Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates
Cold atoms with laser-induced spin-orbit (SO) interactions provide a platform to explore quantum physics beyond natural conditions of solids. Here we propose and experimentally realize two-dimensional (2D) SO coupling and topological bands for a rubidium-87 degenerate gas through an optical Raman la...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 354; no. 6308; pp. 83 - 88 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
07.10.2016
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cold atoms with laser-induced spin-orbit (SO) interactions provide a platform to explore quantum physics beyond natural conditions of solids. Here we propose and experimentally realize two-dimensional (2D) SO coupling and topological bands for a rubidium-87 degenerate gas through an optical Raman lattice, without phase-locking or fine-tuning of optical potentials. A controllable crossover between 2D and 1D SO couplings is studied, and the SO effects and nontrivial band topology are observed by measuring the atomic cloud distribution and spin texture in momentum space. Our realization of 2D SO coupling with advantages of small heating and topological stability opens a broad avenue in cold atoms to study exotic quantum phases, including topological superfluids. |
---|---|
AbstractList | Cold atoms with laser-induced spin-orbit (SO) interactions provide a platform to explore quantum physics beyond natural conditions of solids. Here we propose and experimentally realize two-dimensional (2D) SO coupling and topological bands for a rubidium-87 degenerate gas through an optical Raman lattice, without phase-locking or fine-tuning of optical potentials. A controllable crossover between 2D and 1D SO couplings is studied, and the SO effects and nontrivial band topology are observed by measuring the atomic cloud distribution and spin texture in momentum space. Our realization of 2D SO coupling with advantages of small heating and topological stability opens a broad avenue in cold atoms to study exotic quantum phases, including topological superfluids. Studying topological matter in cold-atom systems may bring fresh insights, thanks to the intrinsic purity and controllability of this experimental setting. However, the necessary spin-orbit coupling can be tricky to engineer. Wu et al. conceived and experimentally demonstrated a simple scheme that involves only a single laser source and can be continuously tuned between one- and two-dimensional spin-orbit coupling (see the Perspective by Aidelsburger). Although this experiment used bosonic atoms, it is expected that the setup would also work for fermions. Science, this issue p. 83; see also p. 35 Cold atoms with laser-induced spin-orbit (SO) interactions provide a platform to explore quantum physics beyond natural conditions of solids. Here we propose and experimentally realize two-dimensional (2D) SO coupling and topological bands for a rubidium-87 degenerate gas through an optical Raman lattice, without phase-locking or fine-tuning of optical potentials. A controllable crossover between 2D and 1D SO couplings is studied, and the SO effects and nontrivial band topology are observed by measuring the atomic cloud distribution and spin texture in momentum space. Our realization of 2D SO coupling with advantages of small heating and topological stability opens a broad avenue in cold atoms to study exotic quantum phases, including topological superfluids. Studying topological matter in cold-atom systems may bring fresh insights, thanks to the intrinsic purity and controllability of this experimental setting. However, the necessary spin-orbit coupling can be tricky to engineer. Wu et al. conceived and experimentally demonstrated a simple scheme that involves only a single laser source and can be continuously tuned between one- and two-dimensional spin-orbit coupling (see the Perspective by Aidelsburger). Although this experiment used bosonic atoms, it is expected that the setup would also work for fermions. Science , this issue p. 83 ; see also p. 35 Rubidium atoms are used to demonstrate a spin-orbit coupling scheme that is tunable between the 1- and 2D limits. [Also see Perspective by Aidelsburger ] Cold atoms with laser-induced spin-orbit (SO) interactions provide a platform to explore quantum physics beyond natural conditions of solids. Here we propose and experimentally realize two-dimensional (2D) SO coupling and topological bands for a rubidium-87 degenerate gas through an optical Raman lattice, without phase-locking or fine-tuning of optical potentials. A controllable crossover between 2D and 1D SO couplings is studied, and the SO effects and nontrivial band topology are observed by measuring the atomic cloud distribution and spin texture in momentum space. Our realization of 2D SO coupling with advantages of small heating and topological stability opens a broad avenue in cold atoms to study exotic quantum phases, including topological superfluids. Cold atoms with laser-induced spin-orbit (SO) interactions provide a platform to explore quantum physics beyond natural conditions of solids. Here we propose and experimentally realize two-dimensional (2D) SO coupling and topological bands for a rubidium-87 degenerate gas through an optical Raman lattice, without phase-locking or fine-tuning of optical potentials. A controllable crossover between 2D and 1D SO couplings is studied, and the SO effects and nontrivial band topology are observed by measuring the atomic cloud distribution and spin texture in momentum space. Our realization of 2D SO coupling with advantages of small heating and topological stability opens a broad avenue in cold atoms to study exotic quantum phases, including topological superfluids.Cold atoms with laser-induced spin-orbit (SO) interactions provide a platform to explore quantum physics beyond natural conditions of solids. Here we propose and experimentally realize two-dimensional (2D) SO coupling and topological bands for a rubidium-87 degenerate gas through an optical Raman lattice, without phase-locking or fine-tuning of optical potentials. A controllable crossover between 2D and 1D SO couplings is studied, and the SO effects and nontrivial band topology are observed by measuring the atomic cloud distribution and spin texture in momentum space. Our realization of 2D SO coupling with advantages of small heating and topological stability opens a broad avenue in cold atoms to study exotic quantum phases, including topological superfluids. Spin-orbit coupling in an optical latticeStudying topological matter in cold-atom systems may bring fresh insights, thanks to the intrinsic purity and controllability of this experimental setting. However, the necessary spin-orbit coupling can be tricky to engineer. Wu et al. conceived and experimentally demonstrated a simple scheme that involves only a single laser source and can be continuously tuned between one- and two-dimensional spin-orbit coupling (see the Perspective by Aidelsburger). Although this experiment used bosonic atoms, it is expected that the setup would also work for fermions.Science, this issue p. 83; see also p. 35 Cold atoms with laser-induced spin-orbit (SO) interactions provide a platform to explore quantum physics beyond natural conditions of solids. Here we propose and experimentally realize two-dimensional (2D) SO coupling and topological bands for a rubidium-87 degenerate gas through an optical Raman lattice, without phase-locking or fine-tuning of optical potentials. A controllable crossover between 2D and 1D SO couplings is studied, and the SO effects and nontrivial band topology are observed by measuring the atomic cloud distribution and spin texture in momentum space. Our realization of 2D SO coupling with advantages of small heating and topological stability opens a broad avenue in cold atoms to study exotic quantum phases, including topological superfluids. |
Author | Sun, Wei Wang, Bao-Zong Deng, Youjin Zhang, Long Chen, Shuai Pan, Jian-Wei Ji, Si-Cong Wu, Zhan Xu, Xiao-Tian Liu, Xiong-Jun |
Author_xml | – sequence: 1 givenname: Zhan surname: Wu fullname: Wu, Zhan – sequence: 2 givenname: Long surname: Zhang fullname: Zhang, Long – sequence: 3 givenname: Wei surname: Sun fullname: Sun, Wei – sequence: 4 givenname: Xiao-Tian surname: Xu fullname: Xu, Xiao-Tian – sequence: 5 givenname: Bao-Zong surname: Wang fullname: Wang, Bao-Zong – sequence: 6 givenname: Si-Cong surname: Ji fullname: Ji, Si-Cong – sequence: 7 givenname: Youjin surname: Deng fullname: Deng, Youjin – sequence: 8 givenname: Shuai surname: Chen fullname: Chen, Shuai – sequence: 9 givenname: Xiong-Jun surname: Liu fullname: Liu, Xiong-Jun – sequence: 10 givenname: Jian-Wei surname: Pan fullname: Pan, Jian-Wei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27846495$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1rVDEUxYO02Gl17Up54MbNa_N5kyy1VC0UKqLrRyZzn2R4k4xJHkX_-mY6Yxdd2NUN9_zODZxzSo5iikjIG0bPGeNwUXzA6PHcuRHA2BdkwahVveVUHJEFpQJ6Q7U6IaelrCltmhUvyQnXRoK0akG-fUc3hb-uhhS7NHb1LvWrsMFY2sJNXdmG2Ke8DLXzad5OIf7qxpS7T6lgfxViqRhik-KqWVzF8oocj24q-Powz8jPz1c_Lr_2N7dfri8_3vReSqi9QeEdaiUtaOYZaDRcK7DUmqXXVErKPWdaKwVKOQEeODXA2JI1qb3EGfmwv7vN6feMpQ6bUDxOk4uY5jIwA1IJK1oSz6OSMSEBdlffP0HXac4tiB3FQWtruWnUuwM1Lze4GrY5bFz-M_yLtQEXe8DnVErG8RFhdNgVNxyKGw7FNYd64vChPrRSswvTf3xv9751qSk_fiOlZlRLI-4BBlamvw |
CODEN | SCIEAS |
CitedBy_id | crossref_primary_10_1088_1674_4926_43_12_121201 crossref_primary_10_1038_s41598_017_15900_w crossref_primary_10_1088_1572_9494_ad7835 crossref_primary_10_21468_SciPostPhys_12_3_095 crossref_primary_10_1016_j_physleta_2019_125982 crossref_primary_10_1103_PhysRevA_107_023303 crossref_primary_10_1103_PhysRevResearch_5_023160 crossref_primary_10_1002_anie_202300028 crossref_primary_10_1103_PhysRevA_108_043311 crossref_primary_10_1103_PhysRevA_103_L061302 crossref_primary_10_1103_PhysRevX_8_031079 crossref_primary_10_1103_PhysRevLett_122_123201 crossref_primary_10_1103_PhysRevA_103_023302 crossref_primary_10_1103_PhysRevA_105_063308 crossref_primary_10_1103_PhysRevA_110_023321 crossref_primary_10_1088_1674_1056_abab72 crossref_primary_10_1088_1367_2630_ab7cb1 crossref_primary_10_1103_PhysRevLett_125_183001 crossref_primary_10_1080_23746149_2023_2301592 crossref_primary_10_1088_1361_648X_ac7f19 crossref_primary_10_1364_OE_477780 crossref_primary_10_1002_andp_202000194 crossref_primary_10_1088_1361_648X_ac6788 crossref_primary_10_1103_PhysRevB_101_115416 crossref_primary_10_1016_j_chaos_2024_115590 crossref_primary_10_1209_0295_5075_acc051 crossref_primary_10_1016_j_physleta_2018_04_032 crossref_primary_10_1103_PhysRevLett_122_023601 crossref_primary_10_1103_PhysRevLett_131_133601 crossref_primary_10_1038_s41534_019_0159_6 crossref_primary_10_1103_PhysRevLett_121_185302 crossref_primary_10_1038_s41598_017_15596_y crossref_primary_10_1103_PhysRevB_106_L140303 crossref_primary_10_1103_PhysRevA_105_063319 crossref_primary_10_1016_j_rinp_2023_107067 crossref_primary_10_1103_PhysRevB_103_245106 crossref_primary_10_1103_PhysRevB_104_L041106 crossref_primary_10_1103_PhysRevA_104_043328 crossref_primary_10_1103_PhysRevLett_121_083402 crossref_primary_10_21468_SciPostPhys_17_1_003 crossref_primary_10_1038_s41535_020_00271_9 crossref_primary_10_1103_PhysRevA_98_041603 crossref_primary_10_1088_1361_6455_aa8c5a crossref_primary_10_1103_PhysRevLett_129_220402 crossref_primary_10_1103_PhysRevA_104_043320 crossref_primary_10_1088_1674_1056_28_7_070302 crossref_primary_10_1038_s41524_019_0224_x crossref_primary_10_1103_PhysRevB_98_174506 crossref_primary_10_3389_fphy_2021_768799 crossref_primary_10_1364_OE_515902 crossref_primary_10_1038_s41534_019_0148_9 crossref_primary_10_1038_s41567_020_0942_5 crossref_primary_10_1103_PhysRevA_95_061601 crossref_primary_10_1088_1367_2630_abb911 crossref_primary_10_1103_PhysRevB_101_045133 crossref_primary_10_1103_PhysRevB_97_045142 crossref_primary_10_1007_s11433_018_9175_2 crossref_primary_10_1103_PhysRevB_99_165148 crossref_primary_10_1103_PhysRevA_106_L061302 crossref_primary_10_1103_PhysRevResearch_5_033173 crossref_primary_10_1103_PhysRevA_109_053307 crossref_primary_10_1007_s10909_024_03163_5 crossref_primary_10_1038_s41467_018_08119_4 crossref_primary_10_1103_PhysRevB_99_155102 crossref_primary_10_1007_s11433_024_2564_8 crossref_primary_10_1038_s41377_021_00702_7 crossref_primary_10_1103_PhysRevB_96_144517 crossref_primary_10_1103_PhysRevLett_120_120401 crossref_primary_10_1209_0295_5075_130_56003 crossref_primary_10_1088_1367_2630_acb80d crossref_primary_10_1016_j_physleta_2021_127743 crossref_primary_10_1088_1367_2630_aaf9e3 crossref_primary_10_1103_PhysRevA_109_053311 crossref_primary_10_1016_j_physleta_2023_129128 crossref_primary_10_1016_j_scib_2018_09_018 crossref_primary_10_1103_PhysRevA_109_053314 crossref_primary_10_1103_PhysRevResearch_6_043089 crossref_primary_10_1103_PhysRevA_108_033309 crossref_primary_10_7498_aps_68_20181927 crossref_primary_10_1088_1402_4896_ad9229 crossref_primary_10_1360_TB_2023_0226 crossref_primary_10_7498_aps_68_20181928 crossref_primary_10_1103_PhysRevLett_121_113204 crossref_primary_10_1103_PhysRevA_110_013309 crossref_primary_10_1088_1367_2630_aabdf8 crossref_primary_10_1209_0295_5075_122_36001 crossref_primary_10_1142_S0217984920502826 crossref_primary_10_1103_PhysRevA_104_053315 crossref_primary_10_1103_PhysRevA_96_023601 crossref_primary_10_1016_j_physleta_2017_01_021 crossref_primary_10_1103_PhysRevA_97_011605 crossref_primary_10_1103_PRXQuantum_1_020303 crossref_primary_10_1103_PhysRevA_98_063621 crossref_primary_10_1016_j_aop_2022_168763 crossref_primary_10_1103_PhysRevA_97_043618 crossref_primary_10_1016_j_physa_2022_127244 crossref_primary_10_1103_PhysRevA_96_013625 crossref_primary_10_7566_JPSJ_88_064001 crossref_primary_10_1103_PhysRevA_107_013306 crossref_primary_10_1103_PhysRevResearch_6_L042054 crossref_primary_10_1103_PhysRevA_104_L031306 crossref_primary_10_1103_PhysRevA_97_033625 crossref_primary_10_1038_s41586_020_1932_6 crossref_primary_10_1103_PhysRevA_96_013619 crossref_primary_10_1103_PhysRevA_94_051604 crossref_primary_10_1103_PhysRevLett_121_093401 crossref_primary_10_1103_PhysRevA_102_013316 crossref_primary_10_1103_PhysRevA_98_053630 crossref_primary_10_1103_PhysRevLett_129_130402 crossref_primary_10_1103_PhysRevA_102_013309 crossref_primary_10_1140_epjb_e2016_70585_4 crossref_primary_10_1103_PhysRevA_99_051602 crossref_primary_10_1038_s42005_022_01021_y crossref_primary_10_1103_PhysRevResearch_5_013002 crossref_primary_10_1103_PhysRevA_96_023623 crossref_primary_10_1088_0256_307X_38_4_040302 crossref_primary_10_1088_1367_2630_ab5f43 crossref_primary_10_1088_0256_307X_40_8_083701 crossref_primary_10_1088_1674_1056_ac1411 crossref_primary_10_1103_PhysRevA_96_013606 crossref_primary_10_1103_PhysRevLett_133_123402 crossref_primary_10_1103_PhysRevA_95_013409 crossref_primary_10_1103_PhysRevA_96_013609 crossref_primary_10_1126_science_abc0105 crossref_primary_10_1103_PhysRevA_111_023305 crossref_primary_10_1038_s41567_024_02644_4 crossref_primary_10_1016_j_aop_2018_07_007 crossref_primary_10_7566_JPSJ_91_114301 crossref_primary_10_1016_j_physa_2023_128777 crossref_primary_10_1103_PhysRevA_96_023627 crossref_primary_10_1103_PhysRevA_105_063304 crossref_primary_10_1103_PhysRevA_102_013301 crossref_primary_10_1103_PhysRevB_106_134313 crossref_primary_10_1103_PhysRevA_98_053617 crossref_primary_10_3788_AOS231750 crossref_primary_10_1103_PhysRevA_98_053619 crossref_primary_10_1103_PhysRevA_103_033316 crossref_primary_10_1021_acs_nanolett_3c02488 crossref_primary_10_1103_PhysRevE_109_064201 crossref_primary_10_1103_PhysRevA_104_053325 crossref_primary_10_1103_PhysRevLett_126_193401 crossref_primary_10_1088_1674_1056_ab99b1 crossref_primary_10_1209_0295_5075_121_20003 crossref_primary_10_1088_1367_2630_aa7ce5 crossref_primary_10_1103_PhysRevLett_119_193001 crossref_primary_10_12693_APhysPolA_145_315 crossref_primary_10_1007_s12648_023_03057_4 crossref_primary_10_1103_PhysRevB_96_035113 crossref_primary_10_1038_s41567_021_01491_x crossref_primary_10_1103_PhysRevA_106_063311 crossref_primary_10_1103_PhysRevA_105_043301 crossref_primary_10_1016_j_chaos_2022_112240 crossref_primary_10_1103_PhysRevA_102_063313 crossref_primary_10_1103_PhysRevA_98_022708 crossref_primary_10_1103_PhysRevE_108_014208 crossref_primary_10_1103_PhysRevLett_123_190603 crossref_primary_10_1103_PhysRevB_100_224420 crossref_primary_10_1364_OPTICA_427088 crossref_primary_10_1103_PhysRevB_96_115119 crossref_primary_10_1103_PhysRevA_101_033617 crossref_primary_10_1103_PhysRevA_99_053603 crossref_primary_10_1103_PhysRevA_99_053606 crossref_primary_10_7498_aps_72_20230701 crossref_primary_10_7566_JPSJ_87_094003 crossref_primary_10_1088_0256_307X_37_3_036701 crossref_primary_10_1364_OE_457757 crossref_primary_10_1088_1367_2630_ac2755 crossref_primary_10_1140_epjp_i2018_12331_4 crossref_primary_10_1080_00018732_2019_1594094 crossref_primary_10_1103_PhysRevA_100_031602 crossref_primary_10_1364_AOP_494544 crossref_primary_10_1088_1674_1056_27_12_126701 crossref_primary_10_1103_PhysRevA_95_053615 crossref_primary_10_1016_j_physleta_2019_04_016 crossref_primary_10_1088_1367_2630_abb03f crossref_primary_10_1103_PhysRevResearch_1_033102 crossref_primary_10_1103_PhysRevA_98_033606 crossref_primary_10_1103_PhysRevA_106_043703 crossref_primary_10_7498_aps_69_20191241 crossref_primary_10_1088_1572_9494_ad8db7 crossref_primary_10_1016_j_cnsns_2022_106769 crossref_primary_10_1103_PhysRevA_95_041604 crossref_primary_10_1103_PhysRevLett_120_060407 crossref_primary_10_1209_0295_5075_123_37001 crossref_primary_10_1016_j_physletb_2023_138262 crossref_primary_10_1038_s42254_020_0195_3 crossref_primary_10_1103_PhysRevB_109_045418 crossref_primary_10_1103_PhysRevA_101_063606 crossref_primary_10_1016_j_rinp_2021_104317 crossref_primary_10_1103_PhysRevLett_124_073601 crossref_primary_10_1103_PhysRevA_104_023320 crossref_primary_10_1103_PhysRevA_106_L021101 crossref_primary_10_1103_PhysRevA_98_021601 crossref_primary_10_1209_0295_5075_ac50ca crossref_primary_10_1088_1572_9494_ac64f3 crossref_primary_10_1103_PhysRevB_106_195123 crossref_primary_10_1088_0256_307X_38_10_103701 crossref_primary_10_1103_PhysRevB_108_035418 crossref_primary_10_1103_PhysRevLett_120_140403 crossref_primary_10_1016_j_rinp_2021_104678 crossref_primary_10_1103_PhysRevA_100_023622 crossref_primary_10_1103_PhysRevA_110_043312 crossref_primary_10_1088_1361_6455_ad9fc0 crossref_primary_10_1103_PhysRevB_106_045147 crossref_primary_10_1103_PhysRevB_109_155137 crossref_primary_10_1103_PhysRevA_109_013324 crossref_primary_10_1103_PhysRevA_109_013326 crossref_primary_10_1007_s12274_023_6325_3 crossref_primary_10_1103_PhysRevE_103_022204 crossref_primary_10_7498_aps_70_20210173 crossref_primary_10_1088_2053_1583_aaa577 crossref_primary_10_1103_PhysRevA_100_043601 crossref_primary_10_1103_PhysRevA_100_023619 crossref_primary_10_1002_andp_202100188 crossref_primary_10_1088_1367_2630_ab5cad crossref_primary_10_1103_PhysRevB_96_235108 crossref_primary_10_1103_PhysRevLett_119_197401 crossref_primary_10_1103_PhysRevApplied_20_014037 crossref_primary_10_1007_s10773_021_04863_4 crossref_primary_10_1103_PRXQuantum_3_040312 crossref_primary_10_1126_sciadv_aao4748 crossref_primary_10_1103_PhysRevA_105_033306 crossref_primary_10_1142_S0217984922500701 crossref_primary_10_1103_PhysRevA_110_033325 crossref_primary_10_1016_j_rinp_2022_105706 crossref_primary_10_1088_0256_307X_35_1_013701 crossref_primary_10_1103_PhysRevLett_129_066802 crossref_primary_10_1103_PhysRevA_105_053312 crossref_primary_10_1103_PhysRevA_106_053312 crossref_primary_10_1103_PhysRevA_101_043616 crossref_primary_10_1038_s41567_019_0564_y crossref_primary_10_7498_aps_72_20222292 crossref_primary_10_1103_PhysRevA_101_043619 crossref_primary_10_1038_s41467_020_20762_4 crossref_primary_10_52396_JUSTC_2022_0003 crossref_primary_10_7498_aps_67_20180539 crossref_primary_10_7498_aps_70_20201456 crossref_primary_10_1103_PhysRevA_100_052328 crossref_primary_10_1103_PhysRevA_100_023602 crossref_primary_10_1103_PhysRevA_99_043619 crossref_primary_10_1103_PhysRevA_94_053633 crossref_primary_10_1038_s41467_019_11210_z crossref_primary_10_1103_PhysRevA_110_033327 crossref_primary_10_1103_PhysRevA_98_023609 crossref_primary_10_1103_PhysRevA_103_013307 crossref_primary_10_1088_1751_8121_ad0ce4 crossref_primary_10_1002_qute_202100017 crossref_primary_10_1002_ange_202300028 crossref_primary_10_1088_1367_2630_ad0174 crossref_primary_10_1103_PhysRevResearch_6_033200 crossref_primary_10_1103_PhysRevA_106_053301 crossref_primary_10_1103_PhysRevA_95_063617 crossref_primary_10_1103_PhysRevA_104_033312 crossref_primary_10_1103_PhysRevA_95_063616 crossref_primary_10_1007_s10909_021_02613_8 crossref_primary_10_1103_PhysRevResearch_4_043083 crossref_primary_10_1088_1361_6455_ab153e crossref_primary_10_1103_PhysRevA_95_063610 crossref_primary_10_1016_j_chaos_2023_113835 crossref_primary_10_1103_PhysRevLett_125_245301 crossref_primary_10_1364_OE_551448 crossref_primary_10_1103_PhysRevA_103_013316 crossref_primary_10_1103_PhysRevA_95_051601 crossref_primary_10_1103_PhysRevLett_121_150401 crossref_primary_10_1088_1361_6455_ab0e5d crossref_primary_10_1088_1361_6455_ac461d crossref_primary_10_1007_s11467_019_0896_1 crossref_primary_10_1088_1572_9494_ad4e23 crossref_primary_10_1103_PhysRevB_107_115166 crossref_primary_10_1103_PhysRevB_110_205430 crossref_primary_10_1103_PRXQuantum_2_020320 crossref_primary_10_1103_PhysRevA_95_030701 crossref_primary_10_1103_PhysRevB_104_L161118 crossref_primary_10_1103_PhysRevA_97_013607 crossref_primary_10_1139_cjp_2024_0012 crossref_primary_10_1088_1674_1056_abd7e4 crossref_primary_10_1103_PhysRevResearch_4_013124 crossref_primary_10_1103_PhysRevB_103_184510 crossref_primary_10_1103_PhysRevA_97_013625 crossref_primary_10_1016_j_amc_2024_128536 crossref_primary_10_1103_PhysRevA_94_053619 crossref_primary_10_1016_j_ijleo_2023_171073 crossref_primary_10_1103_PhysRevA_101_053613 crossref_primary_10_1103_PhysRevB_99_075204 crossref_primary_10_1103_PhysRevA_106_063321 crossref_primary_10_1103_PhysRevA_110_033307 crossref_primary_10_1088_1367_2630_ac6cfd crossref_primary_10_1007_s11467_023_1283_5 crossref_primary_10_1103_PhysRevB_96_214502 crossref_primary_10_1103_PhysRevLett_126_193001 crossref_primary_10_1088_1367_2630_aad134 crossref_primary_10_1088_1572_9494_ac7dea crossref_primary_10_1103_PhysRevResearch_3_013054 crossref_primary_10_1103_PhysRevA_97_013619 crossref_primary_10_3389_fphy_2022_910818 crossref_primary_10_1103_PhysRevA_99_043601 crossref_primary_10_1103_PhysRevLett_124_216601 crossref_primary_10_1103_PhysRevLett_118_155301 crossref_primary_10_1103_PhysRevB_108_104201 crossref_primary_10_1038_s42005_022_00802_9 crossref_primary_10_1016_j_chaos_2023_113848 crossref_primary_10_1088_1361_6455_ab2a9b crossref_primary_10_1002_qute_202300356 crossref_primary_10_1103_PhysRevLett_124_010401 crossref_primary_10_1103_PhysRevA_102_043304 crossref_primary_10_1038_s41467_018_05865_3 crossref_primary_10_1088_1361_6633_aaa4ad crossref_primary_10_1103_PhysRevA_101_013607 crossref_primary_10_1088_1361_6633_aca814 crossref_primary_10_1103_PhysRevLett_125_260402 crossref_primary_10_1007_s11467_022_1180_3 crossref_primary_10_1088_0256_307X_40_11_110302 crossref_primary_10_1038_s41377_022_00738_3 crossref_primary_10_1103_PhysRevA_109_023303 crossref_primary_10_1016_j_rinp_2024_107809 crossref_primary_10_3788_CJL240815 crossref_primary_10_1103_PhysRevA_102_042209 crossref_primary_10_1103_PhysRevA_105_023303 crossref_primary_10_1103_PhysRevA_110_063326 crossref_primary_10_1103_PhysRevLett_125_236401 crossref_primary_10_1103_PhysRevResearch_3_013229 crossref_primary_10_3389_fphy_2022_1022811 crossref_primary_10_1103_PhysRevA_97_040701 crossref_primary_10_1103_PhysRevLett_119_047001 crossref_primary_10_1142_S0217984922500117 crossref_primary_10_1016_j_chaos_2020_110332 crossref_primary_10_1088_1367_2630_abac3c crossref_primary_10_1088_1361_6455_aa7afd crossref_primary_10_1103_PhysRevA_103_063324 crossref_primary_10_1103_PhysRevA_99_043419 crossref_primary_10_1007_s11467_021_1134_1 crossref_primary_10_1209_0295_5075_123_10005 crossref_primary_10_1103_PhysRevE_95_042129 crossref_primary_10_1016_j_physleta_2019_02_026 crossref_primary_10_1103_PhysRevA_101_013622 crossref_primary_10_1103_PhysRevLett_120_157205 crossref_primary_10_22331_q_2023_06_21_1042 crossref_primary_10_1103_PhysRevLett_124_160402 crossref_primary_10_1088_0253_6102_69_2_137 crossref_primary_10_1103_PhysRevResearch_4_033008 crossref_primary_10_1140_epjd_s10053_021_00158_9 crossref_primary_10_1016_j_physa_2024_129610 crossref_primary_10_1103_PhysRevB_107_125132 crossref_primary_10_1088_1367_2630_aa559b crossref_primary_10_1103_PhysRevA_95_043623 crossref_primary_10_1103_PhysRevA_99_033621 crossref_primary_10_1016_j_physleta_2022_128334 crossref_primary_10_1103_PhysRevA_98_013615 crossref_primary_10_1140_epjd_e2020_10129_1 crossref_primary_10_1103_PhysRevA_98_013614 crossref_primary_10_1103_PhysRevB_101_054402 crossref_primary_10_1103_PhysRevA_105_033324 crossref_primary_10_1103_PhysRevA_95_033620 crossref_primary_10_1103_PhysRevB_98_245118 crossref_primary_10_1103_PRXQuantum_3_030335 crossref_primary_10_21468_SciPostPhys_12_5_167 crossref_primary_10_1016_j_jpcs_2018_04_033 crossref_primary_10_1140_epjb_e2019_100488_5 crossref_primary_10_1088_1361_648X_aaff16 crossref_primary_10_1038_s41928_022_00833_8 crossref_primary_10_1007_s10773_021_04926_6 crossref_primary_10_1103_PhysRevLett_125_020504 crossref_primary_10_1103_PhysRevA_97_051601 crossref_primary_10_1103_PhysRevA_110_063309 crossref_primary_10_1016_j_scib_2021_04_038 crossref_primary_10_1088_1674_1056_ad6424 crossref_primary_10_1103_PhysRevA_100_063606 crossref_primary_10_1103_PhysRevLett_125_090502 crossref_primary_10_1103_PhysRevLett_129_090503 crossref_primary_10_1103_PhysRevA_96_053626 crossref_primary_10_1007_s11128_017_1652_5 crossref_primary_10_1088_1674_1056_ac1b85 crossref_primary_10_1103_PhysRevA_110_063302 crossref_primary_10_1103_PhysRevE_104_064215 crossref_primary_10_1016_j_physleta_2022_128330 crossref_primary_10_1103_PhysRevA_110_063305 crossref_primary_10_1103_PhysRevB_105_235102 crossref_primary_10_1088_1612_202X_aac7e9 crossref_primary_10_7498_aps_69_20200372 crossref_primary_10_1103_PhysRevB_98_165128 crossref_primary_10_1007_s11433_022_1898_7 crossref_primary_10_1103_PhysRevA_99_033613 crossref_primary_10_1103_PhysRevA_105_033310 crossref_primary_10_1103_PhysRevA_104_013306 crossref_primary_10_1088_1367_2630_ad3be3 crossref_primary_10_1088_1674_1056_abbbe8 crossref_primary_10_1103_PhysRevA_102_053318 crossref_primary_10_1126_science_aah7087 crossref_primary_10_1103_PhysRevA_108_013304 crossref_primary_10_1016_j_cnsns_2022_106930 crossref_primary_10_1103_PhysRevLett_118_200401 crossref_primary_10_1063_1_5087957 crossref_primary_10_1103_PhysRevA_101_013604 crossref_primary_10_1103_PhysRevResearch_4_033023 crossref_primary_10_1088_1367_2630_aa8646 crossref_primary_10_1103_PhysRevA_98_023630 crossref_primary_10_7498_aps_72_20222289 crossref_primary_10_1088_1361_648X_aaab89 crossref_primary_10_1007_s10773_019_04119_2 crossref_primary_10_1103_PhysRevA_101_032104 crossref_primary_10_1103_PhysRevA_95_033603 crossref_primary_10_1103_PhysRevB_107_184425 crossref_primary_10_1103_PhysRevA_95_033609 crossref_primary_10_1103_PhysRevLett_121_030404 crossref_primary_10_1088_1361_6455_aa92b7 crossref_primary_10_1103_PhysRevA_109_033303 crossref_primary_10_1016_j_cnsns_2020_105217 crossref_primary_10_1103_PhysRevA_99_012703 crossref_primary_10_1103_PhysRevB_98_165139 crossref_primary_10_1038_s41377_020_00384_7 crossref_primary_10_1103_PhysRevA_95_043605 crossref_primary_10_1103_PhysRevB_108_075128 crossref_primary_10_1103_PhysRevA_100_063630 crossref_primary_10_1088_1361_6455_ace66e crossref_primary_10_1088_1674_1056_26_8_080304 crossref_primary_10_1103_PhysRevLett_128_226401 crossref_primary_10_1515_nanoph_2022_0213 crossref_primary_10_1088_0256_307X_37_2_020301 crossref_primary_10_1088_1361_6455_acafbd crossref_primary_10_1103_PhysRevA_100_063624 crossref_primary_10_1088_1674_1056_ad7576 crossref_primary_10_1103_PhysRevA_101_023609 crossref_primary_10_1103_PhysRevB_101_235121 crossref_primary_10_1088_1361_648X_ab6021 crossref_primary_10_1103_PhysRevResearch_2_013149 crossref_primary_10_1016_j_chaos_2018_10_001 crossref_primary_10_1103_PhysRevA_101_023621 crossref_primary_10_1103_PhysRevLett_130_206401 crossref_primary_10_1021_acs_jpclett_8b02127 crossref_primary_10_1103_PhysRevA_95_043619 crossref_primary_10_1103_PhysRevB_97_224304 crossref_primary_10_1103_PhysRevB_98_075440 crossref_primary_10_1016_j_scib_2020_09_036 crossref_primary_10_1103_PhysRevB_109_165108 crossref_primary_10_1007_s11467_023_1314_2 crossref_primary_10_1016_j_physleta_2018_07_026 crossref_primary_10_1016_j_pnsc_2022_09_017 crossref_primary_10_1103_PhysRevResearch_2_013252 crossref_primary_10_1364_OE_473770 crossref_primary_10_1103_PhysRevLett_125_216601 crossref_primary_10_1088_1367_2630_ac10fc crossref_primary_10_1103_PhysRevA_98_013617 crossref_primary_10_1103_PRXQuantum_4_040327 crossref_primary_10_1016_j_chaos_2024_114979 crossref_primary_10_1103_PhysRevLett_121_120403 crossref_primary_10_1103_PhysRevA_100_053606 crossref_primary_10_1088_1361_6455_ac41b2 crossref_primary_10_1126_science_aay3183 crossref_primary_10_1016_j_scib_2018_11_002 crossref_primary_10_1140_epjb_e2018_90468_x crossref_primary_10_1038_s41567_022_01580_5 crossref_primary_10_1103_PhysRevA_105_023320 crossref_primary_10_1103_PhysRevB_110_L201117 crossref_primary_10_1103_PhysRevLett_118_045701 crossref_primary_10_1103_PhysRevA_102_063327 crossref_primary_10_1103_PhysRevA_95_053628 crossref_primary_10_1103_PhysRevA_99_023624 crossref_primary_10_1103_PhysRevA_95_053629 crossref_primary_10_1038_s41567_020_0949_y crossref_primary_10_1209_0295_5075_ace2e8 crossref_primary_10_1038_s41567_021_01316_x crossref_primary_10_1103_PhysRevResearch_2_023067 crossref_primary_10_7566_JPSJ_88_024005 crossref_primary_10_1088_1361_6455_abb031 crossref_primary_10_1103_PhysRevA_97_061602 crossref_primary_10_1088_0256_307X_39_7_073101 crossref_primary_10_1103_PhysRevResearch_2_013036 crossref_primary_10_1103_PhysRevResearch_2_013037 crossref_primary_10_1088_1367_2630_ab725b crossref_primary_10_1103_PhysRevA_99_023610 crossref_primary_10_1103_PhysRevA_107_052218 crossref_primary_10_1103_PhysRevA_100_063633 crossref_primary_10_1103_PhysRevB_100_041101 crossref_primary_10_1103_PhysRevA_102_063316 crossref_primary_10_7498_aps_73_20231795 crossref_primary_10_1016_j_scib_2024_01_018 crossref_primary_10_1088_1367_2630_ac7fb1 crossref_primary_10_1103_PhysRevLett_123_160404 crossref_primary_10_2139_ssrn_4174069 crossref_primary_10_21468_SciPostPhys_15_2_046 crossref_primary_10_3390_app8101771 crossref_primary_10_1103_RevModPhys_91_015005 crossref_primary_10_1140_epjp_i2019_12988_y crossref_primary_10_7498_aps_68_20191410 crossref_primary_10_1103_PhysRevA_97_053602 crossref_primary_10_1038_s41534_022_00587_3 crossref_primary_10_1103_PhysRevA_106_023302 crossref_primary_10_1103_PhysRevB_100_125110 crossref_primary_10_1103_PhysRevA_111_023323 crossref_primary_10_1088_1674_1056_ac538d crossref_primary_10_1103_PhysRevB_107_085410 crossref_primary_10_1103_PhysRevA_97_053609 crossref_primary_10_1007_s11467_018_0778_y crossref_primary_10_1103_PhysRevA_106_022219 crossref_primary_10_1088_0256_307X_35_6_063201 crossref_primary_10_1016_j_jpcs_2017_08_019 crossref_primary_10_1103_PhysRevA_102_023524 crossref_primary_10_1038_srep37679 crossref_primary_10_1103_PhysRevResearch_6_023048 crossref_primary_10_1103_PRXQuantum_3_010316 crossref_primary_10_1016_j_cnsns_2018_10_024 crossref_primary_10_1103_PhysRevA_107_043321 crossref_primary_10_1016_j_physleta_2019_07_007 crossref_primary_10_1103_PhysRevLett_129_080402 crossref_primary_10_1016_j_physd_2025_134540 crossref_primary_10_1016_j_physb_2023_415528 crossref_primary_10_1103_PhysRevA_99_013617 crossref_primary_10_1103_PhysRevA_103_043328 crossref_primary_10_1364_OE_479091 crossref_primary_10_1103_PhysRevLett_125_073204 crossref_primary_10_1007_s43673_022_00069_w crossref_primary_10_1007_s10909_019_02182_x crossref_primary_10_1088_1674_1056_ad4eb3 crossref_primary_10_1039_C8NR00571K crossref_primary_10_1016_j_cpc_2022_108314 crossref_primary_10_1103_PhysRevA_97_053624 crossref_primary_10_1088_1367_2630_ac5373 crossref_primary_10_1103_PhysRevA_96_033619 crossref_primary_10_1103_PhysRevA_94_061604 crossref_primary_10_1103_PhysRevA_96_033613 crossref_primary_10_1088_1361_6455_aa7441 crossref_primary_10_1088_0256_307X_40_12_127402 crossref_primary_10_1016_j_rinp_2023_107228 crossref_primary_10_1103_PhysRevA_103_043315 crossref_primary_10_1103_PhysRevA_105_013323 crossref_primary_10_1103_PhysRevA_98_063607 crossref_primary_10_1103_PhysRevLett_121_015303 crossref_primary_10_1007_s10909_022_02761_5 crossref_primary_10_1103_PhysRevLett_122_110402 crossref_primary_10_1088_1367_2630_aab701 crossref_primary_10_1103_PhysRevB_109_115147 crossref_primary_10_1103_PhysRevA_96_033629 crossref_primary_10_1103_PhysRevB_97_155302 crossref_primary_10_1103_PhysRevA_102_033339 crossref_primary_10_1103_PhysRevA_102_033332 crossref_primary_10_1103_PhysRevB_96_155122 crossref_primary_10_1103_PhysRevLett_132_216301 crossref_primary_10_1142_S0217984920502413 crossref_primary_10_1088_1751_8121_aa59c1 crossref_primary_10_1103_PhysRevResearch_5_L032016 crossref_primary_10_1103_PhysRevLett_122_166801 crossref_primary_10_3390_sym11030388 crossref_primary_10_1103_PhysRevA_105_042812 crossref_primary_10_1088_1674_1056_abc53e crossref_primary_10_1126_sciadv_1701696 crossref_primary_10_1103_PhysRevLett_129_046401 crossref_primary_10_1142_S0217979217450126 crossref_primary_10_1142_S0129183121500315 crossref_primary_10_1038_s41586_024_08259_2 crossref_primary_10_1038_s41535_022_00422_0 crossref_primary_10_1103_PhysRevA_107_033309 crossref_primary_10_1088_1751_8121_ace570 crossref_primary_10_1103_PhysRevA_107_033308 crossref_primary_10_1016_j_ijleo_2022_170484 crossref_primary_10_1103_PhysRevA_95_033635 crossref_primary_10_1103_PhysRevResearch_5_L022032 crossref_primary_10_1088_1572_9494_ac6e5b crossref_primary_10_1016_j_physleta_2022_128035 crossref_primary_10_1103_PhysRevLett_118_185701 crossref_primary_10_1103_PhysRevResearch_4_L042018 crossref_primary_10_1103_PhysRevResearch_5_L012006 crossref_primary_10_7498_aps_70_20210705 crossref_primary_10_1142_S0217984917502219 crossref_primary_10_1007_s10909_018_2093_y crossref_primary_10_1103_PhysRevA_103_053318 crossref_primary_10_1103_PhysRevB_105_024503 crossref_primary_10_1103_PhysRevB_97_020501 crossref_primary_10_1103_PhysRevB_99_094520 crossref_primary_10_1103_PhysRevA_95_033628 crossref_primary_10_1103_PhysRevA_111_013319 crossref_primary_10_1016_j_chaos_2021_111406 crossref_primary_10_1016_j_chaos_2024_114456 crossref_primary_10_1016_j_aop_2023_169503 crossref_primary_10_1103_PhysRevResearch_6_L012021 crossref_primary_10_1007_s11433_023_2166_y crossref_primary_10_1103_PhysRevLett_121_250403 crossref_primary_10_1126_sciadv_1701207 crossref_primary_10_1103_PhysRevLett_121_250401 crossref_primary_10_1103_PhysRevResearch_4_L042012 crossref_primary_10_1103_PhysRevA_102_043323 crossref_primary_10_1209_0295_5075_123_66001 crossref_primary_10_1007_s11467_018_0821_z crossref_primary_10_1088_1361_648X_aca7a9 crossref_primary_10_1103_PhysRevApplied_16_014045 crossref_primary_10_1103_PhysRevLett_128_245301 crossref_primary_10_1103_PhysRevA_107_033326 crossref_primary_10_1016_j_cnsns_2022_107013 crossref_primary_10_1103_PhysRevLett_120_240401 crossref_primary_10_1103_PhysRevA_101_013627 crossref_primary_10_1103_PhysRevB_99_174309 crossref_primary_10_1103_PhysRevLett_130_043201 crossref_primary_10_1007_s11071_020_05692_6 crossref_primary_10_1103_PhysRevB_96_041102 crossref_primary_10_1103_PhysRevA_95_023620 crossref_primary_10_1103_PhysRevA_106_013302 crossref_primary_10_1088_1367_2630_aa6e31 crossref_primary_10_1103_PhysRevA_97_063625 crossref_primary_10_1103_PhysRevA_95_023607 crossref_primary_10_1088_1367_2630_abf3ed crossref_primary_10_1038_s41598_022_07215_2 crossref_primary_10_1103_PhysRevA_107_033312 crossref_primary_10_1088_1674_1056_ac11dc crossref_primary_10_1038_s42005_022_01001_2 crossref_primary_10_1038_s41598_023_44745_9 crossref_primary_10_1103_PhysRevB_98_245148 crossref_primary_10_1103_PhysRevA_97_042709 crossref_primary_10_1038_s42005_022_00840_3 crossref_primary_10_1088_1361_648X_adab5b crossref_primary_10_7498_aps_72_20222401 crossref_primary_10_7498_aps_73_20240535 crossref_primary_10_1088_1361_6455_ac68b6 crossref_primary_10_1103_PhysRevLett_118_207002 crossref_primary_10_1103_PhysRevResearch_7_013219 crossref_primary_10_1103_PhysRevA_103_053305 crossref_primary_10_1103_PhysRevA_103_052213 crossref_primary_10_1103_PhysRevA_95_023611 crossref_primary_10_1016_j_rinp_2020_103755 crossref_primary_10_1103_PhysRevA_96_043620 |
Cites_doi | 10.1103/PhysRevLett.109.115301 10.1103/PhysRevLett.111.185302 10.1103/PhysRevA.93.063420 10.1103/PhysRevLett.114.105301 10.1103/RevModPhys.83.1057 10.1126/science.aaa9297 10.1103/PhysRevLett.111.120402 10.1103/PhysRevLett.103.020401 10.1103/RevModPhys.82.3045 10.1103/PhysRevB.61.10267 10.1038/nphys3672 10.1103/PhysRevLett.95.010404 10.1038/nature11841 10.1103/PhysRevLett.109.095301 10.1088/0034-4885/77/12/126401 10.1103/PhysRevLett.109.085302 10.1103/PhysRevX.5.011029 10.1088/0034-4885/75/7/076501 10.1103/PhysRevLett.107.150403 10.1103/PhysRevLett.95.010403 10.1103/PhysRevLett.102.046402 10.1103/PhysRevLett.105.160403 10.1038/nature09887 10.1103/PhysRevLett.108.225303 10.1103/PhysRevLett.111.185301 10.1103/PhysRevA.84.025602 10.1103/PhysRevLett.101.160401 10.1103/PhysRevA.85.061605 10.1103/PhysRevLett.109.095302 10.1103/PhysRevLett.106.175301 10.1103/PhysRevLett.112.086401 10.1088/0256-307X/28/9/097102 10.1038/nphys3171 10.1038/nphys1380 10.1038/nphys2905 10.1103/PhysRevA.82.021607 10.1103/PhysRevLett.86.268 10.1070/1063-7869/44/10S/S29 10.1103/PhysRevLett.109.085303 10.1016/S1049-250X(08)60186-X |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Association for the Advancement of Science Copyright © 2016, American Association for the Advancement of Science. Copyright © 2016, American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2016 American Association for the Advancement of Science – notice: Copyright © 2016, American Association for the Advancement of Science. – notice: Copyright © 2016, American Association for the Advancement of Science |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.aaf6689 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database CrossRef MEDLINE - Academic Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology Physics |
EISSN | 1095-9203 |
EndPage | 88 |
ExternalDocumentID | 4207384341 27846495 10_1126_science_aaf6689 44710748 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYJJ ABBHK ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPMR ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACHIC ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADQXQ ADUKH ADULT ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AQVQM ASPBG AVWKF BKF BLC C45 C51 CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QS- RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ AAYXX ABCQX CITATION K-O GX1 NPM OK1 UIG YCJ 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c446t-8e3cae7549671c167e827569098bc704402c217755655a36c6208611b14400863 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Sun Aug 24 04:09:15 EDT 2025 Sun Aug 24 02:56:59 EDT 2025 Fri Jul 25 10:14:28 EDT 2025 Thu Apr 03 07:08:46 EDT 2025 Tue Jul 01 00:37:22 EDT 2025 Thu Apr 24 23:02:00 EDT 2025 Thu Jul 03 22:16:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6308 |
Language | English |
License | http://www.sciencemag.org/about/science-licenses-journal-article-reuse Copyright © 2016, American Association for the Advancement of Science. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c446t-8e3cae7549671c167e827569098bc704402c217755655a36c6208611b14400863 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 27846495 |
PQID | 1826779928 |
PQPubID | 1256 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1864539320 proquest_miscellaneous_1841134666 proquest_journals_1826779928 pubmed_primary_27846495 crossref_primary_10_1126_science_aaf6689 crossref_citationtrail_10_1126_science_aaf6689 jstor_primary_44710748 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20161007 2016-10-07 |
PublicationDateYYYYMMDD | 2016-10-07 |
PublicationDate_xml | – month: 10 year: 2016 text: 20161007 day: 7 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2016 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_12_2 doi: 10.1103/PhysRevLett.109.115301 – ident: e_1_3_2_31_2 doi: 10.1103/PhysRevLett.111.185302 – ident: e_1_3_2_21_2 doi: 10.1103/PhysRevA.93.063420 – ident: e_1_3_2_35_2 doi: 10.1103/PhysRevLett.114.105301 – ident: e_1_3_2_3_2 doi: 10.1103/RevModPhys.83.1057 – ident: e_1_3_2_40_2 doi: 10.1126/science.aaa9297 – ident: e_1_3_2_34_2 doi: 10.1103/PhysRevLett.111.120402 – ident: e_1_3_2_24_2 doi: 10.1103/PhysRevLett.103.020401 – ident: e_1_3_2_42_2 – ident: e_1_3_2_2_2 doi: 10.1103/RevModPhys.82.3045 – ident: e_1_3_2_4_2 doi: 10.1103/PhysRevB.61.10267 – ident: e_1_3_2_28_2 doi: 10.1038/nphys3672 – ident: e_1_3_2_8_2 doi: 10.1103/PhysRevLett.95.010404 – ident: e_1_3_2_20_2 doi: 10.1038/nature11841 – ident: e_1_3_2_13_2 doi: 10.1103/PhysRevLett.109.095301 – ident: e_1_3_2_22_2 doi: 10.1088/0034-4885/77/12/126401 – ident: e_1_3_2_37_2 doi: 10.1103/PhysRevLett.109.085302 – ident: e_1_3_2_41_2 doi: 10.1103/PhysRevX.5.011029 – ident: e_1_3_2_7_2 doi: 10.1088/0034-4885/75/7/076501 – ident: e_1_3_2_18_2 doi: 10.1103/PhysRevLett.107.150403 – ident: e_1_3_2_9_2 doi: 10.1103/PhysRevLett.95.010403 – ident: e_1_3_2_10_2 doi: 10.1103/PhysRevLett.102.046402 – ident: e_1_3_2_16_2 doi: 10.1103/PhysRevLett.105.160403 – ident: e_1_3_2_11_2 doi: 10.1038/nature09887 – ident: e_1_3_2_15_2 doi: 10.1103/PhysRevLett.108.225303 – ident: e_1_3_2_30_2 doi: 10.1103/PhysRevLett.111.185301 – ident: e_1_3_2_26_2 doi: 10.1103/PhysRevA.84.025602 – ident: e_1_3_2_23_2 doi: 10.1103/PhysRevLett.101.160401 – ident: e_1_3_2_36_2 doi: 10.1103/PhysRevA.85.061605 – ident: e_1_3_2_14_2 doi: 10.1103/PhysRevLett.109.095302 – ident: e_1_3_2_27_2 doi: 10.1103/PhysRevLett.106.175301 – ident: e_1_3_2_29_2 doi: 10.1103/PhysRevLett.112.086401 – ident: e_1_3_2_17_2 doi: 10.1088/0256-307X/28/9/097102 – ident: e_1_3_2_32_2 doi: 10.1038/nphys3171 – ident: e_1_3_2_6_2 doi: 10.1038/nphys1380 – ident: e_1_3_2_19_2 doi: 10.1038/nphys2905 – ident: e_1_3_2_25_2 doi: 10.1103/PhysRevA.82.021607 – ident: e_1_3_2_39_2 doi: 10.1103/PhysRevLett.86.268 – ident: e_1_3_2_5_2 doi: 10.1070/1063-7869/44/10S/S29 – ident: e_1_3_2_38_2 doi: 10.1103/PhysRevLett.109.085303 – ident: e_1_3_2_43_2 doi: 10.1016/S1049-250X(08)60186-X |
SSID | ssj0009593 |
Score | 2.679575 |
Snippet | Cold atoms with laser-induced spin-orbit (SO) interactions provide a platform to explore quantum physics beyond natural conditions of solids. Here we propose... Studying topological matter in cold-atom systems may bring fresh insights, thanks to the intrinsic purity and controllability of this experimental setting.... Spin-orbit coupling in an optical latticeStudying topological matter in cold-atom systems may bring fresh insights, thanks to the intrinsic purity and... |
SourceID | proquest pubmed crossref jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 83 |
SubjectTerms | Clouds Cold atoms Condensation Coupling Optical lattices Orbits Physics RESEARCH ARTICLE Rubidium Spin-orbit interactions Spinning Surface layer Texture Topology |
Title | Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates |
URI | https://www.jstor.org/stable/44710748 https://www.ncbi.nlm.nih.gov/pubmed/27846495 https://www.proquest.com/docview/1826779928 https://www.proquest.com/docview/1841134666 https://www.proquest.com/docview/1864539320 |
Volume | 354 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELZgExIviA0GhYGCxMPQlCpxHDt5bKHVhMpAKNX6FjmOo0WakmpJheDXc3ac1EUrGrxEkWM3lb_z5Tvf-Q6h9x4vCkG4MktE6JJIYDejMXdZiAuW57zwsTrg_OWSXizJ51VoOdr16ZI2G4tfd54r-R9UoQ1wVadk_wHZ4UehAe4BX7gCwnC9F8bfgeWZc5Ta1_-jdnOVrb_LtHHerMvKrW-zsj0X9WZ90wdNTutGurMSiKHUUeiqCG6jOKfNVPtFDwx08OpYWA7hiZMuiKCPKTDDrA2Gq412gFxvxXDYpF7U5rupvVJa_13Jsm9Z6YGrktdu0gux2Z_wqY50Y7bONSmPbZ0bdJmjjXDRwIssJdpVtuk_x9Hdit4qTSnHnBeUdqWIdlNqX35N58vFIk1mq-QhOsRgS4AyPJxMP03ne3MzmwxQ1tmq_gU75KWLX91vmWiGkjxFT4xp4Uw6OTlCD2R1jB51xUZ_HqMjA03jnJlc4x-eoW-WCDl14fwhQs5WhJxehBxA3tkRIccSoedoOZ8lHy9cU2TDFYTQ1o1kILhkIYkp84VPmYxURYDYi6NMMFWQHAswW1kIzD_kARUUgxXs-5mKCoC74AQdVHUlXyIH1L9QVSrzWGYk4F6MWUYEYTxgUVzgfITG_eylwmSgV4VQblJtiWKamulOzXSP0NkwYN0lX9nf9UTDMfQjwLqAHkcjdNrjk5ql26TKqGYsjjE8fjc8BsWqvGW8kvVG9SG-HxAw7__Wh5IwABPIG6EXHfbDH1AefUri8NU9Rr9Gj7dL5xQdtLcb-QbIbpu9NcL6G5g6rMs |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realization+of+two-dimensional+spin-orbit+coupling+for+Bose-Einstein+condensates&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Wu%2C+Zhan&rft.au=Zhang%2C+Long&rft.au=Sun%2C+Wei&rft.au=Xu%2C+Xiao-Tian&rft.date=2016-10-07&rft.issn=0036-8075&rft.volume=354&rft.issue=6308&rft.spage=83&rft.epage=88&rft_id=info:doi/10.1126%2Fscience.aaf6689&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |