Deep and Wide Transfer Learning with Kernel Matching for Pooling Data from Electroencephalography and Psychological Questionnaires
Motor imagery (MI) promotes motor learning and encourages brain–computer interface systems that entail electroencephalogram (EEG) decoding. However, a long period of training is required to master brain rhythms’ self-regulation, resulting in users with MI inefficiency. We introduce a parameter-based...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 21; no. 15; p. 5105 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
28.07.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Motor imagery (MI) promotes motor learning and encourages brain–computer interface systems that entail electroencephalogram (EEG) decoding. However, a long period of training is required to master brain rhythms’ self-regulation, resulting in users with MI inefficiency. We introduce a parameter-based approach of cross-subject transfer-learning to improve the performances of poor-performing individuals in MI-based BCI systems, pooling data from labeled EEG measurements and psychological questionnaires via kernel-embedding. To this end, a Deep and Wide neural network for MI classification is implemented to pre-train the network from the source domain. Then, the parameter layers are transferred to initialize the target network within a fine-tuning procedure to recompute the Multilayer Perceptron-based accuracy. To perform data-fusion combining categorical features with the real-valued features, we implement stepwise kernel-matching via Gaussian-embedding. Finally, the paired source–target sets are selected for evaluation purposes according to the inefficiency-based clustering by subjects to consider their influence on BCI motor skills, exploring two choosing strategies of the best-performing subjects (source space): single-subject and multiple-subjects. Validation results achieved for discriminant MI tasks demonstrate that the introduced Deep and Wide neural network presents competitive performance of accuracy even after the inclusion of questionnaire data. |
---|---|
AbstractList | Motor imagery (MI) promotes motor learning and encourages brain–computer interface systems that entail electroencephalogram (EEG) decoding. However, a long period of training is required to master brain rhythms’ self-regulation, resulting in users with MI inefficiency. We introduce a parameter-based approach of cross-subject transfer-learning to improve the performances of poor-performing individuals in MI-based BCI systems, pooling data from labeled EEG measurements and psychological questionnaires via kernel-embedding. To this end, a Deep and Wide neural network for MI classification is implemented to pre-train the network from the source domain. Then, the parameter layers are transferred to initialize the target network within a fine-tuning procedure to recompute the Multilayer Perceptron-based accuracy. To perform data-fusion combining categorical features with the real-valued features, we implement stepwise kernel-matching via Gaussian-embedding. Finally, the paired source–target sets are selected for evaluation purposes according to the inefficiency-based clustering by subjects to consider their influence on BCI motor skills, exploring two choosing strategies of the best-performing subjects (source space): single-subject and multiple-subjects. Validation results achieved for discriminant MI tasks demonstrate that the introduced Deep and Wide neural network presents competitive performance of accuracy even after the inclusion of questionnaire data. Motor imagery (MI) promotes motor learning and encourages brain-computer interface systems that entail electroencephalogram (EEG) decoding. However, a long period of training is required to master brain rhythms' self-regulation, resulting in users with MI inefficiency. We introduce a parameter-based approach of cross-subject transfer-learning to improve the performances of poor-performing individuals in MI-based BCI systems, pooling data from labeled EEG measurements and psychological questionnaires via kernel-embedding. To this end, a Deep and Wide neural network for MI classification is implemented to pre-train the network from the source domain. Then, the parameter layers are transferred to initialize the target network within a fine-tuning procedure to recompute the Multilayer Perceptron-based accuracy. To perform data-fusion combining categorical features with the real-valued features, we implement stepwise kernel-matching via Gaussian-embedding. Finally, the paired source-target sets are selected for evaluation purposes according to the inefficiency-based clustering by subjects to consider their influence on BCI motor skills, exploring two choosing strategies of the best-performing subjects (source space): single-subject and multiple-subjects. Validation results achieved for discriminant MI tasks demonstrate that the introduced Deep and Wide neural network presents competitive performance of accuracy even after the inclusion of questionnaire data.Motor imagery (MI) promotes motor learning and encourages brain-computer interface systems that entail electroencephalogram (EEG) decoding. However, a long period of training is required to master brain rhythms' self-regulation, resulting in users with MI inefficiency. We introduce a parameter-based approach of cross-subject transfer-learning to improve the performances of poor-performing individuals in MI-based BCI systems, pooling data from labeled EEG measurements and psychological questionnaires via kernel-embedding. To this end, a Deep and Wide neural network for MI classification is implemented to pre-train the network from the source domain. Then, the parameter layers are transferred to initialize the target network within a fine-tuning procedure to recompute the Multilayer Perceptron-based accuracy. To perform data-fusion combining categorical features with the real-valued features, we implement stepwise kernel-matching via Gaussian-embedding. Finally, the paired source-target sets are selected for evaluation purposes according to the inefficiency-based clustering by subjects to consider their influence on BCI motor skills, exploring two choosing strategies of the best-performing subjects (source space): single-subject and multiple-subjects. Validation results achieved for discriminant MI tasks demonstrate that the introduced Deep and Wide neural network presents competitive performance of accuracy even after the inclusion of questionnaire data. |
Author | Velasquez-Martinez, Luisa Fernanda Perez-Nastar, Hernan Dario Alvarez-Meza, Andres Marino Collazos-Huertas, Diego Fabian Castellanos-Dominguez, German |
AuthorAffiliation | Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales 170001, Colombia; lfvelasquezm@unal.edu.co (L.F.V.-M.); hdperezn@unal.edu.co (H.D.P.-N.); amalvarezme@unal.edu.co (A.M.A.-M.); cgcastellanosd@unal.edu.co (G.C.-D.) |
AuthorAffiliation_xml | – name: Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales 170001, Colombia; lfvelasquezm@unal.edu.co (L.F.V.-M.); hdperezn@unal.edu.co (H.D.P.-N.); amalvarezme@unal.edu.co (A.M.A.-M.); cgcastellanosd@unal.edu.co (G.C.-D.) |
Author_xml | – sequence: 1 givenname: Diego Fabian orcidid: 0000-0002-0434-3444 surname: Collazos-Huertas fullname: Collazos-Huertas, Diego Fabian – sequence: 2 givenname: Luisa Fernanda surname: Velasquez-Martinez fullname: Velasquez-Martinez, Luisa Fernanda – sequence: 3 givenname: Hernan Dario surname: Perez-Nastar fullname: Perez-Nastar, Hernan Dario – sequence: 4 givenname: Andres Marino surname: Alvarez-Meza fullname: Alvarez-Meza, Andres Marino – sequence: 5 givenname: German orcidid: 0000-0002-0138-5489 surname: Castellanos-Dominguez fullname: Castellanos-Dominguez, German |
BookMark | eNplkklvFDEQhS0URBY48A8scYHDEG-9XZBQFogYRJCCOFrV7uppjzx2Y_eA5ppfjjsTEAknPz2_-mw91TE58MEjIS85eytlw06T4LwoOCuekCOuhFrUQrCDf_QhOU5pzZiQUtbPyKFUssq6PiK354gjBd_R77ZDehPBpx4jXSJEb_2K_rLTQD9h9OjoZ5jMMJt9iPQ6BDfrc5iA9jFs6IVDM8WA3uA4gAurCOOwu4Nfp50ZQrasAUe_bjFNNngPNmJ6Tp724BK-uD9PyLfLi5uzj4vllw9XZ--XC6NUOS0aU2DHm1ZJXpsGWWXKXlaVMlCLFkzRVaBYq6rGtJXkDGXTt6KRBVSdKrlQ8oRc7bldgLUeo91A3OkAVt8ZIa40xMkahxpr3qlCdQAGlFF9JrIGQfWyg6buMbPe7Vnjtt1gZ9BPEdwD6MMbbwe9Cj91LVUlRJUBr-8BMfyY69Abmww6Bx7DNmlRlIyVvCxEjr56FF2HbfS5qpwq6kbUisucOt2nTAwpRey1sRPMLef3rdOc6XlX9N9dyRNvHk38-f7_2d-HaMEx |
CitedBy_id | crossref_primary_10_3390_app142311208 crossref_primary_10_1155_2022_4319437 crossref_primary_10_1016_j_neucom_2024_128577 crossref_primary_10_3390_diagnostics13061122 crossref_primary_10_3390_s22155771 |
Cites_doi | 10.1080/1750984X.2020.1809007 10.1093/gigascience/giz002 10.1371/journal.pone.0207351 10.1024/1421-0185/a000238 10.1016/j.bspc.2020.102172 10.1186/s12909-020-02424-7 10.1016/j.jneumeth.2015.08.004 10.1093/gigascience/gix034 10.1016/j.neuropsychologia.2017.02.005 10.3389/fnins.2020.00155 10.3390/e22060703 10.1016/j.bspc.2020.102069 10.1109/JPROC.2015.2425807 10.1016/j.bspc.2020.102144 10.1016/j.knosys.2020.105665 10.1111/desc.12978 10.1016/j.neunet.2019.02.009 10.1016/j.bspc.2021.102584 10.1080/09541440701394624 10.3390/computation8040104 10.1023/A:1023437823106 10.1109/MSP.2013.2252713 10.1038/s41598-019-45605-1 10.1007/978-3-030-01418-6 10.3389/fped.2020.00100 10.1109/BCI48061.2020.9061649 10.26599/JNR.2020.9040001 10.1016/j.jneumeth.2020.108886 10.1109/IranianCEE.2019.8786636 10.1016/j.ajem.2018.04.017 10.1016/j.neucom.2020.09.017 10.3389/fnhum.2020.584312 10.1186/s40708-020-00110-4 10.3389/fnhum.2018.00529 10.1007/s11948-018-0061-1 10.3389/fnhum.2020.00321 10.1016/j.neunet.2020.01.027 10.3389/fnins.2017.00550 10.1016/j.bspc.2021.102702 10.1016/j.humov.2020.102742 10.1007/s11517-020-02176-y 10.1016/j.bspc.2021.102626 10.1109/NER49283.2021.9441085 10.1109/IWW-BCI.2019.8737306 10.3390/s20123496 10.3390/s21062173 10.1155/2020/7285057 10.1016/j.neunet.2022.06.008 10.1016/j.neunet.2020.12.013 10.3390/s20216321 10.1155/2020/1683013 10.1016/j.bandc.2021.105705 10.1088/1741-2552/ab57c0 10.1016/j.cosrev.2021.100378 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s21155105 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_e81d454daaca4c4fb7309ea4f3da98fe PMC8347227 10_3390_s21155105 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c446t-9c5ed19b4318c9e07c6f3774ca82bac5d7a40b479cb7310e39fb2935a7d461243 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:17:36 EDT 2025 Thu Aug 21 14:30:32 EDT 2025 Thu Jul 10 22:18:58 EDT 2025 Fri Jul 25 20:06:25 EDT 2025 Tue Jul 01 03:56:16 EDT 2025 Thu Apr 24 22:58:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-9c5ed19b4318c9e07c6f3774ca82bac5d7a40b479cb7310e39fb2935a7d461243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0138-5489 0000-0002-0434-3444 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21155105 |
PMID | 34372338 |
PQID | 2558928413 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e81d454daaca4c4fb7309ea4f3da98fe pubmedcentral_primary_oai_pubmedcentral_nih_gov_8347227 proquest_miscellaneous_2560061652 proquest_journals_2558928413 crossref_citationtrail_10_3390_s21155105 crossref_primary_10_3390_s21155105 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210728 |
PublicationDateYYYYMMDD | 2021-07-28 |
PublicationDate_xml | – month: 7 year: 2021 text: 20210728 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_50 Zhao (ref_34) 2019; 114 James (ref_2) 2020; 79 Luo (ref_31) 2020; 195 Kumar (ref_48) 2019; 9 Zheng (ref_23) 2020; 58 ref_12 ref_55 ref_51 ref_17 Zhuang (ref_21) 2020; 8 ref_15 Suggate (ref_4) 2020; 23 Mammone (ref_38) 2020; 124 Cho (ref_47) 2017; 6 ref_22 ref_20 Freer (ref_53) 2020; 17 Lee (ref_54) 2020; 14 Zhang (ref_27) 2021; 136 ref_28 Song (ref_39) 2013; 30 (ref_37) 2021; 68 Bahmani (ref_5) 2020; 75 Vasilyev (ref_14) 2017; 97 Thompson (ref_10) 2019; 25 Kant (ref_26) 2020; 345 McAvinue (ref_11) 2008; 20 Souto (ref_6) 2020; 8 ref_35 (ref_36) 2020; 7 ref_33 (ref_40) 2017; 11 Rimbert (ref_13) 2019; 12 ref_32 ref_30 Samek (ref_18) 2015; 103 Zheng (ref_29) 2021; 68 Basso (ref_3) 2021; 14 (ref_42) 2020; 14 Ladda (ref_1) 2021; 150 Lioi (ref_16) 2019; 2019 You (ref_41) 2020; 62 Zhang (ref_25) 2021; 63 ref_46 Wan (ref_24) 2021; 421 ref_45 ref_43 McFarland (ref_44) 2004; 12 Lee (ref_57) 2019; 8 Mirzaei (ref_52) 2021; 68 Dawwd (ref_9) 2021; 63 Anowar (ref_56) 2021; 40 Zhang (ref_49) 2015; 255 ref_8 Dai (ref_19) 2018; 36 ref_7 |
References_xml | – ident: ref_7 doi: 10.1080/1750984X.2020.1809007 – volume: 8 start-page: giz002 year: 2019 ident: ref_57 article-title: EEG dataset and OpenBMI toolbox for three BCI paradigms: An investigation into BCI illiteracy publication-title: GigaScience doi: 10.1093/gigascience/giz002 – ident: ref_45 doi: 10.1371/journal.pone.0207351 – volume: 79 start-page: 101 year: 2020 ident: ref_2 article-title: How Musicality, Cognition and Sensorimotor Skills Relate in Musically Untrained Children publication-title: Swiss J. Psychol. doi: 10.1024/1421-0185/a000238 – volume: 63 start-page: 102172 year: 2021 ident: ref_9 article-title: Deep learning for motor imagery EEG-based classification: A review publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102172 – ident: ref_17 doi: 10.1186/s12909-020-02424-7 – volume: 255 start-page: 85 year: 2015 ident: ref_49 article-title: Optimizing spatial patterns with sparse filter bands for motor-imagery based brain–computer interface publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.08.004 – ident: ref_51 – volume: 6 start-page: gix034 year: 2017 ident: ref_47 article-title: EEG datasets for motor imagery brain–computer interface publication-title: GigaScience doi: 10.1093/gigascience/gix034 – volume: 97 start-page: 56 year: 2017 ident: ref_14 article-title: Assessing motor imagery in brain–computer interface training: Psychological and neurophysiological correlates publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2017.02.005 – volume: 14 start-page: 155 year: 2020 ident: ref_42 article-title: Enhanced Multiple Instance Representation Using Time-Frequency Atoms in Motor Imagery Classification publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.00155 – ident: ref_43 doi: 10.3390/e22060703 – volume: 62 start-page: 102069 year: 2020 ident: ref_41 article-title: Motor imagery EEG classification based on flexible analytic wavelet transform publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.102069 – volume: 103 start-page: 1507 year: 2015 ident: ref_18 article-title: Multivariate Machine Learning Methods for Fusing Multimodal Functional Neuroimaging Data publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2425807 – volume: 63 start-page: 102144 year: 2021 ident: ref_25 article-title: Hybrid deep neural network using transfer learning for EEG motor imagery decoding publication-title: Biomed. Sig. Process. Control doi: 10.1016/j.bspc.2020.102144 – volume: 195 start-page: 105665 year: 2020 ident: ref_31 article-title: A concise peephole model based transfer learning method for small sample temporal feature-based data-driven quality analysis publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2020.105665 – volume: 23 start-page: e12978 year: 2020 ident: ref_4 article-title: Screen-time influences children’s mental imagery performance publication-title: Dev. Sci. doi: 10.1111/desc.12978 – volume: 114 start-page: 67 year: 2019 ident: ref_34 article-title: Learning joint space–time–frequency features for EEG decoding on small labeled data publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.02.009 – volume: 68 start-page: 102584 year: 2021 ident: ref_52 article-title: EEG motor imagery classification using dynamic connectivity patterns and convolutional autoencoder publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102584 – volume: 20 start-page: 232 year: 2008 ident: ref_11 article-title: Measuring motor imagery ability: A review publication-title: Eur. J. Cogn. Psychol. doi: 10.1080/09541440701394624 – ident: ref_55 doi: 10.3390/computation8040104 – volume: 12 start-page: 177 year: 2004 ident: ref_44 article-title: Mu and Beta Rhythm Topographies During Motor Imagery and Actual Movements publication-title: Brain Topogr. doi: 10.1023/A:1023437823106 – volume: 30 start-page: 98 year: 2013 ident: ref_39 article-title: kernel-embeddings of Conditional Distributions: A Unified Kernel Framework for Nonparametric Inference in Graphical Models publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2013.2252713 – volume: 2019 start-page: 862375 year: 2019 ident: ref_16 article-title: Simultaneous MRI-EEG during a motor imagery neurofeedback task: An open access brain imaging dataset for multi-modal data integration publication-title: bioRxiv – volume: 9 start-page: 9153 year: 2019 ident: ref_48 article-title: Brain wave classification using long short-term memory network based OPTICAL predictor publication-title: Sci. Rep. doi: 10.1038/s41598-019-45605-1 – ident: ref_33 doi: 10.1007/978-3-030-01418-6 – volume: 8 start-page: 100 year: 2020 ident: ref_6 article-title: Motor Imagery Development in Children: Changes in Speed and Accuracy With Increasing Age publication-title: Front. Pediatr. doi: 10.3389/fped.2020.00100 – ident: ref_12 doi: 10.1109/BCI48061.2020.9061649 – volume: 8 start-page: 4 year: 2020 ident: ref_21 article-title: State-of-the-art non-invasive brain–computer interface for neural rehabilitation: A review publication-title: J. Neurorestoratol. doi: 10.26599/JNR.2020.9040001 – volume: 345 start-page: 108886 year: 2020 ident: ref_26 article-title: CWT Based Transfer Learning for Motor Imagery Classification for Brain computer Interfaces publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2020.108886 – ident: ref_35 doi: 10.1109/IranianCEE.2019.8786636 – volume: 36 start-page: 2242 year: 2018 ident: ref_19 article-title: Combining early post-resuscitation EEG and HRV features improves the prognostic performance in cardiac arrest model of rats publication-title: Am. J. Emerg. Med. doi: 10.1016/j.ajem.2018.04.017 – volume: 421 start-page: 1 year: 2021 ident: ref_24 article-title: A review on transfer learning in EEG signal analysis publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.09.017 – volume: 14 start-page: 586 year: 2021 ident: ref_3 article-title: Dance on the Brain: Enhancing Intra- and Inter-Brain Synchrony publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2020.584312 – volume: 7 start-page: 8 year: 2020 ident: ref_36 article-title: CNN-based framework using spatial dropping for enhanced interpretation of neural activity in motor imagery classification publication-title: Brain Inf. doi: 10.1186/s40708-020-00110-4 – volume: 12 start-page: 529 year: 2019 ident: ref_13 article-title: Can a Subjective Questionnaire Be Used as brain–computer Interface Performance Predictor? publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2018.00529 – volume: 25 start-page: 1217 year: 2019 ident: ref_10 article-title: Critiquing the Concept of BCI Illiteracy publication-title: Sci. Eng. Ethics doi: 10.1007/s11948-018-0061-1 – volume: 14 start-page: 321 year: 2020 ident: ref_54 article-title: Predicting Motor Imagery Performance From Resting-State EEG Using Dynamic Causal Modeling publication-title: Front. Human Neurosci. doi: 10.3389/fnhum.2020.00321 – volume: 124 start-page: 357 year: 2020 ident: ref_38 article-title: A deep CNN approach to decode motor preparation of upper limbs from time–frequency maps of EEG signals at source level publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.01.027 – volume: 11 start-page: 550 year: 2017 ident: ref_40 article-title: Kernel-Based Relevance Analysis with Enhanced Interpretability for Detection of Brain Activity Patterns publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00550 – volume: 68 start-page: 102702 year: 2021 ident: ref_29 article-title: Spatio-time-frequency joint sparse optimization with transfer learning in motor imagery-based brain-computer interface system publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102702 – volume: 75 start-page: 102742 year: 2020 ident: ref_5 article-title: Children’s motor imagery modality dominance modulates the role of attentional focus in motor skill learning publication-title: Hum. Movem. Sci. doi: 10.1016/j.humov.2020.102742 – volume: 58 start-page: 1515 year: 2020 ident: ref_23 article-title: EEG classification across sessions and across subjects through transfer learning in motor imagery-based brain-machine interface system publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-020-02176-y – volume: 68 start-page: 102626 year: 2021 ident: ref_37 article-title: Spatial interpretability of time-frequency relevance optimized in motor imagery discrimination using Deep and Wide networks publication-title: Biomed. Sig. Process. Control doi: 10.1016/j.bspc.2021.102626 – ident: ref_28 doi: 10.1109/NER49283.2021.9441085 – ident: ref_15 doi: 10.1109/IWW-BCI.2019.8737306 – ident: ref_20 doi: 10.3390/s20123496 – ident: ref_46 – ident: ref_8 doi: 10.3390/s21062173 – ident: ref_50 doi: 10.1155/2020/7285057 – ident: ref_22 doi: 10.1016/j.neunet.2022.06.008 – volume: 136 start-page: 1 year: 2021 ident: ref_27 article-title: Adaptive transfer learning for EEG motor imagery classification with deep Convolutional Neural Network publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.12.013 – ident: ref_32 doi: 10.3390/s20216321 – ident: ref_30 doi: 10.1155/2020/1683013 – volume: 150 start-page: 105705 year: 2021 ident: ref_1 article-title: Using motor imagery practice for improving motor performance—A review publication-title: Brain Cogn. doi: 10.1016/j.bandc.2021.105705 – volume: 17 start-page: 016041 year: 2020 ident: ref_53 article-title: Data augmentation for self-paced motor imagery classification with C-LSTM publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab57c0 – volume: 40 start-page: 100378 year: 2021 ident: ref_56 article-title: Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE) publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2021.100378 |
SSID | ssj0023338 |
Score | 2.3718133 |
Snippet | Motor imagery (MI) promotes motor learning and encourages brain–computer interface systems that entail electroencephalogram (EEG) decoding. However, a long... Motor imagery (MI) promotes motor learning and encourages brain-computer interface systems that entail electroencephalogram (EEG) decoding. However, a long... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 5105 |
SubjectTerms | Accuracy Brain research Classification Deep and Wide network Deep learning Electroencephalography Illiteracy kernel-embedding motor imagery Neural networks Questionnaires Topography transfer learning Wavelet transforms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTvRQtVDUlIfcqgcuEdm1ndhHnkJUVD2A4BaN7Qkgoexqd_kD_eXMONnVRkLi0qttWY7n9Y1jfyPEL_BWjQLZd_RkTTpozCHqkCtjPYVPCrnpVdr1n_LyVl_dm_u1Ul98J6yjB-427ggJUGmjI0AAmqrxpJIOQTcqgrMNsvelmLdMpvpUS1Hm1fEIKUrqj-aU5hiGEoPok0j6B8hyeC9yLdBcfBafeoQoj7uVfREfsN0SH9d4A7fFvzPEqYQ2yruniDLFmwZnsidLfZB8uip_46zFZ3lNzpaPmSTBU_l3wkV6HuQZLEDy0xJ53tXBYQOfPsKSwTpNPnCOMh2NkhRbIC85_ypuL85vTi_zvphCHijjW-QuGIwj5wkw2OCwqELZKMJ-AezYQzCxAl14XblAOzwqULnGExQwUEVNKEirHbHRTlr8JmRROUvNgMZz5eISAFQZEvOZVUW0mThcbnIdeqZxLnjxXFPGwfKoV_LIxM_V0GlHr_HWoBOW1GoAM2KnBtKTuteT-j09ycTeUs51b6bzmvIp6yhAj1Qmfqy6ycD4rwm0OHnhMSXjvNKMM1EN9GOwoGFP-_SYqLqtYjLO6vv_-IJdsTnmCzVFlY_tnthYzF5wnxDRwh8k5X8FkXUPjA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAyksECjKIA5eo2bUd26cKaJcKVMSBit6i8SPbSlWy7G7_QH95Z7ze0EhVr7GV13hmvhmPv2HsEzgjJh71OzjUJullLCFIXwplHLpPdLnpVNrJr_r4VP44U2c54bbKZZVbm5gMdeg95cj3Efoai7Z0Ig4W_0rqGkW7q7mFxkP2aIKehkq6zOz7EHAJjL82bEICQ_v9FQY7igDFyAclqv4RvhxXR95yN7Nd9jTjRP5lI9hn7EHsnrMnt9gDX7DrwxgXHLrA_16EyJPXaeOSZ8rUOaccK_8Zl1285CdocinZxBGk8t89teqZ80NYA6cDJvxo0w2H1HxxDlse63TzkYnkKUGKsuwAbeXqJTudHf35dlzmlgqlx7hvXVqvYphYh7DBeBsr7etWIAL0YKYOvAoaZOWktt5pBH5R2NYhIFCgg0QsJMUrttP1XXzNeKWtwcsQlaP-xTUAiNon_jMjqmAK9nn7kxuf-cap7cVlg3EHyaMZ5FGwj8PUxYZk465JX0lSwwTixU4X-uW8yWrWRITfUskA4AEXXotfUdkIshUBrGljwfa2cm6ysq6a_0urYB-GYVQz2juBLvZXNKcmtFeracH0aH2MXmg80l2cJ8JuI4iSU7-5_-Fv2eMpFcxUupyaPbazXl7Fd4h41u59WtY3lHAFHA priority: 102 providerName: ProQuest |
Title | Deep and Wide Transfer Learning with Kernel Matching for Pooling Data from Electroencephalography and Psychological Questionnaires |
URI | https://www.proquest.com/docview/2558928413 https://www.proquest.com/docview/2560061652 https://pubmed.ncbi.nlm.nih.gov/PMC8347227 https://doaj.org/article/e81d454daaca4c4fb7309ea4f3da98fe |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7t4wIHtLxElqUyiAOXQBo7sXNAiGVbVqCuVoiK3qLxI92VqrSkXYm98ssZu2m0kVZccnBGeXg8nm_G9jcAb1ErPjRk31aTNQkjXIxWmJhnSpP7JJcbTqVNLvLzqfg2y2Z7sKux2Xbg-t7QzteTmjaL939-334ig__oI04K2T-sKYjJPFDYh0NySNIXMpiIbjEh5RSGbUmF-uI9VxQY-3sws79J8o7XGR_BoxYuss9b_T6GPVc_gYd3SASfwt8z51YMa8t-XVvHgvOpXMNa5tQ586lW9t01tVuwCc28PufECKuyy6Wv2DNnZ7hB5s-ZsNG2KI639tUV7uisw8N7MyULeVJSaY00Za6fwXQ8-vnlPG4rK8SGwr9NXJjM2WGhCT0oU7hEmrziBAQNqlSjyaxEkWghC6Ml4T_Hi0oTLshQWkGQSPDncFAva_cCWCILRc3oMu3LGOeIyHMTaNAUT6yK4N2uk0vT0o776heLksIPr4-y00cEbzrR1ZZr4z6hU6-pTsDTY4eGZTMvW2srHaFwkQmLaJDGX0V_kRQORcUtFqpyEZzs9FzuhlxJwZUqyFsPeQSvu9tkbX4JBWu3vPEyuQd9eZZGIHvjo_dB_Tv19VXg7VbcM3PK4_-__CU8SP2-mUTGqTqBg01z414R8NnoAezLmaSrGn8dwOHp6OLyxyAkEQZhwP8DrRcK1A |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMEChgEEpeo2dhJnANCwHbZst2KQyt6C-NHtpWqZNndCnHlB_EbmXEeNBLi1mtsOYnn9Y0f3zD2CrQSI4P2bTVakzTShWClCUWiNIZPDLn-Vtr8MJ0ey88nyckW-93dhaFjlZ1P9I7a1obWyHcR-qocfelIvFt-D6lqFO2udiU0GrWYuZ8_MGVbv90fo3xfx_Fk7-jjNGyrCoQGU59NmJvE2VGuMXIqk7soM2kpEAQZULEGk9gMZKRllhudIfZxIi81xsQEMisRDkiB415j16XASE430yef-gRPYL7XsBdhY7S7xuQqIQAziHm-NMAAzw5PY14Kb5M77HaLS_n7RpHusi1X3WO3LrEV3me_xs4tOVSWfz2zjvsoV7oVbylaF5zWdPnMrSp3zufo4mlxiyMo5l9qKg204GPYAKcLLXyvqb5DbmV5Ch1vth984JK5X5BF3akAffP6ATu-ksl-yLarunKPGI-yXOFjcImmeskpAIjUeL41JSKrAvamm-TCtPzmVGbjvMA8h-RR9PII2Mu-67Ih9fhXpw8kqb4D8XD7B_VqUbRmXTiE-zKRFsAAKnqJfxHlDmQpLOSqdAHb6eRctM5hXfxV5YC96JvRrGmvBipXX1CflNBlmsQBywb6MfigYUt1duoJwpUgCtDs8f9f_pzdmB7ND4qD_cPZE3YzpsM6URbGaodtb1YX7imirY1-5lWcs29XbVN_AKvFQXY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQDxFoMCCQOJixfGu7fUBIUoStYRGEaKiN3e8u04rVU5IUiGu_Cx-HTN-UUuIW6_e1dreeX2zj28AXmOm5dCQfduMrEkZ5Ty0yngy1BmFTwq55a20o1l0cKw-nYQnO_C7uQvDxyobn1g6ars0vEY-IOirE_KlQznI62MR89Hk_eq7xxWkeKe1KadRqcjU_fxB6dvm3eGIZP0mCCbjrx8PvLrCgGcoDdp6iQmdHSYZRVFtEufHJsolASKDOsjQhDZG5WcqTkwWEw5yMskzio8hxlYRNFCSxr0BuzFnRT3Y3R_P5l_adE9S9ldxGUmZ-IMNpVohw5lOBCwLBXTQbfds5pVgN7kLd2qUKj5UanUPdlxxH25f4S58AL9Gzq0EFlZ8O7dOlDEvd2tRE7YuBK_wiqlbF-5CHJHD56UuQRBZzJdcKGghRrhFwddbxLiqxcNOZnWGDYt2OXjHQYtyeZY0qUDy1JuHcHwt0_0IesWycI9B-HGi6TG6MOPqyREiysiU7Gta-lb34W0zyamp2c656MZFSlkPyyNt5dGHV23XVUXx8a9O-yyptgOzcpcPlutFWht56gj8q1BZRIOk9jn9hZ84VLm0mOjc9WGvkXNau4pN-lex-_CybSYj550bLNzykvtEjDWjMOhD3NGPzgd1W4rzs5IuXEsmBI2f_P_lL-Am2VP6-XA2fQq3Aj6548deoPegt11fumcEvbbZ81rHBZxet1n9AaU2Rwg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+and+Wide+Transfer+Learning+with+Kernel+Matching+for+Pooling+Data+from+Electroencephalography+and+Psychological+Questionnaires&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Velasquez-Martinez%2C+Luisa+Fernanda&rft.au=Perez-Nastar%2C+Hernan+Dario&rft.au=Andres+Marino+Alvarez-Meza&rft.au=Castellanos-Dominguez%2C+German&rft.date=2021-07-28&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=15&rft.spage=5105&rft_id=info:doi/10.3390%2Fs21155105&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |