A New Deep Learning Based Multi-Spectral Image Fusion Method

In this paper, we present a new effective infrared (IR) and visible (VIS) image fusion method by using a deep neural network. In our method, a Siamese convolutional neural network (CNN) is applied to automatically generate a weight map which represents the saliency of each pixel for a pair of source...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 21; no. 6; p. 570
Main Authors Piao, Jingchun, Chen, Yunfan, Shin, Hyunchul
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 05.06.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we present a new effective infrared (IR) and visible (VIS) image fusion method by using a deep neural network. In our method, a Siamese convolutional neural network (CNN) is applied to automatically generate a weight map which represents the saliency of each pixel for a pair of source images. A CNN plays a role in automatic encoding an image into a feature domain for classification. By applying the proposed method, the key problems in image fusion, which are the activity level measurement and fusion rule design, can be figured out in one shot. The fusion is carried out through the multi-scale image decomposition based on wavelet transform, and the reconstruction result is more perceptual to a human visual system. In addition, the visual qualitative effectiveness of the proposed fusion method is evaluated by comparing pedestrian detection results with other methods, by using the YOLOv3 object detector using a public benchmark dataset. The experimental results show that our proposed method showed competitive results in terms of both quantitative assessment and visual quality.
AbstractList In this paper, we present a new effective infrared (IR) and visible (VIS) image fusion method by using a deep neural network. In our method, a Siamese convolutional neural network (CNN) is applied to automatically generate a weight map which represents the saliency of each pixel for a pair of source images. A CNN plays a role in automatic encoding an image into a feature domain for classification. By applying the proposed method, the key problems in image fusion, which are the activity level measurement and fusion rule design, can be figured out in one shot. The fusion is carried out through the multi-scale image decomposition based on wavelet transform, and the reconstruction result is more perceptual to a human visual system. In addition, the visual qualitative effectiveness of the proposed fusion method is evaluated by comparing pedestrian detection results with other methods, by using the YOLOv3 object detector using a public benchmark dataset. The experimental results show that our proposed method showed competitive results in terms of both quantitative assessment and visual quality.
In this paper, we present a new effective infrared (IR) and visible (VIS) image fusion method by using a deep neural network. In our method, a Siamese convolutional neural network (CNN) is applied to automatically generate a weight map which represents the saliency of each pixel for a pair of source images. A CNN plays a role in automatic encoding an image into a feature domain for classification. By applying the proposed method, the key problems in image fusion, which are the activity level measurement and fusion rule design, can be figured out in one shot. The fusion is carried out through the multi-scale image decomposition based on wavelet transform, and the reconstruction result is more perceptual to a human visual system. In addition, the visual qualitative effectiveness of the proposed fusion method is evaluated by comparing pedestrian detection results with other methods, by using the YOLOv3 object detector using a public benchmark dataset. The experimental results show that our proposed method showed competitive results in terms of both quantitative assessment and visual quality.In this paper, we present a new effective infrared (IR) and visible (VIS) image fusion method by using a deep neural network. In our method, a Siamese convolutional neural network (CNN) is applied to automatically generate a weight map which represents the saliency of each pixel for a pair of source images. A CNN plays a role in automatic encoding an image into a feature domain for classification. By applying the proposed method, the key problems in image fusion, which are the activity level measurement and fusion rule design, can be figured out in one shot. The fusion is carried out through the multi-scale image decomposition based on wavelet transform, and the reconstruction result is more perceptual to a human visual system. In addition, the visual qualitative effectiveness of the proposed fusion method is evaluated by comparing pedestrian detection results with other methods, by using the YOLOv3 object detector using a public benchmark dataset. The experimental results show that our proposed method showed competitive results in terms of both quantitative assessment and visual quality.
Author Shin, Hyunchul
Chen, Yunfan
Piao, Jingchun
AuthorAffiliation Department of Electrical Engineering, Hanyang University, Ansan 15588, Korea
AuthorAffiliation_xml – name: Department of Electrical Engineering, Hanyang University, Ansan 15588, Korea
Author_xml – sequence: 1
  givenname: Jingchun
  surname: Piao
  fullname: Piao, Jingchun
– sequence: 2
  givenname: Yunfan
  surname: Chen
  fullname: Chen, Yunfan
– sequence: 3
  givenname: Hyunchul
  surname: Shin
  fullname: Shin, Hyunchul
BookMark eNptkU1v1DAQhi1URD_gwD-IxAUOoeNvW0JIpVBYaQsH4Gx57cnWq2y82AlV_z0pW1W04uSx5_Gjsd9jcjDkAQl5SeEt5xZOkVFQIDU8IUcUrG0FBzj4pz4kx7VuABhnVD0jh5wzpZkRR-TdWfMVr5uPiLtmib4MaVg3H3zF2FxO_Zja7zsMY_F9s9j6NTYXU015aC5xvMrxOXna-b7ii7v1hPy8-PTj_Eu7_PZ5cX62bIMQamxtMFRKKXjHBI1Cd53QJq4CBOmpllEbITu0asUlGrryIXLrLcybKKgH5CdksffG7DduV9LWlxuXfXJ_D3JZO1_GFHp0qBQaZExrCwIENR2jlpmgYqfBCjq73u9du2m1xRhwuH3dA-nDzpCu3Dr_dlpSCdLMgtd3gpJ_TVhHt001YN_7AfNUHRNKaaW11DP66hG6yVMZ5q9yTArDjQQrZ-rNngol11qwux-GgrvN193nO7Onj9iQRj_Okcyzpv4_N_4Azpmj5Q
CitedBy_id crossref_primary_10_3116_16091833_22_3_165_2021
crossref_primary_10_1016_j_array_2023_100286
crossref_primary_10_1016_j_cviu_2023_103853
crossref_primary_10_1007_s13369_020_05201_2
crossref_primary_10_1007_s12046_023_02262_5
crossref_primary_10_1080_01431161_2021_1995073
crossref_primary_10_1007_s41870_024_01867_1
crossref_primary_10_1016_j_atech_2024_100481
crossref_primary_10_1016_j_eswa_2022_117413
crossref_primary_10_3390_app12073592
crossref_primary_10_3390_e25081215
crossref_primary_10_1016_j_engappai_2023_105919
crossref_primary_10_1007_s11042_023_17429_9
crossref_primary_10_1109_JSEN_2019_2962834
crossref_primary_10_32604_cmc_2022_023905
crossref_primary_10_3116_16091833_24_1_62_2023
crossref_primary_10_1007_s11042_024_19832_2
crossref_primary_10_1016_j_compag_2023_107712
crossref_primary_10_3390_electronics9122162
crossref_primary_10_1007_s11277_023_10542_w
crossref_primary_10_3390_e23030376
crossref_primary_10_3390_rs12060943
crossref_primary_10_1007_s11042_023_16292_y
crossref_primary_10_3390_e24121759
crossref_primary_10_1134_S0361768820080113
crossref_primary_10_1038_s41467_023_40620_3
crossref_primary_10_1109_ACCESS_2022_3211267
crossref_primary_10_1109_JSTARS_2020_3035633
crossref_primary_10_1016_j_talanta_2024_127110
crossref_primary_10_1155_2020_6765274
crossref_primary_10_1016_j_patrec_2021_03_015
crossref_primary_10_1016_j_inffus_2022_09_019
crossref_primary_10_3390_rs16244781
crossref_primary_10_4103_jmss_JMSS_80_20
crossref_primary_10_1038_s41598_024_59553_y
crossref_primary_10_1186_s12880_023_01160_w
Cites_doi 10.1109/TBME.2013.2279301
10.1109/TMM.2013.2244870
10.1016/j.infrared.2015.10.004
10.1016/j.inffus.2010.04.001
10.1049/el:20020212
10.1109/97.995823
10.1016/j.neucom.2008.02.025
10.1109/5.726791
10.1109/ICMLC.2006.258681
10.1016/j.inffus.2005.09.006
10.1016/j.inffus.2014.09.004
10.1109/TBME.2012.2217493
10.1016/j.infrared.2014.02.013
10.1049/iet-ipr.2014.0311
10.1016/j.optcom.2014.12.032
10.1016/j.imavis.2007.12.002
10.1016/j.inffus.2011.08.002
10.1117/1.2945910
10.1016/j.inffus.2018.02.004
10.1016/j.inffus.2012.09.005
10.1016/0167-8655(89)90004-4
10.1006/gmip.1995.1022
10.1016/j.neucom.2016.02.047
10.1016/j.inffus.2018.09.004
10.1109/TBME.2012.2211017
10.1016/j.infrared.2017.07.010
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/e21060570
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Databases
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ: Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
CrossRef

Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_e66e8e22779040418f21928c6df70941
PMC7515058
10_3390_e21060570
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c446t-9c8155543f241d47ff478dbc0c5a175d7845fe96b35e81bacd39a905e8d41a0e3
IEDL.DBID BENPR
ISSN 1099-4300
IngestDate Wed Aug 27 01:11:06 EDT 2025
Thu Aug 21 17:39:55 EDT 2025
Fri Jul 11 04:33:11 EDT 2025
Fri Jul 25 11:56:10 EDT 2025
Tue Jul 01 01:57:50 EDT 2025
Thu Apr 24 22:53:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-9c8155543f241d47ff478dbc0c5a175d7845fe96b35e81bacd39a905e8d41a0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2548385095?pq-origsite=%requestingapplication%
PMID 33267284
PQID 2548385095
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_e66e8e22779040418f21928c6df70941
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7515058
proquest_miscellaneous_2466767757
proquest_journals_2548385095
crossref_primary_10_3390_e21060570
crossref_citationtrail_10_3390_e21060570
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190605
PublicationDateYYYYMMDD 2019-06-05
PublicationDate_xml – month: 6
  year: 2019
  text: 20190605
  day: 5
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Yang (ref_13) 2012; 13
Han (ref_28) 2013; 14
Liu (ref_18) 2015; 24
Jin (ref_2) 2014; 64
Zheng (ref_11) 2013; 15
Ma (ref_16) 2019; 48
Li (ref_8) 1995; 57
Li (ref_14) 2012; 59
Singh (ref_7) 2014; 19
Liu (ref_15) 2015; 9
Zhang (ref_1) 2015; 73
Shen (ref_17) 2013; 60
Qu (ref_31) 2002; 38
Wang (ref_32) 2002; 9
Toet (ref_6) 1989; 9
Ma (ref_33) 2019; 14
ref_25
Chen (ref_29) 2009; 27
Roberts (ref_30) 2008; 2
ref_24
Du (ref_5) 2016; 194
LeCun (ref_19) 1998; 86
ref_23
ref_22
ref_21
Cui (ref_3) 2015; 341
Wang (ref_12) 2014; 61
Lewis (ref_9) 2007; 8
ref_27
Yang (ref_10) 2008; 72
ref_26
Jin (ref_20) 2017; 85
ref_4
References_xml – volume: 61
  start-page: 197
  year: 2014
  ident: ref_12
  article-title: Multimodal medical volumetric data fusion using 3-d discrete shearlet transform and global-to-local rule
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2279301
– volume: 15
  start-page: 1014
  year: 2013
  ident: ref_11
  article-title: Directive contrast based multimodal medical image fusion in nsct domain
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2013.2244870
– ident: ref_24
– volume: 73
  start-page: 286
  year: 2015
  ident: ref_1
  article-title: A fusion algorithm for infrared and visible images based on saliency analysis and non-subsampled Shearlet transform
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2015.10.004
– ident: ref_26
– volume: 13
  start-page: 10
  year: 2012
  ident: ref_13
  article-title: Pixel-level image fusion with simultaneous orthogonal matching pursuit
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2010.04.001
– volume: 38
  start-page: 313
  year: 2002
  ident: ref_31
  article-title: Information measure for performance of image fusion
  publication-title: Electron. Lett.
  doi: 10.1049/el:20020212
– volume: 9
  start-page: 81
  year: 2002
  ident: ref_32
  article-title: A universal image quality index
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/97.995823
– volume: 72
  start-page: 203
  year: 2008
  ident: ref_10
  article-title: Multimodality medical image fusion based on multiscale geometric analysis of contourlet transform
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.02.025
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_19
  article-title: Gradient-based leaning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– ident: ref_23
  doi: 10.1109/ICMLC.2006.258681
– volume: 8
  start-page: 119
  year: 2007
  ident: ref_9
  article-title: Pixel- and region-based image fusion with complex wavelets
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2005.09.006
– volume: 24
  start-page: 147
  year: 2015
  ident: ref_18
  article-title: A general framework for image fusion based on multi-scale transform and sparse representation
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2014.09.004
– ident: ref_21
– volume: 59
  start-page: 3450
  year: 2012
  ident: ref_14
  article-title: Group-sparse representation with dictionary learning for medical image denoising and fusion
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2217493
– volume: 64
  start-page: 134
  year: 2014
  ident: ref_2
  article-title: A fusion method for visible and infrared images based on contrast pyramid with teaching learning based optimization
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2014.02.013
– volume: 9
  start-page: 347
  year: 2015
  ident: ref_15
  article-title: Simultaneous image fusion and denosing with adaptive sparse representation
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2014.0311
– ident: ref_25
– volume: 341
  start-page: 199
  year: 2015
  ident: ref_3
  article-title: Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2014.12.032
– ident: ref_4
– ident: ref_27
– volume: 27
  start-page: 1421
  year: 2009
  ident: ref_29
  article-title: A new automated quality assessment algorithm for image fusion
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2007.12.002
– volume: 14
  start-page: 127
  year: 2013
  ident: ref_28
  article-title: A new image fusion performance metric based on visual information fidelity
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2011.08.002
– volume: 2
  start-page: 023522
  year: 2008
  ident: ref_30
  article-title: Assessment of image fusion procedures using entropy, image quality, and multispectral classification
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.2945910
– volume: 14
  start-page: 153
  year: 2019
  ident: ref_33
  article-title: Infrared and visible image fusion methods and applications: A survey
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.02.004
– volume: 19
  start-page: 49
  year: 2014
  ident: ref_7
  article-title: Fusion of multimodal medical images using Daubechies complex wavelet transform c a multiresolution approach
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2012.09.005
– volume: 9
  start-page: 255
  year: 1989
  ident: ref_6
  article-title: A morphological pyramidal image decomposition
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/0167-8655(89)90004-4
– volume: 57
  start-page: 235
  year: 1995
  ident: ref_8
  article-title: Multi sensor image fusion using the wavelet transform
  publication-title: Graph. Models Image Process.
  doi: 10.1006/gmip.1995.1022
– volume: 194
  start-page: 326
  year: 2016
  ident: ref_5
  article-title: Union Laplacian pyramid with multiple features for medical image fusion
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.02.047
– volume: 48
  start-page: 11
  year: 2019
  ident: ref_16
  article-title: FusionGAN: A generative adversarial network for infrared and visible image fusion
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.09.004
– ident: ref_22
– volume: 60
  start-page: 1069
  year: 2013
  ident: ref_17
  article-title: Cross-scale coefficient selection for volumetric medical image fusion
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2211017
– volume: 85
  start-page: 478
  year: 2017
  ident: ref_20
  article-title: A survey of infrared and visible image fusion methods
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2017.07.010
SSID ssj0023216
Score 2.3687897
Snippet In this paper, we present a new effective infrared (IR) and visible (VIS) image fusion method by using a deep neural network. In our method, a Siamese...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 570
SubjectTerms Algorithms
Artificial neural networks
Classification
Computer vision
convolutional neural network
Decomposition
Deep learning
Design
Image classification
image fusion
Image processing
infrared
Machine learning
Methods
Neural networks
Principal components analysis
Quality assessment
Radiation
Siamese network
Training
visible
Visual perception
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA6ykxdRVKxOieLBS1nS_AYvmzqmME8Odittk6qg3dDt__cl7coKghePbR8hfa8v733Ny_cQui6EEzxzIuZSljGnGQeXMoB5mKNME5Eb7s87T5_lZMaf5mK-1erL14TV9MC14gZOSqddknhePE441SX4WKILaUsF0CQAH4h5GzDVQC2WUFnzCDEA9QMHwAbydt-ReCv6BJL-TmbZrYvcCjTjfbTXZIh4WM_sAO246hDdDjEsR_jeuSVuKFFf8QgikMXhCG3s-8j70fDjJ6wQeLz2f8HwNPSHPkKz8cPL3SRuGh_EBaCzVWwKDWFecFZCfLVclSVX2uYFKUQG4d4qzX2NmMyZcJB2ZoVlJjMELixomzh2jHrVonInCAtdGg6YguYcxjZEZ4ZaS3NJ_Q6lIBG62SgkLRpWcN-c4iMFdOB1l7a6i9BVK7qsqTB-Exp5rbYCnr063ACbpo1N079sGqH-xiZp41LfKSBZzTTkNyJCl-1jcAa_w5FVbrEGGe5LdpUSKkKqY8vOhLpPqve3QKutILUjQp_-xxucoV3IrEyoKRN91Ft9rd05ZC-r_CJ8qD-7HOkc
  priority: 102
  providerName: Directory of Open Access Journals
Title A New Deep Learning Based Multi-Spectral Image Fusion Method
URI https://www.proquest.com/docview/2548385095
https://www.proquest.com/docview/2466767757
https://pubmed.ncbi.nlm.nih.gov/PMC7515058
https://doaj.org/article/e66e8e22779040418f21928c6df70941
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swED7a9GUvY2Md89oFbfRhL6ZW9BsGo9madoWWMVbIm7EluRu0Ttom___uHMWrYezFYOuwzUm6u086fQdw5FVUsooql1o3ueSVxCnlEPOIyIUtVO0knXe-vNLn1_JiruZpwe0xpVVubWJnqMPC0xr5MQIZKyy6N_V5eZ9T1SjaXU0lNHZhD02wtSPYm55eff_RQy4x4XrDJyQQ3B9HBDgYv1Nl4ideqCPrH0SYw_zIJw5n9gKep0iRnWy69iXsxPYVfDphaJbY1xiXLFGj3rApeqLAuqO0OdWTp7exb3doKdhsTath7LKrE70P17PTn1_O81QAIfeI0la58xbdvZKiQT8bpGkaaWyofeFVhW4_GCspV0zXQkUMPysfhKtcgTcBtV5E8RpG7aKNb4Ap2ziJ2ILXEt_tCls5HgKvNaedSlVk8HGrkNIndnAqUnFbIkog3ZW97jL40IsuN5QY_xKaklZ7AWKx7h4sHm7KNCnKqHW0cTIhzkNZSG4btJ8T63VoDMJOnsHhtk_KNLUey78DIYP3fTNOCtrpqNq4WKOMpNRdY5TJwAz6cvBDw5b296-OXttgiFco-_b_Hz-AZxg7uS5rTB3CaPWwju8wPlnVY9i1s7NxGorjDuXj9WzO_wD8teaC
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcoBLVQSIlAIGgcQlqh3biS0VoZay7NJuT63UW0hspyDR7NLuqupL8YzMZJPQSIhbj4lHTjIez8wXzw_AW6eDVkXQsUrTKlaiULilLGIeGYQ0XJdWUb7z9Dgdn6qvZ_psDX53uTAUVtnpxEZR-5mjf-Q7CGSMNGje9Mf5r5i6RtHpatdCYyUWh-HmGiHb1YfJAa7vuyQZfT75NI7brgKxQ-iziK0zaEO1khUaL6-yqlKZ8aXjThdoS31mFAVgpaXUAX26wnlpC8vxwuOn8CBx3ntwX0m05JSZPvrSAzyZiHRVvQgH-U5AOIVogfog37J5TWuAgT87jMa8Zd5Gm7DR-qVsbyVIj2At1I9hd4-hEmQHIcxZW4j1nO2j3fOsSdyNqXs9zcYmF6iX2GhJ_97YtOlK_QRO74QxT2G9ntXhGTBtKqsQyYhS4dyWm8IK70WZCjoX1TyC9x1DctfWIqeWGD9zxCTEu7znXQRvetL5qgDHv4j2ias9AdXMbm7MLs_zdgvmIU2DCUlCFRYVV8JUqK0T41JfZQhyRQTb3Zrk7Ua-yv-KXQSv-2HcgnSuUtRhtkQaRYHCWaazCLLBWg5eaDhS__jeFPPO0KHk2mz9_-Gv4MH4ZHqUH02OD5_DQ_TabBOvprdhfXG5DC_QM1qULxtxZPDtruX_DxBGHy0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fa9RAEB_qFcQXUVRMrXYVBV_CZbO72V1QSs_r0bP2KGKhbzHJbqrQ5s72DvGr9dN1JpfEBsS3PiYZNsns_Pvtzs4AvC2UVzLzKpRJUoaSZxJVyiLmEZ4LE6ncSjrvfDRLDk7k51N1ugHX7VkYSqtsbWJtqN28oDXyIQIZIwy6NzUsm7SI4_Fkd_ErpA5StNPattNYi8ih__Mb4dvVx-kY5_pdHE_2v306CJsOA2GBMGgZ2sKgP1VSlOjInNRlKbVxeREVKkO_6rSRlIyV5EJ5jO-ywgmb2QgvHP5W5AWOew82NaGiAWyO9mfHXzu4J2KerGsZCWGjoUdwhdiBuiLf8oB1o4BedNvPzbzl7CaP4GETpbK9tVg9hg1fPYEPewxNIht7v2BNWdYzNkIv6Fh9jDekXvY0GpteoJVikxWtxLGjukf1Uzi5E9Y8g0E1r_xzYMqUViKu4bnEsW1kMsud43nCaZdURQG8bxmSFk1lcmqQcZ4iQiHepR3vAnjTkS7W5Tj-RTQirnYEVEG7vjG_PEsbhUx9knjj45jqLcpIclOi7Y5NkbhSI-TlAWy3c5I2an2V_hXCAF53j1EhaZclq_x8hTSS0oa1VjoA3ZvL3gf1n1Q_f9SlvTWGl5EyW_9_-Q7cR9lPv0xnhy_gAYZwtk5eU9swWF6u_EsMk5b5q0YeGXy_axW4ASw_JL8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Deep+Learning+Based+Multi-Spectral+Image+Fusion+Method&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Chen%2C+Yunfan&rft.date=2019-06-05&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=21&rft.issue=6&rft.spage=570&rft_id=info:doi/10.3390%2Fe21060570&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon