MaD GUI: An Open-Source Python Package for Annotation and Analysis of Time-Series Data
Developing machine learning algorithms for time-series data often requires manual annotation of the data. To do so, graphical user interfaces (GUIs) are an important component. Existing Python packages for annotation and analysis of time-series data have been developed without addressing adaptabilit...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 22; no. 15; p. 5849 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
05.08.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Developing machine learning algorithms for time-series data often requires manual annotation of the data. To do so, graphical user interfaces (GUIs) are an important component. Existing Python packages for annotation and analysis of time-series data have been developed without addressing adaptability, usability, and user experience. Therefore, we developed a generic open-source Python package focusing on adaptability, usability, and user experience. The developed package, Machine Learning and Data Analytics (MaD) GUI, enables developers to rapidly create a GUI for their specific use case. Furthermore, MaD GUI enables domain experts without programming knowledge to annotate time-series data and apply algorithms to it. We conducted a small-scale study with participants from three international universities to test the adaptability of MaD GUI by developers and to test the user interface by clinicians as representatives of domain experts. MaD GUI saves up to 75% of time in contrast to using a state-of-the-art package. In line with this, subjective ratings regarding usability and user experience show that MaD GUI is preferred over a state-of-the-art package by developers and clinicians. MaD GUI reduces the effort of developers in creating GUIs for time-series analysis and offers similar usability and user experience for clinicians as a state-of-the-art package. |
---|---|
AbstractList | Developing machine learning algorithms for time-series data often requires manual annotation of the data. To do so, graphical user interfaces (GUIs) are an important component. Existing Python packages for annotation and analysis of time-series data have been developed without addressing adaptability, usability, and user experience. Therefore, we developed a generic open-source Python package focusing on adaptability, usability, and user experience. The developed package, Machine Learning and Data Analytics (MaD) GUI, enables developers to rapidly create a GUI for their specific use case. Furthermore, MaD GUI enables domain experts without programming knowledge to annotate time-series data and apply algorithms to it. We conducted a small-scale study with participants from three international universities to test the adaptability of MaD GUI by developers and to test the user interface by clinicians as representatives of domain experts. MaD GUI saves up to 75% of time in contrast to using a state-of-the-art package. In line with this, subjective ratings regarding usability and user experience show that MaD GUI is preferred over a state-of-the-art package by developers and clinicians. MaD GUI reduces the effort of developers in creating GUIs for time-series analysis and offers similar usability and user experience for clinicians as a state-of-the-art package. Developing machine learning algorithms for time-series data often requires manual annotation of the data. To do so, graphical user interfaces (GUIs) are an important component. Existing Python packages for annotation and analysis of time-series data have been developed without addressing adaptability, usability, and user experience. Therefore, we developed a generic open-source Python package focusing on adaptability, usability, and user experience. The developed package, Machine Learning and Data Analytics (MaD) GUI, enables developers to rapidly create a GUI for their specific use case. Furthermore, MaD GUI enables domain experts without programming knowledge to annotate time-series data and apply algorithms to it. We conducted a small-scale study with participants from three international universities to test the adaptability of MaD GUI by developers and to test the user interface by clinicians as representatives of domain experts. MaD GUI saves up to 75% of time in contrast to using a state-of-the-art package. In line with this, subjective ratings regarding usability and user experience show that MaD GUI is preferred over a state-of-the-art package by developers and clinicians. MaD GUI reduces the effort of developers in creating GUIs for time-series analysis and offers similar usability and user experience for clinicians as a state-of-the-art package.Developing machine learning algorithms for time-series data often requires manual annotation of the data. To do so, graphical user interfaces (GUIs) are an important component. Existing Python packages for annotation and analysis of time-series data have been developed without addressing adaptability, usability, and user experience. Therefore, we developed a generic open-source Python package focusing on adaptability, usability, and user experience. The developed package, Machine Learning and Data Analytics (MaD) GUI, enables developers to rapidly create a GUI for their specific use case. Furthermore, MaD GUI enables domain experts without programming knowledge to annotate time-series data and apply algorithms to it. We conducted a small-scale study with participants from three international universities to test the adaptability of MaD GUI by developers and to test the user interface by clinicians as representatives of domain experts. MaD GUI saves up to 75% of time in contrast to using a state-of-the-art package. In line with this, subjective ratings regarding usability and user experience show that MaD GUI is preferred over a state-of-the-art package by developers and clinicians. MaD GUI reduces the effort of developers in creating GUIs for time-series analysis and offers similar usability and user experience for clinicians as a state-of-the-art package. |
Author | Ollenschläger, Malte Küderle, Arne Mehringer, Wolfgang Gaßner, Heiko Winkler, Jürgen Seifer, Ann-Kristin Kluge, Felix Eskofier, Bjoern M. |
AuthorAffiliation | 1 Machine Learning and Data Analytics Lab, Department of Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany 2 Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany 3 Fraunhofer IIS, Fraunhofer Institute for Integrated Circuits IIS, 91058 Erlangen, Germany |
AuthorAffiliation_xml | – name: 1 Machine Learning and Data Analytics Lab, Department of Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany – name: 2 Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany – name: 3 Fraunhofer IIS, Fraunhofer Institute for Integrated Circuits IIS, 91058 Erlangen, Germany |
Author_xml | – sequence: 1 givenname: Malte orcidid: 0000-0002-8135-6740 surname: Ollenschläger fullname: Ollenschläger, Malte – sequence: 2 givenname: Arne orcidid: 0000-0002-5686-281X surname: Küderle fullname: Küderle, Arne – sequence: 3 givenname: Wolfgang surname: Mehringer fullname: Mehringer, Wolfgang – sequence: 4 givenname: Ann-Kristin surname: Seifer fullname: Seifer, Ann-Kristin – sequence: 5 givenname: Jürgen orcidid: 0000-0003-0630-9204 surname: Winkler fullname: Winkler, Jürgen – sequence: 6 givenname: Heiko orcidid: 0000-0003-2037-9460 surname: Gaßner fullname: Gaßner, Heiko – sequence: 7 givenname: Felix orcidid: 0000-0003-4921-6104 surname: Kluge fullname: Kluge, Felix – sequence: 8 givenname: Bjoern M. orcidid: 0000-0002-0417-0336 surname: Eskofier fullname: Eskofier, Bjoern M. |
BookMark | eNplkUtPVDEUgBuDkYcu_Ac3caOLK30_XJgQQJwEAwngtuntY-h4px3aOybz7ykMGsFV29PvfOfknH2wk3LyALxH8DMhCh5WjBFjkqpXYA9RTHuJMdz5574L9mtdQIgJIfIN2CVMMUEh3wM_f5iT7uxm9qU7St3Fyqf-Kq-L9d3lZrrNqbs09peZ-y7k0oiUJzPFFjbJtacZNzXWLofuOi59f-VL9LU7MZN5C14HM1b_7uk8ADffTq-Pv_fnF2ez46Pz3lLKp14Ga2EQCKvWjUPCB8M5ZW5ww4CZoc4b5hi3UmFhMZFK0sELFgZKnXBGkgMw23pdNgu9KnFpykZnE_VjIJe5NmWKdvSaWBFgkIFz5ekAiQqeK8UVEUQKgl1zfd26Vuth6Z31aSpmfCZ9_pPirZ7n37opEEKwCT4-CUq-W_s66WWs1o-jST6vq8YCYiQZFKyhH16gizb2NtBHCgrefA_U4ZayJddafNA2bhfQ6sdRI6gf9q__7r9lfHqR8af9_9l79ZCt_A |
CitedBy_id | crossref_primary_10_1016_j_simpa_2024_100679 crossref_primary_10_3390_s23146565 crossref_primary_10_1109_ACCESS_2024_3487013 crossref_primary_10_1111_ene_16367 crossref_primary_10_3390_s23135879 crossref_primary_10_3389_fcomp_2024_1379788 crossref_primary_10_1016_j_softx_2025_102036 crossref_primary_10_1186_s13023_023_02854_8 |
Cites_doi | 10.1080/03091902.2020.1822940 10.1037/h0055392 10.1109/TSE.1976.233837 10.1145/2968219.2971459 10.1007/s10067-020-05196-z 10.1002/mds.26642 10.1016/j.proeng.2012.04.102 10.1016/j.proeng.2013.07.047 10.3390/s20247302 10.1207/s15327051hci0701_3 10.1161/01.CIR.101.23.e215 10.1155/2022/8903604 10.1159/000511930 10.1109/PERCOMW.2018.8480193 10.1109/PerComWorkshops51409.2021.9431110 10.1016/0096-0551(84)90006-7 10.1145/3194164.3194186 10.1177/001872089203400407 10.1007/s10916-017-0760-1 10.1101/2020.04.07.029561 10.1109/TNSRE.2021.3119390 10.1213/ANE.0000000000004575 10.1145/3369813 10.1177/1545968313491004 10.1002/ams2.740 10.1109/TSE.2021.3127131 10.1007/s10664-013-9286-4 10.1109/MCSE.2012.38 10.3390/info11040193 10.1109/TNSRE.2020.2969649 10.1109/RBME.2020.3013489 10.1016/j.jss.2017.03.044 10.1016/j.cosrev.2020.100254 10.1201/9781498710411 10.1109/ICSE-SEIP.2019.00017 10.1109/JBHI.2016.2608720 10.1371/journal.pone.0241922 10.1080/10447310802205776 10.1524/9783486841749 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s22155849 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Proquest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_3c7f0f8f669e4b039fe699693738732d PMC9371110 10_3390_s22155849 |
GrantInformation_xml | – fundername: Federal Ministry of Education and Research, Germany grantid: 01GM1905 – fundername: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—“Mobility_APP” grantid: 438496663 – fundername: Fraunhofer Internal Programs grantid: 044-602140; 044-602150 – fundername: European Union’s Horizon 2020 research and innovation program; European Federation of Pharmaceutical Industries and Associations (EFPIA) – fundername: Mobilise-D project; Innovative Medicines Initiative 2 Joint Undertaking (JU) grantid: 820820 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c446t-8fcc0f7129740d17efa6645dbdbb25a4dea5d56c8927c238984be75fb44d7da83 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 00:33:03 EDT 2025 Thu Aug 21 14:06:17 EDT 2025 Mon Jul 21 10:32:13 EDT 2025 Fri Jul 25 20:03:53 EDT 2025 Tue Jul 01 02:42:05 EDT 2025 Thu Apr 24 23:08:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-8fcc0f7129740d17efa6645dbdbb25a4dea5d56c8927c238984be75fb44d7da83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5686-281X 0000-0002-8135-6740 0000-0003-0630-9204 0000-0003-2037-9460 0000-0002-0417-0336 0000-0003-4921-6104 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22155849 |
PMID | 35957406 |
PQID | 2700761105 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3c7f0f8f669e4b039fe699693738732d pubmedcentral_primary_oai_pubmedcentral_nih_gov_9371110 proquest_miscellaneous_2702185075 proquest_journals_2700761105 crossref_citationtrail_10_3390_s22155849 crossref_primary_10_3390_s22155849 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220805 |
PublicationDateYYYYMMDD | 2022-08-05 |
PublicationDate_xml | – month: 8 year: 2022 text: 20220805 day: 5 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_14 ref_13 ref_12 ref_56 ref_55 ref_10 ref_54 ref_53 ref_52 Qayyum (ref_2) 2021; 14 Khera (ref_5) 2020; 44 ref_19 ref_18 Stetter (ref_49) 1984; 9 ref_17 Gao (ref_23) 2020; 37 ref_60 ref_22 ref_64 ref_63 ref_62 Rowlands (ref_16) 2012; 34 (ref_61) 2017; 128 McCabe (ref_47) 1976; SE-2 ref_29 ref_28 ref_27 ref_26 MacKenzie (ref_42) 1992; 7 Bangor (ref_65) 2008; 24 Vyas (ref_24) 2022; 2022 Wertheimer (ref_39) 1923; 1 Baig (ref_4) 2017; 41 Varghese (ref_1) 2020; 36 Goldberger (ref_59) 2000; 101 Stodden (ref_21) 2010; 15 ref_36 LeVeque (ref_33) 2012; 14 ref_35 Hofer (ref_25) 2020; 130 ref_34 ref_32 ref_31 ref_30 Wijendra (ref_50) 2021; 174 Virzi (ref_66) 1992; 34 Fitts (ref_41) 1954; 47 Espay (ref_20) 2016; 31 ref_38 Haladjian (ref_11) 2019; 3 ref_37 Mueller (ref_3) 2022; 9 Krasner (ref_45) 1988; 1 Espinosa (ref_15) 2013; 60 Weiss (ref_58) 2013; 27 Kushwaha (ref_51) 2006; 31 (ref_7) 2021; 40 Zhang (ref_9) 2020; 28 ref_46 ref_43 Ullrich (ref_8) 2021; 29 ref_40 Chen (ref_44) 2016; 20 ref_48 Siegmund (ref_57) 2014; 19 ref_6 |
References_xml | – volume: 44 start-page: 441 year: 2020 ident: ref_5 article-title: Role of machine learning in gait analysis: A review publication-title: J. Med. Eng. Technol. doi: 10.1080/03091902.2020.1822940 – volume: 47 start-page: 381 year: 1954 ident: ref_41 article-title: The information capacity of the human motor system in controlling the amplitude of movement publication-title: J. Exp. Psychol. doi: 10.1037/h0055392 – ident: ref_32 – volume: SE-2 start-page: 308 year: 1976 ident: ref_47 article-title: A Complexity Measure publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.1976.233837 – ident: ref_55 – ident: ref_17 doi: 10.1145/2968219.2971459 – volume: 40 start-page: 11 year: 2021 ident: ref_7 article-title: The basics of data, big data, and machine learning in clinical practice publication-title: Clin. Rheumatol. doi: 10.1007/s10067-020-05196-z – volume: 31 start-page: 1272 year: 2016 ident: ref_20 article-title: Technology in Parkinson’s disease: Challenges and opportunities: Technology in PD publication-title: Mov. Disord. doi: 10.1002/mds.26642 – volume: 34 start-page: 598 year: 2012 ident: ref_16 article-title: Using inertial sensors to index into video publication-title: Procedia Eng. doi: 10.1016/j.proeng.2012.04.102 – ident: ref_35 – volume: 60 start-page: 243 year: 2013 ident: ref_15 article-title: Sports Monitoring Data and Video Interface Using a GUI Auto Generation Matlab Tool publication-title: Procedia Eng. doi: 10.1016/j.proeng.2013.07.047 – ident: ref_10 doi: 10.3390/s20247302 – volume: 7 start-page: 91 year: 1992 ident: ref_42 article-title: Fitts’ Law as a Research and Design Tool in Human-Computer Interaction publication-title: Hum. Comput. Interact. doi: 10.1207/s15327051hci0701_3 – volume: 174 start-page: 14 year: 2021 ident: ref_50 article-title: Analysis of Cognitive Complexity with Cyclomatic Complexity Metric of Software publication-title: Int. J. Comput. Appl. – volume: 101 start-page: e215 year: 2000 ident: ref_59 article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – ident: ref_31 – ident: ref_56 – volume: 2022 start-page: 8903604 year: 2022 ident: ref_24 article-title: Critical Retrospection of Performance of Emerging Mobile Technologies in Health Data Management publication-title: J. Healthc. Eng. doi: 10.1155/2022/8903604 – ident: ref_27 – ident: ref_52 – volume: 1 start-page: 47 year: 1923 ident: ref_39 article-title: Untersuchungen zur Lehre von der Gestalt publication-title: Z. Psychol. Ihre Grenzwissenschaften – volume: 36 start-page: 443 year: 2020 ident: ref_1 article-title: Artificial Intelligence in Medicine: Chances and Challenges for Wide Clinical Adoption publication-title: Visc. Med. doi: 10.1159/000511930 – ident: ref_18 doi: 10.1109/PERCOMW.2018.8480193 – ident: ref_19 doi: 10.1109/PerComWorkshops51409.2021.9431110 – volume: 9 start-page: 203 year: 1984 ident: ref_49 article-title: A measure of program complexity publication-title: Comput. Lang. doi: 10.1016/0096-0551(84)90006-7 – ident: ref_54 doi: 10.1145/3194164.3194186 – volume: 34 start-page: 457 year: 1992 ident: ref_66 article-title: Refining the Test Phase of Usability Evaluation: How Many Subjects Is Enough? publication-title: Hum. Factors J. Hum. Factors Ergon. Soc. doi: 10.1177/001872089203400407 – volume: 41 start-page: 115 year: 2017 ident: ref_4 article-title: A Systematic Review of Wearable Patient Monitoring Systems—Current Challenges and Opportunities for Clinical Adoption publication-title: J. Med. Syst. doi: 10.1007/s10916-017-0760-1 – ident: ref_6 doi: 10.1101/2020.04.07.029561 – ident: ref_13 – ident: ref_38 – volume: 29 start-page: 2103 year: 2021 ident: ref_8 article-title: Detection of Unsupervised Standardized Gait Tests From Real-World Inertial Sensor Data in Parkinson’s Disease publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2021.3119390 – volume: 130 start-page: 1115 year: 2020 ident: ref_25 article-title: Realistically Integrating Machine Learning Into Clinical Practice: A Road Map of Opportunities, Challenges, and a Potential Future publication-title: Anesth. Analg. doi: 10.1213/ANE.0000000000004575 – volume: 1 start-page: 26 year: 1988 ident: ref_45 article-title: A Description of the Model-View-Controller User Interface Paradigm in the Smalltalk-80 System publication-title: J. Object Oriented Program. – volume: 3 start-page: 1 year: 2019 ident: ref_11 article-title: The Wearables Development Toolkit: An Integrated Development Environment for Activity Recognition Applications publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. doi: 10.1145/3369813 – ident: ref_28 – ident: ref_53 – volume: 27 start-page: 742 year: 2013 ident: ref_58 article-title: Does the Evaluation of Gait Quality During Daily Life Provide Insight Into Fall Risk? A Novel Approach Using 3-Day Accelerometer Recordings publication-title: Neurorehabilit. Neural Repair doi: 10.1177/1545968313491004 – volume: 9 start-page: e740 year: 2022 ident: ref_3 article-title: Artificial intelligence and machine learning in emergency medicine: A narrative review publication-title: Acute Med. Surg. doi: 10.1002/ams2.740 – ident: ref_30 – ident: ref_64 doi: 10.1109/TSE.2021.3127131 – volume: 31 start-page: 1 year: 2006 ident: ref_51 article-title: A modified cognitive information complexity measure of software publication-title: ACM SIGSOFT Softw. Eng. Notes – volume: 19 start-page: 1299 year: 2014 ident: ref_57 article-title: Measuring and modeling programming experience publication-title: Empir. Softw. Eng. doi: 10.1007/s10664-013-9286-4 – ident: ref_34 – volume: 14 start-page: 13 year: 2012 ident: ref_33 article-title: Reproducible research for scientific computing: Tools and strategies for changing the culture publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2012.38 – ident: ref_22 doi: 10.3390/info11040193 – ident: ref_40 – volume: 28 start-page: 591 year: 2020 ident: ref_9 article-title: Prediction of Freezing of Gait in Patients With Parkinson’s Disease by Identifying Impaired Gait Patterns publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.2969649 – ident: ref_37 – volume: 14 start-page: 156 year: 2021 ident: ref_2 article-title: Secure and Robust Machine Learning for Healthcare: A Survey publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2020.3013489 – ident: ref_14 – volume: 128 start-page: 164 year: 2017 ident: ref_61 article-title: Source code metrics: A systematic mapping study publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2017.03.044 – volume: 37 start-page: 100254 year: 2020 ident: ref_23 article-title: Julia language in machine learning: Algorithms, applications, and open issues publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2020.100254 – ident: ref_62 doi: 10.1201/9781498710411 – ident: ref_48 doi: 10.1109/ICSE-SEIP.2019.00017 – ident: ref_29 – volume: 20 start-page: 1521 year: 2016 ident: ref_44 article-title: Toward Pervasive Gait Analysis with Wearable Sensors: A Systematic Review publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2016.2608720 – ident: ref_46 – ident: ref_12 – ident: ref_26 doi: 10.1371/journal.pone.0241922 – volume: 24 start-page: 574 year: 2008 ident: ref_65 article-title: An Empirical Evaluation of the System Usability Scale publication-title: Int. J. Hum.-Comput. Interact. doi: 10.1080/10447310802205776 – ident: ref_36 – volume: 15 start-page: 35 year: 2010 ident: ref_21 article-title: The Scientific Method in Practice: Reproducibility in the Computational Sciences publication-title: SSRN Electron. J. – ident: ref_43 – ident: ref_60 – ident: ref_63 doi: 10.1524/9783486841749 |
SSID | ssj0023338 |
Score | 2.4289775 |
Snippet | Developing machine learning algorithms for time-series data often requires manual annotation of the data. To do so, graphical user interfaces (GUIs) are an... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 5849 |
SubjectTerms | Algorithms annotation Documentation Electrocardiography Gait gait analysis graphical user interface Labeling Machine learning Open source software Programming languages python Subject specialists time series analysis Usability User experience User interface |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTnCoKFB1YYtcxKGXiGz8invj_ZCokNqtuEXjl0CgLOruHvj3zCTZ1UaqxKXXeBQ5M7HnG8_4G8YOIQooymQzByPIZMSVbkUSGYJrKCBXLjVdIm5_6quxvLlX9yutvqgmrKUHbhV3JLxJeSqT1jZKlwubokaMbomRx4gi0O6LPm8RTHWhlsDIq-UREhjUH00L9Gzoam3P-zQk_T1k2a-LXHE0F5vsY4cQ-XE7s0_sQ6y32MYKb-A2-3MLZ_xyfP2DH9ecSkKyX80ZPL97JSoAfgf-CfcJjoAUJepJm27nUAe-ICHhk8Tp-kdGx2Nxys9gBjtsfHH--_Qq6xokZB6juFlWJu_zZNBlG5mHkYkJtJYquOBcoUCGCCoo7UtbGI--2ZbSRaOSkzKYAKX4zNbqSR2_MB5U1JCCIYZ1aWJuvQCiAhICjLXFaMC-LxRX-Y49nJpYPFcYRZCOq6WOB-xgKfrSUmb8S-iEtL8UIJbr5gHavupsX71n-wEbLmxXdUtvWlEm3WhENWrAvi2HcdFQJgTqOJk3MghtEAqjjOnZvDeh_kj9-NDQbxODIL5-9398wR5bL-g-BdWgqCFbm_2dx6-IcmZuv_mh3wDph_ml priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZoubQH1EIRC21lEAcuVrOxHcdcqj7YFqSiSnSr3qLxqyBQsnS3B_59Z7LZ0EiIazxKItvj-ebhbxh7D1FCXiYrHIxBqIiabmWSAsE15JBpl9ouERdfi_Op-nKjb7qA27wrq1ydie1BHRpPMfIDSpCiy41w4HD2W1DXKMqudi001tjTMVoaKukqJ2e9wyXR_1qyCUl07Q_mOdo3NLh2YINaqv4BvhxWRz4yN5Mt9qzDifxoubDb7Emsn7PNR-yBL9j1BZzys-nnj_yo5lQYIr61kXh--YcIAfgl-J94WnCEpShRN8ukO4c68BUVCW8Sp0sggoJkcc5PYQE7bDr5dHVyLro2CcKjL7cQZfI-SwYNt1FZGJuYoCiUDi44l2tQIYIOuvClzY1HC21L5aLRySkVTIBSvmTrdVPHV4wHHQtIwRDPujIxs14CEQJJCcbafDxiH1YTV_mOQ5xaWfyq0JegOa76OR6xd73obEmc8S-hY5r9XoC4rtsHzd1t1alOJb1JWSpTUdioXCZtigV6aZY4mYzMw4jtrtau6hRwXv3dLiP2th9G1aF8CNSxuW9lEOAgIEYZM1jzwQ8NR-of31sSbuIRxNe__v_H37CNnO5LUI2J3mXri7v7uIcoZuH22636ABZ98cM priority: 102 providerName: ProQuest |
Title | MaD GUI: An Open-Source Python Package for Annotation and Analysis of Time-Series Data |
URI | https://www.proquest.com/docview/2700761105 https://www.proquest.com/docview/2702185075 https://pubmed.ncbi.nlm.nih.gov/PMC9371110 https://doaj.org/article/3c7f0f8f669e4b039fe699693738732d |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB71cYED4ikWysogDlwC2diOYySEWtptQdpqBSzaWzSJbUBUCexuJfrvmckmUSNVXHKIR0k09mS-mbG_AXiJXmKSBRsVOMFIebJ0K4OMCFxjgrEuQtMlYnaeni3Up6Ve7kDXY7NV4PrG0I77SS1WF6___rl6Twb_jiNOCtnfrBPyW-RI7S7sk0My3MhgpvpiQiIpDNuSCg3FB66oYewfwMzhJslrXmd6F-60cFEcbuf3Huz46j7cvkYi-AC-zfBYnC4-vhWHleD9IdGXJiEv5lfMCyDmWP6in4YgdEoSVb2tvQusnOgYSUQdBJ8FiThX5tfiGDf4EBbTk68fzqK2W0JUUki3ibJQlnEw5L-Nit3E-IBpqrQrXFEkGpXzqJ1Oy8wmpiRHbTNVeKNDoZQzDjP5CPaquvKPQTjtUwzOMN26Mj62pUTmBZISjbXJZASvOsXlZUslzh0tLnIKKVjHea_jEbzoRX9v-TNuEjpi7fcCTHnd3KhX3_PWgnJZmhCHLKSp9aqIpQ0-pWDNMjWTkYkbwUE3d3m3jHIuq5uUII4ewfN-mCyIyyJY-fqykSGcQ7iYZMxgzgcfNBypfv5ouLiZTpAe_-T_L38KtxI-NsFbTfQB7G1Wl_4ZgZlNMYZdszR0zaanY9g_Ojmffx43iYFxs4j_AWAj950 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGeAAeEJ_ixoCAQOKlWi9JmwYJocFxu2O7aRI7tLcuzQdMoHbsbkL7p_gbsdtrWSXE214bq60cO7Zj-2eAl8YLw7Ogo8IMTSQ9aroWQUToXBtu4qQI9ZSI2X46mctPR8nRGvxue2GorLI9E-uD2lWW7si3KEGKITe6A-9Of0Y0NYqyq-0IjUYsdv3FLwzZFm-nI9zfV5yPPx5-mESrqQKRxdBnGWXB2jgotHNKxm6ofDBpKhNXuKLgiZHOm8Qlqc00VxYNms5k4VUSCimdciYT-N5rcF0KtOTUmT7e6QI8gfFeg16Ei_HWgqM9RQOvezavHg3Q82f71ZiXzNv4Dtxe-aVsuxGku7Dmy3tw6xJa4X34MjMjtjOfvmHbJaNClOhzffPPDi4IgIAdGPsdTyeGbjBSlFWT5GemdKyFPmFVYNR0EtGlnF-wkVmaBzC_EgY-hPWyKv0jYC7xqQlOEa67VD7WVhgCIBLCKK35cACvW8bldoVZTqMzfuQYuxCP847HA3jRkZ42QB3_InpP3O8ICFu7flCdfc1XqpoLq0IcspCm2ssiFjr4FKNCTRhQSnA3gM127_KVwi_yv-I5gOfdMqoq5V9M6avzmgYdKnTAkUb19rz3Q_2V8uRbDfpNuIX4-o3_f_wZ3Jgczvbyven-7mO4yalXg-pbkk1YX56d-yfoQS2Lp7XYMji-aj35AyxNL8w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgUhQEGgcRL1NR24hgJoY2urIxVFVC0t-DE9oZAyVg7of1r_HXc5YtFQrztNT450dnn-13u_DuA58YJwxOvg8yMTSAdWroWXgQIrg03YZT5qkvEwTzeW8r3h9HhBvxu78JQWWV7JlYHtS1z-kc-ogQphtwIB0a-KYtYTKZvTn4G1EGKMq1tO416i-y7818Yvq1ezya41i84n-5-frsXNB0GghzDoHWQ-DwPvUKfp2Rox8p5E8cyspnNMh4ZaZ2JbBTnieYqR-emE5k5FflMSqusSQTOewU2FUVFA9jc2Z0vPnbhnsDor-YyEkKHoxVH74ruXvc8YNUooIdu-7WZF5zd9CbcaFAq26631S3YcMVtuH6Bu_AOfDkwE_ZuOXvFtgtGZSnBpyoPwBbnREfAFib_jmcVQ1CMEkVZp_yZKSxriVBY6RldQQnoF51bsYlZm7uwvBQV3oNBURbuPjAbudh4q4jlXSoX6lwYoiMSwiit-XgIL1vFpXnDYE6NNH6kGMmQjtNOx0N41ome1LQd_xLaIe13AsS0XT0oT4_SxnBTkSsf-sTHsXYyC4X2LsYYURMjlBLcDmGrXbu0Mf9V-nezDuFpN4yGS9kYU7jyrJJBeIVwHGVUb817H9QfKb4dVxTgxGKI0z_4_8ufwFW0kfTDbL7_EK5xurhBxS7RFgzWp2fuEcKpdfa42bcMvl62qfwBMwI1Xg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MaD+GUI%3A+An+Open-Source+Python+Package+for+Annotation+and+Analysis+of+Time-Series+Data&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Ollenschl%C3%A4ger%2C+Malte&rft.au=K%C3%BCderle%2C+Arne&rft.au=Mehringer%2C+Wolfgang&rft.au=Seifer%2C+Ann-Kristin&rft.date=2022-08-05&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=15&rft.spage=5849&rft_id=info:doi/10.3390%2Fs22155849&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |