Deep and Wide Transfer Learning with Kernel Matching for Pooling Data from Electroencephalography and Psychological Questionnaires

Motor imagery (MI) promotes motor learning and encourages brain–computer interface systems that entail electroencephalogram (EEG) decoding. However, a long period of training is required to master brain rhythms’ self-regulation, resulting in users with MI inefficiency. We introduce a parameter-based...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 15; p. 5105
Main Authors Collazos-Huertas, Diego Fabian, Velasquez-Martinez, Luisa Fernanda, Perez-Nastar, Hernan Dario, Alvarez-Meza, Andres Marino, Castellanos-Dominguez, German
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 28.07.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Motor imagery (MI) promotes motor learning and encourages brain–computer interface systems that entail electroencephalogram (EEG) decoding. However, a long period of training is required to master brain rhythms’ self-regulation, resulting in users with MI inefficiency. We introduce a parameter-based approach of cross-subject transfer-learning to improve the performances of poor-performing individuals in MI-based BCI systems, pooling data from labeled EEG measurements and psychological questionnaires via kernel-embedding. To this end, a Deep and Wide neural network for MI classification is implemented to pre-train the network from the source domain. Then, the parameter layers are transferred to initialize the target network within a fine-tuning procedure to recompute the Multilayer Perceptron-based accuracy. To perform data-fusion combining categorical features with the real-valued features, we implement stepwise kernel-matching via Gaussian-embedding. Finally, the paired source–target sets are selected for evaluation purposes according to the inefficiency-based clustering by subjects to consider their influence on BCI motor skills, exploring two choosing strategies of the best-performing subjects (source space): single-subject and multiple-subjects. Validation results achieved for discriminant MI tasks demonstrate that the introduced Deep and Wide neural network presents competitive performance of accuracy even after the inclusion of questionnaire data.
AbstractList Motor imagery (MI) promotes motor learning and encourages brain–computer interface systems that entail electroencephalogram (EEG) decoding. However, a long period of training is required to master brain rhythms’ self-regulation, resulting in users with MI inefficiency. We introduce a parameter-based approach of cross-subject transfer-learning to improve the performances of poor-performing individuals in MI-based BCI systems, pooling data from labeled EEG measurements and psychological questionnaires via kernel-embedding. To this end, a Deep and Wide neural network for MI classification is implemented to pre-train the network from the source domain. Then, the parameter layers are transferred to initialize the target network within a fine-tuning procedure to recompute the Multilayer Perceptron-based accuracy. To perform data-fusion combining categorical features with the real-valued features, we implement stepwise kernel-matching via Gaussian-embedding. Finally, the paired source–target sets are selected for evaluation purposes according to the inefficiency-based clustering by subjects to consider their influence on BCI motor skills, exploring two choosing strategies of the best-performing subjects (source space): single-subject and multiple-subjects. Validation results achieved for discriminant MI tasks demonstrate that the introduced Deep and Wide neural network presents competitive performance of accuracy even after the inclusion of questionnaire data.
Motor imagery (MI) promotes motor learning and encourages brain-computer interface systems that entail electroencephalogram (EEG) decoding. However, a long period of training is required to master brain rhythms' self-regulation, resulting in users with MI inefficiency. We introduce a parameter-based approach of cross-subject transfer-learning to improve the performances of poor-performing individuals in MI-based BCI systems, pooling data from labeled EEG measurements and psychological questionnaires via kernel-embedding. To this end, a Deep and Wide neural network for MI classification is implemented to pre-train the network from the source domain. Then, the parameter layers are transferred to initialize the target network within a fine-tuning procedure to recompute the Multilayer Perceptron-based accuracy. To perform data-fusion combining categorical features with the real-valued features, we implement stepwise kernel-matching via Gaussian-embedding. Finally, the paired source-target sets are selected for evaluation purposes according to the inefficiency-based clustering by subjects to consider their influence on BCI motor skills, exploring two choosing strategies of the best-performing subjects (source space): single-subject and multiple-subjects. Validation results achieved for discriminant MI tasks demonstrate that the introduced Deep and Wide neural network presents competitive performance of accuracy even after the inclusion of questionnaire data.Motor imagery (MI) promotes motor learning and encourages brain-computer interface systems that entail electroencephalogram (EEG) decoding. However, a long period of training is required to master brain rhythms' self-regulation, resulting in users with MI inefficiency. We introduce a parameter-based approach of cross-subject transfer-learning to improve the performances of poor-performing individuals in MI-based BCI systems, pooling data from labeled EEG measurements and psychological questionnaires via kernel-embedding. To this end, a Deep and Wide neural network for MI classification is implemented to pre-train the network from the source domain. Then, the parameter layers are transferred to initialize the target network within a fine-tuning procedure to recompute the Multilayer Perceptron-based accuracy. To perform data-fusion combining categorical features with the real-valued features, we implement stepwise kernel-matching via Gaussian-embedding. Finally, the paired source-target sets are selected for evaluation purposes according to the inefficiency-based clustering by subjects to consider their influence on BCI motor skills, exploring two choosing strategies of the best-performing subjects (source space): single-subject and multiple-subjects. Validation results achieved for discriminant MI tasks demonstrate that the introduced Deep and Wide neural network presents competitive performance of accuracy even after the inclusion of questionnaire data.
Author Velasquez-Martinez, Luisa Fernanda
Perez-Nastar, Hernan Dario
Alvarez-Meza, Andres Marino
Collazos-Huertas, Diego Fabian
Castellanos-Dominguez, German
AuthorAffiliation Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales 170001, Colombia; lfvelasquezm@unal.edu.co (L.F.V.-M.); hdperezn@unal.edu.co (H.D.P.-N.); amalvarezme@unal.edu.co (A.M.A.-M.); cgcastellanosd@unal.edu.co (G.C.-D.)
AuthorAffiliation_xml – name: Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales 170001, Colombia; lfvelasquezm@unal.edu.co (L.F.V.-M.); hdperezn@unal.edu.co (H.D.P.-N.); amalvarezme@unal.edu.co (A.M.A.-M.); cgcastellanosd@unal.edu.co (G.C.-D.)
Author_xml – sequence: 1
  givenname: Diego Fabian
  orcidid: 0000-0002-0434-3444
  surname: Collazos-Huertas
  fullname: Collazos-Huertas, Diego Fabian
– sequence: 2
  givenname: Luisa Fernanda
  surname: Velasquez-Martinez
  fullname: Velasquez-Martinez, Luisa Fernanda
– sequence: 3
  givenname: Hernan Dario
  surname: Perez-Nastar
  fullname: Perez-Nastar, Hernan Dario
– sequence: 4
  givenname: Andres Marino
  surname: Alvarez-Meza
  fullname: Alvarez-Meza, Andres Marino
– sequence: 5
  givenname: German
  orcidid: 0000-0002-0138-5489
  surname: Castellanos-Dominguez
  fullname: Castellanos-Dominguez, German
BookMark eNplkklvFDEQhS0URBY48A8scYHDEG-9XZBQFogYRJCCOFrV7uppjzx2Y_eA5ppfjjsTEAknPz2_-mw91TE58MEjIS85eytlw06T4LwoOCuekCOuhFrUQrCDf_QhOU5pzZiQUtbPyKFUssq6PiK354gjBd_R77ZDehPBpx4jXSJEb_2K_rLTQD9h9OjoZ5jMMJt9iPQ6BDfrc5iA9jFs6IVDM8WA3uA4gAurCOOwu4Nfp50ZQrasAUe_bjFNNngPNmJ6Tp724BK-uD9PyLfLi5uzj4vllw9XZ--XC6NUOS0aU2DHm1ZJXpsGWWXKXlaVMlCLFkzRVaBYq6rGtJXkDGXTt6KRBVSdKrlQ8oRc7bldgLUeo91A3OkAVt8ZIa40xMkahxpr3qlCdQAGlFF9JrIGQfWyg6buMbPe7Vnjtt1gZ9BPEdwD6MMbbwe9Cj91LVUlRJUBr-8BMfyY69Abmww6Bx7DNmlRlIyVvCxEjr56FF2HbfS5qpwq6kbUisucOt2nTAwpRey1sRPMLef3rdOc6XlX9N9dyRNvHk38-f7_2d-HaMEx
CitedBy_id crossref_primary_10_3390_app142311208
crossref_primary_10_1155_2022_4319437
crossref_primary_10_1016_j_neucom_2024_128577
crossref_primary_10_3390_diagnostics13061122
crossref_primary_10_3390_s22155771
Cites_doi 10.1080/1750984X.2020.1809007
10.1093/gigascience/giz002
10.1371/journal.pone.0207351
10.1024/1421-0185/a000238
10.1016/j.bspc.2020.102172
10.1186/s12909-020-02424-7
10.1016/j.jneumeth.2015.08.004
10.1093/gigascience/gix034
10.1016/j.neuropsychologia.2017.02.005
10.3389/fnins.2020.00155
10.3390/e22060703
10.1016/j.bspc.2020.102069
10.1109/JPROC.2015.2425807
10.1016/j.bspc.2020.102144
10.1016/j.knosys.2020.105665
10.1111/desc.12978
10.1016/j.neunet.2019.02.009
10.1016/j.bspc.2021.102584
10.1080/09541440701394624
10.3390/computation8040104
10.1023/A:1023437823106
10.1109/MSP.2013.2252713
10.1038/s41598-019-45605-1
10.1007/978-3-030-01418-6
10.3389/fped.2020.00100
10.1109/BCI48061.2020.9061649
10.26599/JNR.2020.9040001
10.1016/j.jneumeth.2020.108886
10.1109/IranianCEE.2019.8786636
10.1016/j.ajem.2018.04.017
10.1016/j.neucom.2020.09.017
10.3389/fnhum.2020.584312
10.1186/s40708-020-00110-4
10.3389/fnhum.2018.00529
10.1007/s11948-018-0061-1
10.3389/fnhum.2020.00321
10.1016/j.neunet.2020.01.027
10.3389/fnins.2017.00550
10.1016/j.bspc.2021.102702
10.1016/j.humov.2020.102742
10.1007/s11517-020-02176-y
10.1016/j.bspc.2021.102626
10.1109/NER49283.2021.9441085
10.1109/IWW-BCI.2019.8737306
10.3390/s20123496
10.3390/s21062173
10.1155/2020/7285057
10.1016/j.neunet.2022.06.008
10.1016/j.neunet.2020.12.013
10.3390/s20216321
10.1155/2020/1683013
10.1016/j.bandc.2021.105705
10.1088/1741-2552/ab57c0
10.1016/j.cosrev.2021.100378
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s21155105
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_e81d454daaca4c4fb7309ea4f3da98fe
PMC8347227
10_3390_s21155105
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c446t-9c5ed19b4318c9e07c6f3774ca82bac5d7a40b479cb7310e39fb2935a7d461243
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:17:36 EDT 2025
Thu Aug 21 14:30:32 EDT 2025
Thu Jul 10 22:18:58 EDT 2025
Fri Jul 25 20:06:25 EDT 2025
Tue Jul 01 03:56:16 EDT 2025
Thu Apr 24 22:58:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-9c5ed19b4318c9e07c6f3774ca82bac5d7a40b479cb7310e39fb2935a7d461243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0138-5489
0000-0002-0434-3444
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21155105
PMID 34372338
PQID 2558928413
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_e81d454daaca4c4fb7309ea4f3da98fe
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8347227
proquest_miscellaneous_2560061652
proquest_journals_2558928413
crossref_citationtrail_10_3390_s21155105
crossref_primary_10_3390_s21155105
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210728
PublicationDateYYYYMMDD 2021-07-28
PublicationDate_xml – month: 7
  year: 2021
  text: 20210728
  day: 28
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Zhao (ref_34) 2019; 114
James (ref_2) 2020; 79
Luo (ref_31) 2020; 195
Kumar (ref_48) 2019; 9
Zheng (ref_23) 2020; 58
ref_12
ref_55
ref_51
ref_17
Zhuang (ref_21) 2020; 8
ref_15
Suggate (ref_4) 2020; 23
Mammone (ref_38) 2020; 124
Cho (ref_47) 2017; 6
ref_22
ref_20
Freer (ref_53) 2020; 17
Lee (ref_54) 2020; 14
Zhang (ref_27) 2021; 136
ref_28
Song (ref_39) 2013; 30
(ref_37) 2021; 68
Bahmani (ref_5) 2020; 75
Vasilyev (ref_14) 2017; 97
Thompson (ref_10) 2019; 25
Kant (ref_26) 2020; 345
McAvinue (ref_11) 2008; 20
Souto (ref_6) 2020; 8
ref_35
(ref_36) 2020; 7
ref_33
(ref_40) 2017; 11
Rimbert (ref_13) 2019; 12
ref_32
ref_30
Samek (ref_18) 2015; 103
Zheng (ref_29) 2021; 68
Basso (ref_3) 2021; 14
(ref_42) 2020; 14
Ladda (ref_1) 2021; 150
Lioi (ref_16) 2019; 2019
You (ref_41) 2020; 62
Zhang (ref_25) 2021; 63
ref_46
Wan (ref_24) 2021; 421
ref_45
ref_43
McFarland (ref_44) 2004; 12
Lee (ref_57) 2019; 8
Mirzaei (ref_52) 2021; 68
Dawwd (ref_9) 2021; 63
Anowar (ref_56) 2021; 40
Zhang (ref_49) 2015; 255
ref_8
Dai (ref_19) 2018; 36
ref_7
References_xml – ident: ref_7
  doi: 10.1080/1750984X.2020.1809007
– volume: 8
  start-page: giz002
  year: 2019
  ident: ref_57
  article-title: EEG dataset and OpenBMI toolbox for three BCI paradigms: An investigation into BCI illiteracy
  publication-title: GigaScience
  doi: 10.1093/gigascience/giz002
– ident: ref_45
  doi: 10.1371/journal.pone.0207351
– volume: 79
  start-page: 101
  year: 2020
  ident: ref_2
  article-title: How Musicality, Cognition and Sensorimotor Skills Relate in Musically Untrained Children
  publication-title: Swiss J. Psychol.
  doi: 10.1024/1421-0185/a000238
– volume: 63
  start-page: 102172
  year: 2021
  ident: ref_9
  article-title: Deep learning for motor imagery EEG-based classification: A review
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102172
– ident: ref_17
  doi: 10.1186/s12909-020-02424-7
– volume: 255
  start-page: 85
  year: 2015
  ident: ref_49
  article-title: Optimizing spatial patterns with sparse filter bands for motor-imagery based brain–computer interface
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.08.004
– ident: ref_51
– volume: 6
  start-page: gix034
  year: 2017
  ident: ref_47
  article-title: EEG datasets for motor imagery brain–computer interface
  publication-title: GigaScience
  doi: 10.1093/gigascience/gix034
– volume: 97
  start-page: 56
  year: 2017
  ident: ref_14
  article-title: Assessing motor imagery in brain–computer interface training: Psychological and neurophysiological correlates
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2017.02.005
– volume: 14
  start-page: 155
  year: 2020
  ident: ref_42
  article-title: Enhanced Multiple Instance Representation Using Time-Frequency Atoms in Motor Imagery Classification
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00155
– ident: ref_43
  doi: 10.3390/e22060703
– volume: 62
  start-page: 102069
  year: 2020
  ident: ref_41
  article-title: Motor imagery EEG classification based on flexible analytic wavelet transform
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.102069
– volume: 103
  start-page: 1507
  year: 2015
  ident: ref_18
  article-title: Multivariate Machine Learning Methods for Fusing Multimodal Functional Neuroimaging Data
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2425807
– volume: 63
  start-page: 102144
  year: 2021
  ident: ref_25
  article-title: Hybrid deep neural network using transfer learning for EEG motor imagery decoding
  publication-title: Biomed. Sig. Process. Control
  doi: 10.1016/j.bspc.2020.102144
– volume: 195
  start-page: 105665
  year: 2020
  ident: ref_31
  article-title: A concise peephole model based transfer learning method for small sample temporal feature-based data-driven quality analysis
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2020.105665
– volume: 23
  start-page: e12978
  year: 2020
  ident: ref_4
  article-title: Screen-time influences children’s mental imagery performance
  publication-title: Dev. Sci.
  doi: 10.1111/desc.12978
– volume: 114
  start-page: 67
  year: 2019
  ident: ref_34
  article-title: Learning joint space–time–frequency features for EEG decoding on small labeled data
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.02.009
– volume: 68
  start-page: 102584
  year: 2021
  ident: ref_52
  article-title: EEG motor imagery classification using dynamic connectivity patterns and convolutional autoencoder
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102584
– volume: 20
  start-page: 232
  year: 2008
  ident: ref_11
  article-title: Measuring motor imagery ability: A review
  publication-title: Eur. J. Cogn. Psychol.
  doi: 10.1080/09541440701394624
– ident: ref_55
  doi: 10.3390/computation8040104
– volume: 12
  start-page: 177
  year: 2004
  ident: ref_44
  article-title: Mu and Beta Rhythm Topographies During Motor Imagery and Actual Movements
  publication-title: Brain Topogr.
  doi: 10.1023/A:1023437823106
– volume: 30
  start-page: 98
  year: 2013
  ident: ref_39
  article-title: kernel-embeddings of Conditional Distributions: A Unified Kernel Framework for Nonparametric Inference in Graphical Models
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2013.2252713
– volume: 2019
  start-page: 862375
  year: 2019
  ident: ref_16
  article-title: Simultaneous MRI-EEG during a motor imagery neurofeedback task: An open access brain imaging dataset for multi-modal data integration
  publication-title: bioRxiv
– volume: 9
  start-page: 9153
  year: 2019
  ident: ref_48
  article-title: Brain wave classification using long short-term memory network based OPTICAL predictor
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-45605-1
– ident: ref_33
  doi: 10.1007/978-3-030-01418-6
– volume: 8
  start-page: 100
  year: 2020
  ident: ref_6
  article-title: Motor Imagery Development in Children: Changes in Speed and Accuracy With Increasing Age
  publication-title: Front. Pediatr.
  doi: 10.3389/fped.2020.00100
– ident: ref_12
  doi: 10.1109/BCI48061.2020.9061649
– volume: 8
  start-page: 4
  year: 2020
  ident: ref_21
  article-title: State-of-the-art non-invasive brain–computer interface for neural rehabilitation: A review
  publication-title: J. Neurorestoratol.
  doi: 10.26599/JNR.2020.9040001
– volume: 345
  start-page: 108886
  year: 2020
  ident: ref_26
  article-title: CWT Based Transfer Learning for Motor Imagery Classification for Brain computer Interfaces
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2020.108886
– ident: ref_35
  doi: 10.1109/IranianCEE.2019.8786636
– volume: 36
  start-page: 2242
  year: 2018
  ident: ref_19
  article-title: Combining early post-resuscitation EEG and HRV features improves the prognostic performance in cardiac arrest model of rats
  publication-title: Am. J. Emerg. Med.
  doi: 10.1016/j.ajem.2018.04.017
– volume: 421
  start-page: 1
  year: 2021
  ident: ref_24
  article-title: A review on transfer learning in EEG signal analysis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.09.017
– volume: 14
  start-page: 586
  year: 2021
  ident: ref_3
  article-title: Dance on the Brain: Enhancing Intra- and Inter-Brain Synchrony
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2020.584312
– volume: 7
  start-page: 8
  year: 2020
  ident: ref_36
  article-title: CNN-based framework using spatial dropping for enhanced interpretation of neural activity in motor imagery classification
  publication-title: Brain Inf.
  doi: 10.1186/s40708-020-00110-4
– volume: 12
  start-page: 529
  year: 2019
  ident: ref_13
  article-title: Can a Subjective Questionnaire Be Used as brain–computer Interface Performance Predictor?
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2018.00529
– volume: 25
  start-page: 1217
  year: 2019
  ident: ref_10
  article-title: Critiquing the Concept of BCI Illiteracy
  publication-title: Sci. Eng. Ethics
  doi: 10.1007/s11948-018-0061-1
– volume: 14
  start-page: 321
  year: 2020
  ident: ref_54
  article-title: Predicting Motor Imagery Performance From Resting-State EEG Using Dynamic Causal Modeling
  publication-title: Front. Human Neurosci.
  doi: 10.3389/fnhum.2020.00321
– volume: 124
  start-page: 357
  year: 2020
  ident: ref_38
  article-title: A deep CNN approach to decode motor preparation of upper limbs from time–frequency maps of EEG signals at source level
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.01.027
– volume: 11
  start-page: 550
  year: 2017
  ident: ref_40
  article-title: Kernel-Based Relevance Analysis with Enhanced Interpretability for Detection of Brain Activity Patterns
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00550
– volume: 68
  start-page: 102702
  year: 2021
  ident: ref_29
  article-title: Spatio-time-frequency joint sparse optimization with transfer learning in motor imagery-based brain-computer interface system
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102702
– volume: 75
  start-page: 102742
  year: 2020
  ident: ref_5
  article-title: Children’s motor imagery modality dominance modulates the role of attentional focus in motor skill learning
  publication-title: Hum. Movem. Sci.
  doi: 10.1016/j.humov.2020.102742
– volume: 58
  start-page: 1515
  year: 2020
  ident: ref_23
  article-title: EEG classification across sessions and across subjects through transfer learning in motor imagery-based brain-machine interface system
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-020-02176-y
– volume: 68
  start-page: 102626
  year: 2021
  ident: ref_37
  article-title: Spatial interpretability of time-frequency relevance optimized in motor imagery discrimination using Deep and Wide networks
  publication-title: Biomed. Sig. Process. Control
  doi: 10.1016/j.bspc.2021.102626
– ident: ref_28
  doi: 10.1109/NER49283.2021.9441085
– ident: ref_15
  doi: 10.1109/IWW-BCI.2019.8737306
– ident: ref_20
  doi: 10.3390/s20123496
– ident: ref_46
– ident: ref_8
  doi: 10.3390/s21062173
– ident: ref_50
  doi: 10.1155/2020/7285057
– ident: ref_22
  doi: 10.1016/j.neunet.2022.06.008
– volume: 136
  start-page: 1
  year: 2021
  ident: ref_27
  article-title: Adaptive transfer learning for EEG motor imagery classification with deep Convolutional Neural Network
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.12.013
– ident: ref_32
  doi: 10.3390/s20216321
– ident: ref_30
  doi: 10.1155/2020/1683013
– volume: 150
  start-page: 105705
  year: 2021
  ident: ref_1
  article-title: Using motor imagery practice for improving motor performance—A review
  publication-title: Brain Cogn.
  doi: 10.1016/j.bandc.2021.105705
– volume: 17
  start-page: 016041
  year: 2020
  ident: ref_53
  article-title: Data augmentation for self-paced motor imagery classification with C-LSTM
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab57c0
– volume: 40
  start-page: 100378
  year: 2021
  ident: ref_56
  article-title: Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE)
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2021.100378
SSID ssj0023338
Score 2.3718133
Snippet Motor imagery (MI) promotes motor learning and encourages brain–computer interface systems that entail electroencephalogram (EEG) decoding. However, a long...
Motor imagery (MI) promotes motor learning and encourages brain-computer interface systems that entail electroencephalogram (EEG) decoding. However, a long...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5105
SubjectTerms Accuracy
Brain research
Classification
Deep and Wide network
Deep learning
Electroencephalography
Illiteracy
kernel-embedding
motor imagery
Neural networks
Questionnaires
Topography
transfer learning
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTvRQtVDUlIfcqgcuEdm1ndhHnkJUVD2A4BaN7Qkgoexqd_kD_eXMONnVRkLi0qttWY7n9Y1jfyPEL_BWjQLZd_RkTTpozCHqkCtjPYVPCrnpVdr1n_LyVl_dm_u1Ul98J6yjB-427ggJUGmjI0AAmqrxpJIOQTcqgrMNsvelmLdMpvpUS1Hm1fEIKUrqj-aU5hiGEoPok0j6B8hyeC9yLdBcfBafeoQoj7uVfREfsN0SH9d4A7fFvzPEqYQ2yruniDLFmwZnsidLfZB8uip_46zFZ3lNzpaPmSTBU_l3wkV6HuQZLEDy0xJ53tXBYQOfPsKSwTpNPnCOMh2NkhRbIC85_ypuL85vTi_zvphCHijjW-QuGIwj5wkw2OCwqELZKMJ-AezYQzCxAl14XblAOzwqULnGExQwUEVNKEirHbHRTlr8JmRROUvNgMZz5eISAFQZEvOZVUW0mThcbnIdeqZxLnjxXFPGwfKoV_LIxM_V0GlHr_HWoBOW1GoAM2KnBtKTuteT-j09ycTeUs51b6bzmvIp6yhAj1Qmfqy6ycD4rwm0OHnhMSXjvNKMM1EN9GOwoGFP-_SYqLqtYjLO6vv_-IJdsTnmCzVFlY_tnthYzF5wnxDRwh8k5X8FkXUPjA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAyksECjKIA5eo2bUd26cKaJcKVMSBit6i8SPbSlWy7G7_QH95Z7ze0EhVr7GV13hmvhmPv2HsEzgjJh71OzjUJullLCFIXwplHLpPdLnpVNrJr_r4VP44U2c54bbKZZVbm5gMdeg95cj3Efoai7Z0Ig4W_0rqGkW7q7mFxkP2aIKehkq6zOz7EHAJjL82bEICQ_v9FQY7igDFyAclqv4RvhxXR95yN7Nd9jTjRP5lI9hn7EHsnrMnt9gDX7DrwxgXHLrA_16EyJPXaeOSZ8rUOaccK_8Zl1285CdocinZxBGk8t89teqZ80NYA6cDJvxo0w2H1HxxDlse63TzkYnkKUGKsuwAbeXqJTudHf35dlzmlgqlx7hvXVqvYphYh7DBeBsr7etWIAL0YKYOvAoaZOWktt5pBH5R2NYhIFCgg0QsJMUrttP1XXzNeKWtwcsQlaP-xTUAiNon_jMjqmAK9nn7kxuf-cap7cVlg3EHyaMZ5FGwj8PUxYZk465JX0lSwwTixU4X-uW8yWrWRITfUskA4AEXXotfUdkIshUBrGljwfa2cm6ysq6a_0urYB-GYVQz2juBLvZXNKcmtFeracH0aH2MXmg80l2cJ8JuI4iSU7-5_-Fv2eMpFcxUupyaPbazXl7Fd4h41u59WtY3lHAFHA
  priority: 102
  providerName: ProQuest
Title Deep and Wide Transfer Learning with Kernel Matching for Pooling Data from Electroencephalography and Psychological Questionnaires
URI https://www.proquest.com/docview/2558928413
https://www.proquest.com/docview/2560061652
https://pubmed.ncbi.nlm.nih.gov/PMC8347227
https://doaj.org/article/e81d454daaca4c4fb7309ea4f3da98fe
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7t4wIHtLxElqUyiAOXQBo7sXNAiGVbVqCuVoiK3qLxI92VqrSkXYm98ssZu2m0kVZccnBGeXg8nm_G9jcAb1ErPjRk31aTNQkjXIxWmJhnSpP7JJcbTqVNLvLzqfg2y2Z7sKux2Xbg-t7QzteTmjaL939-334ig__oI04K2T-sKYjJPFDYh0NySNIXMpiIbjEh5RSGbUmF-uI9VxQY-3sws79J8o7XGR_BoxYuss9b_T6GPVc_gYd3SASfwt8z51YMa8t-XVvHgvOpXMNa5tQ586lW9t01tVuwCc28PufECKuyy6Wv2DNnZ7hB5s-ZsNG2KI639tUV7uisw8N7MyULeVJSaY00Za6fwXQ8-vnlPG4rK8SGwr9NXJjM2WGhCT0oU7hEmrziBAQNqlSjyaxEkWghC6Ml4T_Hi0oTLshQWkGQSPDncFAva_cCWCILRc3oMu3LGOeIyHMTaNAUT6yK4N2uk0vT0o776heLksIPr4-y00cEbzrR1ZZr4z6hU6-pTsDTY4eGZTMvW2srHaFwkQmLaJDGX0V_kRQORcUtFqpyEZzs9FzuhlxJwZUqyFsPeQSvu9tkbX4JBWu3vPEyuQd9eZZGIHvjo_dB_Tv19VXg7VbcM3PK4_-__CU8SP2-mUTGqTqBg01z414R8NnoAezLmaSrGn8dwOHp6OLyxyAkEQZhwP8DrRcK1A
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMEChgEEpeo2dhJnANCwHbZst2KQyt6C-NHtpWqZNndCnHlB_EbmXEeNBLi1mtsOYnn9Y0f3zD2CrQSI4P2bTVakzTShWClCUWiNIZPDLn-Vtr8MJ0ey88nyckW-93dhaFjlZ1P9I7a1obWyHcR-qocfelIvFt-D6lqFO2udiU0GrWYuZ8_MGVbv90fo3xfx_Fk7-jjNGyrCoQGU59NmJvE2VGuMXIqk7soM2kpEAQZULEGk9gMZKRllhudIfZxIi81xsQEMisRDkiB415j16XASE430yef-gRPYL7XsBdhY7S7xuQqIQAziHm-NMAAzw5PY14Kb5M77HaLS_n7RpHusi1X3WO3LrEV3me_xs4tOVSWfz2zjvsoV7oVbylaF5zWdPnMrSp3zufo4mlxiyMo5l9qKg204GPYAKcLLXyvqb5DbmV5Ch1vth984JK5X5BF3akAffP6ATu-ksl-yLarunKPGI-yXOFjcImmeskpAIjUeL41JSKrAvamm-TCtPzmVGbjvMA8h-RR9PII2Mu-67Ih9fhXpw8kqb4D8XD7B_VqUbRmXTiE-zKRFsAAKnqJfxHlDmQpLOSqdAHb6eRctM5hXfxV5YC96JvRrGmvBipXX1CflNBlmsQBywb6MfigYUt1duoJwpUgCtDs8f9f_pzdmB7ND4qD_cPZE3YzpsM6URbGaodtb1YX7imirY1-5lWcs29XbVN_AKvFQXY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDxFoMCCQOJixfGu7fUBIUoStYRGEaKiN3e8u04rVU5IUiGu_Cx-HTN-UUuIW6_e1dreeX2zj28AXmOm5dCQfduMrEkZ5Ty0yngy1BmFTwq55a20o1l0cKw-nYQnO_C7uQvDxyobn1g6ars0vEY-IOirE_KlQznI62MR89Hk_eq7xxWkeKe1KadRqcjU_fxB6dvm3eGIZP0mCCbjrx8PvLrCgGcoDdp6iQmdHSYZRVFtEufHJsolASKDOsjQhDZG5WcqTkwWEw5yMskzio8hxlYRNFCSxr0BuzFnRT3Y3R_P5l_adE9S9ldxGUmZ-IMNpVohw5lOBCwLBXTQbfds5pVgN7kLd2qUKj5UanUPdlxxH25f4S58AL9Gzq0EFlZ8O7dOlDEvd2tRE7YuBK_wiqlbF-5CHJHD56UuQRBZzJdcKGghRrhFwddbxLiqxcNOZnWGDYt2OXjHQYtyeZY0qUDy1JuHcHwt0_0IesWycI9B-HGi6TG6MOPqyREiysiU7Gta-lb34W0zyamp2c656MZFSlkPyyNt5dGHV23XVUXx8a9O-yyptgOzcpcPlutFWht56gj8q1BZRIOk9jn9hZ84VLm0mOjc9WGvkXNau4pN-lex-_CybSYj550bLNzykvtEjDWjMOhD3NGPzgd1W4rzs5IuXEsmBI2f_P_lL-Am2VP6-XA2fQq3Aj6548deoPegt11fumcEvbbZ81rHBZxet1n9AaU2Rwg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+and+Wide+Transfer+Learning+with+Kernel+Matching+for+Pooling+Data+from+Electroencephalography+and+Psychological+Questionnaires&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Velasquez-Martinez%2C+Luisa+Fernanda&rft.au=Perez-Nastar%2C+Hernan+Dario&rft.au=Andres+Marino+Alvarez-Meza&rft.au=Castellanos-Dominguez%2C+German&rft.date=2021-07-28&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=15&rft.spage=5105&rft_id=info:doi/10.3390%2Fs21155105&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon