Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals
In quantum field theory, we learn that fermions come in three varieties: Majorana, Weyl, and Dirac. Here, we show that in solid-state systems this classification is incomplete, and we find several additional types of crystal symmetry–protected free fermionic excitations. We exhaustively classify lin...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 353; no. 6299; p. 558 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
05.08.2016
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In quantum field theory, we learn that fermions come in three varieties: Majorana, Weyl, and Dirac. Here, we show that in solid-state systems this classification is incomplete, and we find several additional types of crystal symmetry–protected free fermionic excitations. We exhaustively classify linear and quadratic three-, six-, and eight-band crossings stabilized by space group symmetries in solid-state systems with spin-orbit coupling and time-reversal symmetry. Several distinct types of fermions arise, differentiated by their degeneracies at and along high-symmetry points, lines, and surfaces. Some notable consequences of these fermions are the presence of Fermi arcs in non-Weyl systems and the existence of Dirac lines. Ab initio calculations identify a number of materials that realize these exotic fermions close to the Fermi level. |
---|---|
AbstractList | Condensed-matter systems have recently become a fertile ground for the discovery of fermionic particles and phenomena predicted in high-energy physics; examples include Majorana fermions, as well as Dirac and Weyl semimetals. However, fermions in condensed-matter systems are not constrained by Poincare symmetry. Instead, they must only respect the crystal symmetry of one of the 230 space groups. Hence, there is the potential to find and classify free fermionic excitations in solid-state systems that have no high-energy counterparts. The guiding principle of our classification is to find irreducible representations of the little group of lattice symmetries at high-symmetry points in the Brillouin zone (BZ) for each of the 230 space groups (SGs), the dimension of which corresponds to the number of bands that meet at the high-symmetry point. Because we are interested in systems with spin-orbit coupling, we considered only the double-valued representations, where a 2π rotation gives a minus sign. Furthermore, we considered systems with time-reversal symmetry that squares to -1. For each unconventional representation, we computed the low-energy k · p Hamiltonian near the band crossings by writing down all terms allowed by the crystal symmetry. This allows us to further differentiate the band crossings by the degeneracy along lines and planes that emanate from the high-symmetry point, and also to compute topological invariants. For point degeneracies, we computed the monopole charge of the band-crossing; for line nodes, we computed the Berry phase of loops encircling the nodes. We found that three space groups exhibit symmetry-protected three-band crossings. In two cases, this results in a threefold degenerate point node, whereas the third case results in a line node away from the high-symmetry point. These crossings are required to have a nonzero Chern number and hence display surface Fermi arcs. However, upon applying a magnetic field, they have an unusual Landau level structure, which distinguishes them from single and double Weyl points. Under the action of spatial symmetries, these fermions transform as spin-1 particles, as a consequence of the interplay between nonsymmorphic space group symmetries and spin. Additionally, we found that six space groups can host sixfold degeneracies. Two of these consist of two threefold degeneracies with opposite chirality, forced to be degenerate by the combination of time reversal and inversion symmetry, and can be described as "sixfold Dirac points." The other four are distinct. Furthermore, seven space groups can host eightfold degeneracies. In two cases, the eightfold degeneracies are required; all bands come in groups of eight that cross at a particular point in the BZ. These two cases also exhibit fourfold degenerate line nodes, from which other semimetals can be derived: By adding strain or a magnetic field, these line nodes split into Weyl, Dirac, or line node semimetals. For all the three-, six- and eight-band crossings, nonsymmorphic symmetries play a crucial role in protecting the band crossing. Last, we found that seven space groups may host fourfold degenerate "spin-3/2" fermions at high symmetry points. Like their spin-1 counterparts, these quasiparticles host Fermi surfaces with nonzero Chern number. Unlike the other cases we considered, however, these fermions can be stabilized by both symmorphic and nonsymmorphic symmetries. Three space groups that host these excitations also host unconventional fermions at other points in the BZ. We propose nearly 40 candidate materials that realize each type of fermion near the Fermi level, as verified with ab initio calculations. Seventeen of these have been previously synthesized in single-crystal form, whereas others have been reported in powder form. We have analyzed all types of fermions that can occur in spin-orbit coupled crystals with time-reversal symmetry and explored their topological properties. We found that there are several distinct types of such unconventional excitations, which are differentiated by their degeneracies at and along high-symmetry points, lines, and surfaces. We found natural generalizations of Weyl points: three- and four-band crossings described by a simple k · S Hamiltonian, where S[sub]i is the set of spin generators in either the spin-1 or spin-3/2 representations. These points carry a Chern number and, consequently, can exhibit Fermi arc surface states. We also found excitations with six- and eightfold degeneracies. These higher-band crossings create a tunable platform to realize topological semimetals by applying an external magnetic field or strain to the fourfold degenerate line nodes. Last, we propose realizations for each species of fermion in known materials, many of which are known to exist in single-crystal form. Shown is the surface density of states as a function of momentum for a crystal in SG 214 with bulk threefold degeneracies that project to (0.25, 0.25) and (-0.25, -0.25). Two Fermi arcs emanate from these points, indicating that their monopole charge is 2. The arcs then merge with the surface projection of bulk states near the origin. In quantum field theory, we learn that fermions come in three varieties: Majorana, Weyl, and Dirac. Here, we show that in solid-state systems this classification is incomplete, and we find several additional types of crystal symmetry-protected free fermionic excitations. We exhaustively classify linear and quadratic three-, six-, and eight-band crossings stabilized by space group symmetries in solid-state systems with spin-orbit coupling and time-reversal symmetry. Several distinct types of fermions arise, differentiated by their degeneracies at and along high-symmetry points, lines, and surfaces. Some notable consequences of these fermions are the presence of Fermi arcs in non-Weyl systems and the existence of Dirac lines. Ab initio calculations identify a number of materials that realize these exotic fermions close to the Fermi level. In quantum field theory, we learn that fermions come in three varieties: Majorana, Weyl, and Dirac. Here, we show that in solid-state systems this classification is incomplete, and we find several additional types of crystal symmetry-protected free fermionic excitations. We exhaustively classify linear and quadratic three-, six-, and eight-band crossings stabilized by space group symmetries in solid-state systems with spin-orbit coupling and time-reversal symmetry. Several distinct types of fermions arise, differentiated by their degeneracies at and along high-symmetry points, lines, and surfaces. Some notable consequences of these fermions are the presence of Fermi arcs in non-Weyl systems and the existence of Dirac lines. Ab initio calculations identify a number of materials that realize these exotic fermions close to the Fermi level. |
Author | Cano, Jennifer Vergniory, M. G. Bradlyn, Barry Felser, C. Bernevig, B. Andrei Wang, Zhijun Cava, R. J. |
Author_xml | – sequence: 1 givenname: Barry surname: Bradlyn fullname: Bradlyn, Barry – sequence: 2 givenname: Jennifer surname: Cano fullname: Cano, Jennifer – sequence: 3 givenname: Zhijun surname: Wang fullname: Wang, Zhijun – sequence: 4 givenname: M. G. surname: Vergniory fullname: Vergniory, M. G. – sequence: 5 givenname: C. surname: Felser fullname: Felser, C. – sequence: 6 givenname: R. J. surname: Cava fullname: Cava, R. J. – sequence: 7 givenname: B. Andrei surname: Bernevig fullname: Bernevig, B. Andrei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27445310$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUlrHDEQhYVxiMdOzj7FNOTiS9taWy3fvGQDQy5xfBSSugQaeqSx1G2Yfx8NM8bEEMipJOp7RdV7x-gwpggInRJ8QQjtLosLEB1cGOMFZvIALQhWolUUs0O0wJh1bY-lOELHpSwxrj3F3qMjKjkXjOAF-n0DmxSH5i5k4xpTX4-wGRsPeRVSLFfNQ3QpPkOc6teMzdNsSlibPAU3QmlCbP5qu7wpkxnLB_TO1wIf9_UEPXz98uv2e3v_89uP2-v71nHeTa2yxAPIYaB2UB67upewFrjsFLOO99g46gdcYWeJoVQq6zvOPFXMOWsNO0Hnu7nrnJ5mKJNeheJgHE2ENBdNeiY6KVVP_wPFqsPVGFbRz2_QZZpzvW9LEcWlFH1XqbM9NdsVDHqdw8rkjX4xtwJiB7icSsngtQuT2To1ZRNGTbDehqj3Iep9iFV3-Ub3Mvrfik87xbJMKb9uwqWomffsDwhDrF8 |
CODEN | SCIEAS |
CitedBy_id | crossref_primary_10_1103_PhysRevB_106_134108 crossref_primary_10_1038_s41524_019_0245_5 crossref_primary_10_1103_PhysRevB_109_195107 crossref_primary_10_1002_ange_201811456 crossref_primary_10_1088_1361_648X_ab7adb crossref_primary_10_1103_PhysRevB_105_024416 crossref_primary_10_1038_s41567_021_01340_x crossref_primary_10_1021_acs_nanolett_6b04942 crossref_primary_10_1038_s41586_019_0954_4 crossref_primary_10_1103_PhysRevB_107_085139 crossref_primary_10_1103_PhysRevB_98_161403 crossref_primary_10_1103_PhysRevB_105_125115 crossref_primary_10_1103_PhysRevB_107_085135 crossref_primary_10_1021_acs_jpcc_7b11111 crossref_primary_10_1038_s41467_024_50451_5 crossref_primary_10_1103_PhysRevB_108_174112 crossref_primary_10_1103_PhysRevB_110_245137 crossref_primary_10_1103_PhysRevB_110_155110 crossref_primary_10_1063_5_0158271 crossref_primary_10_1088_1361_648X_aae6d1 crossref_primary_10_1103_PhysRevApplied_20_064034 crossref_primary_10_1103_PhysRevB_95_041103 crossref_primary_10_1063_1_5124314 crossref_primary_10_1103_PhysRevX_10_011026 crossref_primary_10_1103_PhysRevB_95_075146 crossref_primary_10_1063_1_5123222 crossref_primary_10_1088_1361_648X_aaf040 crossref_primary_10_1007_s11433_020_1558_8 crossref_primary_10_1103_PhysRevLett_133_126602 crossref_primary_10_1103_PhysRevB_110_064202 crossref_primary_10_1103_PhysRevLett_125_036401 crossref_primary_10_1103_PhysRevMaterials_3_021201 crossref_primary_10_3390_ma16247579 crossref_primary_10_1103_PhysRevB_105_184105 crossref_primary_10_1038_s43246_023_00434_8 crossref_primary_10_1103_PhysRevB_102_155147 crossref_primary_10_1021_jacs_0c09442 crossref_primary_10_1103_PhysRevLett_130_066601 crossref_primary_10_1103_PhysRevB_108_115126 crossref_primary_10_1093_nsr_nwac121 crossref_primary_10_1146_annurev_conmatphys_041720_124134 crossref_primary_10_1103_PhysRevMaterials_2_114204 crossref_primary_10_1021_acs_nanolett_1c03423 crossref_primary_10_1103_PhysRevB_95_235159 crossref_primary_10_1103_PhysRevB_95_235158 crossref_primary_10_1038_s41563_023_01587_0 crossref_primary_10_1021_acs_chemmater_8b04383 crossref_primary_10_1038_ncomms15995 crossref_primary_10_1103_PhysRevB_102_235148 crossref_primary_10_1103_PhysRevResearch_6_043135 crossref_primary_10_1103_PhysRevB_110_245113 crossref_primary_10_1103_PhysRevB_96_201401 crossref_primary_10_1137_21M1410464 crossref_primary_10_1103_PhysRevB_97_115204 crossref_primary_10_1103_PhysRevB_95_201102 crossref_primary_10_1103_PhysRevB_107_245111 crossref_primary_10_1103_PhysRevB_98_094515 crossref_primary_10_1103_PhysRevB_108_085204 crossref_primary_10_1103_PhysRevB_110_085145 crossref_primary_10_1103_PhysRevB_105_104426 crossref_primary_10_1103_PhysRevB_111_035146 crossref_primary_10_1103_PhysRevB_102_235136 crossref_primary_10_1103_PhysRevMaterials_7_044202 crossref_primary_10_1103_PhysRevB_106_134307 crossref_primary_10_1209_0295_5075_ada0d7 crossref_primary_10_1038_s41598_021_91930_9 crossref_primary_10_1103_PhysRevB_102_201105 crossref_primary_10_1103_PhysRevResearch_5_L032002 crossref_primary_10_1103_PhysRevB_100_245206 crossref_primary_10_1103_PhysRevB_96_155206 crossref_primary_10_1134_S0021364017150115 crossref_primary_10_1103_PhysRevLett_118_186401 crossref_primary_10_1039_D2CP03297J crossref_primary_10_1103_PhysRevMaterials_7_054201 crossref_primary_10_1103_PhysRevMaterials_4_054201 crossref_primary_10_1039_D0CP02446E crossref_primary_10_1103_PhysRevResearch_6_033157 crossref_primary_10_1142_S0217984919502932 crossref_primary_10_1103_PhysRevB_101_161111 crossref_primary_10_1103_PhysRevB_111_045161 crossref_primary_10_1103_PhysRevB_111_075433 crossref_primary_10_1088_1367_2630_aaf11d crossref_primary_10_1103_PhysRevB_97_241102 crossref_primary_10_1016_j_jssc_2019_04_005 crossref_primary_10_1038_s41467_017_01986_3 crossref_primary_10_1103_PhysRevB_106_205204 crossref_primary_10_1103_PhysRevB_98_045134 crossref_primary_10_1103_PhysRevB_103_L081103 crossref_primary_10_1364_OE_456614 crossref_primary_10_22331_q_2023_12_12_1204 crossref_primary_10_3390_nano12040679 crossref_primary_10_1103_PhysRevLett_120_016401 crossref_primary_10_1103_PhysRevMaterials_2_014202 crossref_primary_10_1209_0295_5075_ad6bbc crossref_primary_10_1364_OE_405422 crossref_primary_10_1209_0295_5075_aced6a crossref_primary_10_1080_00107514_2023_2251764 crossref_primary_10_1088_1367_2630_adb645 crossref_primary_10_1038_s42005_023_01257_2 crossref_primary_10_1038_s41598_017_07374_7 crossref_primary_10_1016_j_jpcs_2024_112212 crossref_primary_10_1103_PhysRevB_99_144302 crossref_primary_10_1088_1367_2630_ab358c crossref_primary_10_1103_PhysRevB_107_214441 crossref_primary_10_1103_PhysRevMaterials_2_081201 crossref_primary_10_1103_PhysRevB_102_075133 crossref_primary_10_1103_PhysRevMaterials_6_084201 crossref_primary_10_1063_5_0113188 crossref_primary_10_1103_PhysRevB_110_075152 crossref_primary_10_1103_PhysRevLett_119_156401 crossref_primary_10_1038_s41467_020_15865_x crossref_primary_10_1007_s12648_020_01925_x crossref_primary_10_1016_j_jcrysgro_2018_02_026 crossref_primary_10_1103_PhysRevB_100_205117 crossref_primary_10_1103_PhysRevB_98_045109 crossref_primary_10_1016_j_mtphys_2022_100774 crossref_primary_10_1038_s41567_018_0213_x crossref_primary_10_1038_s41586_019_1031_8 crossref_primary_10_1103_PhysRevB_97_094412 crossref_primary_10_1103_PhysRevB_100_045144 crossref_primary_10_1103_PhysRevResearch_7_L012021 crossref_primary_10_1103_PhysRevMaterials_8_L021201 crossref_primary_10_1103_PhysRevB_98_115114 crossref_primary_10_1038_s41467_022_32948_z crossref_primary_10_1039_C9CP04760C crossref_primary_10_1007_s10853_020_05082_8 crossref_primary_10_1039_C8CP02810A crossref_primary_10_1038_s41467_019_10126_y crossref_primary_10_1021_acs_jpclett_7b02642 crossref_primary_10_1103_PhysRevB_104_115424 crossref_primary_10_1016_j_scib_2017_05_030 crossref_primary_10_1103_PhysRevLett_124_236403 crossref_primary_10_1103_PhysRevResearch_2_043209 crossref_primary_10_1103_PhysRevB_100_235201 crossref_primary_10_1038_s41524_018_0124_5 crossref_primary_10_1103_PhysRevB_104_085137 crossref_primary_10_1038_s41467_017_02814_4 crossref_primary_10_1103_PhysRevB_100_155201 crossref_primary_10_1088_1361_648X_ad1a5b crossref_primary_10_1103_PhysRevB_106_235204 crossref_primary_10_1103_PhysRevB_106_214510 crossref_primary_10_1103_PhysRevResearch_4_L012024 crossref_primary_10_3390_e21020209 crossref_primary_10_1103_PhysRevB_105_155156 crossref_primary_10_1103_PhysRevLett_122_076402 crossref_primary_10_1002_adma_202201058 crossref_primary_10_1103_PhysRevB_105_035141 crossref_primary_10_1103_PhysRevLett_122_116402 crossref_primary_10_1007_s11467_018_0815_x crossref_primary_10_1126_sciadv_aav8575 crossref_primary_10_1063_5_0178936 crossref_primary_10_1103_PhysRevB_98_155145 crossref_primary_10_1021_acs_chemmater_0c04649 crossref_primary_10_1103_PhysRevB_108_L241201 crossref_primary_10_1038_s42254_019_0088_5 crossref_primary_10_1103_PhysRevB_104_085144 crossref_primary_10_1002_adma_202402373 crossref_primary_10_1016_j_carbon_2024_118971 crossref_primary_10_1103_PhysRevB_108_205139 crossref_primary_10_1088_1674_1056_28_7_077101 crossref_primary_10_1088_1674_1056_28_7_077105 crossref_primary_10_1126_science_adf8458 crossref_primary_10_1038_nphys4277 crossref_primary_10_1007_s11467_020_0963_7 crossref_primary_10_1088_1361_648X_ad8715 crossref_primary_10_1103_PhysRevB_110_235163 crossref_primary_10_1088_1361_648X_abaad1 crossref_primary_10_1016_j_scib_2021_10_023 crossref_primary_10_1088_1674_1056_ad462f crossref_primary_10_1007_s11433_020_1643_x crossref_primary_10_1103_PhysRevB_103_115112 crossref_primary_10_1016_j_molliq_2024_125964 crossref_primary_10_1103_PhysRevB_103_L161109 crossref_primary_10_1103_PhysRevLett_122_206401 crossref_primary_10_1103_PhysRevB_96_024435 crossref_primary_10_1103_PhysRevB_103_L161113 crossref_primary_10_1103_PhysRevLett_119_036401 crossref_primary_10_1088_2752_5724_aca816 crossref_primary_10_1126_sciadv_aaw9485 crossref_primary_10_1088_1361_648X_ad5e2b crossref_primary_10_1103_PhysRevResearch_5_033204 crossref_primary_10_1103_PhysRevB_102_035106 crossref_primary_10_1103_PhysRevLett_127_056601 crossref_primary_10_1103_PhysRevLett_123_207601 crossref_primary_10_1038_s41567_017_0032_5 crossref_primary_10_1103_PhysRevB_103_205151 crossref_primary_10_1103_PhysRevLett_132_266601 crossref_primary_10_1016_j_aop_2018_04_024 crossref_primary_10_1103_PhysRevB_108_115105 crossref_primary_10_1103_PhysRevB_96_045121 crossref_primary_10_1140_epjb_e2020_100575_4 crossref_primary_10_1039_D4RA06808D crossref_primary_10_1016_j_matpr_2019_02_051 crossref_primary_10_1103_PhysRevB_101_214309 crossref_primary_10_1134_S002136402360115X crossref_primary_10_1103_PhysRevA_101_043614 crossref_primary_10_1103_PhysRevB_99_054505 crossref_primary_10_1103_PhysRevB_104_075115 crossref_primary_10_1103_PhysRevLett_126_246801 crossref_primary_10_1103_PhysRevB_108_L161411 crossref_primary_10_1107_S2052252519007383 crossref_primary_10_1103_PhysRevB_108_125141 crossref_primary_10_1103_PhysRevB_110_155154 crossref_primary_10_1103_PhysRevB_97_035443 crossref_primary_10_1088_1674_1056_27_10_107402 crossref_primary_10_1063_1_5037121 crossref_primary_10_1103_PhysRevLett_120_130503 crossref_primary_10_1038_s41567_017_0021_8 crossref_primary_10_1103_PhysRevB_96_060509 crossref_primary_10_1103_PhysRevB_102_115117 crossref_primary_10_1103_PhysRevB_103_205145 crossref_primary_10_1103_PhysRevB_101_195130 crossref_primary_10_1103_PhysRevB_102_125148 crossref_primary_10_1103_PhysRevMaterials_7_074205 crossref_primary_10_1103_PhysRevB_103_L241115 crossref_primary_10_1103_PhysRevB_95_235104 crossref_primary_10_1103_PhysRevApplied_21_034026 crossref_primary_10_1063_5_0015322 crossref_primary_10_1103_PhysRevB_102_115129 crossref_primary_10_1016_j_supcon_2024_100132 crossref_primary_10_1103_PhysRevA_99_043828 crossref_primary_10_1103_PhysRevB_97_161111 crossref_primary_10_1103_PhysRevResearch_4_023130 crossref_primary_10_1016_j_scib_2017_05_014 crossref_primary_10_1021_acs_chemmater_2c02147 crossref_primary_10_1103_PhysRevMaterials_9_L031201 crossref_primary_10_1088_1674_1056_28_7_077303 crossref_primary_10_1038_s41535_022_00461_7 crossref_primary_10_1088_1751_8121_ac7f08 crossref_primary_10_1103_PhysRevResearch_3_013288 crossref_primary_10_1016_j_mattod_2019_08_003 crossref_primary_10_1038_s41467_018_08149_y crossref_primary_10_1103_PhysRevB_104_085118 crossref_primary_10_1038_s41467_021_23727_3 crossref_primary_10_3390_cryst11020080 crossref_primary_10_1103_PhysRevB_107_195125 crossref_primary_10_1103_PhysRevB_98_125104 crossref_primary_10_1103_PhysRevB_95_235116 crossref_primary_10_1103_PhysRevB_101_245113 crossref_primary_10_1103_PhysRevLett_124_166404 crossref_primary_10_1007_s00220_017_2965_z crossref_primary_10_1088_1572_9494_ab6909 crossref_primary_10_1103_PhysRevA_101_053613 crossref_primary_10_1103_PhysRevB_100_134512 crossref_primary_10_1126_science_abg9094 crossref_primary_10_1088_0256_307X_35_11_117101 crossref_primary_10_1103_PhysRevB_102_115138 crossref_primary_10_1103_PhysRevB_103_L161303 crossref_primary_10_1016_j_aop_2018_11_012 crossref_primary_10_1103_PhysRevB_102_115131 crossref_primary_10_1103_PhysRevB_108_125127 crossref_primary_10_1103_PhysRevB_104_085121 crossref_primary_10_1038_s41578_021_00380_2 crossref_primary_10_1103_PhysRevLett_124_056402 crossref_primary_10_1088_0256_307X_34_2_027102 crossref_primary_10_1038_s41377_020_00382_9 crossref_primary_10_1103_PhysRevB_97_075135 crossref_primary_10_1007_s40843_017_9178_4 crossref_primary_10_1103_PhysRevB_109_L201107 crossref_primary_10_1103_PhysRevB_108_075167 crossref_primary_10_1039_D1NR00382H crossref_primary_10_1103_PhysRevB_101_245127 crossref_primary_10_1088_1361_648X_ac87e5 crossref_primary_10_1038_s41467_022_34978_z crossref_primary_10_1021_acs_jpcc_0c00303 crossref_primary_10_1103_PhysRevB_109_165136 crossref_primary_10_1038_s41467_024_53319_w crossref_primary_10_1002_apxr_202200119 crossref_primary_10_1016_j_scib_2021_12_016 crossref_primary_10_1007_s11433_021_1750_2 crossref_primary_10_3390_nano13081389 crossref_primary_10_1088_0256_307X_36_7_077102 crossref_primary_10_1002_pssr_202200115 crossref_primary_10_1002_adfm_202208023 crossref_primary_10_1103_PhysRevB_97_041104 crossref_primary_10_1007_s42864_020_00058_2 crossref_primary_10_1016_j_mtphys_2025_101700 crossref_primary_10_1103_PhysRevB_105_165140 crossref_primary_10_1103_PhysRevB_110_205146 crossref_primary_10_1103_PhysRevLett_119_256402 crossref_primary_10_1088_1361_648X_abe796 crossref_primary_10_1116_5_0245604 crossref_primary_10_1016_j_physb_2021_413626 crossref_primary_10_1134_S1063776121120037 crossref_primary_10_1103_PhysRevB_103_184301 crossref_primary_10_1063_5_0025396 crossref_primary_10_1103_PhysRevB_110_L041114 crossref_primary_10_1088_0256_307X_37_6_067101 crossref_primary_10_1103_PhysRevB_102_035125 crossref_primary_10_1039_D1NR00064K crossref_primary_10_1103_PhysRevB_101_235105 crossref_primary_10_1016_j_carbon_2019_11_083 crossref_primary_10_1103_PhysRevB_105_245141 crossref_primary_10_1088_1361_648X_ab849a crossref_primary_10_1007_JHEP01_2019_049 crossref_primary_10_1103_PhysRevB_109_L100506 crossref_primary_10_1038_s41524_018_0104_9 crossref_primary_10_1103_PhysRevB_107_125138 crossref_primary_10_1126_sciadv_aau8725 crossref_primary_10_1103_PhysRevB_107_125145 crossref_primary_10_1007_s11664_017_6005_8 crossref_primary_10_1088_1361_648X_ad146f crossref_primary_10_1103_PhysRevB_108_075130 crossref_primary_10_1038_s41586_019_1037_2 crossref_primary_10_1007_JHEP06_2018_110 crossref_primary_10_1103_PhysRevB_101_235119 crossref_primary_10_1103_PhysRevB_105_245152 crossref_primary_10_1103_PhysRevB_108_054202 crossref_primary_10_1016_j_jmmm_2021_168488 crossref_primary_10_1002_adma_202103476 crossref_primary_10_1021_acs_nanolett_2c03307 crossref_primary_10_1063_1_5024479 crossref_primary_10_1103_PhysRevB_95_195165 crossref_primary_10_1038_s41377_020_00384_7 crossref_primary_10_1103_PhysRevB_108_L201404 crossref_primary_10_21468_SciPostPhys_15_4_133 crossref_primary_10_3389_fchem_2021_796323 crossref_primary_10_1103_PhysRevB_98_165131 crossref_primary_10_1103_PhysRevB_105_155405 crossref_primary_10_1002_aelm_201900857 crossref_primary_10_1103_PhysRevB_110_035133 crossref_primary_10_21468_SciPostPhys_15_4_129 crossref_primary_10_1063_1_5026644 crossref_primary_10_1016_j_commt_2024_100022 crossref_primary_10_1073_pnas_2315787121 crossref_primary_10_1088_1361_648X_aaebed crossref_primary_10_1103_PhysRevLett_131_116603 crossref_primary_10_1103_PhysRevB_99_241104 crossref_primary_10_1038_s42005_023_01161_9 crossref_primary_10_1088_2515_7639_ab6c34 crossref_primary_10_1103_PhysRevResearch_2_012047 crossref_primary_10_1103_PhysRevB_110_125204 crossref_primary_10_1002_pssr_201700044 crossref_primary_10_3390_sym15091651 crossref_primary_10_1016_j_carbon_2019_10_055 crossref_primary_10_1088_2515_7639_ab3ea2 crossref_primary_10_1103_PhysRevB_106_085102 crossref_primary_10_1016_j_physleta_2021_127293 crossref_primary_10_1038_s41567_022_01604_0 crossref_primary_10_1103_PhysRevResearch_4_L022022 crossref_primary_10_1364_OL_529880 crossref_primary_10_1103_PhysRevB_97_125419 crossref_primary_10_1007_s11433_019_9448_8 crossref_primary_10_1063_5_0007528 crossref_primary_10_1126_science_aan2802 crossref_primary_10_1103_PhysRevB_110_115421 crossref_primary_10_1103_PhysRevLett_130_266304 crossref_primary_10_1103_PhysRevLett_118_045701 crossref_primary_10_1002_chem_202400436 crossref_primary_10_1088_1361_648X_aaab32 crossref_primary_10_1021_acs_chemrev_0c00608 crossref_primary_10_1002_andp_202400016 crossref_primary_10_1038_s42005_022_00992_2 crossref_primary_10_1088_1361_6633_ad4e64 crossref_primary_10_1103_PhysRevA_101_023827 crossref_primary_10_1088_1361_648X_ace579 crossref_primary_10_1126_sciadv_aba0509 crossref_primary_10_1103_PhysRevMaterials_1_044203 crossref_primary_10_7567_JJAP_56_105102 crossref_primary_10_1103_PhysRevB_94_165201 crossref_primary_10_1103_PhysRevB_97_201107 crossref_primary_10_1103_PhysRevB_108_205106 crossref_primary_10_1103_PhysRevB_102_035155 crossref_primary_10_22331_q_2022_06_07_731 crossref_primary_10_1038_s41467_021_22903_9 crossref_primary_10_1103_PhysRevB_98_155122 crossref_primary_10_1002_adfm_202500991 crossref_primary_10_1038_s41467_021_27158_y crossref_primary_10_1103_PhysRevLett_123_126403 crossref_primary_10_1016_j_xinn_2022_100343 crossref_primary_10_1103_PhysRevResearch_2_022066 crossref_primary_10_1063_10_0000702 crossref_primary_10_1103_PhysRevB_104_045111 crossref_primary_10_1039_C9NR09123H crossref_primary_10_1103_PhysRevB_101_235162 crossref_primary_10_1103_PhysRevB_109_L241403 crossref_primary_10_1016_j_physleta_2021_127707 crossref_primary_10_1016_j_commatsci_2020_109815 crossref_primary_10_1038_s42005_022_01022_x crossref_primary_10_1103_PhysRevB_107_085410 crossref_primary_10_1103_PhysRevB_101_235166 crossref_primary_10_1103_PhysRevResearch_2_012017 crossref_primary_10_1103_PhysRevX_7_021019 crossref_primary_10_7498_aps_69_20191816 crossref_primary_10_1103_PhysRevB_97_121402 crossref_primary_10_1103_PhysRevB_96_121106 crossref_primary_10_1103_PhysRevB_102_165135 crossref_primary_10_1002_adma_201906046 crossref_primary_10_1038_nature19099 crossref_primary_10_1103_PhysRevLett_124_076403 crossref_primary_10_1103_PhysRevB_106_205120 crossref_primary_10_1103_PhysRevB_109_035144 crossref_primary_10_1140_epjp_s13360_022_02840_2 crossref_primary_10_1021_acs_nanolett_0c00233 crossref_primary_10_1103_PhysRevB_106_205125 crossref_primary_10_1063_5_0142095 crossref_primary_10_7498_aps_68_20191538 crossref_primary_10_1016_j_cocom_2022_e00686 crossref_primary_10_1103_PhysRevX_11_011001 crossref_primary_10_1103_PhysRevB_109_035147 crossref_primary_10_1103_PhysRevLett_127_176401 crossref_primary_10_1016_j_jmst_2024_03_080 crossref_primary_10_1088_1367_2630_aa4f65 crossref_primary_10_1016_j_ssc_2024_115799 crossref_primary_10_1103_PhysRevMaterials_2_104003 crossref_primary_10_1103_PhysRevResearch_2_022042 crossref_primary_10_1088_0256_307X_39_9_097303 crossref_primary_10_1103_PhysRevB_108_L121109 crossref_primary_10_1103_PhysRevLett_123_245302 crossref_primary_10_1103_PhysRevB_98_035130 crossref_primary_10_7498_aps_68_20191544 crossref_primary_10_1146_annurev_matsci_070218_010023 crossref_primary_10_1103_PhysRevB_103_235143 crossref_primary_10_1140_epjb_e2018_90302_7 crossref_primary_10_1088_1402_4896_ad9e48 crossref_primary_10_1038_s41567_019_0502_z crossref_primary_10_1103_Physics_10_74 crossref_primary_10_1103_PhysRevB_102_165119 crossref_primary_10_1007_s11467_023_1259_5 crossref_primary_10_1103_PhysRevB_107_L201112 crossref_primary_10_1103_PhysRevB_105_184510 crossref_primary_10_1103_PhysRevResearch_2_023142 crossref_primary_10_1088_1751_8121_ad075e crossref_primary_10_1103_PhysRevA_96_033634 crossref_primary_10_1103_PhysRevB_104_045107 crossref_primary_10_1021_acs_nanolett_0c01786 crossref_primary_10_1016_j_physb_2023_414695 crossref_primary_10_1103_PhysRevB_106_085128 crossref_primary_10_1126_sciadv_aar2317 crossref_primary_10_1016_j_trechm_2021_04_011 crossref_primary_10_1088_1361_648X_ac2928 crossref_primary_10_1103_PhysRevA_102_033339 crossref_primary_10_1103_PhysRevLett_126_206403 crossref_primary_10_1016_j_mtener_2021_100666 crossref_primary_10_1103_PhysRevB_107_155125 crossref_primary_10_1103_PhysRevB_107_075405 crossref_primary_10_1103_PhysRevB_101_205149 crossref_primary_10_1103_PhysRevB_109_L180403 crossref_primary_10_1103_PhysRevB_111_115122 crossref_primary_10_1103_PhysRevB_101_041107 crossref_primary_10_1103_PhysRevB_105_115109 crossref_primary_10_1103_PhysRevLett_121_226401 crossref_primary_10_1103_PhysRevB_100_125156 crossref_primary_10_1103_PhysRevMaterials_3_054203 crossref_primary_10_1103_PhysRevB_102_121111 crossref_primary_10_1016_j_scib_2023_01_001 crossref_primary_10_1126_science_abe6437 crossref_primary_10_1103_PhysRevB_100_125152 crossref_primary_10_1146_annurev_matsci_070218_010049 crossref_primary_10_1103_PhysRevX_7_041069 crossref_primary_10_1680_jemmr_16_00147 crossref_primary_10_1103_PhysRevB_96_041201 crossref_primary_10_1016_j_jpcs_2022_111024 crossref_primary_10_1103_PhysRevB_99_165406 crossref_primary_10_1103_PhysRevLett_124_127602 crossref_primary_10_1103_PhysRevB_102_155133 crossref_primary_10_1039_D3RA01813J crossref_primary_10_1103_PhysRevX_7_041067 crossref_primary_10_1103_PhysRevB_97_134521 crossref_primary_10_1063_1_5078627 crossref_primary_10_1103_PhysRevResearch_2_023368 crossref_primary_10_1088_1361_6633_acfd3d crossref_primary_10_31857_S1234567823100105 crossref_primary_10_1002_apxr_202400038 crossref_primary_10_1038_s42005_020_00395_1 crossref_primary_10_1103_PhysRevB_111_125101 crossref_primary_10_1103_PhysRevB_102_121103 crossref_primary_10_1103_PhysRevB_101_125207 crossref_primary_10_1103_PhysRevMaterials_2_104203 crossref_primary_10_1103_PhysRevB_100_035406 crossref_primary_10_1103_PhysRevLett_119_136401 crossref_primary_10_1103_PhysRevB_104_045137 crossref_primary_10_1103_PhysRevB_94_195205 crossref_primary_10_2139_ssrn_3983880 crossref_primary_10_1103_PhysRevB_102_155104 crossref_primary_10_1103_PhysRevLett_130_066402 crossref_primary_10_1103_PhysRevLett_120_240401 crossref_primary_10_1103_PhysRevB_108_155428 crossref_primary_10_1002_zaac_202200055 crossref_primary_10_1016_j_physe_2022_115457 crossref_primary_10_1038_s41598_024_68615_0 crossref_primary_10_1103_PhysRevB_97_235152 crossref_primary_10_1140_epjb_s10051_021_00091_1 crossref_primary_10_1103_PhysRevB_103_245141 crossref_primary_10_1103_PhysRevB_104_195127 crossref_primary_10_1103_PhysRevB_96_064103 crossref_primary_10_1103_PhysRevB_96_064102 crossref_primary_10_1103_PhysRevB_110_224514 crossref_primary_10_1103_PhysRevB_107_155137 crossref_primary_10_1103_PhysRevB_104_045148 crossref_primary_10_1103_PhysRevB_101_205138 crossref_primary_10_1007_s44214_024_00060_6 crossref_primary_10_1103_PhysRevB_102_155116 crossref_primary_10_1103_PhysRevB_109_035122 crossref_primary_10_1103_PhysRevB_101_205134 crossref_primary_10_1073_pnas_2010752117 crossref_primary_10_1103_PhysRevB_105_115118 crossref_primary_10_1103_PhysRevLett_133_026402 crossref_primary_10_1103_PhysRevMaterials_6_L031201 crossref_primary_10_1103_PhysRevLett_121_157602 crossref_primary_10_1126_science_aaz3480 crossref_primary_10_1088_0256_307X_37_10_107504 crossref_primary_10_1016_j_cpc_2021_108226 crossref_primary_10_1103_PhysRevB_105_115110 crossref_primary_10_1088_1361_648X_acfcfc crossref_primary_10_1103_PhysRevB_108_235136 crossref_primary_10_1002_adma_201908518 crossref_primary_10_1103_PhysRevB_99_075130 crossref_primary_10_1103_PhysRevB_103_165129 crossref_primary_10_1103_PhysRevB_101_205109 crossref_primary_10_1103_PhysRevB_94_195426 crossref_primary_10_1103_PhysRevLett_123_027003 crossref_primary_10_1103_RevModPhys_90_015001 crossref_primary_10_1103_PhysRevB_109_205115 crossref_primary_10_1103_PhysRevB_103_245126 crossref_primary_10_1103_PhysRevB_103_245127 crossref_primary_10_1103_PhysRevLett_117_096404 crossref_primary_10_1103_PhysRevLett_119_227401 crossref_primary_10_1103_PhysRevX_8_031076 crossref_primary_10_1007_s11433_023_2320_7 crossref_primary_10_1088_1361_6463_ac6cb3 crossref_primary_10_1038_s41567_020_01104_z crossref_primary_10_1039_C7NR07763G crossref_primary_10_1140_epjb_s10051_021_00093_z crossref_primary_10_1103_PhysRevB_107_155434 crossref_primary_10_1103_PhysRevResearch_6_043273 crossref_primary_10_1039_D3CP04524B crossref_primary_10_1088_1361_648X_ac0dd4 crossref_primary_10_1103_PhysRevB_104_035161 crossref_primary_10_1103_PhysRevB_96_155301 crossref_primary_10_1039_C9MH00574A crossref_primary_10_1103_PhysRevB_105_035429 crossref_primary_10_1103_PhysRevLett_123_065501 crossref_primary_10_1016_j_aop_2021_168455 crossref_primary_10_1103_PhysRevB_100_165302 crossref_primary_10_1103_PhysRevResearch_6_043262 crossref_primary_10_1103_PhysRevB_110_224304 crossref_primary_10_1103_PhysRevLett_122_077203 crossref_primary_10_1088_1361_648X_aab0ba crossref_primary_10_1103_PhysRevResearch_3_L032068 crossref_primary_10_1007_s11467_019_0890_7 crossref_primary_10_1103_PhysRevLett_122_186801 crossref_primary_10_1038_s41534_019_0148_9 crossref_primary_10_1103_PhysRevB_108_104110 crossref_primary_10_1073_pnas_1820331116 crossref_primary_10_1103_PhysRevB_106_155141 crossref_primary_10_1038_s41467_019_09820_8 crossref_primary_10_1103_PhysRevB_104_L180507 crossref_primary_10_1103_PhysRevB_99_165145 crossref_primary_10_1016_j_matpr_2023_05_202 crossref_primary_10_1103_PhysRevLett_123_076401 crossref_primary_10_1038_s41524_019_0190_3 crossref_primary_10_1088_1361_648X_ac885c crossref_primary_10_1063_5_0102137 crossref_primary_10_1103_PhysRevB_104_165424 crossref_primary_10_1038_ncomms15641 crossref_primary_10_1103_PhysRevB_101_045123 crossref_primary_10_1103_PhysRevMaterials_3_044202 crossref_primary_10_1088_1361_6501_ad1915 crossref_primary_10_1038_s41535_021_00325_6 crossref_primary_10_1103_PhysRevLett_124_105303 crossref_primary_10_1103_PhysRevD_97_025018 crossref_primary_10_1038_s41535_019_0186_8 crossref_primary_10_1016_j_physe_2023_115679 crossref_primary_10_1088_0256_307X_38_7_077104 crossref_primary_10_1103_PhysRevB_109_115119 crossref_primary_10_1038_s42254_021_00344_z crossref_primary_10_1103_PhysRevB_98_125408 crossref_primary_10_1103_PhysRevB_96_165142 crossref_primary_10_1103_PhysRevB_96_165148 crossref_primary_10_1002_anie_201811456 crossref_primary_10_1088_1361_648X_ad665e crossref_primary_10_1103_PhysRevB_104_115116 crossref_primary_10_1103_PhysRevResearch_6_023249 crossref_primary_10_1088_1367_2630_aca429 crossref_primary_10_1103_PhysRevB_96_155105 crossref_primary_10_1016_j_physleta_2024_129410 crossref_primary_10_1039_C8TC05930F crossref_primary_10_1088_1361_648X_adb674 crossref_primary_10_1103_PhysRevB_105_125203 crossref_primary_10_1103_PhysRevB_111_075305 crossref_primary_10_21468_SciPostPhys_3_3_021 crossref_primary_10_1038_s41567_024_02655_1 crossref_primary_10_1103_PhysRevResearch_6_L032018 crossref_primary_10_1088_1367_2630_aa96f7 crossref_primary_10_1103_PhysRevB_108_235302 crossref_primary_10_1103_PhysRevB_97_035138 crossref_primary_10_1103_PhysRevB_97_035139 crossref_primary_10_1007_s11433_021_1867_y crossref_primary_10_1103_PhysRevResearch_2_042010 crossref_primary_10_3390_cryst10070605 crossref_primary_10_1103_PhysRevLett_127_157405 crossref_primary_10_1103_PhysRevB_111_085133 crossref_primary_10_1088_1674_1056_27_3_036303 crossref_primary_10_1103_PhysRevB_108_085113 crossref_primary_10_1103_PhysRevB_98_161104 crossref_primary_10_1103_PhysRevLett_130_203802 crossref_primary_10_1126_science_abc0105 crossref_primary_10_1088_1361_648X_ad38fa crossref_primary_10_1103_PhysRevB_101_115110 crossref_primary_10_1103_PhysRevB_111_085116 crossref_primary_10_1007_s11082_024_06722_y crossref_primary_10_1021_acs_jpclett_8b00640 crossref_primary_10_1103_PhysRevD_100_116015 crossref_primary_10_1038_s42254_021_00388_1 crossref_primary_10_1093_nsr_nwx066 crossref_primary_10_1016_j_matt_2023_10_028 crossref_primary_10_1103_PhysRevMaterials_2_094403 crossref_primary_10_1002_adma_202201350 crossref_primary_10_1103_PhysRevA_98_053619 crossref_primary_10_1063_5_0205650 crossref_primary_10_1088_2053_1583_aadb1e crossref_primary_10_1002_adfm_202412515 crossref_primary_10_1103_PhysRevB_103_085106 crossref_primary_10_1103_PhysRevB_100_195134 crossref_primary_10_1103_PhysRevB_105_104505 crossref_primary_10_1038_s41567_019_0511_y crossref_primary_10_1103_PhysRevB_108_085120 crossref_primary_10_1103_PhysRevB_101_115145 crossref_primary_10_1103_PhysRevResearch_5_043165 crossref_primary_10_1088_1361_648X_aac298 crossref_primary_10_1088_1361_648X_ac0fa0 crossref_primary_10_1002_apxr_202300004 crossref_primary_10_1016_j_isci_2022_103952 crossref_primary_10_1021_acs_nanolett_3c02132 crossref_primary_10_1103_PhysRevB_110_205418 crossref_primary_10_1063_5_0185359 crossref_primary_10_3390_cryst11020143 crossref_primary_10_1038_s41563_021_00992_7 crossref_primary_10_1103_PhysRevB_102_035419 crossref_primary_10_1080_00018732_2019_1594094 crossref_primary_10_1103_PhysRevB_103_155155 crossref_primary_10_1103_PhysRevB_103_155157 crossref_primary_10_1103_PhysRevB_106_245118 crossref_primary_10_1103_PhysRevB_109_155159 crossref_primary_10_1038_s41586_023_06330_y crossref_primary_10_1103_PhysRevB_95_205201 crossref_primary_10_1016_j_commatsci_2021_110779 crossref_primary_10_1103_PhysRevB_102_094403 crossref_primary_10_1007_s10909_017_1846_3 crossref_primary_10_1038_s41578_021_00301_3 crossref_primary_10_1039_C9CP00508K crossref_primary_10_1103_PhysRevA_95_053615 crossref_primary_10_1103_PhysRevMaterials_6_044204 crossref_primary_10_1103_PhysRevB_106_165128 crossref_primary_10_1038_s41524_022_00954_w crossref_primary_10_1103_PhysRevB_94_121117 crossref_primary_10_1103_PhysRevB_100_245146 crossref_primary_10_1038_s41524_020_0301_1 crossref_primary_10_1038_s41467_023_42773_7 crossref_primary_10_1103_PhysRevB_109_155146 crossref_primary_10_1038_s41467_024_47976_0 crossref_primary_10_1103_PhysRevB_106_245101 crossref_primary_10_1016_j_commatsci_2019_109466 crossref_primary_10_1103_PhysRevB_102_195121 crossref_primary_10_1103_PhysRevB_102_195124 crossref_primary_10_1103_PhysRevLett_124_073603 crossref_primary_10_1038_nmat5017 crossref_primary_10_1016_j_mtcomm_2024_110445 crossref_primary_10_1088_1361_648X_ac4e47 crossref_primary_10_1103_PhysRevLett_121_106403 crossref_primary_10_1088_1361_648X_ac3d55 crossref_primary_10_1103_PhysRevLett_121_106404 crossref_primary_10_1103_PhysRevLett_130_206702 crossref_primary_10_1103_PhysRevB_97_060504 crossref_primary_10_1038_s41467_024_53862_6 crossref_primary_10_1103_PhysRevB_100_245131 crossref_primary_10_1007_s40042_023_00979_4 crossref_primary_10_1088_1361_648X_aad8e1 crossref_primary_10_1103_PhysRevX_14_031039 crossref_primary_10_1002_sstr_202400175 crossref_primary_10_3390_ma15175812 crossref_primary_10_1103_PhysRevX_14_041060 crossref_primary_10_1103_PhysRevB_108_035428 crossref_primary_10_1103_PhysRevX_14_031037 crossref_primary_10_1103_PhysRevB_104_104408 crossref_primary_10_1007_s11433_017_9126_6 crossref_primary_10_1103_PhysRevB_106_165102 crossref_primary_10_1103_PhysRevLett_119_247202 crossref_primary_10_1088_1361_648X_ada50a crossref_primary_10_1103_PhysRevB_103_104101 crossref_primary_10_1103_PhysRevB_96_235103 crossref_primary_10_1038_s42005_021_00564_w crossref_primary_10_1103_PhysRevB_105_134303 crossref_primary_10_1103_PhysRevB_101_201105 crossref_primary_10_1103_PhysRevB_109_L220102 crossref_primary_10_1103_PhysRevB_106_L020502 crossref_primary_10_1126_sciadv_1602415 crossref_primary_10_1103_PhysRevMaterials_5_054202 crossref_primary_10_1088_1367_2630_ac254f crossref_primary_10_1002_adfm_202415610 crossref_primary_10_1103_PhysRevLett_125_047203 crossref_primary_10_1016_j_physleta_2020_126494 crossref_primary_10_1103_PhysRevB_109_205141 crossref_primary_10_1021_acs_jpcc_9b07095 crossref_primary_10_1088_2053_1591_ab8df3 crossref_primary_10_7566_JPSJ_87_041001 crossref_primary_10_1073_pnas_1900527116 crossref_primary_10_1016_j_jssc_2018_04_026 crossref_primary_10_1103_PhysRevB_104_125308 crossref_primary_10_1103_PhysRevB_99_085130 crossref_primary_10_1103_PhysRevB_101_235417 crossref_primary_10_1088_1361_6668_ac9160 crossref_primary_10_1103_PhysRevB_105_165104 crossref_primary_10_1126_sciadv_ads5081 crossref_primary_10_1063_1_5082320 crossref_primary_10_1103_PhysRevB_101_214419 crossref_primary_10_1063_1_5119209 crossref_primary_10_1088_1367_2630_aad9b7 crossref_primary_10_1021_acs_nanolett_2c05100 crossref_primary_10_1103_PhysRevMaterials_3_124802 crossref_primary_10_1103_RevModPhys_93_025002 crossref_primary_10_7498_aps_67_20181857 crossref_primary_10_1103_PhysRevB_95_214103 crossref_primary_10_1088_1361_648X_ab73a8 crossref_primary_10_1103_PhysRevB_103_184502 crossref_primary_10_1103_PhysRevB_94_155108 crossref_primary_10_1088_1361_648X_abfd52 crossref_primary_10_1002_advs_202001801 crossref_primary_10_1039_D1CP02310A crossref_primary_10_1103_PhysRevB_103_115206 crossref_primary_10_1103_PhysRevB_107_115168 crossref_primary_10_1007_s11467_019_0896_1 crossref_primary_10_1038_s41467_024_52156_1 crossref_primary_10_1038_s41467_018_05730_3 crossref_primary_10_1103_PhysRevB_109_054414 crossref_primary_10_1103_PhysRevB_96_081107 crossref_primary_10_1103_PhysRevB_97_125143 crossref_primary_10_1103_PhysRevB_102_104111 crossref_primary_10_7498_aps_67_20180796 crossref_primary_10_1103_PhysRevB_109_075119 crossref_primary_10_1038_s41524_019_0237_5 crossref_primary_10_1088_0256_307X_37_8_087101 crossref_primary_10_1039_D0TA05197G crossref_primary_10_1103_PhysRevResearch_3_L012028 crossref_primary_10_1063_5_0223472 crossref_primary_10_1103_PhysRevB_101_035133 crossref_primary_10_1103_PhysRevB_102_245416 crossref_primary_10_1103_PhysRevB_99_020404 crossref_primary_10_1103_PhysRevMaterials_3_071201 crossref_primary_10_1038_nphys4122 crossref_primary_10_1021_acsomega_4c08273 crossref_primary_10_3390_app9224832 crossref_primary_10_1088_0256_307X_38_5_057302 crossref_primary_10_1103_PhysRevB_99_155145 crossref_primary_10_1103_PhysRevLett_126_046401 crossref_primary_10_1002_pssb_202000027 crossref_primary_10_1103_PhysRevLett_129_250501 crossref_primary_10_1088_2516_1075_ad252b crossref_primary_10_1002_advs_202100141 crossref_primary_10_1103_PhysRevLett_121_263903 crossref_primary_10_1038_s41566_023_01371_1 crossref_primary_10_1088_1361_648X_abdb11 crossref_primary_10_1103_PhysRevB_101_165121 crossref_primary_10_1103_PhysRevB_102_115146 crossref_primary_10_1039_D3CP05680E crossref_primary_10_1103_PhysRevB_106_115143 crossref_primary_10_1016_j_cpc_2020_107760 crossref_primary_10_1103_PhysRevB_97_155134 crossref_primary_10_1103_PhysRevB_103_195104 crossref_primary_10_1016_j_cjph_2022_06_006 crossref_primary_10_1103_PhysRevB_97_054305 crossref_primary_10_1038_s42254_021_00292_8 crossref_primary_10_2139_ssrn_4147085 crossref_primary_10_1103_PhysRevLett_119_060201 crossref_primary_10_1103_PhysRevB_108_045405 crossref_primary_10_1103_PhysRevMaterials_1_021201 crossref_primary_10_1103_PhysRevMaterials_5_124203 crossref_primary_10_1021_acs_jpclett_8b02204 crossref_primary_10_1016_j_scib_2018_04_007 crossref_primary_10_1038_s42254_019_0121_8 crossref_primary_10_1039_D2NA00597B crossref_primary_10_1103_PhysRevResearch_2_013062 crossref_primary_10_1038_s41467_020_15825_5 crossref_primary_10_1016_j_scib_2017_11_016 crossref_primary_10_1103_PhysRevB_99_195148 crossref_primary_10_1038_s41578_018_0036_5 crossref_primary_10_1088_1361_648X_ac4cee crossref_primary_10_1088_1367_2630_ac45cb crossref_primary_10_1103_PhysRevResearch_4_033008 crossref_primary_10_1103_PhysRevMaterials_8_L091801 crossref_primary_10_1103_PhysRevLett_123_186401 crossref_primary_10_1103_PhysRevB_99_161110 crossref_primary_10_3390_technologies12050064 crossref_primary_10_1103_PhysRevB_95_115138 crossref_primary_10_1080_23746149_2022_2064230 crossref_primary_10_1016_j_physb_2024_415791 crossref_primary_10_1007_s11467_019_0909_0 crossref_primary_10_1038_s41467_018_05054_2 crossref_primary_10_1103_PhysRevB_105_085117 crossref_primary_10_1039_C7CP05844F crossref_primary_10_1038_s41467_021_27168_w crossref_primary_10_1063_5_0201889 crossref_primary_10_1021_acs_chemmater_7b05133 crossref_primary_10_1063_5_0143436 crossref_primary_10_1134_S0021364021100015 crossref_primary_10_1007_s42864_021_00098_2 crossref_primary_10_1103_PhysRevB_110_174506 crossref_primary_10_1103_PhysRevB_107_205120 crossref_primary_10_1103_PhysRevB_109_155414 crossref_primary_10_1103_PhysRevB_99_205146 crossref_primary_10_1002_adma_202409175 crossref_primary_10_1016_j_newton_2025_100010 crossref_primary_10_1002_advs_202207508 crossref_primary_10_1103_PhysRevB_107_104504 crossref_primary_10_1002_andp_201600262 crossref_primary_10_1103_PhysRevB_110_184303 crossref_primary_10_1103_PhysRevB_104_L060301 crossref_primary_10_1103_PhysRevB_111_125201 crossref_primary_10_1103_PhysRevB_105_075127 crossref_primary_10_1103_PhysRevB_104_235121 crossref_primary_10_34133_research_0042 crossref_primary_10_1038_s41578_020_0208_y crossref_primary_10_1007_s44214_024_00067_z crossref_primary_10_1103_PhysRevB_105_235403 crossref_primary_10_1103_PhysRevB_108_155121 crossref_primary_10_1038_s41563_018_0169_3 crossref_primary_10_1103_PhysRevB_101_155121 crossref_primary_10_1103_PhysRevB_96_115440 crossref_primary_10_1016_j_physleta_2020_126666 crossref_primary_10_1038_s41467_019_13435_4 crossref_primary_10_1103_PhysRevA_98_013627 crossref_primary_10_1103_PhysRevB_96_115201 crossref_primary_10_1038_s41586_021_04105_x crossref_primary_10_1038_s41535_025_00731_0 crossref_primary_10_1016_j_pquantelec_2024_100535 crossref_primary_10_1038_s41586_019_0937_5 crossref_primary_10_1038_s41563_020_00820_4 crossref_primary_10_1103_PhysRevB_99_035160 crossref_primary_10_1016_j_physrep_2020_05_003 crossref_primary_10_1038_s41535_022_00535_6 crossref_primary_10_21468_SciPostPhys_18_2_073 crossref_primary_10_1103_PhysRevB_101_155114 crossref_primary_10_1103_PhysRevB_103_195137 crossref_primary_10_1038_s41563_018_0210_6 crossref_primary_10_1126_science_aag2865 crossref_primary_10_1038_s41598_021_00577_z crossref_primary_10_1103_PhysRevB_103_035105 crossref_primary_10_1103_PhysRevB_108_054305 crossref_primary_10_1038_s41467_020_17261_x crossref_primary_10_1103_PhysRevB_102_081109 crossref_primary_10_1126_sciadv_aau6459 crossref_primary_10_1103_PhysRevLett_122_203903 crossref_primary_10_1038_s41598_021_85364_6 crossref_primary_10_1103_PhysRevMaterials_3_095004 crossref_primary_10_1103_PhysRevMaterials_5_114401 crossref_primary_10_1039_D1NR06051A crossref_primary_10_1103_PhysRevB_105_235420 crossref_primary_10_1088_1361_6463_ac28fa crossref_primary_10_1103_PhysRevB_104_134512 crossref_primary_10_1103_PhysRevB_98_115145 crossref_primary_10_1016_j_matt_2020_07_007 crossref_primary_10_1063_5_0202937 crossref_primary_10_1038_s41467_021_26450_1 crossref_primary_10_1103_PhysRevB_104_L241108 crossref_primary_10_1038_s41598_023_36168_3 crossref_primary_10_1021_acs_chemrev_0c00732 crossref_primary_10_1007_s44214_022_00001_1 crossref_primary_10_21468_SciPostPhysLectNotes_39 crossref_primary_10_1103_PhysRevB_104_L241115 crossref_primary_10_1016_j_mtcomm_2023_106001 crossref_primary_10_1039_D1RA01136G crossref_primary_10_1002_adma_202402503 crossref_primary_10_1038_nature22390 crossref_primary_10_1088_1402_4896_ad6c86 crossref_primary_10_1360_SSPMA_2022_0413 crossref_primary_10_1002_advs_202205723 crossref_primary_10_1016_j_jpcs_2017_12_006 crossref_primary_10_1103_PhysRevB_103_035150 crossref_primary_10_1103_PhysRevB_104_245128 crossref_primary_10_1063_1_5012789 crossref_primary_10_1088_1674_1056_ac720b crossref_primary_10_1103_PhysRevB_108_165136 crossref_primary_10_1088_1361_648X_ac638a crossref_primary_10_1088_1361_648X_ab1de8 crossref_primary_10_1103_PhysRevResearch_5_013069 crossref_primary_10_1209_0295_5075_120_57002 crossref_primary_10_1088_1361_648X_ab8520 crossref_primary_10_1103_PhysRevB_100_085134 crossref_primary_10_1103_PhysRevMaterials_2_044205 crossref_primary_10_1103_PhysRevB_100_195108 crossref_primary_10_1103_PhysRevX_8_041045 crossref_primary_10_1088_1361_648X_abd739 crossref_primary_10_1088_1361_648X_ab985a crossref_primary_10_1103_PhysRevResearch_3_033101 crossref_primary_10_7498_aps_72_20221574 crossref_primary_10_1103_PhysRevB_108_165128 crossref_primary_10_1146_annurev_matsci_070218_010114 crossref_primary_10_1103_PhysRevLett_121_176401 crossref_primary_10_1103_PhysRevB_108_L201102 crossref_primary_10_3390_ma12172710 crossref_primary_10_1002_pssr_202000178 crossref_primary_10_3389_fchem_2020_609118 crossref_primary_10_1088_1367_2630_ad6c78 crossref_primary_10_1002_pssa_201800105 crossref_primary_10_1063_5_0242343 crossref_primary_10_1038_nature23268 crossref_primary_10_1002_apxr_202200061 crossref_primary_10_1021_acs_nanolett_7b04304 crossref_primary_10_1103_PhysRevResearch_2_023018 crossref_primary_10_1103_PhysRevB_111_045109 crossref_primary_10_1103_PhysRevLett_119_206402 crossref_primary_10_1103_PhysRevLett_119_206401 crossref_primary_10_1016_j_carbon_2018_09_027 crossref_primary_10_1016_j_physleta_2019_126216 crossref_primary_10_1103_PhysRevB_104_094418 crossref_primary_10_21468_SciPostPhys_10_1_004 crossref_primary_10_1016_j_physb_2025_417136 crossref_primary_10_1126_sciadv_abe2680 crossref_primary_10_1103_PhysRevResearch_2_013007 crossref_primary_10_1103_PhysRevB_97_144422 crossref_primary_10_1146_annurev_conmatphys_040721_021331 crossref_primary_10_1002_aelm_202101081 crossref_primary_10_1103_PhysRevResearch_4_043213 crossref_primary_10_1016_j_mtphys_2024_101343 crossref_primary_10_1038_s41586_019_1630_4 crossref_primary_10_1103_PhysRevB_100_045104 crossref_primary_10_1016_j_physb_2023_415425 crossref_primary_10_1103_PhysRevB_110_174111 crossref_primary_10_1103_PhysRevB_101_184503 crossref_primary_10_21468_SciPostPhys_17_4_097 crossref_primary_10_1103_PhysRevB_106_125126 crossref_primary_10_1038_s41567_022_01893_5 crossref_primary_10_1002_adom_202401066 crossref_primary_10_1103_PhysRevMaterials_4_084201 crossref_primary_10_1140_epjp_s13360_023_04652_4 crossref_primary_10_1103_PhysRevResearch_3_L042017 crossref_primary_10_1103_PhysRevB_111_075145 crossref_primary_10_1038_s41535_020_00298_y crossref_primary_10_1103_PhysRevB_110_L180503 crossref_primary_10_1038_s41535_022_00422_0 crossref_primary_10_1038_s41535_018_0102_7 crossref_primary_10_1038_s41535_024_00714_7 crossref_primary_10_1103_PhysRevB_99_245413 crossref_primary_10_1103_PhysRevB_96_241204 crossref_primary_10_1038_s41535_023_00565_8 crossref_primary_10_1021_acs_chemmater_0c01721 crossref_primary_10_7498_aps_72_20211961 crossref_primary_10_1103_PhysRevB_96_085145 crossref_primary_10_1038_s41467_020_14443_5 crossref_primary_10_7498_aps_69_20200031 crossref_primary_10_1039_C9CP06033B crossref_primary_10_1103_PhysRevB_111_075151 crossref_primary_10_1038_s41467_017_01758_z crossref_primary_10_1038_s41586_019_0944_6 crossref_primary_10_1146_annurev_matsci_070218_121852 crossref_primary_10_1103_PhysRevB_99_094517 crossref_primary_10_7498_aps_70_20200914 crossref_primary_10_1103_PhysRevX_12_021016 crossref_primary_10_1016_j_physrep_2022_06_002 crossref_primary_10_2139_ssrn_4178449 crossref_primary_10_1103_PhysRevB_103_165109 crossref_primary_10_1088_1367_2630_aca34d crossref_primary_10_1103_PhysRevB_104_245101 crossref_primary_10_1088_1361_648X_abb548 crossref_primary_10_1103_PhysRevB_110_L121118 crossref_primary_10_1063_1_5124242 crossref_primary_10_1103_PhysRevB_104_115161 crossref_primary_10_1038_d41586_019_00676_y crossref_primary_10_1103_PhysRevB_104_115164 crossref_primary_10_1002_pssr_201900421 crossref_primary_10_1142_S0217984921500032 crossref_primary_10_1103_PhysRevB_97_121108 crossref_primary_10_1016_j_progsurf_2023_100719 crossref_primary_10_1103_PhysRevE_96_023310 crossref_primary_10_1038_s42005_023_01460_1 crossref_primary_10_1073_pnas_1720828115 crossref_primary_10_1016_j_physe_2024_115914 crossref_primary_10_1103_PhysRevLett_120_206401 crossref_primary_10_1103_PhysRevB_95_241116 crossref_primary_10_1103_PhysRevB_99_235403 crossref_primary_10_1039_C8CP03874K crossref_primary_10_1063_1_4984262 crossref_primary_10_1038_s41467_020_20408_5 crossref_primary_10_1021_acsomega_4c08957 |
Cites_doi | 10.1126/science.aaa9297 10.1103/PhysRevX.6.021008 10.1002/1521-3749(200207)628:7<1541::AID-ZAAC1541>3.0.CO;2-J 10.1103/PhysRevB.85.195320 10.3891/acta.chem.scand.19-0735 10.1103/PhysRevB.88.104412 10.1515/znb-1992-0314 10.1016/0022-5088(71)90016-6 10.1524/zkri.2006.221.1.15 10.1021/ic800387a 10.1021/j150557a020 10.1126/science.1245085 10.1038/ncomms11696 10.1103/PhysRevLett.108.140405 10.1016/0022-5088(59)90006-2 10.1103/PhysRevB.61.10267 10.1103/PhysRevX.5.031013 10.1126/science.aac6089 10.1016/0022-3697(64)90018-6 10.1103/PhysRevB.84.235126 10.1103/PhysRevLett.116.186402 10.1515/crll.1965.219.180 10.1039/C5TA07040F 10.1016/j.physc.2006.03.077 10.1103/PhysRevB.90.205136 10.2113/gscanmin.42.6.1733 10.1038/nphys3437 10.1103/PhysRevLett.105.077001 10.1006/jssc.1997.7310 10.1002/zaac.19713840103 10.1103/PhysRevB.47.1651 10.1103/PhysRevLett.105.177002 10.1103/PhysRevX.5.011029 10.1038/nphys2857 10.1107/S0108767305040286 10.1073/pnas.1514665112 10.1103/PhysRevB.89.155114 10.1126/sciadv.1501782 10.1088/0953-8984/18/31/035 10.1098/rspa.1984.0023 10.1038/nphys3426 10.3891/acta.chem.scand.19-0095 10.1103/PhysRevB.83.205101 10.1038/ncomms5898 10.1126/science.1222360 10.1103/PhysRevLett.108.266802 10.1016/0022-4596(80)90493-4 10.1103/PhysRevA.89.043621 10.30970/cma1.0024 10.1063/1.4812323 10.1103/PhysRevB.48.13115 10.1007/BF00776015 10.1103/RevModPhys.81.109 10.1126/science.1259327 10.1524/zkri.1991.197.14.257 10.1524/ncrs.2005.220.4.525 10.1103/PhysRevB.93.121113 10.1038/nmat4684 10.1016/j.progsolidstchem.2007.01.011 10.1103/PhysRevLett.112.036403 10.1103/PhysRevLett.100.096407 10.1016/j.jallcom.2003.11.003 10.1039/DT9850002369 10.1103/PhysRevB.78.045426 10.1038/nature15768 10.1103/PhysRevB.93.045113 10.1038/nphys3425 10.1126/science.aad5812 10.1021/ja037334j 10.1021/ic0301472 10.1103/PhysRevLett.77.3865 10.1038/ncomms8373 10.1103/PhysRevB.93.205132 10.1107/S0365110X66003098 10.1524/ncrs.2004.219.14.11 10.1103/PhysRevB.85.155118 10.1016/0022-5088(77)90266-1 10.1038/nmat3990 10.1038/198382b0 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Association for the Advancement of Science Copyright © 2016, American Association for the Advancement of Science. Copyright © 2016, American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2016 American Association for the Advancement of Science – notice: Copyright © 2016, American Association for the Advancement of Science. – notice: Copyright © 2016, American Association for the Advancement of Science |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.aaf5037 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database Solid State and Superconductivity Abstracts CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 558 |
ExternalDocumentID | 4182410211 27445310 10_1126_science_aaf5037 24750098 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYJJ ABBHK ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPMR ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACHIC ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADQXQ ADUKH ADULT ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AQVQM ASPBG AVWKF BKF BLC C45 C51 CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QS- RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ AAYXX ABCQX CITATION K-O NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c446t-9b1fee7dd2bd9f0c2745bbe47693bc480ac2fd0c44cb1a2279bf643f293ccbba3 |
ISSN | 0036-8075 |
IngestDate | Thu Jul 10 22:01:21 EDT 2025 Fri Jul 11 16:02:18 EDT 2025 Fri Jul 25 10:04:44 EDT 2025 Mon Jul 21 05:56:46 EDT 2025 Tue Jul 01 00:37:19 EDT 2025 Thu Apr 24 23:02:52 EDT 2025 Thu Jul 03 22:17:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6299 |
Language | English |
License | Copyright © 2016, American Association for the Advancement of Science. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c446t-9b1fee7dd2bd9f0c2745bbe47693bc480ac2fd0c44cb1a2279bf643f293ccbba3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 27445310 |
PQID | 1819477586 |
PQPubID | 1256 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_1835677982 proquest_miscellaneous_1809607443 proquest_journals_1819477586 pubmed_primary_27445310 crossref_citationtrail_10_1126_science_aaf5037 crossref_primary_10_1126_science_aaf5037 jstor_primary_24750098 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160805 2016-08-05 2016-Aug-05 |
PublicationDateYYYYMMDD | 2016-08-05 |
PublicationDate_xml | – month: 8 year: 2016 text: 20160805 day: 5 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2016 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_87_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_85_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_89_2 e_1_3_2_60_2 e_1_3_2_83_2 e_1_3_2_81_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_73_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_77_2 e_1_3_2_92_2 e_1_3_2_50_2 e_1_3_2_71_2 e_1_3_2_90_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_65_2 Ferro R. (e_1_3_2_79_2) 1963; 34 e_1_3_2_86_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_69_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 e_1_3_2_88_2 e_1_3_2_61_2 e_1_3_2_82_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_95_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_2_2 Stadelmaier H. H. (e_1_3_2_54_2) 1961; 52 e_1_3_2_91_2 Ijjaali I. (e_1_3_2_94_2) 2001; 216 Ferro R. (e_1_3_2_80_2) 1964; 36 e_1_3_2_72_2 Aroyo M. I. (e_1_3_2_32_2) 2011; 43 e_1_3_2_70_2 Charushnikova I. (e_1_3_2_93_2) 1997; 39 27493167 - Science. 2016 Aug 5;353(6299):539-40 |
References_xml | – ident: e_1_3_2_17_2 doi: 10.1126/science.aaa9297 – ident: e_1_3_2_39_2 doi: 10.1103/PhysRevX.6.021008 – ident: e_1_3_2_64_2 doi: 10.1002/1521-3749(200207)628:7<1541::AID-ZAAC1541>3.0.CO;2-J – ident: e_1_3_2_21_2 doi: 10.1103/PhysRevB.85.195320 – ident: e_1_3_2_59_2 doi: 10.3891/acta.chem.scand.19-0735 – volume: 52 start-page: 391 year: 1961 ident: e_1_3_2_54_2 article-title: Ternare kohlenstofflegierungen von palladium und platin mit magnesium, aluminium, zink, gallium, germanium, kadmium, indium, zinn, quecksilber, thallium und blei publication-title: Z. Metallk. – ident: e_1_3_2_43_2 doi: 10.1103/PhysRevB.88.104412 – ident: e_1_3_2_63_2 doi: 10.1515/znb-1992-0314 – ident: e_1_3_2_90_2 doi: 10.1016/0022-5088(71)90016-6 – ident: e_1_3_2_31_2 doi: 10.1524/zkri.2006.221.1.15 – ident: e_1_3_2_58_2 doi: 10.1021/ic800387a – ident: e_1_3_2_84_2 doi: 10.1021/j150557a020 – ident: e_1_3_2_19_2 doi: 10.1126/science.1245085 – ident: e_1_3_2_45_2 doi: 10.1038/ncomms11696 – ident: e_1_3_2_23_2 doi: 10.1103/PhysRevLett.108.140405 – ident: e_1_3_2_87_2 doi: 10.1016/0022-5088(59)90006-2 – ident: e_1_3_2_26_2 – ident: e_1_3_2_8_2 doi: 10.1103/PhysRevB.61.10267 – ident: e_1_3_2_11_2 doi: 10.1103/PhysRevX.5.031013 – ident: e_1_3_2_22_2 doi: 10.1126/science.aac6089 – ident: e_1_3_2_69_2 doi: 10.1016/0022-3697(64)90018-6 – volume: 39 start-page: 424 year: 1997 ident: e_1_3_2_93_2 publication-title: Radiochemistry – ident: e_1_3_2_44_2 doi: 10.1103/PhysRevB.84.235126 – ident: e_1_3_2_29_2 doi: 10.1103/PhysRevLett.116.186402 – ident: e_1_3_2_27_2 doi: 10.1515/crll.1965.219.180 – ident: e_1_3_2_61_2 doi: 10.1039/C5TA07040F – ident: e_1_3_2_28_2 – ident: e_1_3_2_91_2 doi: 10.1016/j.physc.2006.03.077 – ident: e_1_3_2_25_2 – ident: e_1_3_2_35_2 doi: 10.1103/PhysRevB.90.205136 – ident: e_1_3_2_51_2 doi: 10.2113/gscanmin.42.6.1733 – ident: e_1_3_2_16_2 doi: 10.1038/nphys3437 – ident: e_1_3_2_71_2 – ident: e_1_3_2_4_2 doi: 10.1103/PhysRevLett.105.077001 – ident: e_1_3_2_57_2 doi: 10.1006/jssc.1997.7310 – ident: e_1_3_2_92_2 doi: 10.1002/zaac.19713840103 – ident: e_1_3_2_72_2 doi: 10.1103/PhysRevB.47.1651 – ident: e_1_3_2_82_2 – ident: e_1_3_2_7_2 doi: 10.1103/PhysRevLett.105.177002 – ident: e_1_3_2_15_2 doi: 10.1103/PhysRevX.5.011029 – ident: e_1_3_2_73_2 doi: 10.1038/nphys2857 – ident: e_1_3_2_30_2 doi: 10.1107/S0108767305040286 – ident: e_1_3_2_70_2 doi: 10.1073/pnas.1514665112 – volume: 43 start-page: 183 year: 2011 ident: e_1_3_2_32_2 publication-title: Bulg. Chem. Commun. – volume: 34 start-page: 45 year: 1963 ident: e_1_3_2_79_2 article-title: Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali publication-title: Rendiconti – ident: e_1_3_2_38_2 doi: 10.1103/PhysRevB.89.155114 – ident: e_1_3_2_60_2 doi: 10.1126/sciadv.1501782 – ident: e_1_3_2_85_2 doi: 10.1088/0953-8984/18/31/035 – ident: e_1_3_2_76_2 doi: 10.1098/rspa.1984.0023 – ident: e_1_3_2_12_2 doi: 10.1038/nphys3426 – ident: e_1_3_2_67_2 doi: 10.3891/acta.chem.scand.19-0095 – ident: e_1_3_2_14_2 doi: 10.1103/PhysRevB.83.205101 – ident: e_1_3_2_46_2 – ident: e_1_3_2_75_2 doi: 10.1038/ncomms5898 – ident: e_1_3_2_5_2 doi: 10.1126/science.1222360 – ident: e_1_3_2_37_2 doi: 10.1103/PhysRevLett.108.266802 – ident: e_1_3_2_62_2 doi: 10.1016/0022-4596(80)90493-4 – ident: e_1_3_2_40_2 doi: 10.1103/PhysRevA.89.043621 – ident: e_1_3_2_81_2 doi: 10.30970/cma1.0024 – ident: e_1_3_2_47_2 doi: 10.1063/1.4812323 – ident: e_1_3_2_48_2 doi: 10.1103/PhysRevB.48.13115 – ident: e_1_3_2_83_2 doi: 10.1007/BF00776015 – ident: e_1_3_2_2_2 doi: 10.1103/RevModPhys.81.109 – ident: e_1_3_2_6_2 doi: 10.1126/science.1259327 – ident: e_1_3_2_56_2 doi: 10.1524/zkri.1991.197.14.257 – ident: e_1_3_2_65_2 doi: 10.1524/ncrs.2005.220.4.525 – ident: e_1_3_2_33_2 doi: 10.1103/PhysRevB.93.121113 – ident: e_1_3_2_9_2 doi: 10.1038/nmat4684 – ident: e_1_3_2_50_2 doi: 10.1016/j.progsolidstchem.2007.01.011 – ident: e_1_3_2_20_2 doi: 10.1103/PhysRevLett.112.036403 – ident: e_1_3_2_3_2 doi: 10.1103/PhysRevLett.100.096407 – ident: e_1_3_2_89_2 doi: 10.1016/j.jallcom.2003.11.003 – ident: e_1_3_2_68_2 doi: 10.1039/DT9850002369 – ident: e_1_3_2_74_2 doi: 10.1103/PhysRevB.78.045426 – ident: e_1_3_2_42_2 doi: 10.1038/nature15768 – ident: e_1_3_2_77_2 doi: 10.1103/PhysRevB.93.045113 – ident: e_1_3_2_78_2 doi: 10.1038/nphys3425 – ident: e_1_3_2_41_2 doi: 10.1126/science.aad5812 – ident: e_1_3_2_88_2 doi: 10.1021/ja037334j – ident: e_1_3_2_52_2 doi: 10.1021/ic0301472 – ident: e_1_3_2_49_2 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_3_2_10_2 doi: 10.1038/ncomms8373 – ident: e_1_3_2_24_2 – ident: e_1_3_2_34_2 doi: 10.1103/PhysRevB.93.205132 – ident: e_1_3_2_66_2 doi: 10.1107/S0365110X66003098 – ident: e_1_3_2_86_2 doi: 10.1524/ncrs.2004.219.14.11 – volume: 216 start-page: 485 year: 2001 ident: e_1_3_2_94_2 publication-title: Z. Kristallogr., New Cryst. Struct. – ident: e_1_3_2_95_2 doi: 10.1103/PhysRevB.85.155118 – volume: 36 start-page: 498 year: 1964 ident: e_1_3_2_80_2 article-title: Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali publication-title: Rendiconti – ident: e_1_3_2_53_2 doi: 10.1016/0022-5088(77)90266-1 – ident: e_1_3_2_18_2 doi: 10.1038/nmat3990 – ident: e_1_3_2_13_2 – ident: e_1_3_2_55_2 doi: 10.1038/198382b0 – reference: 27493167 - Science. 2016 Aug 5;353(6299):539-40 |
SSID | ssj0009593 |
Score | 2.6843438 |
Snippet | In quantum field theory, we learn that fermions come in three varieties: Majorana, Weyl, and Dirac. Here, we show that in solid-state systems this... Condensed-matter systems have recently become a fertile ground for the discovery of fermionic particles and phenomena predicted in high-energy physics;... |
SourceID | proquest pubmed crossref jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 558 |
SubjectTerms | Classification Condensed matter physics Crystals Exhaust systems Exhibits Fermi surfaces Fermions Magnetic fields Mathematical analysis Quantum theory RESEARCH ARTICLE SUMMARY Symmetry |
Title | Beyond Dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals |
URI | https://www.jstor.org/stable/24750098 https://www.ncbi.nlm.nih.gov/pubmed/27445310 https://www.proquest.com/docview/1819477586 https://www.proquest.com/docview/1809607443 https://www.proquest.com/docview/1835677982 |
Volume | 353 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELaqTki8IDYYBAYyEg9DU6rUcZJmb91GVX5sQqIdEy-R7ThQVKVb2zyUv5I_iXPsJI6gE-PFimI7sXxfLt_Z5zuEXg8UyQcd4FIWQxGQwGVEMJf6TPhBFvtUqKWB84twPKXvr4KrTueX5bVUrHlP_PzruZL_kSrcA7mqU7J3kGz9ULgB1yBfKEHCUP6TjM3xE1BbTEdd_SI386NM-bfAK5WxP81bbuU3BVvNritnuKPSB92qFssNkMX5ymas1ccPTLTe3bFkWrspDrUzQeVbYLpZCw1q136-yc0mR-N9fMryhe1n0yzxazX09fvsR1FD-FIuv-Wzhd78PzeZwcyqRT8sfeaCGmeT5tjMXQZta3ITSFn_x7Ty9lTeSeL5tnb3dSxiA-OQ6HRMf_44rFSXssdYFng6GE07RPd4-Dn5dDZKPr67-NCuLSkBBWuNqmTpYI_vEDBcSBftDE_OTkZbA0GbcFPWQa7q7S2mpJ1lt5tBJR2aPEQPjB2DhxpKu6gj8z10T2c23eyhXTOVK3xoApu_eYQuNV5xiVcMeMUKr7jC6zFuoxW30YpnOW5VV2h9jKajt5PTsWvyeriC0nDtxryfSRmlKeFpnHmCRDTgXFKVlpMLOvCYIFnqQWPB-0yFuOQZEOcMmKkQnDN_H3XzRS6fIswiynko-2BWMJpJxvoigwd4aRxEERfSQb1qDhNhgt6r3CvzpDR-SZiYSU_MpDvosO5wreO9bG-6Xwqlbkco0G8vHjjooJJSYrTFKgEmHdMIrPPQQa_qatDlaoOO5XJRqDZqQSGi1L-tjR-EURQPiIOeaAQ0A4Cu8E_1nt0-gOfofvNJHqDuelnIF0Ct1_ylQetvykzWrg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+Dirac+and+Weyl+fermions%3A+Unconventional+quasiparticles+in+conventional+crystals&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Bradlyn%2C+Barry&rft.au=Cano%2C+Jennifer&rft.au=Wang%2C+Zhijun&rft.au=Vergniory%2C+M+G&rft.date=2016-08-05&rft.pub=The+American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=353&rft.issue=6299&rft_id=info:doi/10.1126%2Fscience.aaf5037&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4182410211 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |