Demonstration of an ac Josephson junction laser

Superconducting electronic devices have reemerged as contenders for both classical and quantum computing due to their fast operation speeds, low dissipation, and long coherence times. An ultimate demonstration of coherence is lasing. We use one of the fundamental aspects of superconductivity, the ac...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 355; no. 6328; pp. 939 - 942
Main Authors Cassidy, M. C., Bruno, A., Rubbert, S., Irfan, M., Kammhuber, J., Schouten, R. N., Akhmerov, A. R., Kouwenhoven, L. P.
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 03.03.2017
The American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Superconducting electronic devices have reemerged as contenders for both classical and quantum computing due to their fast operation speeds, low dissipation, and long coherence times. An ultimate demonstration of coherence is lasing. We use one of the fundamental aspects of superconductivity, the ac Josephson effect, to demonstrate a laser made from a Josephson junction strongly coupled to a multimode superconducting cavity. A dc voltage bias applied across the junction provides a source of microwave photons, and the circuit’s nonlinearity allows for efficient down-conversion of higher-order Josephson frequencies to the cavity’s fundamental mode. The simple fabrication and operation allows for easy integration with a range of quantum devices, allowing for efficient on-chip generation of coherent microwave photons at low temperatures.
AbstractList The active elements of superconducting quantum circuits are typically addressed and controlled using pulses of microwave radiation. The microwaves are usually generated externally and coupled into the circuitry, resulting in rather bulky systems. Cassidy et al. developed an on-chip source of microwaves by using a superconducting Josephson junction inserted in a high-quality microwave cavity. The integrated version should enhance the control capability for manipulating miniaturized quantum circuits. Science, this issue p. 939 Superconducting electronic devices have reemerged as contenders for both classical and quantum computing due to their fast operation speeds, low dissipation, and long coherence times. An ultimate demonstration of coherence is lasing. We use one of the fundamental aspects of superconductivity, the ac Josephson effect, to demonstrate a laser made from a Josephson junction strongly coupled to a multimode superconducting cavity. A dc voltage bias applied across the junction provides a source of microwave photons, and the circuit's nonlinearity allows for efficient down-conversion of higher-order Josephson frequencies to the cavity's fundamental mode. The simple fabrication and operation allows for easy integration with a range of quantum devices, allowing for efficient on-chip generation of coherent microwave photons at low temperatures.
Superconducting electronic devices have reemerged as contenders for both classical and quantum computing due to their fast operation speeds, low dissipation, and long coherence times. An ultimate demonstration of coherence is lasing. We use one of the fundamental aspects of superconductivity, the ac Josephson effect, to demonstrate a laser made from a Josephson junction strongly coupled to a multimode superconducting cavity. A dc voltage bias applied across the junction provides a source of microwave photons, and the circuit's nonlinearity allows for efficient down-conversion of higher-order Josephson frequencies to the cavity's fundamental mode. The simple fabrication and operation allows for easy integration with a range of quantum devices, allowing for efficient on-chip generation of coherent microwave photons at low temperatures.
An on-chip microwave source The active elements of superconducting quantum circuits are typically addressed and controlled using pulses of microwave radiation. The microwaves are usually generated externally and coupled into the circuitry, resulting in rather bulky systems. Cassidy et al. developed an on-chip source of microwaves by using a superconducting Josephson junction inserted in a high-quality microwave cavity. The integrated version should enhance the control capability for manipulating miniaturized quantum circuits. Science , this issue p. 939 A Josephson junction coupled to a cavity provides an on-chip source of coherent microwaves. Superconducting electronic devices have reemerged as contenders for both classical and quantum computing due to their fast operation speeds, low dissipation, and long coherence times. An ultimate demonstration of coherence is lasing. We use one of the fundamental aspects of superconductivity, the ac Josephson effect, to demonstrate a laser made from a Josephson junction strongly coupled to a multimode superconducting cavity. A dc voltage bias applied across the junction provides a source of microwave photons, and the circuit’s nonlinearity allows for efficient down-conversion of higher-order Josephson frequencies to the cavity’s fundamental mode. The simple fabrication and operation allows for easy integration with a range of quantum devices, allowing for efficient on-chip generation of coherent microwave photons at low temperatures.
An on-chip microwave sourceThe active elements of superconducting quantum circuits are typically addressed and controlled using pulses of microwave radiation. The microwaves are usually generated externally and coupled into the circuitry, resulting in rather bulky systems. Cassidy et al. developed an on-chip source of microwaves by using a superconducting Josephson junction inserted in a high-quality microwave cavity. The integrated version should enhance the control capability for manipulating miniaturized quantum circuits.Science, this issue p. 939 Superconducting electronic devices have reemerged as contenders for both classical and quantum computing due to their fast operation speeds, low dissipation, and long coherence times. An ultimate demonstration of coherence is lasing. We use one of the fundamental aspects of superconductivity, the ac Josephson effect, to demonstrate a laser made from a Josephson junction strongly coupled to a multimode superconducting cavity. A dc voltage bias applied across the junction provides a source of microwave photons, and the circuit's nonlinearity allows for efficient down-conversion of higher-order Josephson frequencies to the cavity's fundamental mode. The simple fabrication and operation allows for easy integration with a range of quantum devices, allowing for efficient on-chip generation of coherent microwave photons at low temperatures.
Author Kammhuber, J.
Irfan, M.
Kouwenhoven, L. P.
Cassidy, M. C.
Akhmerov, A. R.
Bruno, A.
Rubbert, S.
Schouten, R. N.
Author_xml – sequence: 1
  givenname: M. C.
  surname: Cassidy
  fullname: Cassidy, M. C.
– sequence: 2
  givenname: A.
  surname: Bruno
  fullname: Bruno, A.
– sequence: 3
  givenname: S.
  surname: Rubbert
  fullname: Rubbert, S.
– sequence: 4
  givenname: M.
  surname: Irfan
  fullname: Irfan, M.
– sequence: 5
  givenname: J.
  surname: Kammhuber
  fullname: Kammhuber, J.
– sequence: 6
  givenname: R. N.
  surname: Schouten
  fullname: Schouten, R. N.
– sequence: 7
  givenname: A. R.
  surname: Akhmerov
  fullname: Akhmerov, A. R.
– sequence: 8
  givenname: L. P.
  surname: Kouwenhoven
  fullname: Kouwenhoven, L. P.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28254938$$D View this record in MEDLINE/PubMed
BookMark eNqN0EtLAzEUBeAgFfvQtSul4MbNtDevabKU-qbgRtdDmrlDO0yTmsws_Pemtiq4MgQCOV8u5AxJz3mHhJxTmFDK8mm0a3QWJ8as8lzAERlQ0DLTDHiPDAB4nimYyT4ZxlgDpEzzE9JnikmhuRqQ6S1uvIttMO3au7GvxsaNjR0_-4jbVUxXdefsV9aYiOGUHFemiXh2OEfk7f7udf6YLV4enuY3i8wKkbeZ5ks0oE2pESoKVkulLaJQjKuZ0dRIFCClhbQFoNCyXDJdlbOqBMol5SNyvZ-7Df69w9gWm3W02DTGoe9iQZXmGpjK9T_oTAhBGWWJXv2hte-CSx_ZKclVWjKp6V7Z4GMMWBXbsN6Y8FFQKHa1F4fai0Pt6cXlYW633GD54797TuBiD-rY-vCbC02VkMA_AeKCiQA
CitedBy_id crossref_primary_10_1063_5_0006499
crossref_primary_10_1103_PhysRevB_98_224511
crossref_primary_10_1103_PhysRevLett_130_146702
crossref_primary_10_1140_epjd_e2019_90654_6
crossref_primary_10_1103_PhysRevB_102_140504
crossref_primary_10_1103_PhysRevApplied_16_034034
crossref_primary_10_1038_s41467_018_07256_0
crossref_primary_10_1103_PhysRevB_96_214509
crossref_primary_10_1103_PhysRevLett_122_054102
crossref_primary_10_1007_s00339_019_2553_5
crossref_primary_10_1038_s41598_017_15190_2
crossref_primary_10_1088_1367_2630_ab6eb0
crossref_primary_10_1515_phys_2023_0128
crossref_primary_10_1038_s41928_021_00680_z
crossref_primary_10_1038_s41565_018_0207_y
crossref_primary_10_1088_1361_6668_ab3dc7
crossref_primary_10_1541_ieejfms_142_183
crossref_primary_10_1103_PhysRevApplied_9_014030
crossref_primary_10_1103_PhysRevA_97_053809
crossref_primary_10_1103_PhysRevB_96_104503
crossref_primary_10_1103_PhysRevLett_119_137001
crossref_primary_10_1103_PhysRevLett_126_073902
crossref_primary_10_1103_PhysRevResearch_2_033158
crossref_primary_10_1088_1367_2630_ac60df
crossref_primary_10_1103_PhysRevB_99_144524
crossref_primary_10_1088_1674_1056_ac76ae
crossref_primary_10_1103_PhysRevB_104_054517
crossref_primary_10_1103_PhysRevApplied_21_044023
crossref_primary_10_1088_1367_2630_abe483
crossref_primary_10_1088_1742_6596_1461_1_012066
crossref_primary_10_1103_PhysRevB_95_134515
crossref_primary_10_1103_PhysRevB_102_104503
crossref_primary_10_1103_PhysRevB_107_144509
crossref_primary_10_3390_cryst9070327
crossref_primary_10_1038_s42005_024_01570_4
crossref_primary_10_1103_PhysRevApplied_12_024034
crossref_primary_10_1103_PhysRevApplied_19_064032
crossref_primary_10_1088_1367_2630_ab9d54
crossref_primary_10_1038_s41567_019_0683_5
crossref_primary_10_1103_PhysRevResearch_3_043020
crossref_primary_10_1103_PhysRevX_11_031008
crossref_primary_10_1140_epjst_e2018_800062_8
crossref_primary_10_1103_PhysRevLett_122_207702
crossref_primary_10_1103_PhysRevA_97_013855
crossref_primary_10_1088_1402_4896_ab2a90
crossref_primary_10_1038_nature25768
crossref_primary_10_1103_PhysRevB_104_155424
crossref_primary_10_1021_acs_nanolett_0c00025
crossref_primary_10_1039_D0RA00718H
crossref_primary_10_1038_s41566_023_01348_0
crossref_primary_10_1103_PhysRevLett_122_186804
crossref_primary_10_3390_mi11121088
crossref_primary_10_1142_S0217984920300057
crossref_primary_10_1103_PhysRevB_100_054515
crossref_primary_10_1103_PhysRevX_12_021006
crossref_primary_10_1016_j_physleta_2017_05_045
crossref_primary_10_1021_acs_nanolett_3c03684
crossref_primary_10_1038_s41928_018_0055_7
crossref_primary_10_1103_PhysRevB_97_035305
crossref_primary_10_1103_PhysRevX_9_021016
crossref_primary_10_1038_s41467_024_48224_1
crossref_primary_10_1063_5_0031604
crossref_primary_10_1103_PhysRevB_97_205429
crossref_primary_10_1126_sciadv_adm7624
crossref_primary_10_1038_s41598_018_21772_5
crossref_primary_10_1103_PhysRevLett_123_246601
crossref_primary_10_21468_SciPostPhys_14_6_156
crossref_primary_10_1103_PhysRevLett_132_017001
crossref_primary_10_1038_s41467_021_25879_8
crossref_primary_10_1103_PhysRevLett_121_027004
crossref_primary_10_1103_PhysRevA_96_053816
crossref_primary_10_1088_1367_2630_ad06d8
crossref_primary_10_1103_PhysRevA_107_L031701
crossref_primary_10_1103_PRXQuantum_2_030350
Cites_doi 10.1038/nature02851
10.1103/PhysRevLett.113.187002
10.1103/PhysRevA.60.4083
10.1126/science.1149802
10.1016/0375-9601(70)90735-8
10.1103/PhysRevLett.64.1824
10.1063/1.1754502
10.1038/srep12260
10.1103/PhysRevB.90.020506
10.1103/PhysRevLett.106.217005
10.1063/1.4802893
10.1063/1.3573824
10.1103/PhysRevLett.111.247002
10.1103/PhysRevLett.82.1963
10.1126/science.aaa2501
10.1063/1.88824
10.1103/PhysRevLett.60.764
10.1103/PhysRevLett.111.247001
10.1126/science.1084647
10.1103/PhysRevA.92.053802
10.1103/PhysRev.112.1940
10.1002/0471654507.eme061
10.1038/nature06141
10.1103/PhysRevB.92.174532
10.1109/PROC.1969.7077
10.1063/1.98041
10.1016/0370-1573(76)90011-9
10.1103/PhysRevLett.93.207002
10.1103/PhysRevA.86.032106
10.1109/JRPROC.1946.229930
ContentType Journal Article
Copyright Copyright © 2017 American Association for the Advancement of Science
Copyright © 2017, American Association for the Advancement of Science.
Copyright © 2017, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2017 American Association for the Advancement of Science
– notice: Copyright © 2017, American Association for the Advancement of Science.
– notice: Copyright © 2017, American Association for the Advancement of Science
DBID NPM
AAYXX
CITATION
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.aah6640
DatabaseName PubMed
CrossRef
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
CrossRef
MEDLINE - Academic

Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 942
ExternalDocumentID 10_1126_science_aah6640
28254938
24918450
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0B8
0R~
0WA
123
18M
2FS
2KS
2WC
34G
36B
39C
3R3
53G
5RE
63O
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AADHG
AAIKC
AAMNW
AANCE
AAWTO
ABBHK
ABCQX
ABDBF
ABDEX
ABEFU
ABIVO
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ADDRP
ADMHC
ADZLD
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFFDN
AFFNX
AFHKK
AFOSN
AFQFN
AFRAH
AGCDD
AGFXO
AGNAY
AGSOS
AHMBA
AHPSJ
AIDAL
AIDUJ
AJGZS
ALMA_UNASSIGNED_HOLDINGS
ANJGP
AQVQM
ASPBG
AVWKF
B-7
BKF
BLC
C45
C51
CS3
DB2
DCCCD
DNJUQ
DOOOF
DU5
DWIUU
EBS
EJD
EMOBN
ESX
F5P
FA8
FEDTE
GX1
HZ~
I.T
IAO
IEA
IGG
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OK1
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHF
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VQA
VVN
WH7
WI4
X7M
XFK
XJF
XZL
Y6R
YCJ
YK4
YKV
YNT
YOJ
YR2
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZA5
ZCA
ZE2
~02
~G0
~KM
~ZZ
ADACV
ADQXQ
NPM
AAYXX
ADUKH
AFRQD
ALIPV
CITATION
IPSME
UIG
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c446t-93bea09ad9e0f10c9589cee482387a91a5e4055c05c040e495db29fd7fd013513
ISSN 0036-8075
IngestDate Fri Aug 16 11:29:38 EDT 2024
Sat Aug 17 02:33:48 EDT 2024
Fri Sep 13 01:56:11 EDT 2024
Fri Aug 23 03:41:53 EDT 2024
Thu May 23 23:23:56 EDT 2024
Fri Feb 02 07:18:52 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6328
Language English
License Copyright © 2017, American Association for the Advancement of Science.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c446t-93bea09ad9e0f10c9589cee482387a91a5e4055c05c040e495db29fd7fd013513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7780-1549
0000-0001-8031-1340
0000-0001-6476-0736
0000-0002-2924-8451
0000-0003-4118-5120
0000-0003-4467-9361
0000-0002-7821-5082
0000-0002-7046-8181
PMID 28254938
PQID 1875388885
PQPubID 1256
PageCount 4
ParticipantIDs proquest_miscellaneous_1893902869
proquest_miscellaneous_1874441212
proquest_journals_1875388885
crossref_primary_10_1126_science_aah6640
pubmed_primary_28254938
jstor_primary_24918450
PublicationCentury 2000
PublicationDate 20170303
2017-03-03
PublicationDateYYYYMMDD 2017-03-03
PublicationDate_xml – month: 3
  year: 2017
  text: 20170303
  day: 3
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2017
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_3_2
e_1_3_2_2_2
e_1_3_2_14_2
References_xml – ident: e_1_3_2_12_2
  doi: 10.1038/nature02851
– ident: e_1_3_2_21_2
  doi: 10.1103/PhysRevLett.113.187002
– ident: e_1_3_2_28_2
  doi: 10.1103/PhysRevA.60.4083
– ident: e_1_3_2_6_2
  doi: 10.1126/science.1149802
– ident: e_1_3_2_2_2
  doi: 10.1016/0375-9601(70)90735-8
– ident: e_1_3_2_14_2
  doi: 10.1103/PhysRevLett.64.1824
– ident: e_1_3_2_16_2
  doi: 10.1063/1.1754502
– ident: e_1_3_2_22_2
  doi: 10.1038/srep12260
– ident: e_1_3_2_8_2
  doi: 10.1103/PhysRevB.90.020506
– ident: e_1_3_2_7_2
  doi: 10.1103/PhysRevLett.106.217005
– ident: e_1_3_2_23_2
  doi: 10.1063/1.4802893
– ident: e_1_3_2_11_2
  doi: 10.1063/1.3573824
– ident: e_1_3_2_31_2
  doi: 10.1103/PhysRevLett.111.247002
– ident: e_1_3_2_5_2
  doi: 10.1103/PhysRevLett.82.1963
– ident: e_1_3_2_10_2
  doi: 10.1126/science.aaa2501
– ident: e_1_3_2_4_2
  doi: 10.1063/1.88824
– ident: e_1_3_2_18_2
  doi: 10.1103/PhysRevLett.60.764
– ident: e_1_3_2_32_2
  doi: 10.1103/PhysRevLett.111.247001
– ident: e_1_3_2_26_2
  doi: 10.1126/science.1084647
– ident: e_1_3_2_17_2
  doi: 10.1103/PhysRevA.92.053802
– ident: e_1_3_2_27_2
  doi: 10.1103/PhysRev.112.1940
– ident: e_1_3_2_25_2
  doi: 10.1002/0471654507.eme061
– ident: e_1_3_2_9_2
  doi: 10.1038/nature06141
– ident: e_1_3_2_15_2
  doi: 10.1103/PhysRevB.92.174532
– ident: e_1_3_2_30_2
  doi: 10.1109/PROC.1969.7077
– ident: e_1_3_2_24_2
  doi: 10.1063/1.98041
– ident: e_1_3_2_3_2
  doi: 10.1016/0370-1573(76)90011-9
– ident: e_1_3_2_19_2
  doi: 10.1103/PhysRevLett.93.207002
– ident: e_1_3_2_29_2
  doi: 10.1103/PhysRevA.86.032106
– ident: e_1_3_2_20_2
  doi: 10.1109/JRPROC.1946.229930
SSID ssj0009593
Score 2.572212
Snippet Superconducting electronic devices have reemerged as contenders for both classical and quantum computing due to their fast operation speeds, low dissipation,...
An on-chip microwave source The active elements of superconducting quantum circuits are typically addressed and controlled using pulses of microwave radiation....
The active elements of superconducting quantum circuits are typically addressed and controlled using pulses of microwave radiation. The microwaves are usually...
An on-chip microwave sourceThe active elements of superconducting quantum circuits are typically addressed and controlled using pulses of microwave radiation....
SourceID proquest
crossref
pubmed
jstor
SourceType Aggregation Database
Index Database
Publisher
StartPage 939
SubjectTerms Active control
Circuits
Coherence
Dissipation
Electronic devices
Electronic equipment
Holes
Integration
Josephson effect
Josephson junctions
Lasers
Lasing
Microwave radiation
Microwaves
Nonlinear systems
Nonlinearity
Photons
Quantum computing
Quantum theory
Superconductivity
Title Demonstration of an ac Josephson junction laser
URI https://www.jstor.org/stable/24918450
https://www.ncbi.nlm.nih.gov/pubmed/28254938
https://www.proquest.com/docview/1875388885/abstract/
https://search.proquest.com/docview/1874441212
https://search.proquest.com/docview/1893902869
Volume 355
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbx2AvY-3WLV03NNhD--DOH5JtPZauXVuaFkoCeTOSLDEGc0aaPHR__U7S2bFZW7qFYIKk2EZ3Ov3udB-EfE51LrnldZTIgoGCYrNIwkYfSSNz5U6utM-lN77MT6fsfMZn6yqdPrpkqQ707zvjSv6HqtAGdHVRsv9A2e6m0AC_gb5wBQrD9VE0_mp-Oni36GAfLFap0arvSgv-gF3L9wFGRjdcBKLtmgaA2R3a9EjVeR8eBh-B1mUA_9azHxwB-kYX3vHa5OoSGswHptLrlVIYH9Thz7OFDfbXcd_4ABua874KAskEgRm7Wo8ptqFEzULmXWSdPMPw7yAiRUhehLutCLm1_hbkvdKT5kDK73ke0joNU2ZfXlUn04uLanI8mzwlz9JCcKeBf5slg8zLmNOpFy3V3nIAR4JH6v26hscck1fkJSoL9DBQfpM8Mc0WeR7Kh95ukU2kxg3dw-zh-6_JlwFT0LmlsqFS044paMsU1DPFGzI9OZ4cnUZYFSPSoLovI5EpI2Mha2Fim8Ra8FIA0mElgK9CikRyAyCc6xi-LDagANcqFbYubB27cozZNtlo5o15R6hItGGM87rUiklQPEG5tJYLmRW2VCYdkb12cqpfIflJ5ZXGNK9wHiucxxHZ9pPXjQO1PikZh47ddjYrXDo3VeK05BI-fEQ-dd0g2NxplWzMfOXHMMDqAK0eGgPcBAg5FyPyNlBq_QLe9pGVO494wnvyYs3du2RjuViZDwA2l-qjZ6Y_fRSAiw
link.rule.ids 315,786,790,27957,27958
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Demonstration+of+an+ac+Josephson+junction+laser&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Cassidy%2C+M+C&rft.au=Bruno%2C+A&rft.au=Rubbert%2C+S&rft.au=Irfan%2C+M&rft.date=2017-03-03&rft.eissn=1095-9203&rft.volume=355&rft.issue=6328&rft.spage=939&rft.epage=942&rft_id=info:doi/10.1126%2Fscience.aah6640&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon