Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals

In quantum field theory, we learn that fermions come in three varieties: Majorana, Weyl, and Dirac. Here, we show that in solid-state systems this classification is incomplete, and we find several additional types of crystal symmetry–protected free fermionic excitations. We exhaustively classify lin...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 353; no. 6299; p. 558
Main Authors Bradlyn, Barry, Cano, Jennifer, Wang, Zhijun, Vergniory, M. G., Felser, C., Cava, R. J., Bernevig, B. Andrei
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 05.08.2016
The American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In quantum field theory, we learn that fermions come in three varieties: Majorana, Weyl, and Dirac. Here, we show that in solid-state systems this classification is incomplete, and we find several additional types of crystal symmetry–protected free fermionic excitations. We exhaustively classify linear and quadratic three-, six-, and eight-band crossings stabilized by space group symmetries in solid-state systems with spin-orbit coupling and time-reversal symmetry. Several distinct types of fermions arise, differentiated by their degeneracies at and along high-symmetry points, lines, and surfaces. Some notable consequences of these fermions are the presence of Fermi arcs in non-Weyl systems and the existence of Dirac lines. Ab initio calculations identify a number of materials that realize these exotic fermions close to the Fermi level.
AbstractList Condensed-matter systems have recently become a fertile ground for the discovery of fermionic particles and phenomena predicted in high-energy physics; examples include Majorana fermions, as well as Dirac and Weyl semimetals. However, fermions in condensed-matter systems are not constrained by Poincare symmetry. Instead, they must only respect the crystal symmetry of one of the 230 space groups. Hence, there is the potential to find and classify free fermionic excitations in solid-state systems that have no high-energy counterparts. The guiding principle of our classification is to find irreducible representations of the little group of lattice symmetries at high-symmetry points in the Brillouin zone (BZ) for each of the 230 space groups (SGs), the dimension of which corresponds to the number of bands that meet at the high-symmetry point. Because we are interested in systems with spin-orbit coupling, we considered only the double-valued representations, where a 2π rotation gives a minus sign. Furthermore, we considered systems with time-reversal symmetry that squares to -1. For each unconventional representation, we computed the low-energy k · p Hamiltonian near the band crossings by writing down all terms allowed by the crystal symmetry. This allows us to further differentiate the band crossings by the degeneracy along lines and planes that emanate from the high-symmetry point, and also to compute topological invariants. For point degeneracies, we computed the monopole charge of the band-crossing; for line nodes, we computed the Berry phase of loops encircling the nodes. We found that three space groups exhibit symmetry-protected three-band crossings. In two cases, this results in a threefold degenerate point node, whereas the third case results in a line node away from the high-symmetry point. These crossings are required to have a nonzero Chern number and hence display surface Fermi arcs. However, upon applying a magnetic field, they have an unusual Landau level structure, which distinguishes them from single and double Weyl points. Under the action of spatial symmetries, these fermions transform as spin-1 particles, as a consequence of the interplay between nonsymmorphic space group symmetries and spin. Additionally, we found that six space groups can host sixfold degeneracies. Two of these consist of two threefold degeneracies with opposite chirality, forced to be degenerate by the combination of time reversal and inversion symmetry, and can be described as "sixfold Dirac points." The other four are distinct. Furthermore, seven space groups can host eightfold degeneracies. In two cases, the eightfold degeneracies are required; all bands come in groups of eight that cross at a particular point in the BZ. These two cases also exhibit fourfold degenerate line nodes, from which other semimetals can be derived: By adding strain or a magnetic field, these line nodes split into Weyl, Dirac, or line node semimetals. For all the three-, six- and eight-band crossings, nonsymmorphic symmetries play a crucial role in protecting the band crossing. Last, we found that seven space groups may host fourfold degenerate "spin-3/2" fermions at high symmetry points. Like their spin-1 counterparts, these quasiparticles host Fermi surfaces with nonzero Chern number. Unlike the other cases we considered, however, these fermions can be stabilized by both symmorphic and nonsymmorphic symmetries. Three space groups that host these excitations also host unconventional fermions at other points in the BZ. We propose nearly 40 candidate materials that realize each type of fermion near the Fermi level, as verified with ab initio calculations. Seventeen of these have been previously synthesized in single-crystal form, whereas others have been reported in powder form. We have analyzed all types of fermions that can occur in spin-orbit coupled crystals with time-reversal symmetry and explored their topological properties. We found that there are several distinct types of such unconventional excitations, which are differentiated by their degeneracies at and along high-symmetry points, lines, and surfaces. We found natural generalizations of Weyl points: three- and four-band crossings described by a simple k · S Hamiltonian, where S[sub]i is the set of spin generators in either the spin-1 or spin-3/2 representations. These points carry a Chern number and, consequently, can exhibit Fermi arc surface states. We also found excitations with six- and eightfold degeneracies. These higher-band crossings create a tunable platform to realize topological semimetals by applying an external magnetic field or strain to the fourfold degenerate line nodes. Last, we propose realizations for each species of fermion in known materials, many of which are known to exist in single-crystal form. Shown is the surface density of states as a function of momentum for a crystal in SG 214 with bulk threefold degeneracies that project to (0.25, 0.25) and (-0.25, -0.25). Two Fermi arcs emanate from these points, indicating that their monopole charge is 2. The arcs then merge with the surface projection of bulk states near the origin. In quantum field theory, we learn that fermions come in three varieties: Majorana, Weyl, and Dirac. Here, we show that in solid-state systems this classification is incomplete, and we find several additional types of crystal symmetry-protected free fermionic excitations. We exhaustively classify linear and quadratic three-, six-, and eight-band crossings stabilized by space group symmetries in solid-state systems with spin-orbit coupling and time-reversal symmetry. Several distinct types of fermions arise, differentiated by their degeneracies at and along high-symmetry points, lines, and surfaces. Some notable consequences of these fermions are the presence of Fermi arcs in non-Weyl systems and the existence of Dirac lines. Ab initio calculations identify a number of materials that realize these exotic fermions close to the Fermi level.
In quantum field theory, we learn that fermions come in three varieties: Majorana, Weyl, and Dirac. Here, we show that in solid-state systems this classification is incomplete, and we find several additional types of crystal symmetry-protected free fermionic excitations. We exhaustively classify linear and quadratic three-, six-, and eight-band crossings stabilized by space group symmetries in solid-state systems with spin-orbit coupling and time-reversal symmetry. Several distinct types of fermions arise, differentiated by their degeneracies at and along high-symmetry points, lines, and surfaces. Some notable consequences of these fermions are the presence of Fermi arcs in non-Weyl systems and the existence of Dirac lines. Ab initio calculations identify a number of materials that realize these exotic fermions close to the Fermi level.
Author Cano, Jennifer
Vergniory, M. G.
Bradlyn, Barry
Felser, C.
Bernevig, B. Andrei
Wang, Zhijun
Cava, R. J.
Author_xml – sequence: 1
  givenname: Barry
  surname: Bradlyn
  fullname: Bradlyn, Barry
– sequence: 2
  givenname: Jennifer
  surname: Cano
  fullname: Cano, Jennifer
– sequence: 3
  givenname: Zhijun
  surname: Wang
  fullname: Wang, Zhijun
– sequence: 4
  givenname: M. G.
  surname: Vergniory
  fullname: Vergniory, M. G.
– sequence: 5
  givenname: C.
  surname: Felser
  fullname: Felser, C.
– sequence: 6
  givenname: R. J.
  surname: Cava
  fullname: Cava, R. J.
– sequence: 7
  givenname: B. Andrei
  surname: Bernevig
  fullname: Bernevig, B. Andrei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27445310$$D View this record in MEDLINE/PubMed
BookMark eNqNkUlrHDEQhYVxiMdOzj7FNOTiS9taWy3fvGQDQy5xfBSSugQaeqSx1G2Yfx8NM8bEEMipJOp7RdV7x-gwpggInRJ8QQjtLosLEB1cGOMFZvIALQhWolUUs0O0wJh1bY-lOELHpSwxrj3F3qMjKjkXjOAF-n0DmxSH5i5k4xpTX4-wGRsPeRVSLFfNQ3QpPkOc6teMzdNsSlibPAU3QmlCbP5qu7wpkxnLB_TO1wIf9_UEPXz98uv2e3v_89uP2-v71nHeTa2yxAPIYaB2UB67upewFrjsFLOO99g46gdcYWeJoVQq6zvOPFXMOWsNO0Hnu7nrnJ5mKJNeheJgHE2ENBdNeiY6KVVP_wPFqsPVGFbRz2_QZZpzvW9LEcWlFH1XqbM9NdsVDHqdw8rkjX4xtwJiB7icSsngtQuT2To1ZRNGTbDehqj3Iep9iFV3-Ub3Mvrfik87xbJMKb9uwqWomffsDwhDrF8
CODEN SCIEAS
CitedBy_id crossref_primary_10_1103_PhysRevB_106_134108
crossref_primary_10_1038_s41524_019_0245_5
crossref_primary_10_1103_PhysRevB_109_195107
crossref_primary_10_1002_ange_201811456
crossref_primary_10_1088_1361_648X_ab7adb
crossref_primary_10_1103_PhysRevB_105_024416
crossref_primary_10_1038_s41567_021_01340_x
crossref_primary_10_1021_acs_nanolett_6b04942
crossref_primary_10_1038_s41586_019_0954_4
crossref_primary_10_1103_PhysRevB_107_085139
crossref_primary_10_1103_PhysRevB_98_161403
crossref_primary_10_1103_PhysRevB_105_125115
crossref_primary_10_1103_PhysRevB_107_085135
crossref_primary_10_1021_acs_jpcc_7b11111
crossref_primary_10_1038_s41467_024_50451_5
crossref_primary_10_1103_PhysRevB_108_174112
crossref_primary_10_1103_PhysRevB_110_245137
crossref_primary_10_1103_PhysRevB_110_155110
crossref_primary_10_1063_5_0158271
crossref_primary_10_1088_1361_648X_aae6d1
crossref_primary_10_1103_PhysRevApplied_20_064034
crossref_primary_10_1103_PhysRevB_95_041103
crossref_primary_10_1063_1_5124314
crossref_primary_10_1103_PhysRevX_10_011026
crossref_primary_10_1103_PhysRevB_95_075146
crossref_primary_10_1063_1_5123222
crossref_primary_10_1088_1361_648X_aaf040
crossref_primary_10_1007_s11433_020_1558_8
crossref_primary_10_1103_PhysRevLett_133_126602
crossref_primary_10_1103_PhysRevB_110_064202
crossref_primary_10_1103_PhysRevLett_125_036401
crossref_primary_10_1103_PhysRevMaterials_3_021201
crossref_primary_10_3390_ma16247579
crossref_primary_10_1103_PhysRevB_105_184105
crossref_primary_10_1038_s43246_023_00434_8
crossref_primary_10_1103_PhysRevB_102_155147
crossref_primary_10_1021_jacs_0c09442
crossref_primary_10_1103_PhysRevLett_130_066601
crossref_primary_10_1103_PhysRevB_108_115126
crossref_primary_10_1093_nsr_nwac121
crossref_primary_10_1146_annurev_conmatphys_041720_124134
crossref_primary_10_1103_PhysRevMaterials_2_114204
crossref_primary_10_1021_acs_nanolett_1c03423
crossref_primary_10_1103_PhysRevB_95_235159
crossref_primary_10_1103_PhysRevB_95_235158
crossref_primary_10_1038_s41563_023_01587_0
crossref_primary_10_1021_acs_chemmater_8b04383
crossref_primary_10_1038_ncomms15995
crossref_primary_10_1103_PhysRevB_102_235148
crossref_primary_10_1103_PhysRevResearch_6_043135
crossref_primary_10_1103_PhysRevB_110_245113
crossref_primary_10_1103_PhysRevB_96_201401
crossref_primary_10_1137_21M1410464
crossref_primary_10_1103_PhysRevB_97_115204
crossref_primary_10_1103_PhysRevB_95_201102
crossref_primary_10_1103_PhysRevB_107_245111
crossref_primary_10_1103_PhysRevB_98_094515
crossref_primary_10_1103_PhysRevB_108_085204
crossref_primary_10_1103_PhysRevB_110_085145
crossref_primary_10_1103_PhysRevB_105_104426
crossref_primary_10_1103_PhysRevB_111_035146
crossref_primary_10_1103_PhysRevB_102_235136
crossref_primary_10_1103_PhysRevMaterials_7_044202
crossref_primary_10_1103_PhysRevB_106_134307
crossref_primary_10_1209_0295_5075_ada0d7
crossref_primary_10_1038_s41598_021_91930_9
crossref_primary_10_1103_PhysRevB_102_201105
crossref_primary_10_1103_PhysRevResearch_5_L032002
crossref_primary_10_1103_PhysRevB_100_245206
crossref_primary_10_1103_PhysRevB_96_155206
crossref_primary_10_1134_S0021364017150115
crossref_primary_10_1103_PhysRevLett_118_186401
crossref_primary_10_1039_D2CP03297J
crossref_primary_10_1103_PhysRevMaterials_7_054201
crossref_primary_10_1103_PhysRevMaterials_4_054201
crossref_primary_10_1039_D0CP02446E
crossref_primary_10_1103_PhysRevResearch_6_033157
crossref_primary_10_1142_S0217984919502932
crossref_primary_10_1103_PhysRevB_101_161111
crossref_primary_10_1103_PhysRevB_111_045161
crossref_primary_10_1103_PhysRevB_111_075433
crossref_primary_10_1088_1367_2630_aaf11d
crossref_primary_10_1103_PhysRevB_97_241102
crossref_primary_10_1016_j_jssc_2019_04_005
crossref_primary_10_1038_s41467_017_01986_3
crossref_primary_10_1103_PhysRevB_106_205204
crossref_primary_10_1103_PhysRevB_98_045134
crossref_primary_10_1103_PhysRevB_103_L081103
crossref_primary_10_1364_OE_456614
crossref_primary_10_22331_q_2023_12_12_1204
crossref_primary_10_3390_nano12040679
crossref_primary_10_1103_PhysRevLett_120_016401
crossref_primary_10_1103_PhysRevMaterials_2_014202
crossref_primary_10_1209_0295_5075_ad6bbc
crossref_primary_10_1364_OE_405422
crossref_primary_10_1209_0295_5075_aced6a
crossref_primary_10_1080_00107514_2023_2251764
crossref_primary_10_1088_1367_2630_adb645
crossref_primary_10_1038_s42005_023_01257_2
crossref_primary_10_1038_s41598_017_07374_7
crossref_primary_10_1016_j_jpcs_2024_112212
crossref_primary_10_1103_PhysRevB_99_144302
crossref_primary_10_1088_1367_2630_ab358c
crossref_primary_10_1103_PhysRevB_107_214441
crossref_primary_10_1103_PhysRevMaterials_2_081201
crossref_primary_10_1103_PhysRevB_102_075133
crossref_primary_10_1103_PhysRevMaterials_6_084201
crossref_primary_10_1063_5_0113188
crossref_primary_10_1103_PhysRevB_110_075152
crossref_primary_10_1103_PhysRevLett_119_156401
crossref_primary_10_1038_s41467_020_15865_x
crossref_primary_10_1007_s12648_020_01925_x
crossref_primary_10_1016_j_jcrysgro_2018_02_026
crossref_primary_10_1103_PhysRevB_100_205117
crossref_primary_10_1103_PhysRevB_98_045109
crossref_primary_10_1016_j_mtphys_2022_100774
crossref_primary_10_1038_s41567_018_0213_x
crossref_primary_10_1038_s41586_019_1031_8
crossref_primary_10_1103_PhysRevB_97_094412
crossref_primary_10_1103_PhysRevB_100_045144
crossref_primary_10_1103_PhysRevResearch_7_L012021
crossref_primary_10_1103_PhysRevMaterials_8_L021201
crossref_primary_10_1103_PhysRevB_98_115114
crossref_primary_10_1038_s41467_022_32948_z
crossref_primary_10_1039_C9CP04760C
crossref_primary_10_1007_s10853_020_05082_8
crossref_primary_10_1039_C8CP02810A
crossref_primary_10_1038_s41467_019_10126_y
crossref_primary_10_1021_acs_jpclett_7b02642
crossref_primary_10_1103_PhysRevB_104_115424
crossref_primary_10_1016_j_scib_2017_05_030
crossref_primary_10_1103_PhysRevLett_124_236403
crossref_primary_10_1103_PhysRevResearch_2_043209
crossref_primary_10_1103_PhysRevB_100_235201
crossref_primary_10_1038_s41524_018_0124_5
crossref_primary_10_1103_PhysRevB_104_085137
crossref_primary_10_1038_s41467_017_02814_4
crossref_primary_10_1103_PhysRevB_100_155201
crossref_primary_10_1088_1361_648X_ad1a5b
crossref_primary_10_1103_PhysRevB_106_235204
crossref_primary_10_1103_PhysRevB_106_214510
crossref_primary_10_1103_PhysRevResearch_4_L012024
crossref_primary_10_3390_e21020209
crossref_primary_10_1103_PhysRevB_105_155156
crossref_primary_10_1103_PhysRevLett_122_076402
crossref_primary_10_1002_adma_202201058
crossref_primary_10_1103_PhysRevB_105_035141
crossref_primary_10_1103_PhysRevLett_122_116402
crossref_primary_10_1007_s11467_018_0815_x
crossref_primary_10_1126_sciadv_aav8575
crossref_primary_10_1063_5_0178936
crossref_primary_10_1103_PhysRevB_98_155145
crossref_primary_10_1021_acs_chemmater_0c04649
crossref_primary_10_1103_PhysRevB_108_L241201
crossref_primary_10_1038_s42254_019_0088_5
crossref_primary_10_1103_PhysRevB_104_085144
crossref_primary_10_1002_adma_202402373
crossref_primary_10_1016_j_carbon_2024_118971
crossref_primary_10_1103_PhysRevB_108_205139
crossref_primary_10_1088_1674_1056_28_7_077101
crossref_primary_10_1088_1674_1056_28_7_077105
crossref_primary_10_1126_science_adf8458
crossref_primary_10_1038_nphys4277
crossref_primary_10_1007_s11467_020_0963_7
crossref_primary_10_1088_1361_648X_ad8715
crossref_primary_10_1103_PhysRevB_110_235163
crossref_primary_10_1088_1361_648X_abaad1
crossref_primary_10_1016_j_scib_2021_10_023
crossref_primary_10_1088_1674_1056_ad462f
crossref_primary_10_1007_s11433_020_1643_x
crossref_primary_10_1103_PhysRevB_103_115112
crossref_primary_10_1016_j_molliq_2024_125964
crossref_primary_10_1103_PhysRevB_103_L161109
crossref_primary_10_1103_PhysRevLett_122_206401
crossref_primary_10_1103_PhysRevB_96_024435
crossref_primary_10_1103_PhysRevB_103_L161113
crossref_primary_10_1103_PhysRevLett_119_036401
crossref_primary_10_1088_2752_5724_aca816
crossref_primary_10_1126_sciadv_aaw9485
crossref_primary_10_1088_1361_648X_ad5e2b
crossref_primary_10_1103_PhysRevResearch_5_033204
crossref_primary_10_1103_PhysRevB_102_035106
crossref_primary_10_1103_PhysRevLett_127_056601
crossref_primary_10_1103_PhysRevLett_123_207601
crossref_primary_10_1038_s41567_017_0032_5
crossref_primary_10_1103_PhysRevB_103_205151
crossref_primary_10_1103_PhysRevLett_132_266601
crossref_primary_10_1016_j_aop_2018_04_024
crossref_primary_10_1103_PhysRevB_108_115105
crossref_primary_10_1103_PhysRevB_96_045121
crossref_primary_10_1140_epjb_e2020_100575_4
crossref_primary_10_1039_D4RA06808D
crossref_primary_10_1016_j_matpr_2019_02_051
crossref_primary_10_1103_PhysRevB_101_214309
crossref_primary_10_1134_S002136402360115X
crossref_primary_10_1103_PhysRevA_101_043614
crossref_primary_10_1103_PhysRevB_99_054505
crossref_primary_10_1103_PhysRevB_104_075115
crossref_primary_10_1103_PhysRevLett_126_246801
crossref_primary_10_1103_PhysRevB_108_L161411
crossref_primary_10_1107_S2052252519007383
crossref_primary_10_1103_PhysRevB_108_125141
crossref_primary_10_1103_PhysRevB_110_155154
crossref_primary_10_1103_PhysRevB_97_035443
crossref_primary_10_1088_1674_1056_27_10_107402
crossref_primary_10_1063_1_5037121
crossref_primary_10_1103_PhysRevLett_120_130503
crossref_primary_10_1038_s41567_017_0021_8
crossref_primary_10_1103_PhysRevB_96_060509
crossref_primary_10_1103_PhysRevB_102_115117
crossref_primary_10_1103_PhysRevB_103_205145
crossref_primary_10_1103_PhysRevB_101_195130
crossref_primary_10_1103_PhysRevB_102_125148
crossref_primary_10_1103_PhysRevMaterials_7_074205
crossref_primary_10_1103_PhysRevB_103_L241115
crossref_primary_10_1103_PhysRevB_95_235104
crossref_primary_10_1103_PhysRevApplied_21_034026
crossref_primary_10_1063_5_0015322
crossref_primary_10_1103_PhysRevB_102_115129
crossref_primary_10_1016_j_supcon_2024_100132
crossref_primary_10_1103_PhysRevA_99_043828
crossref_primary_10_1103_PhysRevB_97_161111
crossref_primary_10_1103_PhysRevResearch_4_023130
crossref_primary_10_1016_j_scib_2017_05_014
crossref_primary_10_1021_acs_chemmater_2c02147
crossref_primary_10_1103_PhysRevMaterials_9_L031201
crossref_primary_10_1088_1674_1056_28_7_077303
crossref_primary_10_1038_s41535_022_00461_7
crossref_primary_10_1088_1751_8121_ac7f08
crossref_primary_10_1103_PhysRevResearch_3_013288
crossref_primary_10_1016_j_mattod_2019_08_003
crossref_primary_10_1038_s41467_018_08149_y
crossref_primary_10_1103_PhysRevB_104_085118
crossref_primary_10_1038_s41467_021_23727_3
crossref_primary_10_3390_cryst11020080
crossref_primary_10_1103_PhysRevB_107_195125
crossref_primary_10_1103_PhysRevB_98_125104
crossref_primary_10_1103_PhysRevB_95_235116
crossref_primary_10_1103_PhysRevB_101_245113
crossref_primary_10_1103_PhysRevLett_124_166404
crossref_primary_10_1007_s00220_017_2965_z
crossref_primary_10_1088_1572_9494_ab6909
crossref_primary_10_1103_PhysRevA_101_053613
crossref_primary_10_1103_PhysRevB_100_134512
crossref_primary_10_1126_science_abg9094
crossref_primary_10_1088_0256_307X_35_11_117101
crossref_primary_10_1103_PhysRevB_102_115138
crossref_primary_10_1103_PhysRevB_103_L161303
crossref_primary_10_1016_j_aop_2018_11_012
crossref_primary_10_1103_PhysRevB_102_115131
crossref_primary_10_1103_PhysRevB_108_125127
crossref_primary_10_1103_PhysRevB_104_085121
crossref_primary_10_1038_s41578_021_00380_2
crossref_primary_10_1103_PhysRevLett_124_056402
crossref_primary_10_1088_0256_307X_34_2_027102
crossref_primary_10_1038_s41377_020_00382_9
crossref_primary_10_1103_PhysRevB_97_075135
crossref_primary_10_1007_s40843_017_9178_4
crossref_primary_10_1103_PhysRevB_109_L201107
crossref_primary_10_1103_PhysRevB_108_075167
crossref_primary_10_1039_D1NR00382H
crossref_primary_10_1103_PhysRevB_101_245127
crossref_primary_10_1088_1361_648X_ac87e5
crossref_primary_10_1038_s41467_022_34978_z
crossref_primary_10_1021_acs_jpcc_0c00303
crossref_primary_10_1103_PhysRevB_109_165136
crossref_primary_10_1038_s41467_024_53319_w
crossref_primary_10_1002_apxr_202200119
crossref_primary_10_1016_j_scib_2021_12_016
crossref_primary_10_1007_s11433_021_1750_2
crossref_primary_10_3390_nano13081389
crossref_primary_10_1088_0256_307X_36_7_077102
crossref_primary_10_1002_pssr_202200115
crossref_primary_10_1002_adfm_202208023
crossref_primary_10_1103_PhysRevB_97_041104
crossref_primary_10_1007_s42864_020_00058_2
crossref_primary_10_1016_j_mtphys_2025_101700
crossref_primary_10_1103_PhysRevB_105_165140
crossref_primary_10_1103_PhysRevB_110_205146
crossref_primary_10_1103_PhysRevLett_119_256402
crossref_primary_10_1088_1361_648X_abe796
crossref_primary_10_1116_5_0245604
crossref_primary_10_1016_j_physb_2021_413626
crossref_primary_10_1134_S1063776121120037
crossref_primary_10_1103_PhysRevB_103_184301
crossref_primary_10_1063_5_0025396
crossref_primary_10_1103_PhysRevB_110_L041114
crossref_primary_10_1088_0256_307X_37_6_067101
crossref_primary_10_1103_PhysRevB_102_035125
crossref_primary_10_1039_D1NR00064K
crossref_primary_10_1103_PhysRevB_101_235105
crossref_primary_10_1016_j_carbon_2019_11_083
crossref_primary_10_1103_PhysRevB_105_245141
crossref_primary_10_1088_1361_648X_ab849a
crossref_primary_10_1007_JHEP01_2019_049
crossref_primary_10_1103_PhysRevB_109_L100506
crossref_primary_10_1038_s41524_018_0104_9
crossref_primary_10_1103_PhysRevB_107_125138
crossref_primary_10_1126_sciadv_aau8725
crossref_primary_10_1103_PhysRevB_107_125145
crossref_primary_10_1007_s11664_017_6005_8
crossref_primary_10_1088_1361_648X_ad146f
crossref_primary_10_1103_PhysRevB_108_075130
crossref_primary_10_1038_s41586_019_1037_2
crossref_primary_10_1007_JHEP06_2018_110
crossref_primary_10_1103_PhysRevB_101_235119
crossref_primary_10_1103_PhysRevB_105_245152
crossref_primary_10_1103_PhysRevB_108_054202
crossref_primary_10_1016_j_jmmm_2021_168488
crossref_primary_10_1002_adma_202103476
crossref_primary_10_1021_acs_nanolett_2c03307
crossref_primary_10_1063_1_5024479
crossref_primary_10_1103_PhysRevB_95_195165
crossref_primary_10_1038_s41377_020_00384_7
crossref_primary_10_1103_PhysRevB_108_L201404
crossref_primary_10_21468_SciPostPhys_15_4_133
crossref_primary_10_3389_fchem_2021_796323
crossref_primary_10_1103_PhysRevB_98_165131
crossref_primary_10_1103_PhysRevB_105_155405
crossref_primary_10_1002_aelm_201900857
crossref_primary_10_1103_PhysRevB_110_035133
crossref_primary_10_21468_SciPostPhys_15_4_129
crossref_primary_10_1063_1_5026644
crossref_primary_10_1016_j_commt_2024_100022
crossref_primary_10_1073_pnas_2315787121
crossref_primary_10_1088_1361_648X_aaebed
crossref_primary_10_1103_PhysRevLett_131_116603
crossref_primary_10_1103_PhysRevB_99_241104
crossref_primary_10_1038_s42005_023_01161_9
crossref_primary_10_1088_2515_7639_ab6c34
crossref_primary_10_1103_PhysRevResearch_2_012047
crossref_primary_10_1103_PhysRevB_110_125204
crossref_primary_10_1002_pssr_201700044
crossref_primary_10_3390_sym15091651
crossref_primary_10_1016_j_carbon_2019_10_055
crossref_primary_10_1088_2515_7639_ab3ea2
crossref_primary_10_1103_PhysRevB_106_085102
crossref_primary_10_1016_j_physleta_2021_127293
crossref_primary_10_1038_s41567_022_01604_0
crossref_primary_10_1103_PhysRevResearch_4_L022022
crossref_primary_10_1364_OL_529880
crossref_primary_10_1103_PhysRevB_97_125419
crossref_primary_10_1007_s11433_019_9448_8
crossref_primary_10_1063_5_0007528
crossref_primary_10_1126_science_aan2802
crossref_primary_10_1103_PhysRevB_110_115421
crossref_primary_10_1103_PhysRevLett_130_266304
crossref_primary_10_1103_PhysRevLett_118_045701
crossref_primary_10_1002_chem_202400436
crossref_primary_10_1088_1361_648X_aaab32
crossref_primary_10_1021_acs_chemrev_0c00608
crossref_primary_10_1002_andp_202400016
crossref_primary_10_1038_s42005_022_00992_2
crossref_primary_10_1088_1361_6633_ad4e64
crossref_primary_10_1103_PhysRevA_101_023827
crossref_primary_10_1088_1361_648X_ace579
crossref_primary_10_1126_sciadv_aba0509
crossref_primary_10_1103_PhysRevMaterials_1_044203
crossref_primary_10_7567_JJAP_56_105102
crossref_primary_10_1103_PhysRevB_94_165201
crossref_primary_10_1103_PhysRevB_97_201107
crossref_primary_10_1103_PhysRevB_108_205106
crossref_primary_10_1103_PhysRevB_102_035155
crossref_primary_10_22331_q_2022_06_07_731
crossref_primary_10_1038_s41467_021_22903_9
crossref_primary_10_1103_PhysRevB_98_155122
crossref_primary_10_1002_adfm_202500991
crossref_primary_10_1038_s41467_021_27158_y
crossref_primary_10_1103_PhysRevLett_123_126403
crossref_primary_10_1016_j_xinn_2022_100343
crossref_primary_10_1103_PhysRevResearch_2_022066
crossref_primary_10_1063_10_0000702
crossref_primary_10_1103_PhysRevB_104_045111
crossref_primary_10_1039_C9NR09123H
crossref_primary_10_1103_PhysRevB_101_235162
crossref_primary_10_1103_PhysRevB_109_L241403
crossref_primary_10_1016_j_physleta_2021_127707
crossref_primary_10_1016_j_commatsci_2020_109815
crossref_primary_10_1038_s42005_022_01022_x
crossref_primary_10_1103_PhysRevB_107_085410
crossref_primary_10_1103_PhysRevB_101_235166
crossref_primary_10_1103_PhysRevResearch_2_012017
crossref_primary_10_1103_PhysRevX_7_021019
crossref_primary_10_7498_aps_69_20191816
crossref_primary_10_1103_PhysRevB_97_121402
crossref_primary_10_1103_PhysRevB_96_121106
crossref_primary_10_1103_PhysRevB_102_165135
crossref_primary_10_1002_adma_201906046
crossref_primary_10_1038_nature19099
crossref_primary_10_1103_PhysRevLett_124_076403
crossref_primary_10_1103_PhysRevB_106_205120
crossref_primary_10_1103_PhysRevB_109_035144
crossref_primary_10_1140_epjp_s13360_022_02840_2
crossref_primary_10_1021_acs_nanolett_0c00233
crossref_primary_10_1103_PhysRevB_106_205125
crossref_primary_10_1063_5_0142095
crossref_primary_10_7498_aps_68_20191538
crossref_primary_10_1016_j_cocom_2022_e00686
crossref_primary_10_1103_PhysRevX_11_011001
crossref_primary_10_1103_PhysRevB_109_035147
crossref_primary_10_1103_PhysRevLett_127_176401
crossref_primary_10_1016_j_jmst_2024_03_080
crossref_primary_10_1088_1367_2630_aa4f65
crossref_primary_10_1016_j_ssc_2024_115799
crossref_primary_10_1103_PhysRevMaterials_2_104003
crossref_primary_10_1103_PhysRevResearch_2_022042
crossref_primary_10_1088_0256_307X_39_9_097303
crossref_primary_10_1103_PhysRevB_108_L121109
crossref_primary_10_1103_PhysRevLett_123_245302
crossref_primary_10_1103_PhysRevB_98_035130
crossref_primary_10_7498_aps_68_20191544
crossref_primary_10_1146_annurev_matsci_070218_010023
crossref_primary_10_1103_PhysRevB_103_235143
crossref_primary_10_1140_epjb_e2018_90302_7
crossref_primary_10_1088_1402_4896_ad9e48
crossref_primary_10_1038_s41567_019_0502_z
crossref_primary_10_1103_Physics_10_74
crossref_primary_10_1103_PhysRevB_102_165119
crossref_primary_10_1007_s11467_023_1259_5
crossref_primary_10_1103_PhysRevB_107_L201112
crossref_primary_10_1103_PhysRevB_105_184510
crossref_primary_10_1103_PhysRevResearch_2_023142
crossref_primary_10_1088_1751_8121_ad075e
crossref_primary_10_1103_PhysRevA_96_033634
crossref_primary_10_1103_PhysRevB_104_045107
crossref_primary_10_1021_acs_nanolett_0c01786
crossref_primary_10_1016_j_physb_2023_414695
crossref_primary_10_1103_PhysRevB_106_085128
crossref_primary_10_1126_sciadv_aar2317
crossref_primary_10_1016_j_trechm_2021_04_011
crossref_primary_10_1088_1361_648X_ac2928
crossref_primary_10_1103_PhysRevA_102_033339
crossref_primary_10_1103_PhysRevLett_126_206403
crossref_primary_10_1016_j_mtener_2021_100666
crossref_primary_10_1103_PhysRevB_107_155125
crossref_primary_10_1103_PhysRevB_107_075405
crossref_primary_10_1103_PhysRevB_101_205149
crossref_primary_10_1103_PhysRevB_109_L180403
crossref_primary_10_1103_PhysRevB_111_115122
crossref_primary_10_1103_PhysRevB_101_041107
crossref_primary_10_1103_PhysRevB_105_115109
crossref_primary_10_1103_PhysRevLett_121_226401
crossref_primary_10_1103_PhysRevB_100_125156
crossref_primary_10_1103_PhysRevMaterials_3_054203
crossref_primary_10_1103_PhysRevB_102_121111
crossref_primary_10_1016_j_scib_2023_01_001
crossref_primary_10_1126_science_abe6437
crossref_primary_10_1103_PhysRevB_100_125152
crossref_primary_10_1146_annurev_matsci_070218_010049
crossref_primary_10_1103_PhysRevX_7_041069
crossref_primary_10_1680_jemmr_16_00147
crossref_primary_10_1103_PhysRevB_96_041201
crossref_primary_10_1016_j_jpcs_2022_111024
crossref_primary_10_1103_PhysRevB_99_165406
crossref_primary_10_1103_PhysRevLett_124_127602
crossref_primary_10_1103_PhysRevB_102_155133
crossref_primary_10_1039_D3RA01813J
crossref_primary_10_1103_PhysRevX_7_041067
crossref_primary_10_1103_PhysRevB_97_134521
crossref_primary_10_1063_1_5078627
crossref_primary_10_1103_PhysRevResearch_2_023368
crossref_primary_10_1088_1361_6633_acfd3d
crossref_primary_10_31857_S1234567823100105
crossref_primary_10_1002_apxr_202400038
crossref_primary_10_1038_s42005_020_00395_1
crossref_primary_10_1103_PhysRevB_111_125101
crossref_primary_10_1103_PhysRevB_102_121103
crossref_primary_10_1103_PhysRevB_101_125207
crossref_primary_10_1103_PhysRevMaterials_2_104203
crossref_primary_10_1103_PhysRevB_100_035406
crossref_primary_10_1103_PhysRevLett_119_136401
crossref_primary_10_1103_PhysRevB_104_045137
crossref_primary_10_1103_PhysRevB_94_195205
crossref_primary_10_2139_ssrn_3983880
crossref_primary_10_1103_PhysRevB_102_155104
crossref_primary_10_1103_PhysRevLett_130_066402
crossref_primary_10_1103_PhysRevLett_120_240401
crossref_primary_10_1103_PhysRevB_108_155428
crossref_primary_10_1002_zaac_202200055
crossref_primary_10_1016_j_physe_2022_115457
crossref_primary_10_1038_s41598_024_68615_0
crossref_primary_10_1103_PhysRevB_97_235152
crossref_primary_10_1140_epjb_s10051_021_00091_1
crossref_primary_10_1103_PhysRevB_103_245141
crossref_primary_10_1103_PhysRevB_104_195127
crossref_primary_10_1103_PhysRevB_96_064103
crossref_primary_10_1103_PhysRevB_96_064102
crossref_primary_10_1103_PhysRevB_110_224514
crossref_primary_10_1103_PhysRevB_107_155137
crossref_primary_10_1103_PhysRevB_104_045148
crossref_primary_10_1103_PhysRevB_101_205138
crossref_primary_10_1007_s44214_024_00060_6
crossref_primary_10_1103_PhysRevB_102_155116
crossref_primary_10_1103_PhysRevB_109_035122
crossref_primary_10_1103_PhysRevB_101_205134
crossref_primary_10_1073_pnas_2010752117
crossref_primary_10_1103_PhysRevB_105_115118
crossref_primary_10_1103_PhysRevLett_133_026402
crossref_primary_10_1103_PhysRevMaterials_6_L031201
crossref_primary_10_1103_PhysRevLett_121_157602
crossref_primary_10_1126_science_aaz3480
crossref_primary_10_1088_0256_307X_37_10_107504
crossref_primary_10_1016_j_cpc_2021_108226
crossref_primary_10_1103_PhysRevB_105_115110
crossref_primary_10_1088_1361_648X_acfcfc
crossref_primary_10_1103_PhysRevB_108_235136
crossref_primary_10_1002_adma_201908518
crossref_primary_10_1103_PhysRevB_99_075130
crossref_primary_10_1103_PhysRevB_103_165129
crossref_primary_10_1103_PhysRevB_101_205109
crossref_primary_10_1103_PhysRevB_94_195426
crossref_primary_10_1103_PhysRevLett_123_027003
crossref_primary_10_1103_RevModPhys_90_015001
crossref_primary_10_1103_PhysRevB_109_205115
crossref_primary_10_1103_PhysRevB_103_245126
crossref_primary_10_1103_PhysRevB_103_245127
crossref_primary_10_1103_PhysRevLett_117_096404
crossref_primary_10_1103_PhysRevLett_119_227401
crossref_primary_10_1103_PhysRevX_8_031076
crossref_primary_10_1007_s11433_023_2320_7
crossref_primary_10_1088_1361_6463_ac6cb3
crossref_primary_10_1038_s41567_020_01104_z
crossref_primary_10_1039_C7NR07763G
crossref_primary_10_1140_epjb_s10051_021_00093_z
crossref_primary_10_1103_PhysRevB_107_155434
crossref_primary_10_1103_PhysRevResearch_6_043273
crossref_primary_10_1039_D3CP04524B
crossref_primary_10_1088_1361_648X_ac0dd4
crossref_primary_10_1103_PhysRevB_104_035161
crossref_primary_10_1103_PhysRevB_96_155301
crossref_primary_10_1039_C9MH00574A
crossref_primary_10_1103_PhysRevB_105_035429
crossref_primary_10_1103_PhysRevLett_123_065501
crossref_primary_10_1016_j_aop_2021_168455
crossref_primary_10_1103_PhysRevB_100_165302
crossref_primary_10_1103_PhysRevResearch_6_043262
crossref_primary_10_1103_PhysRevB_110_224304
crossref_primary_10_1103_PhysRevLett_122_077203
crossref_primary_10_1088_1361_648X_aab0ba
crossref_primary_10_1103_PhysRevResearch_3_L032068
crossref_primary_10_1007_s11467_019_0890_7
crossref_primary_10_1103_PhysRevLett_122_186801
crossref_primary_10_1038_s41534_019_0148_9
crossref_primary_10_1103_PhysRevB_108_104110
crossref_primary_10_1073_pnas_1820331116
crossref_primary_10_1103_PhysRevB_106_155141
crossref_primary_10_1038_s41467_019_09820_8
crossref_primary_10_1103_PhysRevB_104_L180507
crossref_primary_10_1103_PhysRevB_99_165145
crossref_primary_10_1016_j_matpr_2023_05_202
crossref_primary_10_1103_PhysRevLett_123_076401
crossref_primary_10_1038_s41524_019_0190_3
crossref_primary_10_1088_1361_648X_ac885c
crossref_primary_10_1063_5_0102137
crossref_primary_10_1103_PhysRevB_104_165424
crossref_primary_10_1038_ncomms15641
crossref_primary_10_1103_PhysRevB_101_045123
crossref_primary_10_1103_PhysRevMaterials_3_044202
crossref_primary_10_1088_1361_6501_ad1915
crossref_primary_10_1038_s41535_021_00325_6
crossref_primary_10_1103_PhysRevLett_124_105303
crossref_primary_10_1103_PhysRevD_97_025018
crossref_primary_10_1038_s41535_019_0186_8
crossref_primary_10_1016_j_physe_2023_115679
crossref_primary_10_1088_0256_307X_38_7_077104
crossref_primary_10_1103_PhysRevB_109_115119
crossref_primary_10_1038_s42254_021_00344_z
crossref_primary_10_1103_PhysRevB_98_125408
crossref_primary_10_1103_PhysRevB_96_165142
crossref_primary_10_1103_PhysRevB_96_165148
crossref_primary_10_1002_anie_201811456
crossref_primary_10_1088_1361_648X_ad665e
crossref_primary_10_1103_PhysRevB_104_115116
crossref_primary_10_1103_PhysRevResearch_6_023249
crossref_primary_10_1088_1367_2630_aca429
crossref_primary_10_1103_PhysRevB_96_155105
crossref_primary_10_1016_j_physleta_2024_129410
crossref_primary_10_1039_C8TC05930F
crossref_primary_10_1088_1361_648X_adb674
crossref_primary_10_1103_PhysRevB_105_125203
crossref_primary_10_1103_PhysRevB_111_075305
crossref_primary_10_21468_SciPostPhys_3_3_021
crossref_primary_10_1038_s41567_024_02655_1
crossref_primary_10_1103_PhysRevResearch_6_L032018
crossref_primary_10_1088_1367_2630_aa96f7
crossref_primary_10_1103_PhysRevB_108_235302
crossref_primary_10_1103_PhysRevB_97_035138
crossref_primary_10_1103_PhysRevB_97_035139
crossref_primary_10_1007_s11433_021_1867_y
crossref_primary_10_1103_PhysRevResearch_2_042010
crossref_primary_10_3390_cryst10070605
crossref_primary_10_1103_PhysRevLett_127_157405
crossref_primary_10_1103_PhysRevB_111_085133
crossref_primary_10_1088_1674_1056_27_3_036303
crossref_primary_10_1103_PhysRevB_108_085113
crossref_primary_10_1103_PhysRevB_98_161104
crossref_primary_10_1103_PhysRevLett_130_203802
crossref_primary_10_1126_science_abc0105
crossref_primary_10_1088_1361_648X_ad38fa
crossref_primary_10_1103_PhysRevB_101_115110
crossref_primary_10_1103_PhysRevB_111_085116
crossref_primary_10_1007_s11082_024_06722_y
crossref_primary_10_1021_acs_jpclett_8b00640
crossref_primary_10_1103_PhysRevD_100_116015
crossref_primary_10_1038_s42254_021_00388_1
crossref_primary_10_1093_nsr_nwx066
crossref_primary_10_1016_j_matt_2023_10_028
crossref_primary_10_1103_PhysRevMaterials_2_094403
crossref_primary_10_1002_adma_202201350
crossref_primary_10_1103_PhysRevA_98_053619
crossref_primary_10_1063_5_0205650
crossref_primary_10_1088_2053_1583_aadb1e
crossref_primary_10_1002_adfm_202412515
crossref_primary_10_1103_PhysRevB_103_085106
crossref_primary_10_1103_PhysRevB_100_195134
crossref_primary_10_1103_PhysRevB_105_104505
crossref_primary_10_1038_s41567_019_0511_y
crossref_primary_10_1103_PhysRevB_108_085120
crossref_primary_10_1103_PhysRevB_101_115145
crossref_primary_10_1103_PhysRevResearch_5_043165
crossref_primary_10_1088_1361_648X_aac298
crossref_primary_10_1088_1361_648X_ac0fa0
crossref_primary_10_1002_apxr_202300004
crossref_primary_10_1016_j_isci_2022_103952
crossref_primary_10_1021_acs_nanolett_3c02132
crossref_primary_10_1103_PhysRevB_110_205418
crossref_primary_10_1063_5_0185359
crossref_primary_10_3390_cryst11020143
crossref_primary_10_1038_s41563_021_00992_7
crossref_primary_10_1103_PhysRevB_102_035419
crossref_primary_10_1080_00018732_2019_1594094
crossref_primary_10_1103_PhysRevB_103_155155
crossref_primary_10_1103_PhysRevB_103_155157
crossref_primary_10_1103_PhysRevB_106_245118
crossref_primary_10_1103_PhysRevB_109_155159
crossref_primary_10_1038_s41586_023_06330_y
crossref_primary_10_1103_PhysRevB_95_205201
crossref_primary_10_1016_j_commatsci_2021_110779
crossref_primary_10_1103_PhysRevB_102_094403
crossref_primary_10_1007_s10909_017_1846_3
crossref_primary_10_1038_s41578_021_00301_3
crossref_primary_10_1039_C9CP00508K
crossref_primary_10_1103_PhysRevA_95_053615
crossref_primary_10_1103_PhysRevMaterials_6_044204
crossref_primary_10_1103_PhysRevB_106_165128
crossref_primary_10_1038_s41524_022_00954_w
crossref_primary_10_1103_PhysRevB_94_121117
crossref_primary_10_1103_PhysRevB_100_245146
crossref_primary_10_1038_s41524_020_0301_1
crossref_primary_10_1038_s41467_023_42773_7
crossref_primary_10_1103_PhysRevB_109_155146
crossref_primary_10_1038_s41467_024_47976_0
crossref_primary_10_1103_PhysRevB_106_245101
crossref_primary_10_1016_j_commatsci_2019_109466
crossref_primary_10_1103_PhysRevB_102_195121
crossref_primary_10_1103_PhysRevB_102_195124
crossref_primary_10_1103_PhysRevLett_124_073603
crossref_primary_10_1038_nmat5017
crossref_primary_10_1016_j_mtcomm_2024_110445
crossref_primary_10_1088_1361_648X_ac4e47
crossref_primary_10_1103_PhysRevLett_121_106403
crossref_primary_10_1088_1361_648X_ac3d55
crossref_primary_10_1103_PhysRevLett_121_106404
crossref_primary_10_1103_PhysRevLett_130_206702
crossref_primary_10_1103_PhysRevB_97_060504
crossref_primary_10_1038_s41467_024_53862_6
crossref_primary_10_1103_PhysRevB_100_245131
crossref_primary_10_1007_s40042_023_00979_4
crossref_primary_10_1088_1361_648X_aad8e1
crossref_primary_10_1103_PhysRevX_14_031039
crossref_primary_10_1002_sstr_202400175
crossref_primary_10_3390_ma15175812
crossref_primary_10_1103_PhysRevX_14_041060
crossref_primary_10_1103_PhysRevB_108_035428
crossref_primary_10_1103_PhysRevX_14_031037
crossref_primary_10_1103_PhysRevB_104_104408
crossref_primary_10_1007_s11433_017_9126_6
crossref_primary_10_1103_PhysRevB_106_165102
crossref_primary_10_1103_PhysRevLett_119_247202
crossref_primary_10_1088_1361_648X_ada50a
crossref_primary_10_1103_PhysRevB_103_104101
crossref_primary_10_1103_PhysRevB_96_235103
crossref_primary_10_1038_s42005_021_00564_w
crossref_primary_10_1103_PhysRevB_105_134303
crossref_primary_10_1103_PhysRevB_101_201105
crossref_primary_10_1103_PhysRevB_109_L220102
crossref_primary_10_1103_PhysRevB_106_L020502
crossref_primary_10_1126_sciadv_1602415
crossref_primary_10_1103_PhysRevMaterials_5_054202
crossref_primary_10_1088_1367_2630_ac254f
crossref_primary_10_1002_adfm_202415610
crossref_primary_10_1103_PhysRevLett_125_047203
crossref_primary_10_1016_j_physleta_2020_126494
crossref_primary_10_1103_PhysRevB_109_205141
crossref_primary_10_1021_acs_jpcc_9b07095
crossref_primary_10_1088_2053_1591_ab8df3
crossref_primary_10_7566_JPSJ_87_041001
crossref_primary_10_1073_pnas_1900527116
crossref_primary_10_1016_j_jssc_2018_04_026
crossref_primary_10_1103_PhysRevB_104_125308
crossref_primary_10_1103_PhysRevB_99_085130
crossref_primary_10_1103_PhysRevB_101_235417
crossref_primary_10_1088_1361_6668_ac9160
crossref_primary_10_1103_PhysRevB_105_165104
crossref_primary_10_1126_sciadv_ads5081
crossref_primary_10_1063_1_5082320
crossref_primary_10_1103_PhysRevB_101_214419
crossref_primary_10_1063_1_5119209
crossref_primary_10_1088_1367_2630_aad9b7
crossref_primary_10_1021_acs_nanolett_2c05100
crossref_primary_10_1103_PhysRevMaterials_3_124802
crossref_primary_10_1103_RevModPhys_93_025002
crossref_primary_10_7498_aps_67_20181857
crossref_primary_10_1103_PhysRevB_95_214103
crossref_primary_10_1088_1361_648X_ab73a8
crossref_primary_10_1103_PhysRevB_103_184502
crossref_primary_10_1103_PhysRevB_94_155108
crossref_primary_10_1088_1361_648X_abfd52
crossref_primary_10_1002_advs_202001801
crossref_primary_10_1039_D1CP02310A
crossref_primary_10_1103_PhysRevB_103_115206
crossref_primary_10_1103_PhysRevB_107_115168
crossref_primary_10_1007_s11467_019_0896_1
crossref_primary_10_1038_s41467_024_52156_1
crossref_primary_10_1038_s41467_018_05730_3
crossref_primary_10_1103_PhysRevB_109_054414
crossref_primary_10_1103_PhysRevB_96_081107
crossref_primary_10_1103_PhysRevB_97_125143
crossref_primary_10_1103_PhysRevB_102_104111
crossref_primary_10_7498_aps_67_20180796
crossref_primary_10_1103_PhysRevB_109_075119
crossref_primary_10_1038_s41524_019_0237_5
crossref_primary_10_1088_0256_307X_37_8_087101
crossref_primary_10_1039_D0TA05197G
crossref_primary_10_1103_PhysRevResearch_3_L012028
crossref_primary_10_1063_5_0223472
crossref_primary_10_1103_PhysRevB_101_035133
crossref_primary_10_1103_PhysRevB_102_245416
crossref_primary_10_1103_PhysRevB_99_020404
crossref_primary_10_1103_PhysRevMaterials_3_071201
crossref_primary_10_1038_nphys4122
crossref_primary_10_1021_acsomega_4c08273
crossref_primary_10_3390_app9224832
crossref_primary_10_1088_0256_307X_38_5_057302
crossref_primary_10_1103_PhysRevB_99_155145
crossref_primary_10_1103_PhysRevLett_126_046401
crossref_primary_10_1002_pssb_202000027
crossref_primary_10_1103_PhysRevLett_129_250501
crossref_primary_10_1088_2516_1075_ad252b
crossref_primary_10_1002_advs_202100141
crossref_primary_10_1103_PhysRevLett_121_263903
crossref_primary_10_1038_s41566_023_01371_1
crossref_primary_10_1088_1361_648X_abdb11
crossref_primary_10_1103_PhysRevB_101_165121
crossref_primary_10_1103_PhysRevB_102_115146
crossref_primary_10_1039_D3CP05680E
crossref_primary_10_1103_PhysRevB_106_115143
crossref_primary_10_1016_j_cpc_2020_107760
crossref_primary_10_1103_PhysRevB_97_155134
crossref_primary_10_1103_PhysRevB_103_195104
crossref_primary_10_1016_j_cjph_2022_06_006
crossref_primary_10_1103_PhysRevB_97_054305
crossref_primary_10_1038_s42254_021_00292_8
crossref_primary_10_2139_ssrn_4147085
crossref_primary_10_1103_PhysRevLett_119_060201
crossref_primary_10_1103_PhysRevB_108_045405
crossref_primary_10_1103_PhysRevMaterials_1_021201
crossref_primary_10_1103_PhysRevMaterials_5_124203
crossref_primary_10_1021_acs_jpclett_8b02204
crossref_primary_10_1016_j_scib_2018_04_007
crossref_primary_10_1038_s42254_019_0121_8
crossref_primary_10_1039_D2NA00597B
crossref_primary_10_1103_PhysRevResearch_2_013062
crossref_primary_10_1038_s41467_020_15825_5
crossref_primary_10_1016_j_scib_2017_11_016
crossref_primary_10_1103_PhysRevB_99_195148
crossref_primary_10_1038_s41578_018_0036_5
crossref_primary_10_1088_1361_648X_ac4cee
crossref_primary_10_1088_1367_2630_ac45cb
crossref_primary_10_1103_PhysRevResearch_4_033008
crossref_primary_10_1103_PhysRevMaterials_8_L091801
crossref_primary_10_1103_PhysRevLett_123_186401
crossref_primary_10_1103_PhysRevB_99_161110
crossref_primary_10_3390_technologies12050064
crossref_primary_10_1103_PhysRevB_95_115138
crossref_primary_10_1080_23746149_2022_2064230
crossref_primary_10_1016_j_physb_2024_415791
crossref_primary_10_1007_s11467_019_0909_0
crossref_primary_10_1038_s41467_018_05054_2
crossref_primary_10_1103_PhysRevB_105_085117
crossref_primary_10_1039_C7CP05844F
crossref_primary_10_1038_s41467_021_27168_w
crossref_primary_10_1063_5_0201889
crossref_primary_10_1021_acs_chemmater_7b05133
crossref_primary_10_1063_5_0143436
crossref_primary_10_1134_S0021364021100015
crossref_primary_10_1007_s42864_021_00098_2
crossref_primary_10_1103_PhysRevB_110_174506
crossref_primary_10_1103_PhysRevB_107_205120
crossref_primary_10_1103_PhysRevB_109_155414
crossref_primary_10_1103_PhysRevB_99_205146
crossref_primary_10_1002_adma_202409175
crossref_primary_10_1016_j_newton_2025_100010
crossref_primary_10_1002_advs_202207508
crossref_primary_10_1103_PhysRevB_107_104504
crossref_primary_10_1002_andp_201600262
crossref_primary_10_1103_PhysRevB_110_184303
crossref_primary_10_1103_PhysRevB_104_L060301
crossref_primary_10_1103_PhysRevB_111_125201
crossref_primary_10_1103_PhysRevB_105_075127
crossref_primary_10_1103_PhysRevB_104_235121
crossref_primary_10_34133_research_0042
crossref_primary_10_1038_s41578_020_0208_y
crossref_primary_10_1007_s44214_024_00067_z
crossref_primary_10_1103_PhysRevB_105_235403
crossref_primary_10_1103_PhysRevB_108_155121
crossref_primary_10_1038_s41563_018_0169_3
crossref_primary_10_1103_PhysRevB_101_155121
crossref_primary_10_1103_PhysRevB_96_115440
crossref_primary_10_1016_j_physleta_2020_126666
crossref_primary_10_1038_s41467_019_13435_4
crossref_primary_10_1103_PhysRevA_98_013627
crossref_primary_10_1103_PhysRevB_96_115201
crossref_primary_10_1038_s41586_021_04105_x
crossref_primary_10_1038_s41535_025_00731_0
crossref_primary_10_1016_j_pquantelec_2024_100535
crossref_primary_10_1038_s41586_019_0937_5
crossref_primary_10_1038_s41563_020_00820_4
crossref_primary_10_1103_PhysRevB_99_035160
crossref_primary_10_1016_j_physrep_2020_05_003
crossref_primary_10_1038_s41535_022_00535_6
crossref_primary_10_21468_SciPostPhys_18_2_073
crossref_primary_10_1103_PhysRevB_101_155114
crossref_primary_10_1103_PhysRevB_103_195137
crossref_primary_10_1038_s41563_018_0210_6
crossref_primary_10_1126_science_aag2865
crossref_primary_10_1038_s41598_021_00577_z
crossref_primary_10_1103_PhysRevB_103_035105
crossref_primary_10_1103_PhysRevB_108_054305
crossref_primary_10_1038_s41467_020_17261_x
crossref_primary_10_1103_PhysRevB_102_081109
crossref_primary_10_1126_sciadv_aau6459
crossref_primary_10_1103_PhysRevLett_122_203903
crossref_primary_10_1038_s41598_021_85364_6
crossref_primary_10_1103_PhysRevMaterials_3_095004
crossref_primary_10_1103_PhysRevMaterials_5_114401
crossref_primary_10_1039_D1NR06051A
crossref_primary_10_1103_PhysRevB_105_235420
crossref_primary_10_1088_1361_6463_ac28fa
crossref_primary_10_1103_PhysRevB_104_134512
crossref_primary_10_1103_PhysRevB_98_115145
crossref_primary_10_1016_j_matt_2020_07_007
crossref_primary_10_1063_5_0202937
crossref_primary_10_1038_s41467_021_26450_1
crossref_primary_10_1103_PhysRevB_104_L241108
crossref_primary_10_1038_s41598_023_36168_3
crossref_primary_10_1021_acs_chemrev_0c00732
crossref_primary_10_1007_s44214_022_00001_1
crossref_primary_10_21468_SciPostPhysLectNotes_39
crossref_primary_10_1103_PhysRevB_104_L241115
crossref_primary_10_1016_j_mtcomm_2023_106001
crossref_primary_10_1039_D1RA01136G
crossref_primary_10_1002_adma_202402503
crossref_primary_10_1038_nature22390
crossref_primary_10_1088_1402_4896_ad6c86
crossref_primary_10_1360_SSPMA_2022_0413
crossref_primary_10_1002_advs_202205723
crossref_primary_10_1016_j_jpcs_2017_12_006
crossref_primary_10_1103_PhysRevB_103_035150
crossref_primary_10_1103_PhysRevB_104_245128
crossref_primary_10_1063_1_5012789
crossref_primary_10_1088_1674_1056_ac720b
crossref_primary_10_1103_PhysRevB_108_165136
crossref_primary_10_1088_1361_648X_ac638a
crossref_primary_10_1088_1361_648X_ab1de8
crossref_primary_10_1103_PhysRevResearch_5_013069
crossref_primary_10_1209_0295_5075_120_57002
crossref_primary_10_1088_1361_648X_ab8520
crossref_primary_10_1103_PhysRevB_100_085134
crossref_primary_10_1103_PhysRevMaterials_2_044205
crossref_primary_10_1103_PhysRevB_100_195108
crossref_primary_10_1103_PhysRevX_8_041045
crossref_primary_10_1088_1361_648X_abd739
crossref_primary_10_1088_1361_648X_ab985a
crossref_primary_10_1103_PhysRevResearch_3_033101
crossref_primary_10_7498_aps_72_20221574
crossref_primary_10_1103_PhysRevB_108_165128
crossref_primary_10_1146_annurev_matsci_070218_010114
crossref_primary_10_1103_PhysRevLett_121_176401
crossref_primary_10_1103_PhysRevB_108_L201102
crossref_primary_10_3390_ma12172710
crossref_primary_10_1002_pssr_202000178
crossref_primary_10_3389_fchem_2020_609118
crossref_primary_10_1088_1367_2630_ad6c78
crossref_primary_10_1002_pssa_201800105
crossref_primary_10_1063_5_0242343
crossref_primary_10_1038_nature23268
crossref_primary_10_1002_apxr_202200061
crossref_primary_10_1021_acs_nanolett_7b04304
crossref_primary_10_1103_PhysRevResearch_2_023018
crossref_primary_10_1103_PhysRevB_111_045109
crossref_primary_10_1103_PhysRevLett_119_206402
crossref_primary_10_1103_PhysRevLett_119_206401
crossref_primary_10_1016_j_carbon_2018_09_027
crossref_primary_10_1016_j_physleta_2019_126216
crossref_primary_10_1103_PhysRevB_104_094418
crossref_primary_10_21468_SciPostPhys_10_1_004
crossref_primary_10_1016_j_physb_2025_417136
crossref_primary_10_1126_sciadv_abe2680
crossref_primary_10_1103_PhysRevResearch_2_013007
crossref_primary_10_1103_PhysRevB_97_144422
crossref_primary_10_1146_annurev_conmatphys_040721_021331
crossref_primary_10_1002_aelm_202101081
crossref_primary_10_1103_PhysRevResearch_4_043213
crossref_primary_10_1016_j_mtphys_2024_101343
crossref_primary_10_1038_s41586_019_1630_4
crossref_primary_10_1103_PhysRevB_100_045104
crossref_primary_10_1016_j_physb_2023_415425
crossref_primary_10_1103_PhysRevB_110_174111
crossref_primary_10_1103_PhysRevB_101_184503
crossref_primary_10_21468_SciPostPhys_17_4_097
crossref_primary_10_1103_PhysRevB_106_125126
crossref_primary_10_1038_s41567_022_01893_5
crossref_primary_10_1002_adom_202401066
crossref_primary_10_1103_PhysRevMaterials_4_084201
crossref_primary_10_1140_epjp_s13360_023_04652_4
crossref_primary_10_1103_PhysRevResearch_3_L042017
crossref_primary_10_1103_PhysRevB_111_075145
crossref_primary_10_1038_s41535_020_00298_y
crossref_primary_10_1103_PhysRevB_110_L180503
crossref_primary_10_1038_s41535_022_00422_0
crossref_primary_10_1038_s41535_018_0102_7
crossref_primary_10_1038_s41535_024_00714_7
crossref_primary_10_1103_PhysRevB_99_245413
crossref_primary_10_1103_PhysRevB_96_241204
crossref_primary_10_1038_s41535_023_00565_8
crossref_primary_10_1021_acs_chemmater_0c01721
crossref_primary_10_7498_aps_72_20211961
crossref_primary_10_1103_PhysRevB_96_085145
crossref_primary_10_1038_s41467_020_14443_5
crossref_primary_10_7498_aps_69_20200031
crossref_primary_10_1039_C9CP06033B
crossref_primary_10_1103_PhysRevB_111_075151
crossref_primary_10_1038_s41467_017_01758_z
crossref_primary_10_1038_s41586_019_0944_6
crossref_primary_10_1146_annurev_matsci_070218_121852
crossref_primary_10_1103_PhysRevB_99_094517
crossref_primary_10_7498_aps_70_20200914
crossref_primary_10_1103_PhysRevX_12_021016
crossref_primary_10_1016_j_physrep_2022_06_002
crossref_primary_10_2139_ssrn_4178449
crossref_primary_10_1103_PhysRevB_103_165109
crossref_primary_10_1088_1367_2630_aca34d
crossref_primary_10_1103_PhysRevB_104_245101
crossref_primary_10_1088_1361_648X_abb548
crossref_primary_10_1103_PhysRevB_110_L121118
crossref_primary_10_1063_1_5124242
crossref_primary_10_1103_PhysRevB_104_115161
crossref_primary_10_1038_d41586_019_00676_y
crossref_primary_10_1103_PhysRevB_104_115164
crossref_primary_10_1002_pssr_201900421
crossref_primary_10_1142_S0217984921500032
crossref_primary_10_1103_PhysRevB_97_121108
crossref_primary_10_1016_j_progsurf_2023_100719
crossref_primary_10_1103_PhysRevE_96_023310
crossref_primary_10_1038_s42005_023_01460_1
crossref_primary_10_1073_pnas_1720828115
crossref_primary_10_1016_j_physe_2024_115914
crossref_primary_10_1103_PhysRevLett_120_206401
crossref_primary_10_1103_PhysRevB_95_241116
crossref_primary_10_1103_PhysRevB_99_235403
crossref_primary_10_1039_C8CP03874K
crossref_primary_10_1063_1_4984262
crossref_primary_10_1038_s41467_020_20408_5
crossref_primary_10_1021_acsomega_4c08957
Cites_doi 10.1126/science.aaa9297
10.1103/PhysRevX.6.021008
10.1002/1521-3749(200207)628:7<1541::AID-ZAAC1541>3.0.CO;2-J
10.1103/PhysRevB.85.195320
10.3891/acta.chem.scand.19-0735
10.1103/PhysRevB.88.104412
10.1515/znb-1992-0314
10.1016/0022-5088(71)90016-6
10.1524/zkri.2006.221.1.15
10.1021/ic800387a
10.1021/j150557a020
10.1126/science.1245085
10.1038/ncomms11696
10.1103/PhysRevLett.108.140405
10.1016/0022-5088(59)90006-2
10.1103/PhysRevB.61.10267
10.1103/PhysRevX.5.031013
10.1126/science.aac6089
10.1016/0022-3697(64)90018-6
10.1103/PhysRevB.84.235126
10.1103/PhysRevLett.116.186402
10.1515/crll.1965.219.180
10.1039/C5TA07040F
10.1016/j.physc.2006.03.077
10.1103/PhysRevB.90.205136
10.2113/gscanmin.42.6.1733
10.1038/nphys3437
10.1103/PhysRevLett.105.077001
10.1006/jssc.1997.7310
10.1002/zaac.19713840103
10.1103/PhysRevB.47.1651
10.1103/PhysRevLett.105.177002
10.1103/PhysRevX.5.011029
10.1038/nphys2857
10.1107/S0108767305040286
10.1073/pnas.1514665112
10.1103/PhysRevB.89.155114
10.1126/sciadv.1501782
10.1088/0953-8984/18/31/035
10.1098/rspa.1984.0023
10.1038/nphys3426
10.3891/acta.chem.scand.19-0095
10.1103/PhysRevB.83.205101
10.1038/ncomms5898
10.1126/science.1222360
10.1103/PhysRevLett.108.266802
10.1016/0022-4596(80)90493-4
10.1103/PhysRevA.89.043621
10.30970/cma1.0024
10.1063/1.4812323
10.1103/PhysRevB.48.13115
10.1007/BF00776015
10.1103/RevModPhys.81.109
10.1126/science.1259327
10.1524/zkri.1991.197.14.257
10.1524/ncrs.2005.220.4.525
10.1103/PhysRevB.93.121113
10.1038/nmat4684
10.1016/j.progsolidstchem.2007.01.011
10.1103/PhysRevLett.112.036403
10.1103/PhysRevLett.100.096407
10.1016/j.jallcom.2003.11.003
10.1039/DT9850002369
10.1103/PhysRevB.78.045426
10.1038/nature15768
10.1103/PhysRevB.93.045113
10.1038/nphys3425
10.1126/science.aad5812
10.1021/ja037334j
10.1021/ic0301472
10.1103/PhysRevLett.77.3865
10.1038/ncomms8373
10.1103/PhysRevB.93.205132
10.1107/S0365110X66003098
10.1524/ncrs.2004.219.14.11
10.1103/PhysRevB.85.155118
10.1016/0022-5088(77)90266-1
10.1038/nmat3990
10.1038/198382b0
ContentType Journal Article
Copyright Copyright © 2016 American Association for the Advancement of Science
Copyright © 2016, American Association for the Advancement of Science.
Copyright © 2016, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2016 American Association for the Advancement of Science
– notice: Copyright © 2016, American Association for the Advancement of Science.
– notice: Copyright © 2016, American Association for the Advancement of Science
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.aaf5037
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
Solid State and Superconductivity Abstracts
CrossRef
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 558
ExternalDocumentID 4182410211
27445310
10_1126_science_aaf5037
24750098
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADQXQ
ADUKH
ADULT
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AQVQM
ASPBG
AVWKF
BKF
BLC
C45
C51
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
AAYXX
ABCQX
CITATION
K-O
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c446t-9b1fee7dd2bd9f0c2745bbe47693bc480ac2fd0c44cb1a2279bf643f293ccbba3
ISSN 0036-8075
IngestDate Thu Jul 10 22:01:21 EDT 2025
Fri Jul 11 16:02:18 EDT 2025
Fri Jul 25 10:04:44 EDT 2025
Mon Jul 21 05:56:46 EDT 2025
Tue Jul 01 00:37:19 EDT 2025
Thu Apr 24 23:02:52 EDT 2025
Thu Jul 03 22:17:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6299
Language English
License Copyright © 2016, American Association for the Advancement of Science.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c446t-9b1fee7dd2bd9f0c2745bbe47693bc480ac2fd0c44cb1a2279bf643f293ccbba3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 27445310
PQID 1819477586
PQPubID 1256
PageCount 1
ParticipantIDs proquest_miscellaneous_1835677982
proquest_miscellaneous_1809607443
proquest_journals_1819477586
pubmed_primary_27445310
crossref_citationtrail_10_1126_science_aaf5037
crossref_primary_10_1126_science_aaf5037
jstor_primary_24750098
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160805
2016-08-05
2016-Aug-05
PublicationDateYYYYMMDD 2016-08-05
PublicationDate_xml – month: 8
  year: 2016
  text: 20160805
  day: 5
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2016
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_87_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_85_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_89_2
e_1_3_2_60_2
e_1_3_2_83_2
e_1_3_2_81_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_75_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_73_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_77_2
e_1_3_2_92_2
e_1_3_2_50_2
e_1_3_2_71_2
e_1_3_2_90_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_65_2
Ferro R. (e_1_3_2_79_2) 1963; 34
e_1_3_2_86_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_84_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_69_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_88_2
e_1_3_2_61_2
e_1_3_2_82_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_95_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_2_2
Stadelmaier H. H. (e_1_3_2_54_2) 1961; 52
e_1_3_2_91_2
Ijjaali I. (e_1_3_2_94_2) 2001; 216
Ferro R. (e_1_3_2_80_2) 1964; 36
e_1_3_2_72_2
Aroyo M. I. (e_1_3_2_32_2) 2011; 43
e_1_3_2_70_2
Charushnikova I. (e_1_3_2_93_2) 1997; 39
27493167 - Science. 2016 Aug 5;353(6299):539-40
References_xml – ident: e_1_3_2_17_2
  doi: 10.1126/science.aaa9297
– ident: e_1_3_2_39_2
  doi: 10.1103/PhysRevX.6.021008
– ident: e_1_3_2_64_2
  doi: 10.1002/1521-3749(200207)628:7<1541::AID-ZAAC1541>3.0.CO;2-J
– ident: e_1_3_2_21_2
  doi: 10.1103/PhysRevB.85.195320
– ident: e_1_3_2_59_2
  doi: 10.3891/acta.chem.scand.19-0735
– volume: 52
  start-page: 391
  year: 1961
  ident: e_1_3_2_54_2
  article-title: Ternare kohlenstofflegierungen von palladium und platin mit magnesium, aluminium, zink, gallium, germanium, kadmium, indium, zinn, quecksilber, thallium und blei
  publication-title: Z. Metallk.
– ident: e_1_3_2_43_2
  doi: 10.1103/PhysRevB.88.104412
– ident: e_1_3_2_63_2
  doi: 10.1515/znb-1992-0314
– ident: e_1_3_2_90_2
  doi: 10.1016/0022-5088(71)90016-6
– ident: e_1_3_2_31_2
  doi: 10.1524/zkri.2006.221.1.15
– ident: e_1_3_2_58_2
  doi: 10.1021/ic800387a
– ident: e_1_3_2_84_2
  doi: 10.1021/j150557a020
– ident: e_1_3_2_19_2
  doi: 10.1126/science.1245085
– ident: e_1_3_2_45_2
  doi: 10.1038/ncomms11696
– ident: e_1_3_2_23_2
  doi: 10.1103/PhysRevLett.108.140405
– ident: e_1_3_2_87_2
  doi: 10.1016/0022-5088(59)90006-2
– ident: e_1_3_2_26_2
– ident: e_1_3_2_8_2
  doi: 10.1103/PhysRevB.61.10267
– ident: e_1_3_2_11_2
  doi: 10.1103/PhysRevX.5.031013
– ident: e_1_3_2_22_2
  doi: 10.1126/science.aac6089
– ident: e_1_3_2_69_2
  doi: 10.1016/0022-3697(64)90018-6
– volume: 39
  start-page: 424
  year: 1997
  ident: e_1_3_2_93_2
  publication-title: Radiochemistry
– ident: e_1_3_2_44_2
  doi: 10.1103/PhysRevB.84.235126
– ident: e_1_3_2_29_2
  doi: 10.1103/PhysRevLett.116.186402
– ident: e_1_3_2_27_2
  doi: 10.1515/crll.1965.219.180
– ident: e_1_3_2_61_2
  doi: 10.1039/C5TA07040F
– ident: e_1_3_2_28_2
– ident: e_1_3_2_91_2
  doi: 10.1016/j.physc.2006.03.077
– ident: e_1_3_2_25_2
– ident: e_1_3_2_35_2
  doi: 10.1103/PhysRevB.90.205136
– ident: e_1_3_2_51_2
  doi: 10.2113/gscanmin.42.6.1733
– ident: e_1_3_2_16_2
  doi: 10.1038/nphys3437
– ident: e_1_3_2_71_2
– ident: e_1_3_2_4_2
  doi: 10.1103/PhysRevLett.105.077001
– ident: e_1_3_2_57_2
  doi: 10.1006/jssc.1997.7310
– ident: e_1_3_2_92_2
  doi: 10.1002/zaac.19713840103
– ident: e_1_3_2_72_2
  doi: 10.1103/PhysRevB.47.1651
– ident: e_1_3_2_82_2
– ident: e_1_3_2_7_2
  doi: 10.1103/PhysRevLett.105.177002
– ident: e_1_3_2_15_2
  doi: 10.1103/PhysRevX.5.011029
– ident: e_1_3_2_73_2
  doi: 10.1038/nphys2857
– ident: e_1_3_2_30_2
  doi: 10.1107/S0108767305040286
– ident: e_1_3_2_70_2
  doi: 10.1073/pnas.1514665112
– volume: 43
  start-page: 183
  year: 2011
  ident: e_1_3_2_32_2
  publication-title: Bulg. Chem. Commun.
– volume: 34
  start-page: 45
  year: 1963
  ident: e_1_3_2_79_2
  article-title: Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali
  publication-title: Rendiconti
– ident: e_1_3_2_38_2
  doi: 10.1103/PhysRevB.89.155114
– ident: e_1_3_2_60_2
  doi: 10.1126/sciadv.1501782
– ident: e_1_3_2_85_2
  doi: 10.1088/0953-8984/18/31/035
– ident: e_1_3_2_76_2
  doi: 10.1098/rspa.1984.0023
– ident: e_1_3_2_12_2
  doi: 10.1038/nphys3426
– ident: e_1_3_2_67_2
  doi: 10.3891/acta.chem.scand.19-0095
– ident: e_1_3_2_14_2
  doi: 10.1103/PhysRevB.83.205101
– ident: e_1_3_2_46_2
– ident: e_1_3_2_75_2
  doi: 10.1038/ncomms5898
– ident: e_1_3_2_5_2
  doi: 10.1126/science.1222360
– ident: e_1_3_2_37_2
  doi: 10.1103/PhysRevLett.108.266802
– ident: e_1_3_2_62_2
  doi: 10.1016/0022-4596(80)90493-4
– ident: e_1_3_2_40_2
  doi: 10.1103/PhysRevA.89.043621
– ident: e_1_3_2_81_2
  doi: 10.30970/cma1.0024
– ident: e_1_3_2_47_2
  doi: 10.1063/1.4812323
– ident: e_1_3_2_48_2
  doi: 10.1103/PhysRevB.48.13115
– ident: e_1_3_2_83_2
  doi: 10.1007/BF00776015
– ident: e_1_3_2_2_2
  doi: 10.1103/RevModPhys.81.109
– ident: e_1_3_2_6_2
  doi: 10.1126/science.1259327
– ident: e_1_3_2_56_2
  doi: 10.1524/zkri.1991.197.14.257
– ident: e_1_3_2_65_2
  doi: 10.1524/ncrs.2005.220.4.525
– ident: e_1_3_2_33_2
  doi: 10.1103/PhysRevB.93.121113
– ident: e_1_3_2_9_2
  doi: 10.1038/nmat4684
– ident: e_1_3_2_50_2
  doi: 10.1016/j.progsolidstchem.2007.01.011
– ident: e_1_3_2_20_2
  doi: 10.1103/PhysRevLett.112.036403
– ident: e_1_3_2_3_2
  doi: 10.1103/PhysRevLett.100.096407
– ident: e_1_3_2_89_2
  doi: 10.1016/j.jallcom.2003.11.003
– ident: e_1_3_2_68_2
  doi: 10.1039/DT9850002369
– ident: e_1_3_2_74_2
  doi: 10.1103/PhysRevB.78.045426
– ident: e_1_3_2_42_2
  doi: 10.1038/nature15768
– ident: e_1_3_2_77_2
  doi: 10.1103/PhysRevB.93.045113
– ident: e_1_3_2_78_2
  doi: 10.1038/nphys3425
– ident: e_1_3_2_41_2
  doi: 10.1126/science.aad5812
– ident: e_1_3_2_88_2
  doi: 10.1021/ja037334j
– ident: e_1_3_2_52_2
  doi: 10.1021/ic0301472
– ident: e_1_3_2_49_2
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_3_2_10_2
  doi: 10.1038/ncomms8373
– ident: e_1_3_2_24_2
– ident: e_1_3_2_34_2
  doi: 10.1103/PhysRevB.93.205132
– ident: e_1_3_2_66_2
  doi: 10.1107/S0365110X66003098
– ident: e_1_3_2_86_2
  doi: 10.1524/ncrs.2004.219.14.11
– volume: 216
  start-page: 485
  year: 2001
  ident: e_1_3_2_94_2
  publication-title: Z. Kristallogr., New Cryst. Struct.
– ident: e_1_3_2_95_2
  doi: 10.1103/PhysRevB.85.155118
– volume: 36
  start-page: 498
  year: 1964
  ident: e_1_3_2_80_2
  article-title: Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali
  publication-title: Rendiconti
– ident: e_1_3_2_53_2
  doi: 10.1016/0022-5088(77)90266-1
– ident: e_1_3_2_18_2
  doi: 10.1038/nmat3990
– ident: e_1_3_2_13_2
– ident: e_1_3_2_55_2
  doi: 10.1038/198382b0
– reference: 27493167 - Science. 2016 Aug 5;353(6299):539-40
SSID ssj0009593
Score 2.6843438
Snippet In quantum field theory, we learn that fermions come in three varieties: Majorana, Weyl, and Dirac. Here, we show that in solid-state systems this...
Condensed-matter systems have recently become a fertile ground for the discovery of fermionic particles and phenomena predicted in high-energy physics;...
SourceID proquest
pubmed
crossref
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 558
SubjectTerms Classification
Condensed matter physics
Crystals
Exhaust systems
Exhibits
Fermi surfaces
Fermions
Magnetic fields
Mathematical analysis
Quantum theory
RESEARCH ARTICLE SUMMARY
Symmetry
Title Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals
URI https://www.jstor.org/stable/24750098
https://www.ncbi.nlm.nih.gov/pubmed/27445310
https://www.proquest.com/docview/1819477586
https://www.proquest.com/docview/1809607443
https://www.proquest.com/docview/1835677982
Volume 353
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELaqTki8IDYYBAYyEg9DU6rUcZJmb91GVX5sQqIdEy-R7ThQVKVb2zyUv5I_iXPsJI6gE-PFimI7sXxfLt_Z5zuEXg8UyQcd4FIWQxGQwGVEMJf6TPhBFvtUqKWB84twPKXvr4KrTueX5bVUrHlP_PzruZL_kSrcA7mqU7J3kGz9ULgB1yBfKEHCUP6TjM3xE1BbTEdd_SI386NM-bfAK5WxP81bbuU3BVvNritnuKPSB92qFssNkMX5ymas1ccPTLTe3bFkWrspDrUzQeVbYLpZCw1q136-yc0mR-N9fMryhe1n0yzxazX09fvsR1FD-FIuv-Wzhd78PzeZwcyqRT8sfeaCGmeT5tjMXQZta3ITSFn_x7Ty9lTeSeL5tnb3dSxiA-OQ6HRMf_44rFSXssdYFng6GE07RPd4-Dn5dDZKPr67-NCuLSkBBWuNqmTpYI_vEDBcSBftDE_OTkZbA0GbcFPWQa7q7S2mpJ1lt5tBJR2aPEQPjB2DhxpKu6gj8z10T2c23eyhXTOVK3xoApu_eYQuNV5xiVcMeMUKr7jC6zFuoxW30YpnOW5VV2h9jKajt5PTsWvyeriC0nDtxryfSRmlKeFpnHmCRDTgXFKVlpMLOvCYIFnqQWPB-0yFuOQZEOcMmKkQnDN_H3XzRS6fIswiynko-2BWMJpJxvoigwd4aRxEERfSQb1qDhNhgt6r3CvzpDR-SZiYSU_MpDvosO5wreO9bG-6Xwqlbkco0G8vHjjooJJSYrTFKgEmHdMIrPPQQa_qatDlaoOO5XJRqDZqQSGi1L-tjR-EURQPiIOeaAQ0A4Cu8E_1nt0-gOfofvNJHqDuelnIF0Ct1_ylQetvykzWrg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+Dirac+and+Weyl+fermions%3A+Unconventional+quasiparticles+in+conventional+crystals&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Bradlyn%2C+Barry&rft.au=Cano%2C+Jennifer&rft.au=Wang%2C+Zhijun&rft.au=Vergniory%2C+M+G&rft.date=2016-08-05&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=353&rft.issue=6299&rft_id=info:doi/10.1126%2Fscience.aaf5037&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4182410211
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon