Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates

Cold atoms with laser-induced spin-orbit (SO) interactions provide a platform to explore quantum physics beyond natural conditions of solids. Here we propose and experimentally realize two-dimensional (2D) SO coupling and topological bands for a rubidium-87 degenerate gas through an optical Raman la...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 354; no. 6308; pp. 83 - 88
Main Authors Wu, Zhan, Zhang, Long, Sun, Wei, Xu, Xiao-Tian, Wang, Bao-Zong, Ji, Si-Cong, Deng, Youjin, Chen, Shuai, Liu, Xiong-Jun, Pan, Jian-Wei
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 07.10.2016
The American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cold atoms with laser-induced spin-orbit (SO) interactions provide a platform to explore quantum physics beyond natural conditions of solids. Here we propose and experimentally realize two-dimensional (2D) SO coupling and topological bands for a rubidium-87 degenerate gas through an optical Raman lattice, without phase-locking or fine-tuning of optical potentials. A controllable crossover between 2D and 1D SO couplings is studied, and the SO effects and nontrivial band topology are observed by measuring the atomic cloud distribution and spin texture in momentum space. Our realization of 2D SO coupling with advantages of small heating and topological stability opens a broad avenue in cold atoms to study exotic quantum phases, including topological superfluids.
AbstractList Cold atoms with laser-induced spin-orbit (SO) interactions provide a platform to explore quantum physics beyond natural conditions of solids. Here we propose and experimentally realize two-dimensional (2D) SO coupling and topological bands for a rubidium-87 degenerate gas through an optical Raman lattice, without phase-locking or fine-tuning of optical potentials. A controllable crossover between 2D and 1D SO couplings is studied, and the SO effects and nontrivial band topology are observed by measuring the atomic cloud distribution and spin texture in momentum space. Our realization of 2D SO coupling with advantages of small heating and topological stability opens a broad avenue in cold atoms to study exotic quantum phases, including topological superfluids.
Studying topological matter in cold-atom systems may bring fresh insights, thanks to the intrinsic purity and controllability of this experimental setting. However, the necessary spin-orbit coupling can be tricky to engineer. Wu et al. conceived and experimentally demonstrated a simple scheme that involves only a single laser source and can be continuously tuned between one- and two-dimensional spin-orbit coupling (see the Perspective by Aidelsburger). Although this experiment used bosonic atoms, it is expected that the setup would also work for fermions. Science, this issue p. 83; see also p. 35 Cold atoms with laser-induced spin-orbit (SO) interactions provide a platform to explore quantum physics beyond natural conditions of solids. Here we propose and experimentally realize two-dimensional (2D) SO coupling and topological bands for a rubidium-87 degenerate gas through an optical Raman lattice, without phase-locking or fine-tuning of optical potentials. A controllable crossover between 2D and 1D SO couplings is studied, and the SO effects and nontrivial band topology are observed by measuring the atomic cloud distribution and spin texture in momentum space. Our realization of 2D SO coupling with advantages of small heating and topological stability opens a broad avenue in cold atoms to study exotic quantum phases, including topological superfluids.
Studying topological matter in cold-atom systems may bring fresh insights, thanks to the intrinsic purity and controllability of this experimental setting. However, the necessary spin-orbit coupling can be tricky to engineer. Wu et al. conceived and experimentally demonstrated a simple scheme that involves only a single laser source and can be continuously tuned between one- and two-dimensional spin-orbit coupling (see the Perspective by Aidelsburger). Although this experiment used bosonic atoms, it is expected that the setup would also work for fermions. Science , this issue p. 83 ; see also p. 35 Rubidium atoms are used to demonstrate a spin-orbit coupling scheme that is tunable between the 1- and 2D limits. [Also see Perspective by Aidelsburger ] Cold atoms with laser-induced spin-orbit (SO) interactions provide a platform to explore quantum physics beyond natural conditions of solids. Here we propose and experimentally realize two-dimensional (2D) SO coupling and topological bands for a rubidium-87 degenerate gas through an optical Raman lattice, without phase-locking or fine-tuning of optical potentials. A controllable crossover between 2D and 1D SO couplings is studied, and the SO effects and nontrivial band topology are observed by measuring the atomic cloud distribution and spin texture in momentum space. Our realization of 2D SO coupling with advantages of small heating and topological stability opens a broad avenue in cold atoms to study exotic quantum phases, including topological superfluids.
Cold atoms with laser-induced spin-orbit (SO) interactions provide a platform to explore quantum physics beyond natural conditions of solids. Here we propose and experimentally realize two-dimensional (2D) SO coupling and topological bands for a rubidium-87 degenerate gas through an optical Raman lattice, without phase-locking or fine-tuning of optical potentials. A controllable crossover between 2D and 1D SO couplings is studied, and the SO effects and nontrivial band topology are observed by measuring the atomic cloud distribution and spin texture in momentum space. Our realization of 2D SO coupling with advantages of small heating and topological stability opens a broad avenue in cold atoms to study exotic quantum phases, including topological superfluids.Cold atoms with laser-induced spin-orbit (SO) interactions provide a platform to explore quantum physics beyond natural conditions of solids. Here we propose and experimentally realize two-dimensional (2D) SO coupling and topological bands for a rubidium-87 degenerate gas through an optical Raman lattice, without phase-locking or fine-tuning of optical potentials. A controllable crossover between 2D and 1D SO couplings is studied, and the SO effects and nontrivial band topology are observed by measuring the atomic cloud distribution and spin texture in momentum space. Our realization of 2D SO coupling with advantages of small heating and topological stability opens a broad avenue in cold atoms to study exotic quantum phases, including topological superfluids.
Spin-orbit coupling in an optical latticeStudying topological matter in cold-atom systems may bring fresh insights, thanks to the intrinsic purity and controllability of this experimental setting. However, the necessary spin-orbit coupling can be tricky to engineer. Wu et al. conceived and experimentally demonstrated a simple scheme that involves only a single laser source and can be continuously tuned between one- and two-dimensional spin-orbit coupling (see the Perspective by Aidelsburger). Although this experiment used bosonic atoms, it is expected that the setup would also work for fermions.Science, this issue p. 83; see also p. 35 Cold atoms with laser-induced spin-orbit (SO) interactions provide a platform to explore quantum physics beyond natural conditions of solids. Here we propose and experimentally realize two-dimensional (2D) SO coupling and topological bands for a rubidium-87 degenerate gas through an optical Raman lattice, without phase-locking or fine-tuning of optical potentials. A controllable crossover between 2D and 1D SO couplings is studied, and the SO effects and nontrivial band topology are observed by measuring the atomic cloud distribution and spin texture in momentum space. Our realization of 2D SO coupling with advantages of small heating and topological stability opens a broad avenue in cold atoms to study exotic quantum phases, including topological superfluids.
Author Sun, Wei
Wang, Bao-Zong
Deng, Youjin
Zhang, Long
Chen, Shuai
Pan, Jian-Wei
Ji, Si-Cong
Wu, Zhan
Xu, Xiao-Tian
Liu, Xiong-Jun
Author_xml – sequence: 1
  givenname: Zhan
  surname: Wu
  fullname: Wu, Zhan
– sequence: 2
  givenname: Long
  surname: Zhang
  fullname: Zhang, Long
– sequence: 3
  givenname: Wei
  surname: Sun
  fullname: Sun, Wei
– sequence: 4
  givenname: Xiao-Tian
  surname: Xu
  fullname: Xu, Xiao-Tian
– sequence: 5
  givenname: Bao-Zong
  surname: Wang
  fullname: Wang, Bao-Zong
– sequence: 6
  givenname: Si-Cong
  surname: Ji
  fullname: Ji, Si-Cong
– sequence: 7
  givenname: Youjin
  surname: Deng
  fullname: Deng, Youjin
– sequence: 8
  givenname: Shuai
  surname: Chen
  fullname: Chen, Shuai
– sequence: 9
  givenname: Xiong-Jun
  surname: Liu
  fullname: Liu, Xiong-Jun
– sequence: 10
  givenname: Jian-Wei
  surname: Pan
  fullname: Pan, Jian-Wei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27846495$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1rVDEUxYO02Gl17Up54MbNa_N5kyy1VC0UKqLrRyZzn2R4k4xJHkX_-mY6Yxdd2NUN9_zODZxzSo5iikjIG0bPGeNwUXzA6PHcuRHA2BdkwahVveVUHJEFpQJ6Q7U6IaelrCltmhUvyQnXRoK0akG-fUc3hb-uhhS7NHb1LvWrsMFY2sJNXdmG2Ke8DLXzad5OIf7qxpS7T6lgfxViqRhik-KqWVzF8oocj24q-Powz8jPz1c_Lr_2N7dfri8_3vReSqi9QeEdaiUtaOYZaDRcK7DUmqXXVErKPWdaKwVKOQEeODXA2JI1qb3EGfmwv7vN6feMpQ6bUDxOk4uY5jIwA1IJK1oSz6OSMSEBdlffP0HXac4tiB3FQWtruWnUuwM1Lze4GrY5bFz-M_yLtQEXe8DnVErG8RFhdNgVNxyKGw7FNYd64vChPrRSswvTf3xv9751qSk_fiOlZlRLI-4BBlamvw
CODEN SCIEAS
CitedBy_id crossref_primary_10_1088_1674_4926_43_12_121201
crossref_primary_10_1038_s41598_017_15900_w
crossref_primary_10_1088_1572_9494_ad7835
crossref_primary_10_21468_SciPostPhys_12_3_095
crossref_primary_10_1016_j_physleta_2019_125982
crossref_primary_10_1103_PhysRevA_107_023303
crossref_primary_10_1103_PhysRevResearch_5_023160
crossref_primary_10_1002_anie_202300028
crossref_primary_10_1103_PhysRevA_108_043311
crossref_primary_10_1103_PhysRevA_103_L061302
crossref_primary_10_1103_PhysRevX_8_031079
crossref_primary_10_1103_PhysRevLett_122_123201
crossref_primary_10_1103_PhysRevA_103_023302
crossref_primary_10_1103_PhysRevA_105_063308
crossref_primary_10_1103_PhysRevA_110_023321
crossref_primary_10_1088_1674_1056_abab72
crossref_primary_10_1088_1367_2630_ab7cb1
crossref_primary_10_1103_PhysRevLett_125_183001
crossref_primary_10_1080_23746149_2023_2301592
crossref_primary_10_1088_1361_648X_ac7f19
crossref_primary_10_1364_OE_477780
crossref_primary_10_1002_andp_202000194
crossref_primary_10_1088_1361_648X_ac6788
crossref_primary_10_1103_PhysRevB_101_115416
crossref_primary_10_1016_j_chaos_2024_115590
crossref_primary_10_1209_0295_5075_acc051
crossref_primary_10_1016_j_physleta_2018_04_032
crossref_primary_10_1103_PhysRevLett_122_023601
crossref_primary_10_1103_PhysRevLett_131_133601
crossref_primary_10_1038_s41534_019_0159_6
crossref_primary_10_1103_PhysRevLett_121_185302
crossref_primary_10_1038_s41598_017_15596_y
crossref_primary_10_1103_PhysRevB_106_L140303
crossref_primary_10_1103_PhysRevA_105_063319
crossref_primary_10_1016_j_rinp_2023_107067
crossref_primary_10_1103_PhysRevB_103_245106
crossref_primary_10_1103_PhysRevB_104_L041106
crossref_primary_10_1103_PhysRevA_104_043328
crossref_primary_10_1103_PhysRevLett_121_083402
crossref_primary_10_21468_SciPostPhys_17_1_003
crossref_primary_10_1038_s41535_020_00271_9
crossref_primary_10_1103_PhysRevA_98_041603
crossref_primary_10_1088_1361_6455_aa8c5a
crossref_primary_10_1103_PhysRevLett_129_220402
crossref_primary_10_1103_PhysRevA_104_043320
crossref_primary_10_1088_1674_1056_28_7_070302
crossref_primary_10_1038_s41524_019_0224_x
crossref_primary_10_1103_PhysRevB_98_174506
crossref_primary_10_3389_fphy_2021_768799
crossref_primary_10_1364_OE_515902
crossref_primary_10_1038_s41534_019_0148_9
crossref_primary_10_1038_s41567_020_0942_5
crossref_primary_10_1103_PhysRevA_95_061601
crossref_primary_10_1088_1367_2630_abb911
crossref_primary_10_1103_PhysRevB_101_045133
crossref_primary_10_1103_PhysRevB_97_045142
crossref_primary_10_1007_s11433_018_9175_2
crossref_primary_10_1103_PhysRevB_99_165148
crossref_primary_10_1103_PhysRevA_106_L061302
crossref_primary_10_1103_PhysRevResearch_5_033173
crossref_primary_10_1103_PhysRevA_109_053307
crossref_primary_10_1007_s10909_024_03163_5
crossref_primary_10_1038_s41467_018_08119_4
crossref_primary_10_1103_PhysRevB_99_155102
crossref_primary_10_1007_s11433_024_2564_8
crossref_primary_10_1038_s41377_021_00702_7
crossref_primary_10_1103_PhysRevB_96_144517
crossref_primary_10_1103_PhysRevLett_120_120401
crossref_primary_10_1209_0295_5075_130_56003
crossref_primary_10_1088_1367_2630_acb80d
crossref_primary_10_1016_j_physleta_2021_127743
crossref_primary_10_1088_1367_2630_aaf9e3
crossref_primary_10_1103_PhysRevA_109_053311
crossref_primary_10_1016_j_physleta_2023_129128
crossref_primary_10_1016_j_scib_2018_09_018
crossref_primary_10_1103_PhysRevA_109_053314
crossref_primary_10_1103_PhysRevResearch_6_043089
crossref_primary_10_1103_PhysRevA_108_033309
crossref_primary_10_7498_aps_68_20181927
crossref_primary_10_1088_1402_4896_ad9229
crossref_primary_10_1360_TB_2023_0226
crossref_primary_10_7498_aps_68_20181928
crossref_primary_10_1103_PhysRevLett_121_113204
crossref_primary_10_1103_PhysRevA_110_013309
crossref_primary_10_1088_1367_2630_aabdf8
crossref_primary_10_1209_0295_5075_122_36001
crossref_primary_10_1142_S0217984920502826
crossref_primary_10_1103_PhysRevA_104_053315
crossref_primary_10_1103_PhysRevA_96_023601
crossref_primary_10_1016_j_physleta_2017_01_021
crossref_primary_10_1103_PhysRevA_97_011605
crossref_primary_10_1103_PRXQuantum_1_020303
crossref_primary_10_1103_PhysRevA_98_063621
crossref_primary_10_1016_j_aop_2022_168763
crossref_primary_10_1103_PhysRevA_97_043618
crossref_primary_10_1016_j_physa_2022_127244
crossref_primary_10_1103_PhysRevA_96_013625
crossref_primary_10_7566_JPSJ_88_064001
crossref_primary_10_1103_PhysRevA_107_013306
crossref_primary_10_1103_PhysRevResearch_6_L042054
crossref_primary_10_1103_PhysRevA_104_L031306
crossref_primary_10_1103_PhysRevA_97_033625
crossref_primary_10_1038_s41586_020_1932_6
crossref_primary_10_1103_PhysRevA_96_013619
crossref_primary_10_1103_PhysRevA_94_051604
crossref_primary_10_1103_PhysRevLett_121_093401
crossref_primary_10_1103_PhysRevA_102_013316
crossref_primary_10_1103_PhysRevA_98_053630
crossref_primary_10_1103_PhysRevLett_129_130402
crossref_primary_10_1103_PhysRevA_102_013309
crossref_primary_10_1140_epjb_e2016_70585_4
crossref_primary_10_1103_PhysRevA_99_051602
crossref_primary_10_1038_s42005_022_01021_y
crossref_primary_10_1103_PhysRevResearch_5_013002
crossref_primary_10_1103_PhysRevA_96_023623
crossref_primary_10_1088_0256_307X_38_4_040302
crossref_primary_10_1088_1367_2630_ab5f43
crossref_primary_10_1088_0256_307X_40_8_083701
crossref_primary_10_1088_1674_1056_ac1411
crossref_primary_10_1103_PhysRevA_96_013606
crossref_primary_10_1103_PhysRevLett_133_123402
crossref_primary_10_1103_PhysRevA_95_013409
crossref_primary_10_1103_PhysRevA_96_013609
crossref_primary_10_1126_science_abc0105
crossref_primary_10_1103_PhysRevA_111_023305
crossref_primary_10_1038_s41567_024_02644_4
crossref_primary_10_1016_j_aop_2018_07_007
crossref_primary_10_7566_JPSJ_91_114301
crossref_primary_10_1016_j_physa_2023_128777
crossref_primary_10_1103_PhysRevA_96_023627
crossref_primary_10_1103_PhysRevA_105_063304
crossref_primary_10_1103_PhysRevA_102_013301
crossref_primary_10_1103_PhysRevB_106_134313
crossref_primary_10_1103_PhysRevA_98_053617
crossref_primary_10_3788_AOS231750
crossref_primary_10_1103_PhysRevA_98_053619
crossref_primary_10_1103_PhysRevA_103_033316
crossref_primary_10_1021_acs_nanolett_3c02488
crossref_primary_10_1103_PhysRevE_109_064201
crossref_primary_10_1103_PhysRevA_104_053325
crossref_primary_10_1103_PhysRevLett_126_193401
crossref_primary_10_1088_1674_1056_ab99b1
crossref_primary_10_1209_0295_5075_121_20003
crossref_primary_10_1088_1367_2630_aa7ce5
crossref_primary_10_1103_PhysRevLett_119_193001
crossref_primary_10_12693_APhysPolA_145_315
crossref_primary_10_1007_s12648_023_03057_4
crossref_primary_10_1103_PhysRevB_96_035113
crossref_primary_10_1038_s41567_021_01491_x
crossref_primary_10_1103_PhysRevA_106_063311
crossref_primary_10_1103_PhysRevA_105_043301
crossref_primary_10_1016_j_chaos_2022_112240
crossref_primary_10_1103_PhysRevA_102_063313
crossref_primary_10_1103_PhysRevA_98_022708
crossref_primary_10_1103_PhysRevE_108_014208
crossref_primary_10_1103_PhysRevLett_123_190603
crossref_primary_10_1103_PhysRevB_100_224420
crossref_primary_10_1364_OPTICA_427088
crossref_primary_10_1103_PhysRevB_96_115119
crossref_primary_10_1103_PhysRevA_101_033617
crossref_primary_10_1103_PhysRevA_99_053603
crossref_primary_10_1103_PhysRevA_99_053606
crossref_primary_10_7498_aps_72_20230701
crossref_primary_10_7566_JPSJ_87_094003
crossref_primary_10_1088_0256_307X_37_3_036701
crossref_primary_10_1364_OE_457757
crossref_primary_10_1088_1367_2630_ac2755
crossref_primary_10_1140_epjp_i2018_12331_4
crossref_primary_10_1080_00018732_2019_1594094
crossref_primary_10_1103_PhysRevA_100_031602
crossref_primary_10_1364_AOP_494544
crossref_primary_10_1088_1674_1056_27_12_126701
crossref_primary_10_1103_PhysRevA_95_053615
crossref_primary_10_1016_j_physleta_2019_04_016
crossref_primary_10_1088_1367_2630_abb03f
crossref_primary_10_1103_PhysRevResearch_1_033102
crossref_primary_10_1103_PhysRevA_98_033606
crossref_primary_10_1103_PhysRevA_106_043703
crossref_primary_10_7498_aps_69_20191241
crossref_primary_10_1088_1572_9494_ad8db7
crossref_primary_10_1016_j_cnsns_2022_106769
crossref_primary_10_1103_PhysRevA_95_041604
crossref_primary_10_1103_PhysRevLett_120_060407
crossref_primary_10_1209_0295_5075_123_37001
crossref_primary_10_1016_j_physletb_2023_138262
crossref_primary_10_1038_s42254_020_0195_3
crossref_primary_10_1103_PhysRevB_109_045418
crossref_primary_10_1103_PhysRevA_101_063606
crossref_primary_10_1016_j_rinp_2021_104317
crossref_primary_10_1103_PhysRevLett_124_073601
crossref_primary_10_1103_PhysRevA_104_023320
crossref_primary_10_1103_PhysRevA_106_L021101
crossref_primary_10_1103_PhysRevA_98_021601
crossref_primary_10_1209_0295_5075_ac50ca
crossref_primary_10_1088_1572_9494_ac64f3
crossref_primary_10_1103_PhysRevB_106_195123
crossref_primary_10_1088_0256_307X_38_10_103701
crossref_primary_10_1103_PhysRevB_108_035418
crossref_primary_10_1103_PhysRevLett_120_140403
crossref_primary_10_1016_j_rinp_2021_104678
crossref_primary_10_1103_PhysRevA_100_023622
crossref_primary_10_1103_PhysRevA_110_043312
crossref_primary_10_1088_1361_6455_ad9fc0
crossref_primary_10_1103_PhysRevB_106_045147
crossref_primary_10_1103_PhysRevB_109_155137
crossref_primary_10_1103_PhysRevA_109_013324
crossref_primary_10_1103_PhysRevA_109_013326
crossref_primary_10_1007_s12274_023_6325_3
crossref_primary_10_1103_PhysRevE_103_022204
crossref_primary_10_7498_aps_70_20210173
crossref_primary_10_1088_2053_1583_aaa577
crossref_primary_10_1103_PhysRevA_100_043601
crossref_primary_10_1103_PhysRevA_100_023619
crossref_primary_10_1002_andp_202100188
crossref_primary_10_1088_1367_2630_ab5cad
crossref_primary_10_1103_PhysRevB_96_235108
crossref_primary_10_1103_PhysRevLett_119_197401
crossref_primary_10_1103_PhysRevApplied_20_014037
crossref_primary_10_1007_s10773_021_04863_4
crossref_primary_10_1103_PRXQuantum_3_040312
crossref_primary_10_1126_sciadv_aao4748
crossref_primary_10_1103_PhysRevA_105_033306
crossref_primary_10_1142_S0217984922500701
crossref_primary_10_1103_PhysRevA_110_033325
crossref_primary_10_1016_j_rinp_2022_105706
crossref_primary_10_1088_0256_307X_35_1_013701
crossref_primary_10_1103_PhysRevLett_129_066802
crossref_primary_10_1103_PhysRevA_105_053312
crossref_primary_10_1103_PhysRevA_106_053312
crossref_primary_10_1103_PhysRevA_101_043616
crossref_primary_10_1038_s41567_019_0564_y
crossref_primary_10_7498_aps_72_20222292
crossref_primary_10_1103_PhysRevA_101_043619
crossref_primary_10_1038_s41467_020_20762_4
crossref_primary_10_52396_JUSTC_2022_0003
crossref_primary_10_7498_aps_67_20180539
crossref_primary_10_7498_aps_70_20201456
crossref_primary_10_1103_PhysRevA_100_052328
crossref_primary_10_1103_PhysRevA_100_023602
crossref_primary_10_1103_PhysRevA_99_043619
crossref_primary_10_1103_PhysRevA_94_053633
crossref_primary_10_1038_s41467_019_11210_z
crossref_primary_10_1103_PhysRevA_110_033327
crossref_primary_10_1103_PhysRevA_98_023609
crossref_primary_10_1103_PhysRevA_103_013307
crossref_primary_10_1088_1751_8121_ad0ce4
crossref_primary_10_1002_qute_202100017
crossref_primary_10_1002_ange_202300028
crossref_primary_10_1088_1367_2630_ad0174
crossref_primary_10_1103_PhysRevResearch_6_033200
crossref_primary_10_1103_PhysRevA_106_053301
crossref_primary_10_1103_PhysRevA_95_063617
crossref_primary_10_1103_PhysRevA_104_033312
crossref_primary_10_1103_PhysRevA_95_063616
crossref_primary_10_1007_s10909_021_02613_8
crossref_primary_10_1103_PhysRevResearch_4_043083
crossref_primary_10_1088_1361_6455_ab153e
crossref_primary_10_1103_PhysRevA_95_063610
crossref_primary_10_1016_j_chaos_2023_113835
crossref_primary_10_1103_PhysRevLett_125_245301
crossref_primary_10_1364_OE_551448
crossref_primary_10_1103_PhysRevA_103_013316
crossref_primary_10_1103_PhysRevA_95_051601
crossref_primary_10_1103_PhysRevLett_121_150401
crossref_primary_10_1088_1361_6455_ab0e5d
crossref_primary_10_1088_1361_6455_ac461d
crossref_primary_10_1007_s11467_019_0896_1
crossref_primary_10_1088_1572_9494_ad4e23
crossref_primary_10_1103_PhysRevB_107_115166
crossref_primary_10_1103_PhysRevB_110_205430
crossref_primary_10_1103_PRXQuantum_2_020320
crossref_primary_10_1103_PhysRevA_95_030701
crossref_primary_10_1103_PhysRevB_104_L161118
crossref_primary_10_1103_PhysRevA_97_013607
crossref_primary_10_1139_cjp_2024_0012
crossref_primary_10_1088_1674_1056_abd7e4
crossref_primary_10_1103_PhysRevResearch_4_013124
crossref_primary_10_1103_PhysRevB_103_184510
crossref_primary_10_1103_PhysRevA_97_013625
crossref_primary_10_1016_j_amc_2024_128536
crossref_primary_10_1103_PhysRevA_94_053619
crossref_primary_10_1016_j_ijleo_2023_171073
crossref_primary_10_1103_PhysRevA_101_053613
crossref_primary_10_1103_PhysRevB_99_075204
crossref_primary_10_1103_PhysRevA_106_063321
crossref_primary_10_1103_PhysRevA_110_033307
crossref_primary_10_1088_1367_2630_ac6cfd
crossref_primary_10_1007_s11467_023_1283_5
crossref_primary_10_1103_PhysRevB_96_214502
crossref_primary_10_1103_PhysRevLett_126_193001
crossref_primary_10_1088_1367_2630_aad134
crossref_primary_10_1088_1572_9494_ac7dea
crossref_primary_10_1103_PhysRevResearch_3_013054
crossref_primary_10_1103_PhysRevA_97_013619
crossref_primary_10_3389_fphy_2022_910818
crossref_primary_10_1103_PhysRevA_99_043601
crossref_primary_10_1103_PhysRevLett_124_216601
crossref_primary_10_1103_PhysRevLett_118_155301
crossref_primary_10_1103_PhysRevB_108_104201
crossref_primary_10_1038_s42005_022_00802_9
crossref_primary_10_1016_j_chaos_2023_113848
crossref_primary_10_1088_1361_6455_ab2a9b
crossref_primary_10_1002_qute_202300356
crossref_primary_10_1103_PhysRevLett_124_010401
crossref_primary_10_1103_PhysRevA_102_043304
crossref_primary_10_1038_s41467_018_05865_3
crossref_primary_10_1088_1361_6633_aaa4ad
crossref_primary_10_1103_PhysRevA_101_013607
crossref_primary_10_1088_1361_6633_aca814
crossref_primary_10_1103_PhysRevLett_125_260402
crossref_primary_10_1007_s11467_022_1180_3
crossref_primary_10_1088_0256_307X_40_11_110302
crossref_primary_10_1038_s41377_022_00738_3
crossref_primary_10_1103_PhysRevA_109_023303
crossref_primary_10_1016_j_rinp_2024_107809
crossref_primary_10_3788_CJL240815
crossref_primary_10_1103_PhysRevA_102_042209
crossref_primary_10_1103_PhysRevA_105_023303
crossref_primary_10_1103_PhysRevA_110_063326
crossref_primary_10_1103_PhysRevLett_125_236401
crossref_primary_10_1103_PhysRevResearch_3_013229
crossref_primary_10_3389_fphy_2022_1022811
crossref_primary_10_1103_PhysRevA_97_040701
crossref_primary_10_1103_PhysRevLett_119_047001
crossref_primary_10_1142_S0217984922500117
crossref_primary_10_1016_j_chaos_2020_110332
crossref_primary_10_1088_1367_2630_abac3c
crossref_primary_10_1088_1361_6455_aa7afd
crossref_primary_10_1103_PhysRevA_103_063324
crossref_primary_10_1103_PhysRevA_99_043419
crossref_primary_10_1007_s11467_021_1134_1
crossref_primary_10_1209_0295_5075_123_10005
crossref_primary_10_1103_PhysRevE_95_042129
crossref_primary_10_1016_j_physleta_2019_02_026
crossref_primary_10_1103_PhysRevA_101_013622
crossref_primary_10_1103_PhysRevLett_120_157205
crossref_primary_10_22331_q_2023_06_21_1042
crossref_primary_10_1103_PhysRevLett_124_160402
crossref_primary_10_1088_0253_6102_69_2_137
crossref_primary_10_1103_PhysRevResearch_4_033008
crossref_primary_10_1140_epjd_s10053_021_00158_9
crossref_primary_10_1016_j_physa_2024_129610
crossref_primary_10_1103_PhysRevB_107_125132
crossref_primary_10_1088_1367_2630_aa559b
crossref_primary_10_1103_PhysRevA_95_043623
crossref_primary_10_1103_PhysRevA_99_033621
crossref_primary_10_1016_j_physleta_2022_128334
crossref_primary_10_1103_PhysRevA_98_013615
crossref_primary_10_1140_epjd_e2020_10129_1
crossref_primary_10_1103_PhysRevA_98_013614
crossref_primary_10_1103_PhysRevB_101_054402
crossref_primary_10_1103_PhysRevA_105_033324
crossref_primary_10_1103_PhysRevA_95_033620
crossref_primary_10_1103_PhysRevB_98_245118
crossref_primary_10_1103_PRXQuantum_3_030335
crossref_primary_10_21468_SciPostPhys_12_5_167
crossref_primary_10_1016_j_jpcs_2018_04_033
crossref_primary_10_1140_epjb_e2019_100488_5
crossref_primary_10_1088_1361_648X_aaff16
crossref_primary_10_1038_s41928_022_00833_8
crossref_primary_10_1007_s10773_021_04926_6
crossref_primary_10_1103_PhysRevLett_125_020504
crossref_primary_10_1103_PhysRevA_97_051601
crossref_primary_10_1103_PhysRevA_110_063309
crossref_primary_10_1016_j_scib_2021_04_038
crossref_primary_10_1088_1674_1056_ad6424
crossref_primary_10_1103_PhysRevA_100_063606
crossref_primary_10_1103_PhysRevLett_125_090502
crossref_primary_10_1103_PhysRevLett_129_090503
crossref_primary_10_1103_PhysRevA_96_053626
crossref_primary_10_1007_s11128_017_1652_5
crossref_primary_10_1088_1674_1056_ac1b85
crossref_primary_10_1103_PhysRevA_110_063302
crossref_primary_10_1103_PhysRevE_104_064215
crossref_primary_10_1016_j_physleta_2022_128330
crossref_primary_10_1103_PhysRevA_110_063305
crossref_primary_10_1103_PhysRevB_105_235102
crossref_primary_10_1088_1612_202X_aac7e9
crossref_primary_10_7498_aps_69_20200372
crossref_primary_10_1103_PhysRevB_98_165128
crossref_primary_10_1007_s11433_022_1898_7
crossref_primary_10_1103_PhysRevA_99_033613
crossref_primary_10_1103_PhysRevA_105_033310
crossref_primary_10_1103_PhysRevA_104_013306
crossref_primary_10_1088_1367_2630_ad3be3
crossref_primary_10_1088_1674_1056_abbbe8
crossref_primary_10_1103_PhysRevA_102_053318
crossref_primary_10_1126_science_aah7087
crossref_primary_10_1103_PhysRevA_108_013304
crossref_primary_10_1016_j_cnsns_2022_106930
crossref_primary_10_1103_PhysRevLett_118_200401
crossref_primary_10_1063_1_5087957
crossref_primary_10_1103_PhysRevA_101_013604
crossref_primary_10_1103_PhysRevResearch_4_033023
crossref_primary_10_1088_1367_2630_aa8646
crossref_primary_10_1103_PhysRevA_98_023630
crossref_primary_10_7498_aps_72_20222289
crossref_primary_10_1088_1361_648X_aaab89
crossref_primary_10_1007_s10773_019_04119_2
crossref_primary_10_1103_PhysRevA_101_032104
crossref_primary_10_1103_PhysRevA_95_033603
crossref_primary_10_1103_PhysRevB_107_184425
crossref_primary_10_1103_PhysRevA_95_033609
crossref_primary_10_1103_PhysRevLett_121_030404
crossref_primary_10_1088_1361_6455_aa92b7
crossref_primary_10_1103_PhysRevA_109_033303
crossref_primary_10_1016_j_cnsns_2020_105217
crossref_primary_10_1103_PhysRevA_99_012703
crossref_primary_10_1103_PhysRevB_98_165139
crossref_primary_10_1038_s41377_020_00384_7
crossref_primary_10_1103_PhysRevA_95_043605
crossref_primary_10_1103_PhysRevB_108_075128
crossref_primary_10_1103_PhysRevA_100_063630
crossref_primary_10_1088_1361_6455_ace66e
crossref_primary_10_1088_1674_1056_26_8_080304
crossref_primary_10_1103_PhysRevLett_128_226401
crossref_primary_10_1515_nanoph_2022_0213
crossref_primary_10_1088_0256_307X_37_2_020301
crossref_primary_10_1088_1361_6455_acafbd
crossref_primary_10_1103_PhysRevA_100_063624
crossref_primary_10_1088_1674_1056_ad7576
crossref_primary_10_1103_PhysRevA_101_023609
crossref_primary_10_1103_PhysRevB_101_235121
crossref_primary_10_1088_1361_648X_ab6021
crossref_primary_10_1103_PhysRevResearch_2_013149
crossref_primary_10_1016_j_chaos_2018_10_001
crossref_primary_10_1103_PhysRevA_101_023621
crossref_primary_10_1103_PhysRevLett_130_206401
crossref_primary_10_1021_acs_jpclett_8b02127
crossref_primary_10_1103_PhysRevA_95_043619
crossref_primary_10_1103_PhysRevB_97_224304
crossref_primary_10_1103_PhysRevB_98_075440
crossref_primary_10_1016_j_scib_2020_09_036
crossref_primary_10_1103_PhysRevB_109_165108
crossref_primary_10_1007_s11467_023_1314_2
crossref_primary_10_1016_j_physleta_2018_07_026
crossref_primary_10_1016_j_pnsc_2022_09_017
crossref_primary_10_1103_PhysRevResearch_2_013252
crossref_primary_10_1364_OE_473770
crossref_primary_10_1103_PhysRevLett_125_216601
crossref_primary_10_1088_1367_2630_ac10fc
crossref_primary_10_1103_PhysRevA_98_013617
crossref_primary_10_1103_PRXQuantum_4_040327
crossref_primary_10_1016_j_chaos_2024_114979
crossref_primary_10_1103_PhysRevLett_121_120403
crossref_primary_10_1103_PhysRevA_100_053606
crossref_primary_10_1088_1361_6455_ac41b2
crossref_primary_10_1126_science_aay3183
crossref_primary_10_1016_j_scib_2018_11_002
crossref_primary_10_1140_epjb_e2018_90468_x
crossref_primary_10_1038_s41567_022_01580_5
crossref_primary_10_1103_PhysRevA_105_023320
crossref_primary_10_1103_PhysRevB_110_L201117
crossref_primary_10_1103_PhysRevLett_118_045701
crossref_primary_10_1103_PhysRevA_102_063327
crossref_primary_10_1103_PhysRevA_95_053628
crossref_primary_10_1103_PhysRevA_99_023624
crossref_primary_10_1103_PhysRevA_95_053629
crossref_primary_10_1038_s41567_020_0949_y
crossref_primary_10_1209_0295_5075_ace2e8
crossref_primary_10_1038_s41567_021_01316_x
crossref_primary_10_1103_PhysRevResearch_2_023067
crossref_primary_10_7566_JPSJ_88_024005
crossref_primary_10_1088_1361_6455_abb031
crossref_primary_10_1103_PhysRevA_97_061602
crossref_primary_10_1088_0256_307X_39_7_073101
crossref_primary_10_1103_PhysRevResearch_2_013036
crossref_primary_10_1103_PhysRevResearch_2_013037
crossref_primary_10_1088_1367_2630_ab725b
crossref_primary_10_1103_PhysRevA_99_023610
crossref_primary_10_1103_PhysRevA_107_052218
crossref_primary_10_1103_PhysRevA_100_063633
crossref_primary_10_1103_PhysRevB_100_041101
crossref_primary_10_1103_PhysRevA_102_063316
crossref_primary_10_7498_aps_73_20231795
crossref_primary_10_1016_j_scib_2024_01_018
crossref_primary_10_1088_1367_2630_ac7fb1
crossref_primary_10_1103_PhysRevLett_123_160404
crossref_primary_10_2139_ssrn_4174069
crossref_primary_10_21468_SciPostPhys_15_2_046
crossref_primary_10_3390_app8101771
crossref_primary_10_1103_RevModPhys_91_015005
crossref_primary_10_1140_epjp_i2019_12988_y
crossref_primary_10_7498_aps_68_20191410
crossref_primary_10_1103_PhysRevA_97_053602
crossref_primary_10_1038_s41534_022_00587_3
crossref_primary_10_1103_PhysRevA_106_023302
crossref_primary_10_1103_PhysRevB_100_125110
crossref_primary_10_1103_PhysRevA_111_023323
crossref_primary_10_1088_1674_1056_ac538d
crossref_primary_10_1103_PhysRevB_107_085410
crossref_primary_10_1103_PhysRevA_97_053609
crossref_primary_10_1007_s11467_018_0778_y
crossref_primary_10_1103_PhysRevA_106_022219
crossref_primary_10_1088_0256_307X_35_6_063201
crossref_primary_10_1016_j_jpcs_2017_08_019
crossref_primary_10_1103_PhysRevA_102_023524
crossref_primary_10_1038_srep37679
crossref_primary_10_1103_PhysRevResearch_6_023048
crossref_primary_10_1103_PRXQuantum_3_010316
crossref_primary_10_1016_j_cnsns_2018_10_024
crossref_primary_10_1103_PhysRevA_107_043321
crossref_primary_10_1016_j_physleta_2019_07_007
crossref_primary_10_1103_PhysRevLett_129_080402
crossref_primary_10_1016_j_physd_2025_134540
crossref_primary_10_1016_j_physb_2023_415528
crossref_primary_10_1103_PhysRevA_99_013617
crossref_primary_10_1103_PhysRevA_103_043328
crossref_primary_10_1364_OE_479091
crossref_primary_10_1103_PhysRevLett_125_073204
crossref_primary_10_1007_s43673_022_00069_w
crossref_primary_10_1007_s10909_019_02182_x
crossref_primary_10_1088_1674_1056_ad4eb3
crossref_primary_10_1039_C8NR00571K
crossref_primary_10_1016_j_cpc_2022_108314
crossref_primary_10_1103_PhysRevA_97_053624
crossref_primary_10_1088_1367_2630_ac5373
crossref_primary_10_1103_PhysRevA_96_033619
crossref_primary_10_1103_PhysRevA_94_061604
crossref_primary_10_1103_PhysRevA_96_033613
crossref_primary_10_1088_1361_6455_aa7441
crossref_primary_10_1088_0256_307X_40_12_127402
crossref_primary_10_1016_j_rinp_2023_107228
crossref_primary_10_1103_PhysRevA_103_043315
crossref_primary_10_1103_PhysRevA_105_013323
crossref_primary_10_1103_PhysRevA_98_063607
crossref_primary_10_1103_PhysRevLett_121_015303
crossref_primary_10_1007_s10909_022_02761_5
crossref_primary_10_1103_PhysRevLett_122_110402
crossref_primary_10_1088_1367_2630_aab701
crossref_primary_10_1103_PhysRevB_109_115147
crossref_primary_10_1103_PhysRevA_96_033629
crossref_primary_10_1103_PhysRevB_97_155302
crossref_primary_10_1103_PhysRevA_102_033339
crossref_primary_10_1103_PhysRevA_102_033332
crossref_primary_10_1103_PhysRevB_96_155122
crossref_primary_10_1103_PhysRevLett_132_216301
crossref_primary_10_1142_S0217984920502413
crossref_primary_10_1088_1751_8121_aa59c1
crossref_primary_10_1103_PhysRevResearch_5_L032016
crossref_primary_10_1103_PhysRevLett_122_166801
crossref_primary_10_3390_sym11030388
crossref_primary_10_1103_PhysRevA_105_042812
crossref_primary_10_1088_1674_1056_abc53e
crossref_primary_10_1126_sciadv_1701696
crossref_primary_10_1103_PhysRevLett_129_046401
crossref_primary_10_1142_S0217979217450126
crossref_primary_10_1142_S0129183121500315
crossref_primary_10_1038_s41586_024_08259_2
crossref_primary_10_1038_s41535_022_00422_0
crossref_primary_10_1103_PhysRevA_107_033309
crossref_primary_10_1088_1751_8121_ace570
crossref_primary_10_1103_PhysRevA_107_033308
crossref_primary_10_1016_j_ijleo_2022_170484
crossref_primary_10_1103_PhysRevA_95_033635
crossref_primary_10_1103_PhysRevResearch_5_L022032
crossref_primary_10_1088_1572_9494_ac6e5b
crossref_primary_10_1016_j_physleta_2022_128035
crossref_primary_10_1103_PhysRevLett_118_185701
crossref_primary_10_1103_PhysRevResearch_4_L042018
crossref_primary_10_1103_PhysRevResearch_5_L012006
crossref_primary_10_7498_aps_70_20210705
crossref_primary_10_1142_S0217984917502219
crossref_primary_10_1007_s10909_018_2093_y
crossref_primary_10_1103_PhysRevA_103_053318
crossref_primary_10_1103_PhysRevB_105_024503
crossref_primary_10_1103_PhysRevB_97_020501
crossref_primary_10_1103_PhysRevB_99_094520
crossref_primary_10_1103_PhysRevA_95_033628
crossref_primary_10_1103_PhysRevA_111_013319
crossref_primary_10_1016_j_chaos_2021_111406
crossref_primary_10_1016_j_chaos_2024_114456
crossref_primary_10_1016_j_aop_2023_169503
crossref_primary_10_1103_PhysRevResearch_6_L012021
crossref_primary_10_1007_s11433_023_2166_y
crossref_primary_10_1103_PhysRevLett_121_250403
crossref_primary_10_1126_sciadv_1701207
crossref_primary_10_1103_PhysRevLett_121_250401
crossref_primary_10_1103_PhysRevResearch_4_L042012
crossref_primary_10_1103_PhysRevA_102_043323
crossref_primary_10_1209_0295_5075_123_66001
crossref_primary_10_1007_s11467_018_0821_z
crossref_primary_10_1088_1361_648X_aca7a9
crossref_primary_10_1103_PhysRevApplied_16_014045
crossref_primary_10_1103_PhysRevLett_128_245301
crossref_primary_10_1103_PhysRevA_107_033326
crossref_primary_10_1016_j_cnsns_2022_107013
crossref_primary_10_1103_PhysRevLett_120_240401
crossref_primary_10_1103_PhysRevA_101_013627
crossref_primary_10_1103_PhysRevB_99_174309
crossref_primary_10_1103_PhysRevLett_130_043201
crossref_primary_10_1007_s11071_020_05692_6
crossref_primary_10_1103_PhysRevB_96_041102
crossref_primary_10_1103_PhysRevA_95_023620
crossref_primary_10_1103_PhysRevA_106_013302
crossref_primary_10_1088_1367_2630_aa6e31
crossref_primary_10_1103_PhysRevA_97_063625
crossref_primary_10_1103_PhysRevA_95_023607
crossref_primary_10_1088_1367_2630_abf3ed
crossref_primary_10_1038_s41598_022_07215_2
crossref_primary_10_1103_PhysRevA_107_033312
crossref_primary_10_1088_1674_1056_ac11dc
crossref_primary_10_1038_s42005_022_01001_2
crossref_primary_10_1038_s41598_023_44745_9
crossref_primary_10_1103_PhysRevB_98_245148
crossref_primary_10_1103_PhysRevA_97_042709
crossref_primary_10_1038_s42005_022_00840_3
crossref_primary_10_1088_1361_648X_adab5b
crossref_primary_10_7498_aps_72_20222401
crossref_primary_10_7498_aps_73_20240535
crossref_primary_10_1088_1361_6455_ac68b6
crossref_primary_10_1103_PhysRevLett_118_207002
crossref_primary_10_1103_PhysRevResearch_7_013219
crossref_primary_10_1103_PhysRevA_103_053305
crossref_primary_10_1103_PhysRevA_103_052213
crossref_primary_10_1103_PhysRevA_95_023611
crossref_primary_10_1016_j_rinp_2020_103755
crossref_primary_10_1103_PhysRevA_96_043620
Cites_doi 10.1103/PhysRevLett.109.115301
10.1103/PhysRevLett.111.185302
10.1103/PhysRevA.93.063420
10.1103/PhysRevLett.114.105301
10.1103/RevModPhys.83.1057
10.1126/science.aaa9297
10.1103/PhysRevLett.111.120402
10.1103/PhysRevLett.103.020401
10.1103/RevModPhys.82.3045
10.1103/PhysRevB.61.10267
10.1038/nphys3672
10.1103/PhysRevLett.95.010404
10.1038/nature11841
10.1103/PhysRevLett.109.095301
10.1088/0034-4885/77/12/126401
10.1103/PhysRevLett.109.085302
10.1103/PhysRevX.5.011029
10.1088/0034-4885/75/7/076501
10.1103/PhysRevLett.107.150403
10.1103/PhysRevLett.95.010403
10.1103/PhysRevLett.102.046402
10.1103/PhysRevLett.105.160403
10.1038/nature09887
10.1103/PhysRevLett.108.225303
10.1103/PhysRevLett.111.185301
10.1103/PhysRevA.84.025602
10.1103/PhysRevLett.101.160401
10.1103/PhysRevA.85.061605
10.1103/PhysRevLett.109.095302
10.1103/PhysRevLett.106.175301
10.1103/PhysRevLett.112.086401
10.1088/0256-307X/28/9/097102
10.1038/nphys3171
10.1038/nphys1380
10.1038/nphys2905
10.1103/PhysRevA.82.021607
10.1103/PhysRevLett.86.268
10.1070/1063-7869/44/10S/S29
10.1103/PhysRevLett.109.085303
10.1016/S1049-250X(08)60186-X
ContentType Journal Article
Copyright Copyright © 2016 American Association for the Advancement of Science
Copyright © 2016, American Association for the Advancement of Science.
Copyright © 2016, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2016 American Association for the Advancement of Science
– notice: Copyright © 2016, American Association for the Advancement of Science.
– notice: Copyright © 2016, American Association for the Advancement of Science
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.aaf6689
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
PubMed
Materials Research Database
CrossRef
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
Physics
EISSN 1095-9203
EndPage 88
ExternalDocumentID 4207384341
27846495
10_1126_science_aaf6689
44710748
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADQXQ
ADUKH
ADULT
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AQVQM
ASPBG
AVWKF
BKF
BLC
C45
C51
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QS-
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
AAYXX
ABCQX
CITATION
K-O
GX1
NPM
OK1
UIG
YCJ
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c446t-8e3cae7549671c167e827569098bc704402c217755655a36c6208611b14400863
ISSN 0036-8075
1095-9203
IngestDate Sun Aug 24 04:09:15 EDT 2025
Sun Aug 24 02:56:59 EDT 2025
Fri Jul 25 10:14:28 EDT 2025
Thu Apr 03 07:08:46 EDT 2025
Tue Jul 01 00:37:22 EDT 2025
Thu Apr 24 23:02:00 EDT 2025
Thu Jul 03 22:16:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6308
Language English
License http://www.sciencemag.org/about/science-licenses-journal-article-reuse
Copyright © 2016, American Association for the Advancement of Science.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c446t-8e3cae7549671c167e827569098bc704402c217755655a36c6208611b14400863
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 27846495
PQID 1826779928
PQPubID 1256
PageCount 6
ParticipantIDs proquest_miscellaneous_1864539320
proquest_miscellaneous_1841134666
proquest_journals_1826779928
pubmed_primary_27846495
crossref_primary_10_1126_science_aaf6689
crossref_citationtrail_10_1126_science_aaf6689
jstor_primary_44710748
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20161007
2016-10-07
PublicationDateYYYYMMDD 2016-10-07
PublicationDate_xml – month: 10
  year: 2016
  text: 20161007
  day: 7
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2016
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_12_2
  doi: 10.1103/PhysRevLett.109.115301
– ident: e_1_3_2_31_2
  doi: 10.1103/PhysRevLett.111.185302
– ident: e_1_3_2_21_2
  doi: 10.1103/PhysRevA.93.063420
– ident: e_1_3_2_35_2
  doi: 10.1103/PhysRevLett.114.105301
– ident: e_1_3_2_3_2
  doi: 10.1103/RevModPhys.83.1057
– ident: e_1_3_2_40_2
  doi: 10.1126/science.aaa9297
– ident: e_1_3_2_34_2
  doi: 10.1103/PhysRevLett.111.120402
– ident: e_1_3_2_24_2
  doi: 10.1103/PhysRevLett.103.020401
– ident: e_1_3_2_42_2
– ident: e_1_3_2_2_2
  doi: 10.1103/RevModPhys.82.3045
– ident: e_1_3_2_4_2
  doi: 10.1103/PhysRevB.61.10267
– ident: e_1_3_2_28_2
  doi: 10.1038/nphys3672
– ident: e_1_3_2_8_2
  doi: 10.1103/PhysRevLett.95.010404
– ident: e_1_3_2_20_2
  doi: 10.1038/nature11841
– ident: e_1_3_2_13_2
  doi: 10.1103/PhysRevLett.109.095301
– ident: e_1_3_2_22_2
  doi: 10.1088/0034-4885/77/12/126401
– ident: e_1_3_2_37_2
  doi: 10.1103/PhysRevLett.109.085302
– ident: e_1_3_2_41_2
  doi: 10.1103/PhysRevX.5.011029
– ident: e_1_3_2_7_2
  doi: 10.1088/0034-4885/75/7/076501
– ident: e_1_3_2_18_2
  doi: 10.1103/PhysRevLett.107.150403
– ident: e_1_3_2_9_2
  doi: 10.1103/PhysRevLett.95.010403
– ident: e_1_3_2_10_2
  doi: 10.1103/PhysRevLett.102.046402
– ident: e_1_3_2_16_2
  doi: 10.1103/PhysRevLett.105.160403
– ident: e_1_3_2_11_2
  doi: 10.1038/nature09887
– ident: e_1_3_2_15_2
  doi: 10.1103/PhysRevLett.108.225303
– ident: e_1_3_2_30_2
  doi: 10.1103/PhysRevLett.111.185301
– ident: e_1_3_2_26_2
  doi: 10.1103/PhysRevA.84.025602
– ident: e_1_3_2_23_2
  doi: 10.1103/PhysRevLett.101.160401
– ident: e_1_3_2_36_2
  doi: 10.1103/PhysRevA.85.061605
– ident: e_1_3_2_14_2
  doi: 10.1103/PhysRevLett.109.095302
– ident: e_1_3_2_27_2
  doi: 10.1103/PhysRevLett.106.175301
– ident: e_1_3_2_29_2
  doi: 10.1103/PhysRevLett.112.086401
– ident: e_1_3_2_17_2
  doi: 10.1088/0256-307X/28/9/097102
– ident: e_1_3_2_32_2
  doi: 10.1038/nphys3171
– ident: e_1_3_2_6_2
  doi: 10.1038/nphys1380
– ident: e_1_3_2_19_2
  doi: 10.1038/nphys2905
– ident: e_1_3_2_25_2
  doi: 10.1103/PhysRevA.82.021607
– ident: e_1_3_2_39_2
  doi: 10.1103/PhysRevLett.86.268
– ident: e_1_3_2_5_2
  doi: 10.1070/1063-7869/44/10S/S29
– ident: e_1_3_2_38_2
  doi: 10.1103/PhysRevLett.109.085303
– ident: e_1_3_2_43_2
  doi: 10.1016/S1049-250X(08)60186-X
SSID ssj0009593
Score 2.679575
Snippet Cold atoms with laser-induced spin-orbit (SO) interactions provide a platform to explore quantum physics beyond natural conditions of solids. Here we propose...
Studying topological matter in cold-atom systems may bring fresh insights, thanks to the intrinsic purity and controllability of this experimental setting....
Spin-orbit coupling in an optical latticeStudying topological matter in cold-atom systems may bring fresh insights, thanks to the intrinsic purity and...
SourceID proquest
pubmed
crossref
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 83
SubjectTerms Clouds
Cold atoms
Condensation
Coupling
Optical lattices
Orbits
Physics
RESEARCH ARTICLE
Rubidium
Spin-orbit interactions
Spinning
Surface layer
Texture
Topology
Title Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates
URI https://www.jstor.org/stable/44710748
https://www.ncbi.nlm.nih.gov/pubmed/27846495
https://www.proquest.com/docview/1826779928
https://www.proquest.com/docview/1841134666
https://www.proquest.com/docview/1864539320
Volume 354
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELZgExIviA0GhYGCxMPQlCpxHDt5bKHVhMpAKNX6FjmOo0WakmpJheDXc3ac1EUrGrxEkWM3lb_z5Tvf-Q6h9x4vCkG4MktE6JJIYDejMXdZiAuW57zwsTrg_OWSXizJ51VoOdr16ZI2G4tfd54r-R9UoQ1wVadk_wHZ4UehAe4BX7gCwnC9F8bfgeWZc5Ta1_-jdnOVrb_LtHHerMvKrW-zsj0X9WZ90wdNTutGurMSiKHUUeiqCG6jOKfNVPtFDwx08OpYWA7hiZMuiKCPKTDDrA2Gq412gFxvxXDYpF7U5rupvVJa_13Jsm9Z6YGrktdu0gux2Z_wqY50Y7bONSmPbZ0bdJmjjXDRwIssJdpVtuk_x9Hdit4qTSnHnBeUdqWIdlNqX35N58vFIk1mq-QhOsRgS4AyPJxMP03ne3MzmwxQ1tmq_gU75KWLX91vmWiGkjxFT4xp4Uw6OTlCD2R1jB51xUZ_HqMjA03jnJlc4x-eoW-WCDl14fwhQs5WhJxehBxA3tkRIccSoedoOZ8lHy9cU2TDFYTQ1o1kILhkIYkp84VPmYxURYDYi6NMMFWQHAswW1kIzD_kARUUgxXs-5mKCoC74AQdVHUlXyIH1L9QVSrzWGYk4F6MWUYEYTxgUVzgfITG_eylwmSgV4VQblJtiWKamulOzXSP0NkwYN0lX9nf9UTDMfQjwLqAHkcjdNrjk5ql26TKqGYsjjE8fjc8BsWqvGW8kvVG9SG-HxAw7__Wh5IwABPIG6EXHfbDH1AefUri8NU9Rr9Gj7dL5xQdtLcb-QbIbpu9NcL6G5g6rMs
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realization+of+two-dimensional+spin-orbit+coupling+for+Bose-Einstein+condensates&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Wu%2C+Zhan&rft.au=Zhang%2C+Long&rft.au=Sun%2C+Wei&rft.au=Xu%2C+Xiao-Tian&rft.date=2016-10-07&rft.issn=0036-8075&rft.volume=354&rft.issue=6308&rft.spage=83&rft.epage=88&rft_id=info:doi/10.1126%2Fscience.aaf6689&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon