MaD GUI: An Open-Source Python Package for Annotation and Analysis of Time-Series Data

Developing machine learning algorithms for time-series data often requires manual annotation of the data. To do so, graphical user interfaces (GUIs) are an important component. Existing Python packages for annotation and analysis of time-series data have been developed without addressing adaptabilit...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 15; p. 5849
Main Authors Ollenschläger, Malte, Küderle, Arne, Mehringer, Wolfgang, Seifer, Ann-Kristin, Winkler, Jürgen, Gaßner, Heiko, Kluge, Felix, Eskofier, Bjoern M.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 05.08.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing machine learning algorithms for time-series data often requires manual annotation of the data. To do so, graphical user interfaces (GUIs) are an important component. Existing Python packages for annotation and analysis of time-series data have been developed without addressing adaptability, usability, and user experience. Therefore, we developed a generic open-source Python package focusing on adaptability, usability, and user experience. The developed package, Machine Learning and Data Analytics (MaD) GUI, enables developers to rapidly create a GUI for their specific use case. Furthermore, MaD GUI enables domain experts without programming knowledge to annotate time-series data and apply algorithms to it. We conducted a small-scale study with participants from three international universities to test the adaptability of MaD GUI by developers and to test the user interface by clinicians as representatives of domain experts. MaD GUI saves up to 75% of time in contrast to using a state-of-the-art package. In line with this, subjective ratings regarding usability and user experience show that MaD GUI is preferred over a state-of-the-art package by developers and clinicians. MaD GUI reduces the effort of developers in creating GUIs for time-series analysis and offers similar usability and user experience for clinicians as a state-of-the-art package.
AbstractList Developing machine learning algorithms for time-series data often requires manual annotation of the data. To do so, graphical user interfaces (GUIs) are an important component. Existing Python packages for annotation and analysis of time-series data have been developed without addressing adaptability, usability, and user experience. Therefore, we developed a generic open-source Python package focusing on adaptability, usability, and user experience. The developed package, Machine Learning and Data Analytics (MaD) GUI, enables developers to rapidly create a GUI for their specific use case. Furthermore, MaD GUI enables domain experts without programming knowledge to annotate time-series data and apply algorithms to it. We conducted a small-scale study with participants from three international universities to test the adaptability of MaD GUI by developers and to test the user interface by clinicians as representatives of domain experts. MaD GUI saves up to 75% of time in contrast to using a state-of-the-art package. In line with this, subjective ratings regarding usability and user experience show that MaD GUI is preferred over a state-of-the-art package by developers and clinicians. MaD GUI reduces the effort of developers in creating GUIs for time-series analysis and offers similar usability and user experience for clinicians as a state-of-the-art package.
Developing machine learning algorithms for time-series data often requires manual annotation of the data. To do so, graphical user interfaces (GUIs) are an important component. Existing Python packages for annotation and analysis of time-series data have been developed without addressing adaptability, usability, and user experience. Therefore, we developed a generic open-source Python package focusing on adaptability, usability, and user experience. The developed package, Machine Learning and Data Analytics (MaD) GUI, enables developers to rapidly create a GUI for their specific use case. Furthermore, MaD GUI enables domain experts without programming knowledge to annotate time-series data and apply algorithms to it. We conducted a small-scale study with participants from three international universities to test the adaptability of MaD GUI by developers and to test the user interface by clinicians as representatives of domain experts. MaD GUI saves up to 75% of time in contrast to using a state-of-the-art package. In line with this, subjective ratings regarding usability and user experience show that MaD GUI is preferred over a state-of-the-art package by developers and clinicians. MaD GUI reduces the effort of developers in creating GUIs for time-series analysis and offers similar usability and user experience for clinicians as a state-of-the-art package.Developing machine learning algorithms for time-series data often requires manual annotation of the data. To do so, graphical user interfaces (GUIs) are an important component. Existing Python packages for annotation and analysis of time-series data have been developed without addressing adaptability, usability, and user experience. Therefore, we developed a generic open-source Python package focusing on adaptability, usability, and user experience. The developed package, Machine Learning and Data Analytics (MaD) GUI, enables developers to rapidly create a GUI for their specific use case. Furthermore, MaD GUI enables domain experts without programming knowledge to annotate time-series data and apply algorithms to it. We conducted a small-scale study with participants from three international universities to test the adaptability of MaD GUI by developers and to test the user interface by clinicians as representatives of domain experts. MaD GUI saves up to 75% of time in contrast to using a state-of-the-art package. In line with this, subjective ratings regarding usability and user experience show that MaD GUI is preferred over a state-of-the-art package by developers and clinicians. MaD GUI reduces the effort of developers in creating GUIs for time-series analysis and offers similar usability and user experience for clinicians as a state-of-the-art package.
Author Ollenschläger, Malte
Küderle, Arne
Mehringer, Wolfgang
Gaßner, Heiko
Winkler, Jürgen
Seifer, Ann-Kristin
Kluge, Felix
Eskofier, Bjoern M.
AuthorAffiliation 1 Machine Learning and Data Analytics Lab, Department of Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany
2 Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
3 Fraunhofer IIS, Fraunhofer Institute for Integrated Circuits IIS, 91058 Erlangen, Germany
AuthorAffiliation_xml – name: 1 Machine Learning and Data Analytics Lab, Department of Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany
– name: 2 Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
– name: 3 Fraunhofer IIS, Fraunhofer Institute for Integrated Circuits IIS, 91058 Erlangen, Germany
Author_xml – sequence: 1
  givenname: Malte
  orcidid: 0000-0002-8135-6740
  surname: Ollenschläger
  fullname: Ollenschläger, Malte
– sequence: 2
  givenname: Arne
  orcidid: 0000-0002-5686-281X
  surname: Küderle
  fullname: Küderle, Arne
– sequence: 3
  givenname: Wolfgang
  surname: Mehringer
  fullname: Mehringer, Wolfgang
– sequence: 4
  givenname: Ann-Kristin
  surname: Seifer
  fullname: Seifer, Ann-Kristin
– sequence: 5
  givenname: Jürgen
  orcidid: 0000-0003-0630-9204
  surname: Winkler
  fullname: Winkler, Jürgen
– sequence: 6
  givenname: Heiko
  orcidid: 0000-0003-2037-9460
  surname: Gaßner
  fullname: Gaßner, Heiko
– sequence: 7
  givenname: Felix
  orcidid: 0000-0003-4921-6104
  surname: Kluge
  fullname: Kluge, Felix
– sequence: 8
  givenname: Bjoern M.
  orcidid: 0000-0002-0417-0336
  surname: Eskofier
  fullname: Eskofier, Bjoern M.
BookMark eNplkUtPVDEUgBuDkYcu_Ac3caOLK30_XJgQQJwEAwngtuntY-h4px3aOybz7ykMGsFV29PvfOfknH2wk3LyALxH8DMhCh5WjBFjkqpXYA9RTHuJMdz5574L9mtdQIgJIfIN2CVMMUEh3wM_f5iT7uxm9qU7St3Fyqf-Kq-L9d3lZrrNqbs09peZ-y7k0oiUJzPFFjbJtacZNzXWLofuOi59f-VL9LU7MZN5C14HM1b_7uk8ADffTq-Pv_fnF2ez46Pz3lLKp14Ga2EQCKvWjUPCB8M5ZW5ww4CZoc4b5hi3UmFhMZFK0sELFgZKnXBGkgMw23pdNgu9KnFpykZnE_VjIJe5NmWKdvSaWBFgkIFz5ekAiQqeK8UVEUQKgl1zfd26Vuth6Z31aSpmfCZ9_pPirZ7n37opEEKwCT4-CUq-W_s66WWs1o-jST6vq8YCYiQZFKyhH16gizb2NtBHCgrefA_U4ZayJddafNA2bhfQ6sdRI6gf9q__7r9lfHqR8af9_9l79ZCt_A
CitedBy_id crossref_primary_10_1016_j_simpa_2024_100679
crossref_primary_10_3390_s23146565
crossref_primary_10_1109_ACCESS_2024_3487013
crossref_primary_10_1111_ene_16367
crossref_primary_10_3390_s23135879
crossref_primary_10_3389_fcomp_2024_1379788
crossref_primary_10_1016_j_softx_2025_102036
crossref_primary_10_1186_s13023_023_02854_8
Cites_doi 10.1080/03091902.2020.1822940
10.1037/h0055392
10.1109/TSE.1976.233837
10.1145/2968219.2971459
10.1007/s10067-020-05196-z
10.1002/mds.26642
10.1016/j.proeng.2012.04.102
10.1016/j.proeng.2013.07.047
10.3390/s20247302
10.1207/s15327051hci0701_3
10.1161/01.CIR.101.23.e215
10.1155/2022/8903604
10.1159/000511930
10.1109/PERCOMW.2018.8480193
10.1109/PerComWorkshops51409.2021.9431110
10.1016/0096-0551(84)90006-7
10.1145/3194164.3194186
10.1177/001872089203400407
10.1007/s10916-017-0760-1
10.1101/2020.04.07.029561
10.1109/TNSRE.2021.3119390
10.1213/ANE.0000000000004575
10.1145/3369813
10.1177/1545968313491004
10.1002/ams2.740
10.1109/TSE.2021.3127131
10.1007/s10664-013-9286-4
10.1109/MCSE.2012.38
10.3390/info11040193
10.1109/TNSRE.2020.2969649
10.1109/RBME.2020.3013489
10.1016/j.jss.2017.03.044
10.1016/j.cosrev.2020.100254
10.1201/9781498710411
10.1109/ICSE-SEIP.2019.00017
10.1109/JBHI.2016.2608720
10.1371/journal.pone.0241922
10.1080/10447310802205776
10.1524/9783486841749
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22155849
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Proquest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_3c7f0f8f669e4b039fe699693738732d
PMC9371110
10_3390_s22155849
GrantInformation_xml – fundername: Federal Ministry of Education and Research, Germany
  grantid: 01GM1905
– fundername: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—“Mobility_APP”
  grantid: 438496663
– fundername: Fraunhofer Internal Programs
  grantid: 044-602140; 044-602150
– fundername: European Union’s Horizon 2020 research and innovation program; European Federation of Pharmaceutical Industries and Associations (EFPIA)
– fundername: Mobilise-D project; Innovative Medicines Initiative 2 Joint Undertaking (JU)
  grantid: 820820
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c446t-8fcc0f7129740d17efa6645dbdbb25a4dea5d56c8927c238984be75fb44d7da83
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 00:33:03 EDT 2025
Thu Aug 21 14:06:17 EDT 2025
Mon Jul 21 10:32:13 EDT 2025
Fri Jul 25 20:03:53 EDT 2025
Tue Jul 01 02:42:05 EDT 2025
Thu Apr 24 23:08:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-8fcc0f7129740d17efa6645dbdbb25a4dea5d56c8927c238984be75fb44d7da83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5686-281X
0000-0002-8135-6740
0000-0003-0630-9204
0000-0003-2037-9460
0000-0002-0417-0336
0000-0003-4921-6104
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22155849
PMID 35957406
PQID 2700761105
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_3c7f0f8f669e4b039fe699693738732d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9371110
proquest_miscellaneous_2702185075
proquest_journals_2700761105
crossref_citationtrail_10_3390_s22155849
crossref_primary_10_3390_s22155849
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220805
PublicationDateYYYYMMDD 2022-08-05
PublicationDate_xml – month: 8
  year: 2022
  text: 20220805
  day: 5
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_14
ref_13
ref_12
ref_56
ref_55
ref_10
ref_54
ref_53
ref_52
Qayyum (ref_2) 2021; 14
Khera (ref_5) 2020; 44
ref_19
ref_18
Stetter (ref_49) 1984; 9
ref_17
Gao (ref_23) 2020; 37
ref_60
ref_22
ref_64
ref_63
ref_62
Rowlands (ref_16) 2012; 34
(ref_61) 2017; 128
McCabe (ref_47) 1976; SE-2
ref_29
ref_28
ref_27
ref_26
MacKenzie (ref_42) 1992; 7
Bangor (ref_65) 2008; 24
Vyas (ref_24) 2022; 2022
Wertheimer (ref_39) 1923; 1
Baig (ref_4) 2017; 41
Varghese (ref_1) 2020; 36
Goldberger (ref_59) 2000; 101
Stodden (ref_21) 2010; 15
ref_36
LeVeque (ref_33) 2012; 14
ref_35
Hofer (ref_25) 2020; 130
ref_34
ref_32
ref_31
ref_30
Wijendra (ref_50) 2021; 174
Virzi (ref_66) 1992; 34
Fitts (ref_41) 1954; 47
Espay (ref_20) 2016; 31
ref_38
Haladjian (ref_11) 2019; 3
ref_37
Mueller (ref_3) 2022; 9
Krasner (ref_45) 1988; 1
Espinosa (ref_15) 2013; 60
Weiss (ref_58) 2013; 27
Kushwaha (ref_51) 2006; 31
(ref_7) 2021; 40
Zhang (ref_9) 2020; 28
ref_46
ref_43
Ullrich (ref_8) 2021; 29
ref_40
Chen (ref_44) 2016; 20
ref_48
Siegmund (ref_57) 2014; 19
ref_6
References_xml – volume: 44
  start-page: 441
  year: 2020
  ident: ref_5
  article-title: Role of machine learning in gait analysis: A review
  publication-title: J. Med. Eng. Technol.
  doi: 10.1080/03091902.2020.1822940
– volume: 47
  start-page: 381
  year: 1954
  ident: ref_41
  article-title: The information capacity of the human motor system in controlling the amplitude of movement
  publication-title: J. Exp. Psychol.
  doi: 10.1037/h0055392
– ident: ref_32
– volume: SE-2
  start-page: 308
  year: 1976
  ident: ref_47
  article-title: A Complexity Measure
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.1976.233837
– ident: ref_55
– ident: ref_17
  doi: 10.1145/2968219.2971459
– volume: 40
  start-page: 11
  year: 2021
  ident: ref_7
  article-title: The basics of data, big data, and machine learning in clinical practice
  publication-title: Clin. Rheumatol.
  doi: 10.1007/s10067-020-05196-z
– volume: 31
  start-page: 1272
  year: 2016
  ident: ref_20
  article-title: Technology in Parkinson’s disease: Challenges and opportunities: Technology in PD
  publication-title: Mov. Disord.
  doi: 10.1002/mds.26642
– volume: 34
  start-page: 598
  year: 2012
  ident: ref_16
  article-title: Using inertial sensors to index into video
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2012.04.102
– ident: ref_35
– volume: 60
  start-page: 243
  year: 2013
  ident: ref_15
  article-title: Sports Monitoring Data and Video Interface Using a GUI Auto Generation Matlab Tool
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2013.07.047
– ident: ref_10
  doi: 10.3390/s20247302
– volume: 7
  start-page: 91
  year: 1992
  ident: ref_42
  article-title: Fitts’ Law as a Research and Design Tool in Human-Computer Interaction
  publication-title: Hum. Comput. Interact.
  doi: 10.1207/s15327051hci0701_3
– volume: 174
  start-page: 14
  year: 2021
  ident: ref_50
  article-title: Analysis of Cognitive Complexity with Cyclomatic Complexity Metric of Software
  publication-title: Int. J. Comput. Appl.
– volume: 101
  start-page: e215
  year: 2000
  ident: ref_59
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– ident: ref_31
– ident: ref_56
– volume: 2022
  start-page: 8903604
  year: 2022
  ident: ref_24
  article-title: Critical Retrospection of Performance of Emerging Mobile Technologies in Health Data Management
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2022/8903604
– ident: ref_27
– ident: ref_52
– volume: 1
  start-page: 47
  year: 1923
  ident: ref_39
  article-title: Untersuchungen zur Lehre von der Gestalt
  publication-title: Z. Psychol. Ihre Grenzwissenschaften
– volume: 36
  start-page: 443
  year: 2020
  ident: ref_1
  article-title: Artificial Intelligence in Medicine: Chances and Challenges for Wide Clinical Adoption
  publication-title: Visc. Med.
  doi: 10.1159/000511930
– ident: ref_18
  doi: 10.1109/PERCOMW.2018.8480193
– ident: ref_19
  doi: 10.1109/PerComWorkshops51409.2021.9431110
– volume: 9
  start-page: 203
  year: 1984
  ident: ref_49
  article-title: A measure of program complexity
  publication-title: Comput. Lang.
  doi: 10.1016/0096-0551(84)90006-7
– ident: ref_54
  doi: 10.1145/3194164.3194186
– volume: 34
  start-page: 457
  year: 1992
  ident: ref_66
  article-title: Refining the Test Phase of Usability Evaluation: How Many Subjects Is Enough?
  publication-title: Hum. Factors J. Hum. Factors Ergon. Soc.
  doi: 10.1177/001872089203400407
– volume: 41
  start-page: 115
  year: 2017
  ident: ref_4
  article-title: A Systematic Review of Wearable Patient Monitoring Systems—Current Challenges and Opportunities for Clinical Adoption
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-017-0760-1
– ident: ref_6
  doi: 10.1101/2020.04.07.029561
– ident: ref_13
– ident: ref_38
– volume: 29
  start-page: 2103
  year: 2021
  ident: ref_8
  article-title: Detection of Unsupervised Standardized Gait Tests From Real-World Inertial Sensor Data in Parkinson’s Disease
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3119390
– volume: 130
  start-page: 1115
  year: 2020
  ident: ref_25
  article-title: Realistically Integrating Machine Learning Into Clinical Practice: A Road Map of Opportunities, Challenges, and a Potential Future
  publication-title: Anesth. Analg.
  doi: 10.1213/ANE.0000000000004575
– volume: 1
  start-page: 26
  year: 1988
  ident: ref_45
  article-title: A Description of the Model-View-Controller User Interface Paradigm in the Smalltalk-80 System
  publication-title: J. Object Oriented Program.
– volume: 3
  start-page: 1
  year: 2019
  ident: ref_11
  article-title: The Wearables Development Toolkit: An Integrated Development Environment for Activity Recognition Applications
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
  doi: 10.1145/3369813
– ident: ref_28
– ident: ref_53
– volume: 27
  start-page: 742
  year: 2013
  ident: ref_58
  article-title: Does the Evaluation of Gait Quality During Daily Life Provide Insight Into Fall Risk? A Novel Approach Using 3-Day Accelerometer Recordings
  publication-title: Neurorehabilit. Neural Repair
  doi: 10.1177/1545968313491004
– volume: 9
  start-page: e740
  year: 2022
  ident: ref_3
  article-title: Artificial intelligence and machine learning in emergency medicine: A narrative review
  publication-title: Acute Med. Surg.
  doi: 10.1002/ams2.740
– ident: ref_30
– ident: ref_64
  doi: 10.1109/TSE.2021.3127131
– volume: 31
  start-page: 1
  year: 2006
  ident: ref_51
  article-title: A modified cognitive information complexity measure of software
  publication-title: ACM SIGSOFT Softw. Eng. Notes
– volume: 19
  start-page: 1299
  year: 2014
  ident: ref_57
  article-title: Measuring and modeling programming experience
  publication-title: Empir. Softw. Eng.
  doi: 10.1007/s10664-013-9286-4
– ident: ref_34
– volume: 14
  start-page: 13
  year: 2012
  ident: ref_33
  article-title: Reproducible research for scientific computing: Tools and strategies for changing the culture
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2012.38
– ident: ref_22
  doi: 10.3390/info11040193
– ident: ref_40
– volume: 28
  start-page: 591
  year: 2020
  ident: ref_9
  article-title: Prediction of Freezing of Gait in Patients With Parkinson’s Disease by Identifying Impaired Gait Patterns
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.2969649
– ident: ref_37
– volume: 14
  start-page: 156
  year: 2021
  ident: ref_2
  article-title: Secure and Robust Machine Learning for Healthcare: A Survey
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2020.3013489
– ident: ref_14
– volume: 128
  start-page: 164
  year: 2017
  ident: ref_61
  article-title: Source code metrics: A systematic mapping study
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2017.03.044
– volume: 37
  start-page: 100254
  year: 2020
  ident: ref_23
  article-title: Julia language in machine learning: Algorithms, applications, and open issues
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2020.100254
– ident: ref_62
  doi: 10.1201/9781498710411
– ident: ref_48
  doi: 10.1109/ICSE-SEIP.2019.00017
– ident: ref_29
– volume: 20
  start-page: 1521
  year: 2016
  ident: ref_44
  article-title: Toward Pervasive Gait Analysis with Wearable Sensors: A Systematic Review
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2016.2608720
– ident: ref_46
– ident: ref_12
– ident: ref_26
  doi: 10.1371/journal.pone.0241922
– volume: 24
  start-page: 574
  year: 2008
  ident: ref_65
  article-title: An Empirical Evaluation of the System Usability Scale
  publication-title: Int. J. Hum.-Comput. Interact.
  doi: 10.1080/10447310802205776
– ident: ref_36
– volume: 15
  start-page: 35
  year: 2010
  ident: ref_21
  article-title: The Scientific Method in Practice: Reproducibility in the Computational Sciences
  publication-title: SSRN Electron. J.
– ident: ref_43
– ident: ref_60
– ident: ref_63
  doi: 10.1524/9783486841749
SSID ssj0023338
Score 2.4289775
Snippet Developing machine learning algorithms for time-series data often requires manual annotation of the data. To do so, graphical user interfaces (GUIs) are an...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5849
SubjectTerms Algorithms
annotation
Documentation
Electrocardiography
Gait
gait analysis
graphical user interface
Labeling
Machine learning
Open source software
Programming languages
python
Subject specialists
time series analysis
Usability
User experience
User interface
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTnCoKFB1YYtcxKGXiGz8invj_ZCokNqtuEXjl0CgLOruHvj3zCTZ1UaqxKXXeBQ5M7HnG8_4G8YOIQooymQzByPIZMSVbkUSGYJrKCBXLjVdIm5_6quxvLlX9yutvqgmrKUHbhV3JLxJeSqT1jZKlwubokaMbomRx4gi0O6LPm8RTHWhlsDIq-UREhjUH00L9Gzoam3P-zQk_T1k2a-LXHE0F5vsY4cQ-XE7s0_sQ6y32MYKb-A2-3MLZ_xyfP2DH9ecSkKyX80ZPL97JSoAfgf-CfcJjoAUJepJm27nUAe-ICHhk8Tp-kdGx2Nxys9gBjtsfHH--_Qq6xokZB6juFlWJu_zZNBlG5mHkYkJtJYquOBcoUCGCCoo7UtbGI--2ZbSRaOSkzKYAKX4zNbqSR2_MB5U1JCCIYZ1aWJuvQCiAhICjLXFaMC-LxRX-Y49nJpYPFcYRZCOq6WOB-xgKfrSUmb8S-iEtL8UIJbr5gHavupsX71n-wEbLmxXdUtvWlEm3WhENWrAvi2HcdFQJgTqOJk3MghtEAqjjOnZvDeh_kj9-NDQbxODIL5-9398wR5bL-g-BdWgqCFbm_2dx6-IcmZuv_mh3wDph_ml
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZoubQH1EIRC21lEAcuVrOxHcdcqj7YFqSiSnSr3qLxqyBQsnS3B_59Z7LZ0EiIazxKItvj-ebhbxh7D1FCXiYrHIxBqIiabmWSAsE15JBpl9ouERdfi_Op-nKjb7qA27wrq1ydie1BHRpPMfIDSpCiy41w4HD2W1DXKMqudi001tjTMVoaKukqJ2e9wyXR_1qyCUl07Q_mOdo3NLh2YINaqv4BvhxWRz4yN5Mt9qzDifxoubDb7Emsn7PNR-yBL9j1BZzys-nnj_yo5lQYIr61kXh--YcIAfgl-J94WnCEpShRN8ukO4c68BUVCW8Sp0sggoJkcc5PYQE7bDr5dHVyLro2CcKjL7cQZfI-SwYNt1FZGJuYoCiUDi44l2tQIYIOuvClzY1HC21L5aLRySkVTIBSvmTrdVPHV4wHHQtIwRDPujIxs14CEQJJCcbafDxiH1YTV_mOQ5xaWfyq0JegOa76OR6xd73obEmc8S-hY5r9XoC4rtsHzd1t1alOJb1JWSpTUdioXCZtigV6aZY4mYzMw4jtrtau6hRwXv3dLiP2th9G1aF8CNSxuW9lEOAgIEYZM1jzwQ8NR-of31sSbuIRxNe__v_H37CNnO5LUI2J3mXri7v7uIcoZuH22636ABZ98cM
  priority: 102
  providerName: ProQuest
Title MaD GUI: An Open-Source Python Package for Annotation and Analysis of Time-Series Data
URI https://www.proquest.com/docview/2700761105
https://www.proquest.com/docview/2702185075
https://pubmed.ncbi.nlm.nih.gov/PMC9371110
https://doaj.org/article/3c7f0f8f669e4b039fe699693738732d
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB71cYED4ikWysogDlwC2diOYySEWtptQdpqBSzaWzSJbUBUCexuJfrvmckmUSNVXHKIR0k09mS-mbG_AXiJXmKSBRsVOMFIebJ0K4OMCFxjgrEuQtMlYnaeni3Up6Ve7kDXY7NV4PrG0I77SS1WF6___rl6Twb_jiNOCtnfrBPyW-RI7S7sk0My3MhgpvpiQiIpDNuSCg3FB66oYewfwMzhJslrXmd6F-60cFEcbuf3Huz46j7cvkYi-AC-zfBYnC4-vhWHleD9IdGXJiEv5lfMCyDmWP6in4YgdEoSVb2tvQusnOgYSUQdBJ8FiThX5tfiGDf4EBbTk68fzqK2W0JUUki3ibJQlnEw5L-Nit3E-IBpqrQrXFEkGpXzqJ1Oy8wmpiRHbTNVeKNDoZQzDjP5CPaquvKPQTjtUwzOMN26Mj62pUTmBZISjbXJZASvOsXlZUslzh0tLnIKKVjHea_jEbzoRX9v-TNuEjpi7fcCTHnd3KhX3_PWgnJZmhCHLKSp9aqIpQ0-pWDNMjWTkYkbwUE3d3m3jHIuq5uUII4ewfN-mCyIyyJY-fqykSGcQ7iYZMxgzgcfNBypfv5ouLiZTpAe_-T_L38KtxI-NsFbTfQB7G1Wl_4ZgZlNMYZdszR0zaanY9g_Ojmffx43iYFxs4j_AWAj950
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGeAAeEJ_ixoCAQOKlWi9JmwYJocFxu2O7aRI7tLcuzQdMoHbsbkL7p_gbsdtrWSXE214bq60cO7Zj-2eAl8YLw7Ogo8IMTSQ9aroWQUToXBtu4qQI9ZSI2X46mctPR8nRGvxue2GorLI9E-uD2lWW7si3KEGKITe6A-9Of0Y0NYqyq-0IjUYsdv3FLwzZFm-nI9zfV5yPPx5-mESrqQKRxdBnGWXB2jgotHNKxm6ofDBpKhNXuKLgiZHOm8Qlqc00VxYNms5k4VUSCimdciYT-N5rcF0KtOTUmT7e6QI8gfFeg16Ei_HWgqM9RQOvezavHg3Q82f71ZiXzNv4Dtxe-aVsuxGku7Dmy3tw6xJa4X34MjMjtjOfvmHbJaNClOhzffPPDi4IgIAdGPsdTyeGbjBSlFWT5GemdKyFPmFVYNR0EtGlnF-wkVmaBzC_EgY-hPWyKv0jYC7xqQlOEa67VD7WVhgCIBLCKK35cACvW8bldoVZTqMzfuQYuxCP847HA3jRkZ42QB3_InpP3O8ICFu7flCdfc1XqpoLq0IcspCm2ssiFjr4FKNCTRhQSnA3gM127_KVwi_yv-I5gOfdMqoq5V9M6avzmgYdKnTAkUb19rz3Q_2V8uRbDfpNuIX4-o3_f_wZ3Jgczvbyven-7mO4yalXg-pbkk1YX56d-yfoQS2Lp7XYMji-aj35AyxNL8w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwgPgUhQEGgcRL1NR24hgJoY2urIxVFVC0t-DE9oZAyVg7of1r_HXc5YtFQrztNT450dnn-13u_DuA58YJwxOvg8yMTSAdWroWXgQIrg03YZT5qkvEwTzeW8r3h9HhBvxu78JQWWV7JlYHtS1z-kc-ogQphtwIB0a-KYtYTKZvTn4G1EGKMq1tO416i-y7818Yvq1ezya41i84n-5-frsXNB0GghzDoHWQ-DwPvUKfp2Rox8p5E8cyspnNMh4ZaZ2JbBTnieYqR-emE5k5FflMSqusSQTOewU2FUVFA9jc2Z0vPnbhnsDor-YyEkKHoxVH74ruXvc8YNUooIdu-7WZF5zd9CbcaFAq26631S3YcMVtuH6Bu_AOfDkwE_ZuOXvFtgtGZSnBpyoPwBbnREfAFib_jmcVQ1CMEkVZp_yZKSxriVBY6RldQQnoF51bsYlZm7uwvBQV3oNBURbuPjAbudh4q4jlXSoX6lwYoiMSwiit-XgIL1vFpXnDYE6NNH6kGMmQjtNOx0N41ome1LQd_xLaIe13AsS0XT0oT4_SxnBTkSsf-sTHsXYyC4X2LsYYURMjlBLcDmGrXbu0Mf9V-nezDuFpN4yGS9kYU7jyrJJBeIVwHGVUb817H9QfKb4dVxTgxGKI0z_4_8ufwFW0kfTDbL7_EK5xurhBxS7RFgzWp2fuEcKpdfa42bcMvl62qfwBMwI1Xg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MaD+GUI%3A+An+Open-Source+Python+Package+for+Annotation+and+Analysis+of+Time-Series+Data&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Ollenschl%C3%A4ger%2C+Malte&rft.au=K%C3%BCderle%2C+Arne&rft.au=Mehringer%2C+Wolfgang&rft.au=Seifer%2C+Ann-Kristin&rft.date=2022-08-05&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=15&rft.spage=5849&rft_id=info:doi/10.3390%2Fs22155849&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon