A Matrix Information-Geometric Method for Change-Point Detection of Rigid Body Motion

A matrix information-geometric method was developed to detect the change-points of rigid body motions. Note that the set of all rigid body motions is the special Euclidean group S E ( 3 ) , so the Riemannian mean based on the Lie group structures of S E ( 3 ) reflects the characteristics of change-p...

Full description

Saved in:
Bibliographic Details
Published inEntropy (Basel, Switzerland) Vol. 21; no. 5; p. 531
Main Authors Duan, Xiaomin, Sun, Huafei, Zhao, Xinyu
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 25.05.2019
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A matrix information-geometric method was developed to detect the change-points of rigid body motions. Note that the set of all rigid body motions is the special Euclidean group S E ( 3 ) , so the Riemannian mean based on the Lie group structures of S E ( 3 ) reflects the characteristics of change-points. Once a change-point occurs, the distance between the current point and the Riemannian mean of its neighbor points should be a local maximum. A gradient descent algorithm is proposed to calculate the Riemannian mean. Using the Baker–Campbell–Hausdorff formula, the first-order approximation of the Riemannian mean is taken as the initial value of the iterative procedure. The performance of our method was evaluated by numerical examples and manipulator experiments.
AbstractList A matrix information-geometric method was developed to detect the change-points of rigid body motions. Note that the set of all rigid body motions is the special Euclidean group S E ( 3 ) , so the Riemannian mean based on the Lie group structures of S E ( 3 ) reflects the characteristics of change-points. Once a change-point occurs, the distance between the current point and the Riemannian mean of its neighbor points should be a local maximum. A gradient descent algorithm is proposed to calculate the Riemannian mean. Using the Baker–Campbell–Hausdorff formula, the first-order approximation of the Riemannian mean is taken as the initial value of the iterative procedure. The performance of our method was evaluated by numerical examples and manipulator experiments.
A matrix information-geometric method was developed to detect the change-points of rigid body motions. Note that the set of all rigid body motions is the special Euclidean group SE(3), so the Riemannian mean based on the Lie group structures of SE(3) reflects the characteristics of change-points. Once a change-point occurs, the distance between the current point and the Riemannian mean of its neighbor points should be a local maximum. A gradient descent algorithm is proposed to calculate the Riemannian mean. Using the Baker–Campbell–Hausdorff formula, the first-order approximation of the Riemannian mean is taken as the initial value of the iterative procedure. The performance of our method was evaluated by numerical examples and manipulator experiments.
A matrix information-geometric method was developed to detect the change-points of rigid body motions. Note that the set of all rigid body motions is the special Euclidean group S E ( 3 ) , so the Riemannian mean based on the Lie group structures of S E ( 3 ) reflects the characteristics of change-points. Once a change-point occurs, the distance between the current point and the Riemannian mean of its neighbor points should be a local maximum. A gradient descent algorithm is proposed to calculate the Riemannian mean. Using the Baker-Campbell-Hausdorff formula, the first-order approximation of the Riemannian mean is taken as the initial value of the iterative procedure. The performance of our method was evaluated by numerical examples and manipulator experiments.A matrix information-geometric method was developed to detect the change-points of rigid body motions. Note that the set of all rigid body motions is the special Euclidean group S E ( 3 ) , so the Riemannian mean based on the Lie group structures of S E ( 3 ) reflects the characteristics of change-points. Once a change-point occurs, the distance between the current point and the Riemannian mean of its neighbor points should be a local maximum. A gradient descent algorithm is proposed to calculate the Riemannian mean. Using the Baker-Campbell-Hausdorff formula, the first-order approximation of the Riemannian mean is taken as the initial value of the iterative procedure. The performance of our method was evaluated by numerical examples and manipulator experiments.
A matrix information-geometric method was developed to detect the change-points of rigid body motions. Note that the set of all rigid body motions is the special Euclidean group S E ( 3 ) , so the Riemannian mean based on the Lie group structures of S E ( 3 ) reflects the characteristics of change-points. Once a change-point occurs, the distance between the current point and the Riemannian mean of its neighbor points should be a local maximum. A gradient descent algorithm is proposed to calculate the Riemannian mean. Using the Baker−Campbell−Hausdorff formula, the first-order approximation of the Riemannian mean is taken as the initial value of the iterative procedure. The performance of our method was evaluated by numerical examples and manipulator experiments.
A matrix information-geometric method was developed to detect the change-points of rigid body motions. Note that the set of all rigid body motions is the special Euclidean group S E ( 3 ) , so the Riemannian mean based on the Lie group structures of S E ( 3 ) reflects the characteristics of change-points. Once a change-point occurs, the distance between the current point and the Riemannian mean of its neighbor points should be a local maximum. A gradient descent algorithm is proposed to calculate the Riemannian mean. Using the Baker–Campbell–Hausdorff formula, the first-order approximation of the Riemannian mean is taken as the initial value of the iterative procedure. The performance of our method was evaluated by numerical examples and manipulator experiments.
Author Duan, Xiaomin
Zhao, Xinyu
Sun, Huafei
AuthorAffiliation 1 School of Science, Dalian Jiaotong University, Dalian 116028, China
3 School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
2 Beijing Key Laboratory on MCAACI, Beijing Institute of Technology, Beijing 100081, China
AuthorAffiliation_xml – name: 3 School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
– name: 2 Beijing Key Laboratory on MCAACI, Beijing Institute of Technology, Beijing 100081, China
– name: 1 School of Science, Dalian Jiaotong University, Dalian 116028, China
Author_xml – sequence: 1
  givenname: Xiaomin
  orcidid: 0000-0003-1863-9294
  surname: Duan
  fullname: Duan, Xiaomin
– sequence: 2
  givenname: Huafei
  surname: Sun
  fullname: Sun, Huafei
– sequence: 3
  givenname: Xinyu
  surname: Zhao
  fullname: Zhao, Xinyu
BookMark eNplkUtvEzEUhS1URB-w4B9YYgOLoX57ZoNUApRIjUCIri2P5zpxNGMXj4Pov8dpCqJlZevcc7977XOKjmKKgNBLSt5y3pFzYJRIIjl9gk4o6bpGcEKO_rkfo9N53hLCOKPqGTrmnCnNhDxB1xd4ZUsOv_Ay-pQnW0KKzSWkCarq8ArKJg24lvBiY-Mamq8pxII_QAG39-Lk8bewDgN-n4ZbvEp78Tl66u04w4v78wxdf_r4ffG5ufpyuVxcXDVOCFWatgdOKdetVFRZK1zdkGrCW829VIPmehCiB0p1bwG89l4pD7Z3rWWSWM3P0PLAHZLdmpscJptvTbLB3Akpr43NJbgRjOLK1xe3krtWaD50Hess93RQrg4XqrLeHVg3u36CwUEs2Y4PoA8rMWzMOv00WlJJGKmA1_eAnH7sYC5mCrODcbQR0m42TCilldYdr9ZXj6zbtMuxfpVhUrRccyLb6jo_uFxO85zBGxfKXUB1fhgNJWYfv_kbf-1486jjz_r_e38DzuutfQ
CitedBy_id crossref_primary_10_3390_e26100825
Cites_doi 10.1155/2013/292787
10.1137/S0895479801383877
10.1016/j.cviu.2006.08.002
10.1017/CBO9780511755156
10.1109/ICDM.2007.78
10.1007/978-3-642-30232-9
10.1007/978-1-4757-2201-7
10.1016/j.ins.2018.03.010
10.1016/j.geomphys.2014.08.009
10.1371/journal.pone.0175813
10.1162/NECO_a_00058
10.1109/NOMS.2006.1687576
10.1016/j.neunet.2013.01.012
10.1109/JSTSP.2013.2261798
10.1214/aos/1176343282
10.1177/0962280217708655
10.1007/978-94-015-8390-9
10.1109/70.704225
10.1137/S0895479803436937
10.1007/s00180-017-0740-4
10.1145/566654.566608
10.1109/TLT.2010.27
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/e21050531
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (New)
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_636f245853c8473d9929a3f1d6c61646
PMC7515020
10_3390_e21050531
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c446t-8be3113785616aa4c0021703873f56d737d44be117baeef7ff66feabc8a250a73
IEDL.DBID DOA
ISSN 1099-4300
IngestDate Wed Aug 27 00:55:30 EDT 2025
Thu Aug 21 13:43:24 EDT 2025
Fri Jul 11 07:15:42 EDT 2025
Fri Jul 25 11:54:00 EDT 2025
Tue Jul 01 01:57:50 EDT 2025
Thu Apr 24 23:06:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-8be3113785616aa4c0021703873f56d737d44be117baeef7ff66feabc8a250a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1863-9294
OpenAccessLink https://doaj.org/article/636f245853c8473d9929a3f1d6c61646
PMID 33267245
PQID 2548373058
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_636f245853c8473d9929a3f1d6c61646
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7515020
proquest_miscellaneous_2466767793
proquest_journals_2548373058
crossref_citationtrail_10_3390_e21050531
crossref_primary_10_3390_e21050531
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190525
PublicationDateYYYYMMDD 2019-05-25
PublicationDate_xml – month: 5
  year: 2019
  text: 20190525
  day: 25
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Andruchow (ref_28) 2014; 86
Liu (ref_15) 2011; 33
Moakher (ref_33) 2005; 26
ref_13
ref_12
Chan (ref_4) 2011; 4
Rao (ref_17) 1945; 37
ref_30
Moakher (ref_32) 2002; 24
Safonova (ref_5) 2004; 2004
ref_18
Fasola (ref_8) 2018; 33
Arnaudon (ref_16) 2013; 7
Pullen (ref_2) 2002; 21
Newman (ref_29) 1989; 24
Goldberg (ref_11) 2017; 26
Moeslund (ref_6) 2006; 104
ref_25
Liu (ref_9) 2013; 43
Efron (ref_19) 1975; 3
ref_24
ref_23
Merckel (ref_14) 2010; 229
ref_22
ref_21
ref_20
ref_3
ref_26
Cabrieto (ref_1) 2018; 447
Pillow (ref_10) 2011; 23
Duan (ref_27) 2013; 2013
ref_7
Zefran (ref_31) 1998; 14
References_xml – volume: 2013
  start-page: 292787
  year: 2013
  ident: ref_27
  article-title: Riemannian means on special Euclidean group and unipotent matrices group
  publication-title: Sci. World J.
  doi: 10.1155/2013/292787
– ident: ref_30
– volume: 24
  start-page: 1
  year: 2002
  ident: ref_32
  article-title: Means and averaging in the group of rotations
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479801383877
– volume: 104
  start-page: 90
  year: 2006
  ident: ref_6
  article-title: A survey of advances in vision-based human motion capture and analysis
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2006.08.002
– ident: ref_26
– ident: ref_25
  doi: 10.1017/CBO9780511755156
– ident: ref_7
  doi: 10.1109/ICDM.2007.78
– ident: ref_21
  doi: 10.1007/978-3-642-30232-9
– ident: ref_24
  doi: 10.1007/978-1-4757-2201-7
– volume: 2004
  start-page: 185
  year: 2004
  ident: ref_5
  article-title: Segmenting motion capture data into distinct behaviors
  publication-title: Graph. Interface
– volume: 447
  start-page: 117
  year: 2018
  ident: ref_1
  article-title: Capturing correlation changes by applying kernel change point detection on the running correlations
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.03.010
– volume: 86
  start-page: 241
  year: 2014
  ident: ref_28
  article-title: The left invariant metric in the general linear group
  publication-title: J. Geom. Phys.
  doi: 10.1016/j.geomphys.2014.08.009
– ident: ref_3
  doi: 10.1371/journal.pone.0175813
– ident: ref_18
– volume: 23
  start-page: 1
  year: 2011
  ident: ref_10
  article-title: Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00058
– ident: ref_12
  doi: 10.1109/NOMS.2006.1687576
– volume: 43
  start-page: 72
  year: 2013
  ident: ref_9
  article-title: Change-point detection in time-series data by relative density-ratio estimation
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2013.01.012
– volume: 37
  start-page: 81
  year: 1945
  ident: ref_17
  article-title: Information and accuracy attainable in the estimation of statistical parameters
  publication-title: Bull. Calcutta Math. Soc.
– volume: 7
  start-page: 595
  year: 2013
  ident: ref_16
  article-title: Riemannian medians and means with applications to Radar signal processing
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2013.2261798
– volume: 3
  start-page: 1189
  year: 1975
  ident: ref_19
  article-title: Defining the curvature of a statistical problem (with applications to second order efficiency) (with discussion)
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176343282
– volume: 26
  start-page: 1590
  year: 2017
  ident: ref_11
  article-title: Change-point detection for infinite horizon dynamic treatment regimes
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/0962280217708655
– ident: ref_23
  doi: 10.1007/978-94-015-8390-9
– volume: 14
  start-page: 576
  year: 1998
  ident: ref_31
  article-title: On the generation of smooth three-dimensional rigid body motions
  publication-title: IEEE Trans. Robot. Autom.
  doi: 10.1109/70.704225
– volume: 229
  start-page: 230
  year: 2010
  ident: ref_14
  article-title: Change-Point detection on the Lie group SE(3)
  publication-title: Commun. Comput. Inf. Sci.
– volume: 26
  start-page: 735
  year: 2005
  ident: ref_33
  article-title: A differential geometric approach to the geometric mean of symmetric positive-definite matrices
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479803436937
– ident: ref_13
– volume: 33
  start-page: 1
  year: 2018
  ident: ref_8
  article-title: A heuristic, iterative algorithm for change-point detection in abrupt change models
  publication-title: Comput. Stat.
  doi: 10.1007/s00180-017-0740-4
– volume: 24
  start-page: 30
  year: 1989
  ident: ref_29
  article-title: Convergence domains for the Campbell–Baker–Hausdorff formula
  publication-title: Linear Algebra Appl.
– volume: 21
  start-page: 501
  year: 2002
  ident: ref_2
  article-title: Motion capture assisted animation: Texturing and synthesis
  publication-title: ACM Trans. Graph.
  doi: 10.1145/566654.566608
– ident: ref_22
– volume: 33
  start-page: 77
  year: 2011
  ident: ref_15
  article-title: Application of information geometry to target detection for pulsed doppler Radar
  publication-title: J. Natl. Univ. Def. Technol.
– ident: ref_20
– volume: 4
  start-page: 187
  year: 2011
  ident: ref_4
  article-title: A virtual reality dance training system using motion capture technology
  publication-title: IEEE Trans. Learn. Technol.
  doi: 10.1109/TLT.2010.27
SSID ssj0023216
Score 2.1657627
Snippet A matrix information-geometric method was developed to detect the change-points of rigid body motions. Note that the set of all rigid body motions is the...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 531
SubjectTerms Algebra
Algorithms
change-point detection
Euclidean geometry
Geometry
Iterative methods
Lie algebra
Lie groups
matrix information geometry
Motion perception
Neighborhoods
Rigid structures
Rigid-body dynamics
special Euclidean group
Systems stability
Time series
SummonAdditionalLinks – databaseName: ProQuest Central (New)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3faxQxEA7avvgiFhVXq0TxwZfQyyWbH0_Sq61FuFKKB31bssmkHtTd2m5B_3snudzqgvi6GdhlMpl832YyHyHvbQQ_s8BZtHrGpBSOWaV50nqZAXexNTFX-Z6p05X8cllflh9ud6WscpsTc6IOvU__yA-QyCCXwug0H29-sKQalU5Xi4TGQ7KLKdgg-dpdHJ-dX4yUS8y52vQTEkjuDwAJTp3CbrIL5Wb9E4Q5rY_8a8M5eUIeF6RIDzdTu0ceQPeUrA7pMjXV_0nLPaLkV_YZ-u9JGcvTZRaEpjhEN_cG2Hm_7gb6CYZcc9XRPtKL9dU60EUfftFlFvF5RlYnx1-PTllRRmAe6dvATAuCc6ENoh_lnPSZWqSTaBFrFbTQQcoWONetA4g6RqUiuNYbh5DHafGc7HR9By8IDbWoZwFi0LWW3hrXKmODka2zxsM8VOTD1lONL23Dk3rFdYP0ITm1GZ1akXej6c2mV8a_jBbJ3aNBam-dH_S3V01ZLY0SKs4lMhnhcfcUwSKIcyLyoLxKDdEqsr-drKasubvmT4RU5O04jKslHYG4Dvp7tJGppldjUqqInkzy5IOmI936W-67rRH7Ibp--f-XvyKPEFTZVGEwr_fJznB7D68RuAztmxKdvwEop-80
  priority: 102
  providerName: ProQuest
Title A Matrix Information-Geometric Method for Change-Point Detection of Rigid Body Motion
URI https://www.proquest.com/docview/2548373058
https://www.proquest.com/docview/2466767793
https://pubmed.ncbi.nlm.nih.gov/PMC7515020
https://doaj.org/article/636f245853c8473d9929a3f1d6c61646
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB3S5NJLSUlL3SaLUnrIxWS1kvVxzKbZDYUNIWRhb0bWR7vQ2CVxIPn3GcneJYZCL734YM1BnpFG7-HRG4BvOng71p7mQctxzjkzuRaSxl4vY09NqFRIVb5X4nLJf6yK1atWX7EmrJMH7hx3KpgIE46glllMpMxpPM8NC9QJK6I2Vsy-eOZtyFRPtdiEik5HiCGpP_VIbIq43AanTxLpHyDLYV3kq4Nmtg_veoRIzrqZvYcdXx_A8owsopj-E-nvD0V_5nPf3MWOWJYsUiNogkOkuy-QXzfruiXffZtqrWrSBHKz_rl2ZNq4Z7JIzXs-wHJ2cXt-mfcdEXKLtK3NVeUZpUwqRD3CGG4TpYh_oFkohJNMOs4rT6msjPdBhiBE8KayyiDUMZJ9hN26qf0nIK5gxdj54GQhudXKVEJpp3hltLJ-4jI42XiqtL1ceOxa8btE2hCdWm6dmsHXremfTiPjb0bT6O6tQZS1Ti8w2GUf7PJfwc7gcBOsst9rDyVSXGTZmLdUBsfbYdwl8deHqX3ziDY81vJKTEYZyEGQBxMajtTrX0lvWyLmQ1T9-X98wRd4i5BLx_qDSXEIu-39oz9CWNNWI3ijZvMR7E0vrq5vRmk943O-oi9a7fgg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcAFgQCRUsAgkLhEjWPHjwNCLWW7pd0Koa7UW3D8KCtBUtpU0D_Fb2TsPCAS4tbrziiJ5mF_sx7Ph9BL5Z3JlCOpVyJLGaM6VVyQwPWSOaJ9JX3s8j3i8yX7cFKcrKFfw12Y0FY5rIlxobaNCf-Rb0EhA7UURKd8e_Y9DaxR4XR1oNDowuLAXf2Aku3izf4u-PdVns_eH7-bpz2rQGqg9GlTWTlKCBUSkAPXmpkIy8MpLvUFt4IKy1jlCBGVds4L7zn3TldGaoALWlB47g10k1GqQkbJ2d5Y4NGc8G56EQizLQflVBGCfLLnRWqACZ6ddmP-tb3N7qI7PS7F210g3UNrrr6Pltt4EUb4_8T9raXgxXTPNd8CD5fBi0g_jUGEu1sK6cdmVbd417Wxw6vGjcefVqcri3cae4UXkTLoAVpei8UeovW6qd0jhG1Bi8w6b0UhmFFSV1wqK1mllTQutwl6PViqNP2Q8sCV8bWEYiUYtRyNmqAXo-pZN5njX0o7wdyjQhimHX9ozk_LPjdLTrnPGdRN1MBeTa0CyKipJ5YbHsavJWhzcFbZZ_hF-SceE_R8FENuhgMXXbvmEnRY6CAWsAQmSEycPPmgqaRefYlTvgUgTcDyG_9_-TN0a368OCwP948OHqPbAOdU6G3Ii0203p5fuicAmdrqaYxTjD5fd2L8BhSiKn0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anYR4QSBAFAYYBBIvUZPYseMHhFa6sjFaVROV9hYcX0alLRlbJthf49dxnBtEQrzttbaS6Fzs76uPzwfwWjqrQ2mjwEkRBoxRFUguIq_1EtpIuTx1dZXvku-v2afj5HgLfnV3YXxZZbcm1gu1KbX_j3yCRAa5FEZnOnFtWcRqNn9__j3wClL-pLWT02hC5NBe_0D6dvnuYIa-fhPH870vH_aDVmEg0EiDqiDNLY0iKlJEEVwppmuI7k90qUu4EVQYxnIbRSJX1jrhHOfOqlynCqGDEhSfewu2BbKicATb073l6qinezSOeNPLiFIZTiySq8SH_GAHrIUCBuh2WJv512Y3vwd3W5RKdpuwug9btngA612y8A39f5L2DpP3afDRlmdelUuTRS1GTXCINHcWglW5KSoys1Vd71WQ0pGjzcnGkGlprsmiFhB6COsbsdkjGBVlYR8DMQlNQmOdEYlgWqYq56k0KcuVTLWNzRjedpbKdNuy3CtnnGZIXbxRs96oY3jVTz1v-nT8a9LUm7uf4Ftr1z-UFydZm6kZp9zFDFkU1bhzUyMRQCrqIsM1983YxrDTOStr8_0y-xOdY3jZD2Om-uMXVdjyCucwX08scEEcgxg4efBBw5Fi863u-S0QdyKyf_L_l7-A25gU2eeD5eFTuIPYTvpChzjZgVF1cWWfIX6q8udtoBL4etO58RvF7TAP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Matrix+Information-Geometric+Method+for+Change-Point+Detection+of+Rigid+Body+Motion&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Xiaomin+Duan&rft.au=Huafei+Sun&rft.au=Xinyu+Zhao&rft.date=2019-05-25&rft.pub=MDPI+AG&rft.eissn=1099-4300&rft.volume=21&rft.issue=5&rft.spage=531&rft_id=info:doi/10.3390%2Fe21050531&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_636f245853c8473d9929a3f1d6c61646
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon