/0020739910220413 – ident: ref_19 doi: 10.1007/978-0-387-21752-9 – ident: ref_4 doi: 10.1007/978-1-4612-0653-8 – ident: ref_5 doi: 10.1515/9781400827787 – volume: 1 start-page: 41 year: 2006 ident: ref_6 article-title: A Riemannian Framework for Tensor Computing publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-005-3222-z – ident: ref_8 doi: 10.1007/978-3-319-13467-3 – ident: ref_13 – volume: 1 start-page: 171 year: 2020 ident: ref_15 article-title: Quotient Geometry with Simple Geodesics for the Manifold of Fixed-Rank Positive-Semidefinite Matrices publication-title: Siam J. Matrix Anal. Appl. doi: 10.1137/18M1231389 – ident: ref_22 – ident: ref_20 – ident: ref_21 doi: 10.1007/0-387-22726-1_7 – volume: 2 start-page: 231 year: 1984 ident: ref_12 article-title: A Class of Wasserstein Metrics for Probability Distributions publication-title: Mich. Math. J. |
SSID | ssj0023216 |
Score | 2.2645564 |
Snippet | The Wasserstein distance, especially among symmetric positive-definite matrices, has broad and deep influences on the development of artificial intelligence... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1214 |
SubjectTerms | Algorithms Artificial intelligence Curvature Data processing Decomposition Eigenvalues Geodesy Geometry image edge detecting Mathematical analysis Matrices (mathematics) point cloud denoising symmetric positive-definite matrix Symmetry Wasserstein metric |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9YwDI5gu3BBQ4AojClMHMahWpu6TXpC-2RD2jQBE7tViZMCErTb3u7_z-6bt6wS4ppY_XA-_DiOHwvx3mgVCkIWKfrSpVDmLnUOy5RzME1mqUFx7vDZeXVyCZ-vyqt44LaI1ypXe-K4Ufse-Yx8l4ExZDT9qo_XNylXjeLoaiyh8Vis0xZsyPla3z86v_gyuVyFyqsln1BBzv1uIMBd5yqHmRUayfpnCHN-P_KBwTneEE8jUpR7y6F9Jh6F7rkIn0L_h4tgoTyYUy3LvpUE5uR3OyZQchFLebaU7Dv59eJwp_sgbefl6bCQew_C1tx9aAcrY84A2bIX4vL46NvBSRorJaRI7tyQWjLCBYKnPxsp79oMW2g1eLL_4AnxOF2ryppco698hrUKpiLkBqWtTa1d8VKsdX0XXgmZIWIbMtTQ1lApdPSc3AMq0MFYaxKxs9Jcg5FGnKtZ_G7InWAlN5OSE7E9iV4vuTP-JbTP6p8EmO56bOhvfzRx9TTKaQCny0AONZSqNd5ZpvFhNkUfCkzE5mrwmrgGF83fGZOId1M3rR4Oidgu9HejjGZMW6pE6Nmgzz5o3tP9-jnycDN0ywy8_v_L34gniu_BcNkJ2BRrw-1deEtAZnBbcbbeA_7I9Dg priority: 102 providerName: ProQuest |
Title | Geometric Characteristics of the Wasserstein Metric on SPD(n) and Its Applications on Data Processing |
URI | https://www.proquest.com/docview/2576403226 https://www.proquest.com/docview/2577456552 https://pubmed.ncbi.nlm.nih.gov/PMC8467084 https://doaj.org/article/2b744b75e338452f8dba28072437de3c |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB6a9JJLSGlD3KaLWnpIDya2PLbkY167aSEhNA3dm9HLJNDaJXH-f2ds77KGQi-9-CANRpqRNN8gzTcAn7SSISNkETuf2xjz1MbWujzmHEydGGqQnDt8dV1c3uHXZb7cKPXFb8IGeuBBccfSKkSr8kCxFOay1t4aZnBhIj0fMsenL_m8VTA1hlqZTIuBRyijoP44ENAuU5nixPv0JP0TZDl9F7nhaOZ7sDsiRHEyjOwVvAjNawiL0P7i4ldOnE0plkVbCwJx4ofpEye5eKW4GiTbRtzenB81n4VpvPjSPYmTjetq7j43nRFjrgD5sDdwN7_4fnYZjxUSYkdhXBcbcr6ZQ08z66nu6sTVWCv05PfRE9KxqpSF0alyvvCJK2XQBSE2zE2pS2Wzfdhu2iYcgEicc3VInMK6xEI6S_9JPTqJKmhjdARHK81VbqQP5yoWPysKI1jJ1VrJEXxci_4eODP-JnTK6l8LMM1130DGr0bjV_8yfgSHK-NV4957qjiEwoQOqiKCD-tu2jV8FWKa0D73MoqxbC4jUBOjTwY07Wke7nv-bYZsica3_2MG72BH8isZLkqBh7DdPT6H9wRzOjuDLT1fzODl6cX1zbdZv77pu1imfwCZ_v4q |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcAFgQCxUMAgkMohauJMYueAUOmy3aXdColW9Jb6FVoJktJNhfhT_EZm8qKRELde45ETjWc838Sebxh7paTwMSKLwLrEBJBEJjDGJgHVYKpQ4wNBtcPLg3R-BB-Pk-M19ruvhaFrlf2e2GzUrrL0j3yLgDGEaH7pu_MfAXWNotPVvoVGaxZ7_tdPTNlWbxdTXN_XQsw-HO7Mg66rQGAx9akDjQErtuAEphZED1eEtoBCgsNYCQ7RgZGZSLWKpHWpC20mvEoR5UCiM5VJE-O8N9hNiOOMPErNdocELxZR2rIX4WC45RHeZ5GIYBTzmtYAIzw7vo15JbzN7rI7HS7l260h3WNrvrzP_K6vvlPLLct3xsTOvCo4Qkf-RTflmtQyky9byarknz9NN8s3XJeOL-oV375ySE7DU11r3lUoYOR8wI6uRYMP2XpZlf4R46G1tvChlVBkkAprcJ7IgRUgvdJaTdhmr7ncdqTl1DvjW47JCyk5H5Q8YS8H0fOWqeNfQu9J_YMAkWs3D6qLr3nnq7kwEsDIxGP6DokolDOaSIOIu9H52E7YRr94eefxq_yvfU7Yi2EYfZUOYHTpq8tGRhKCTsSEydGijz5oPFKenTas3wQUQwWP___y5-zW_HC5n-8vDvaesNuCbuBQwwvYYOv1xaV_ihCqNs8au-Xs5Lod5Q-DbC11 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFcQXUVSMVl1FoT6ESzabbPIg0vZ69qw9DrXYt3S_ooImtZci_mv-dc7kywbEt75mJ5swO5P5TXbnNwDPU8ldhMjCNzbWvohD7WttYp9qMNNA4QVOtcNHy-TgWLw9iU824HdfC0PHKvtvYvOhtpWhf-RTAsYiQPNLpkV3LGI1m78---FTBynaae3babQmcuh-_cT0bf1qMcO1fsH5fP_j3oHfdRjwDaZBta8weEVGWI5pBlHFFYEpRCGFxbgpLCIFLTOeqDSUxiY2MBl3aYKIR8QqSzOpI5z3GmxKunsCm7v7y9X7Id2LeJi0XEZRlAVTh2A_C3koRhGwaRQwQrfjs5mXgt38FtzsUCrbac3qNmy48g64N676Tg24DNsb0zyzqmAIJNkn1RRvUgNNdtRKViX7sJptly-ZKi1b1Gu2c2nLnIZnqlasq1fAOHoXjq9Eh_dgUlaluw8sMMYULjBSFJlIuNE4T2iF4UK6VKnUg-1ec7npKMypk8a3HFMZUnI-KNmDZ4PoWcvb8S-hXVL_IEBU282F6vxz3nluzrUUQsvYYTIvYl6kViuiECImR-si48FWv3h55__r_K-1evB0GEbPpe0YVbrqopGRhKdj7oEcLfrohcYj5dcvDQc4wcYgFQ_-__AncB2dJH-3WB4-hBucjuNQ9wuxBZP6_MI9QjxV68ed4TI4vWpf-QOD7TMH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geometric+Characteristics+of+the+Wasserstein+Metric+on+SPD%28n%29+and+Its+Applications+on+Data+Processing&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Luo%2C+Yihao&rft.au=Zhang%2C+Shiqiang&rft.au=Cao%2C+Yueqi&rft.au=Sun%2C+Huafei&rft.date=2021-09-14&rft.issn=1099-4300&rft.eissn=1099-4300&rft.volume=23&rft.issue=9&rft_id=info:doi/10.3390%2Fe23091214&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |