A Matrix Information-Geometric Method for Change-Point Detection of Rigid Body Motion
A matrix information-geometric method was developed to detect the change-points of rigid body motions. Note that the set of all rigid body motions is the special Euclidean group S E ( 3 ) , so the Riemannian mean based on the Lie group structures of S E ( 3 ) reflects the characteristics of change-p...
Saved in:
Published in | Entropy (Basel, Switzerland) Vol. 21; no. 5; p. 531 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
25.05.2019
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A matrix information-geometric method was developed to detect the change-points of rigid body motions. Note that the set of all rigid body motions is the special Euclidean group S E ( 3 ) , so the Riemannian mean based on the Lie group structures of S E ( 3 ) reflects the characteristics of change-points. Once a change-point occurs, the distance between the current point and the Riemannian mean of its neighbor points should be a local maximum. A gradient descent algorithm is proposed to calculate the Riemannian mean. Using the Baker–Campbell–Hausdorff formula, the first-order approximation of the Riemannian mean is taken as the initial value of the iterative procedure. The performance of our method was evaluated by numerical examples and manipulator experiments. |
---|---|
AbstractList | A matrix information-geometric method was developed to detect the change-points of rigid body motions. Note that the set of all rigid body motions is the special Euclidean group S E ( 3 ) , so the Riemannian mean based on the Lie group structures of S E ( 3 ) reflects the characteristics of change-points. Once a change-point occurs, the distance between the current point and the Riemannian mean of its neighbor points should be a local maximum. A gradient descent algorithm is proposed to calculate the Riemannian mean. Using the Baker–Campbell–Hausdorff formula, the first-order approximation of the Riemannian mean is taken as the initial value of the iterative procedure. The performance of our method was evaluated by numerical examples and manipulator experiments. A matrix information-geometric method was developed to detect the change-points of rigid body motions. Note that the set of all rigid body motions is the special Euclidean group SE(3), so the Riemannian mean based on the Lie group structures of SE(3) reflects the characteristics of change-points. Once a change-point occurs, the distance between the current point and the Riemannian mean of its neighbor points should be a local maximum. A gradient descent algorithm is proposed to calculate the Riemannian mean. Using the Baker–Campbell–Hausdorff formula, the first-order approximation of the Riemannian mean is taken as the initial value of the iterative procedure. The performance of our method was evaluated by numerical examples and manipulator experiments. A matrix information-geometric method was developed to detect the change-points of rigid body motions. Note that the set of all rigid body motions is the special Euclidean group S E ( 3 ) , so the Riemannian mean based on the Lie group structures of S E ( 3 ) reflects the characteristics of change-points. Once a change-point occurs, the distance between the current point and the Riemannian mean of its neighbor points should be a local maximum. A gradient descent algorithm is proposed to calculate the Riemannian mean. Using the Baker-Campbell-Hausdorff formula, the first-order approximation of the Riemannian mean is taken as the initial value of the iterative procedure. The performance of our method was evaluated by numerical examples and manipulator experiments.A matrix information-geometric method was developed to detect the change-points of rigid body motions. Note that the set of all rigid body motions is the special Euclidean group S E ( 3 ) , so the Riemannian mean based on the Lie group structures of S E ( 3 ) reflects the characteristics of change-points. Once a change-point occurs, the distance between the current point and the Riemannian mean of its neighbor points should be a local maximum. A gradient descent algorithm is proposed to calculate the Riemannian mean. Using the Baker-Campbell-Hausdorff formula, the first-order approximation of the Riemannian mean is taken as the initial value of the iterative procedure. The performance of our method was evaluated by numerical examples and manipulator experiments. A matrix information-geometric method was developed to detect the change-points of rigid body motions. Note that the set of all rigid body motions is the special Euclidean group S E ( 3 ) , so the Riemannian mean based on the Lie group structures of S E ( 3 ) reflects the characteristics of change-points. Once a change-point occurs, the distance between the current point and the Riemannian mean of its neighbor points should be a local maximum. A gradient descent algorithm is proposed to calculate the Riemannian mean. Using the Baker−Campbell−Hausdorff formula, the first-order approximation of the Riemannian mean is taken as the initial value of the iterative procedure. The performance of our method was evaluated by numerical examples and manipulator experiments. A matrix information-geometric method was developed to detect the change-points of rigid body motions. Note that the set of all rigid body motions is the special Euclidean group S E ( 3 ) , so the Riemannian mean based on the Lie group structures of S E ( 3 ) reflects the characteristics of change-points. Once a change-point occurs, the distance between the current point and the Riemannian mean of its neighbor points should be a local maximum. A gradient descent algorithm is proposed to calculate the Riemannian mean. Using the Baker–Campbell–Hausdorff formula, the first-order approximation of the Riemannian mean is taken as the initial value of the iterative procedure. The performance of our method was evaluated by numerical examples and manipulator experiments. |
Author | Duan, Xiaomin Zhao, Xinyu Sun, Huafei |
AuthorAffiliation | 1 School of Science, Dalian Jiaotong University, Dalian 116028, China 3 School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China 2 Beijing Key Laboratory on MCAACI, Beijing Institute of Technology, Beijing 100081, China |
AuthorAffiliation_xml | – name: 3 School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China – name: 2 Beijing Key Laboratory on MCAACI, Beijing Institute of Technology, Beijing 100081, China – name: 1 School of Science, Dalian Jiaotong University, Dalian 116028, China |
Author_xml | – sequence: 1 givenname: Xiaomin orcidid: 0000-0003-1863-9294 surname: Duan fullname: Duan, Xiaomin – sequence: 2 givenname: Huafei surname: Sun fullname: Sun, Huafei – sequence: 3 givenname: Xinyu surname: Zhao fullname: Zhao, Xinyu |
BookMark | eNplkUtvEzEUhS1URB-w4B9YYgOLoX57ZoNUApRIjUCIri2P5zpxNGMXj4Pov8dpCqJlZevcc7977XOKjmKKgNBLSt5y3pFzYJRIIjl9gk4o6bpGcEKO_rkfo9N53hLCOKPqGTrmnCnNhDxB1xd4ZUsOv_Ay-pQnW0KKzSWkCarq8ArKJg24lvBiY-Mamq8pxII_QAG39-Lk8bewDgN-n4ZbvEp78Tl66u04w4v78wxdf_r4ffG5ufpyuVxcXDVOCFWatgdOKdetVFRZK1zdkGrCW829VIPmehCiB0p1bwG89l4pD7Z3rWWSWM3P0PLAHZLdmpscJptvTbLB3Akpr43NJbgRjOLK1xe3krtWaD50Hess93RQrg4XqrLeHVg3u36CwUEs2Y4PoA8rMWzMOv00WlJJGKmA1_eAnH7sYC5mCrODcbQR0m42TCilldYdr9ZXj6zbtMuxfpVhUrRccyLb6jo_uFxO85zBGxfKXUB1fhgNJWYfv_kbf-1486jjz_r_e38DzuutfQ |
CitedBy_id | crossref_primary_10_3390_e26100825 |
Cites_doi | 10.1155/2013/292787 10.1137/S0895479801383877 10.1016/j.cviu.2006.08.002 10.1017/CBO9780511755156 10.1109/ICDM.2007.78 10.1007/978-3-642-30232-9 10.1007/978-1-4757-2201-7 10.1016/j.ins.2018.03.010 10.1016/j.geomphys.2014.08.009 10.1371/journal.pone.0175813 10.1162/NECO_a_00058 10.1109/NOMS.2006.1687576 10.1016/j.neunet.2013.01.012 10.1109/JSTSP.2013.2261798 10.1214/aos/1176343282 10.1177/0962280217708655 10.1007/978-94-015-8390-9 10.1109/70.704225 10.1137/S0895479803436937 10.1007/s00180-017-0740-4 10.1145/566654.566608 10.1109/TLT.2010.27 |
ContentType | Journal Article |
Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.3390/e21050531 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (New) Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1099-4300 |
ExternalDocumentID | oai_doaj_org_article_636f245853c8473d9929a3f1d6c61646 PMC7515020 10_3390_e21050531 |
GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RNS RPM TR2 TUS XSB ~8M 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c446t-8be3113785616aa4c0021703873f56d737d44be117baeef7ff66feabc8a250a73 |
IEDL.DBID | DOA |
ISSN | 1099-4300 |
IngestDate | Wed Aug 27 00:55:30 EDT 2025 Thu Aug 21 13:43:24 EDT 2025 Fri Jul 11 07:15:42 EDT 2025 Fri Jul 25 11:54:00 EDT 2025 Tue Jul 01 01:57:50 EDT 2025 Thu Apr 24 23:06:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-8be3113785616aa4c0021703873f56d737d44be117baeef7ff66feabc8a250a73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1863-9294 |
OpenAccessLink | https://doaj.org/article/636f245853c8473d9929a3f1d6c61646 |
PMID | 33267245 |
PQID | 2548373058 |
PQPubID | 2032401 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_636f245853c8473d9929a3f1d6c61646 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7515020 proquest_miscellaneous_2466767793 proquest_journals_2548373058 crossref_citationtrail_10_3390_e21050531 crossref_primary_10_3390_e21050531 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190525 |
PublicationDateYYYYMMDD | 2019-05-25 |
PublicationDate_xml | – month: 5 year: 2019 text: 20190525 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Entropy (Basel, Switzerland) |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Andruchow (ref_28) 2014; 86 Liu (ref_15) 2011; 33 Moakher (ref_33) 2005; 26 ref_13 ref_12 Chan (ref_4) 2011; 4 Rao (ref_17) 1945; 37 ref_30 Moakher (ref_32) 2002; 24 Safonova (ref_5) 2004; 2004 ref_18 Fasola (ref_8) 2018; 33 Arnaudon (ref_16) 2013; 7 Pullen (ref_2) 2002; 21 Newman (ref_29) 1989; 24 Goldberg (ref_11) 2017; 26 Moeslund (ref_6) 2006; 104 ref_25 Liu (ref_9) 2013; 43 Efron (ref_19) 1975; 3 ref_24 ref_23 Merckel (ref_14) 2010; 229 ref_22 ref_21 ref_20 ref_3 ref_26 Cabrieto (ref_1) 2018; 447 Pillow (ref_10) 2011; 23 Duan (ref_27) 2013; 2013 ref_7 Zefran (ref_31) 1998; 14 |
References_xml | – volume: 2013 start-page: 292787 year: 2013 ident: ref_27 article-title: Riemannian means on special Euclidean group and unipotent matrices group publication-title: Sci. World J. doi: 10.1155/2013/292787 – ident: ref_30 – volume: 24 start-page: 1 year: 2002 ident: ref_32 article-title: Means and averaging in the group of rotations publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479801383877 – volume: 104 start-page: 90 year: 2006 ident: ref_6 article-title: A survey of advances in vision-based human motion capture and analysis publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2006.08.002 – ident: ref_26 – ident: ref_25 doi: 10.1017/CBO9780511755156 – ident: ref_7 doi: 10.1109/ICDM.2007.78 – ident: ref_21 doi: 10.1007/978-3-642-30232-9 – ident: ref_24 doi: 10.1007/978-1-4757-2201-7 – volume: 2004 start-page: 185 year: 2004 ident: ref_5 article-title: Segmenting motion capture data into distinct behaviors publication-title: Graph. Interface – volume: 447 start-page: 117 year: 2018 ident: ref_1 article-title: Capturing correlation changes by applying kernel change point detection on the running correlations publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.03.010 – volume: 86 start-page: 241 year: 2014 ident: ref_28 article-title: The left invariant metric in the general linear group publication-title: J. Geom. Phys. doi: 10.1016/j.geomphys.2014.08.009 – ident: ref_3 doi: 10.1371/journal.pone.0175813 – ident: ref_18 – volume: 23 start-page: 1 year: 2011 ident: ref_10 article-title: Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains publication-title: Neural Comput. doi: 10.1162/NECO_a_00058 – ident: ref_12 doi: 10.1109/NOMS.2006.1687576 – volume: 43 start-page: 72 year: 2013 ident: ref_9 article-title: Change-point detection in time-series data by relative density-ratio estimation publication-title: Neural Netw. doi: 10.1016/j.neunet.2013.01.012 – volume: 37 start-page: 81 year: 1945 ident: ref_17 article-title: Information and accuracy attainable in the estimation of statistical parameters publication-title: Bull. Calcutta Math. Soc. – volume: 7 start-page: 595 year: 2013 ident: ref_16 article-title: Riemannian medians and means with applications to Radar signal processing publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2013.2261798 – volume: 3 start-page: 1189 year: 1975 ident: ref_19 article-title: Defining the curvature of a statistical problem (with applications to second order efficiency) (with discussion) publication-title: Ann. Statist. doi: 10.1214/aos/1176343282 – volume: 26 start-page: 1590 year: 2017 ident: ref_11 article-title: Change-point detection for infinite horizon dynamic treatment regimes publication-title: Stat. Methods Med. Res. doi: 10.1177/0962280217708655 – ident: ref_23 doi: 10.1007/978-94-015-8390-9 – volume: 14 start-page: 576 year: 1998 ident: ref_31 article-title: On the generation of smooth three-dimensional rigid body motions publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/70.704225 – volume: 229 start-page: 230 year: 2010 ident: ref_14 article-title: Change-Point detection on the Lie group SE(3) publication-title: Commun. Comput. Inf. Sci. – volume: 26 start-page: 735 year: 2005 ident: ref_33 article-title: A differential geometric approach to the geometric mean of symmetric positive-definite matrices publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479803436937 – ident: ref_13 – volume: 33 start-page: 1 year: 2018 ident: ref_8 article-title: A heuristic, iterative algorithm for change-point detection in abrupt change models publication-title: Comput. Stat. doi: 10.1007/s00180-017-0740-4 – volume: 24 start-page: 30 year: 1989 ident: ref_29 article-title: Convergence domains for the Campbell–Baker–Hausdorff formula publication-title: Linear Algebra Appl. – volume: 21 start-page: 501 year: 2002 ident: ref_2 article-title: Motion capture assisted animation: Texturing and synthesis publication-title: ACM Trans. Graph. doi: 10.1145/566654.566608 – ident: ref_22 – volume: 33 start-page: 77 year: 2011 ident: ref_15 article-title: Application of information geometry to target detection for pulsed doppler Radar publication-title: J. Natl. Univ. Def. Technol. – ident: ref_20 – volume: 4 start-page: 187 year: 2011 ident: ref_4 article-title: A virtual reality dance training system using motion capture technology publication-title: IEEE Trans. Learn. Technol. doi: 10.1109/TLT.2010.27 |
SSID | ssj0023216 |
Score | 2.1657627 |
Snippet | A matrix information-geometric method was developed to detect the change-points of rigid body motions. Note that the set of all rigid body motions is the... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 531 |
SubjectTerms | Algebra Algorithms change-point detection Euclidean geometry Geometry Iterative methods Lie algebra Lie groups matrix information geometry Motion perception Neighborhoods Rigid structures Rigid-body dynamics special Euclidean group Systems stability Time series |
SummonAdditionalLinks | – databaseName: ProQuest Central (New) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3faxQxEA7avvgiFhVXq0TxwZfQyyWbH0_Sq61FuFKKB31bssmkHtTd2m5B_3snudzqgvi6GdhlMpl832YyHyHvbQQ_s8BZtHrGpBSOWaV50nqZAXexNTFX-Z6p05X8cllflh9ud6WscpsTc6IOvU__yA-QyCCXwug0H29-sKQalU5Xi4TGQ7KLKdgg-dpdHJ-dX4yUS8y52vQTEkjuDwAJTp3CbrIL5Wb9E4Q5rY_8a8M5eUIeF6RIDzdTu0ceQPeUrA7pMjXV_0nLPaLkV_YZ-u9JGcvTZRaEpjhEN_cG2Hm_7gb6CYZcc9XRPtKL9dU60EUfftFlFvF5RlYnx1-PTllRRmAe6dvATAuCc6ENoh_lnPSZWqSTaBFrFbTQQcoWONetA4g6RqUiuNYbh5DHafGc7HR9By8IDbWoZwFi0LWW3hrXKmODka2zxsM8VOTD1lONL23Dk3rFdYP0ITm1GZ1akXej6c2mV8a_jBbJ3aNBam-dH_S3V01ZLY0SKs4lMhnhcfcUwSKIcyLyoLxKDdEqsr-drKasubvmT4RU5O04jKslHYG4Dvp7tJGppldjUqqInkzy5IOmI936W-67rRH7Ibp--f-XvyKPEFTZVGEwr_fJznB7D68RuAztmxKdvwEop-80 priority: 102 providerName: ProQuest |
Title | A Matrix Information-Geometric Method for Change-Point Detection of Rigid Body Motion |
URI | https://www.proquest.com/docview/2548373058 https://www.proquest.com/docview/2466767793 https://pubmed.ncbi.nlm.nih.gov/PMC7515020 https://doaj.org/article/636f245853c8473d9929a3f1d6c61646 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB3S5NJLSUlL3SaLUnrIxWS1kvVxzKbZDYUNIWRhb0bWR7vQ2CVxIPn3GcneJYZCL734YM1BnpFG7-HRG4BvOng71p7mQctxzjkzuRaSxl4vY09NqFRIVb5X4nLJf6yK1atWX7EmrJMH7hx3KpgIE46glllMpMxpPM8NC9QJK6I2Vsy-eOZtyFRPtdiEik5HiCGpP_VIbIq43AanTxLpHyDLYV3kq4Nmtg_veoRIzrqZvYcdXx_A8owsopj-E-nvD0V_5nPf3MWOWJYsUiNogkOkuy-QXzfruiXffZtqrWrSBHKz_rl2ZNq4Z7JIzXs-wHJ2cXt-mfcdEXKLtK3NVeUZpUwqRD3CGG4TpYh_oFkohJNMOs4rT6msjPdBhiBE8KayyiDUMZJ9hN26qf0nIK5gxdj54GQhudXKVEJpp3hltLJ-4jI42XiqtL1ceOxa8btE2hCdWm6dmsHXremfTiPjb0bT6O6tQZS1Ti8w2GUf7PJfwc7gcBOsst9rDyVSXGTZmLdUBsfbYdwl8deHqX3ziDY81vJKTEYZyEGQBxMajtTrX0lvWyLmQ1T9-X98wRd4i5BLx_qDSXEIu-39oz9CWNNWI3ijZvMR7E0vrq5vRmk943O-oi9a7fgg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcAFgQCRUsAgkLhEjWPHjwNCLWW7pd0Koa7UW3D8KCtBUtpU0D_Fb2TsPCAS4tbrziiJ5mF_sx7Ph9BL5Z3JlCOpVyJLGaM6VVyQwPWSOaJ9JX3s8j3i8yX7cFKcrKFfw12Y0FY5rIlxobaNCf-Rb0EhA7UURKd8e_Y9DaxR4XR1oNDowuLAXf2Aku3izf4u-PdVns_eH7-bpz2rQGqg9GlTWTlKCBUSkAPXmpkIy8MpLvUFt4IKy1jlCBGVds4L7zn3TldGaoALWlB47g10k1GqQkbJ2d5Y4NGc8G56EQizLQflVBGCfLLnRWqACZ6ddmP-tb3N7qI7PS7F210g3UNrrr6Pltt4EUb4_8T9raXgxXTPNd8CD5fBi0g_jUGEu1sK6cdmVbd417Wxw6vGjcefVqcri3cae4UXkTLoAVpei8UeovW6qd0jhG1Bi8w6b0UhmFFSV1wqK1mllTQutwl6PViqNP2Q8sCV8bWEYiUYtRyNmqAXo-pZN5njX0o7wdyjQhimHX9ozk_LPjdLTrnPGdRN1MBeTa0CyKipJ5YbHsavJWhzcFbZZ_hF-SceE_R8FENuhgMXXbvmEnRY6CAWsAQmSEycPPmgqaRefYlTvgUgTcDyG_9_-TN0a368OCwP948OHqPbAOdU6G3Ii0203p5fuicAmdrqaYxTjD5fd2L8BhSiKn0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anYR4QSBAFAYYBBIvUZPYseMHhFa6sjFaVROV9hYcX0alLRlbJthf49dxnBtEQrzttbaS6Fzs76uPzwfwWjqrQ2mjwEkRBoxRFUguIq_1EtpIuTx1dZXvku-v2afj5HgLfnV3YXxZZbcm1gu1KbX_j3yCRAa5FEZnOnFtWcRqNn9__j3wClL-pLWT02hC5NBe_0D6dvnuYIa-fhPH870vH_aDVmEg0EiDqiDNLY0iKlJEEVwppmuI7k90qUu4EVQYxnIbRSJX1jrhHOfOqlynCqGDEhSfewu2BbKicATb073l6qinezSOeNPLiFIZTiySq8SH_GAHrIUCBuh2WJv512Y3vwd3W5RKdpuwug9btngA612y8A39f5L2DpP3afDRlmdelUuTRS1GTXCINHcWglW5KSoys1Vd71WQ0pGjzcnGkGlprsmiFhB6COsbsdkjGBVlYR8DMQlNQmOdEYlgWqYq56k0KcuVTLWNzRjedpbKdNuy3CtnnGZIXbxRs96oY3jVTz1v-nT8a9LUm7uf4Ftr1z-UFydZm6kZp9zFDFkU1bhzUyMRQCrqIsM1983YxrDTOStr8_0y-xOdY3jZD2Om-uMXVdjyCucwX08scEEcgxg4efBBw5Fi863u-S0QdyKyf_L_l7-A25gU2eeD5eFTuIPYTvpChzjZgVF1cWWfIX6q8udtoBL4etO58RvF7TAP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Matrix+Information-Geometric+Method+for+Change-Point+Detection+of+Rigid+Body+Motion&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Xiaomin+Duan&rft.au=Huafei+Sun&rft.au=Xinyu+Zhao&rft.date=2019-05-25&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=21&rft.issue=5&rft.spage=531&rft_id=info:doi/10.3390%2Fe21050531&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_636f245853c8473d9929a3f1d6c61646 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |