Investigating the Reactivity of Single Atom Alloys Using Density Functional Theory

Single atom alloys are gaining importance as atom-efficient catalysts which can be extremely selective and active towards the formation of desired products. They possess such desirable characteristics because of the presence of a highly reactive single atom in a less reactive host surface. In this w...

Full description

Saved in:
Bibliographic Details
Published inTopics in catalysis Vol. 61; no. 5-6; pp. 462 - 474
Main Authors Thirumalai, Hari, Kitchin, John R.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2018
Springer Nature B.V
Springer
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single atom alloys are gaining importance as atom-efficient catalysts which can be extremely selective and active towards the formation of desired products. They possess such desirable characteristics because of the presence of a highly reactive single atom in a less reactive host surface. In this work, we calculated the electronic structure of several representative single atom alloys. We examined single atom alloys of gold, silver and copper doped with single atoms of platinum, palladium, iridium, rhodium and nickel in the context of the d -band model of Hammer and Nørskov. The reactivity of these alloys was probed through the dissociation of water and nitric oxide and the hydrogenation of acetylene to ethylene. We observed that these alloys exhibit a sharp peak in their atom projected d -band density of states, which we hypothesize could be the cause of high surface reactivity. We found that the d -band centers and d -band widths of these systems correlated linearly as with other alloys, but that the energy of adsorption of a hydrogen atom on these surfaces could not be correlated with the d -band center, or the average reactivity of the surface. Finally, the single atom alloys, with the exception of copper–palladium showed good catalytic behavior by activating the reactant molecules more strongly than the bulk atom behavior and showing favorable reaction pathways on the free energy diagrams for the reactions investigated.
AbstractList Single atom alloys are gaining importance as atom-efficient catalysts which can be extremely selective and active towards the formation of desired products. They possess such desirable characteristics because of the presence of a highly reactive single atom in a less reactive host surface. In this work, we calculated the electronic structure of several representative single atom alloys. We examined single atom alloys of gold, silver and copper doped with single atoms of platinum, palladium, iridium, rhodium and nickel in the context of the d-band model of Hammer and Nørskov. The reactivity of these alloys was probed through the dissociation of water and nitric oxide and the hydrogenation of acetylene to ethylene. We observed that these alloys exhibit a sharp peak in their atom projected d-band density of states, which we hypothesize could be the cause of high surface reactivity. We found that the d-band centers and d-band widths of these systems correlated linearly as with other alloys, but that the energy of adsorption of a hydrogen atom on these surfaces could not be correlated with the d-band center, or the average reactivity of the surface. Finally, the single atom alloys, with the exception of copper–palladium showed good catalytic behavior by activating the reactant molecules more strongly than the bulk atom behavior and showing favorable reaction pathways on the free energy diagrams for the reactions investigated.
Single atom alloys are gaining importance as atom-efficient catalysts which can be extremely selective and active towards the formation of desired products. They possess such desirable characteristics because of the presence of a highly reactive single atom in a less reactive host surface. In this work, we calculated the electronic structure of several representative single atom alloys. We examined single atom alloys of gold, silver and copper doped with single atoms of platinum, palladium, iridium, rhodium and nickel in the context of the d -band model of Hammer and Nørskov. The reactivity of these alloys was probed through the dissociation of water and nitric oxide and the hydrogenation of acetylene to ethylene. We observed that these alloys exhibit a sharp peak in their atom projected d -band density of states, which we hypothesize could be the cause of high surface reactivity. We found that the d -band centers and d -band widths of these systems correlated linearly as with other alloys, but that the energy of adsorption of a hydrogen atom on these surfaces could not be correlated with the d -band center, or the average reactivity of the surface. Finally, the single atom alloys, with the exception of copper–palladium showed good catalytic behavior by activating the reactant molecules more strongly than the bulk atom behavior and showing favorable reaction pathways on the free energy diagrams for the reactions investigated.
Not provided.
Author Kitchin, John R.
Thirumalai, Hari
Author_xml – sequence: 1
  givenname: Hari
  surname: Thirumalai
  fullname: Thirumalai, Hari
  organization: Department of Chemical Engineering, Carnegie Mellon University
– sequence: 2
  givenname: John R.
  surname: Kitchin
  fullname: Kitchin, John R.
  email: jkitchin@andrew.cmu.edu
  organization: Department of Chemical Engineering, Carnegie Mellon University
BackLink https://www.osti.gov/biblio/1537797$$D View this record in Osti.gov
BookMark eNp9kNFKwzAUhoNMcJs-gHdFr6tJ2jTN5ZhOBwNhbtchZqdbR5fMJBv07U2pIAh6lRC-7-Q__wgNjDWA0C3BDwRj_ugJoXmeYlKmuBQixRdoSBinqcC0HMQ7pjRljJZXaOT9HmNKuBBDtJybM_hQb1WozTYJO0iWoHSoz3VoE1sl7_G5gWQS7CGZNI1tfbL2HfoExnfM7GQibo1qktUOrGuv0WWlGg833-cYrWfPq-lrunh7mU8ni1TneRHSsgSeQZVleZFVuNCEko98UwAHxcUmhqs2mOZAtdAagHJWKlZulFCsyCktsmyM7vq5NuaXXtcB9E5bY0AHSVjGueARuu-ho7Ofp7ip3NuTi2G9pDjDlMXvWaR4T2lnvXdQyThNdVsFp-pGEiy7lmXfsowty65liaNJfplHVx-Ua_91aO_4yJotuJ9Mf0tfgrKQLw
CitedBy_id crossref_primary_10_1021_acs_jpclett_8b01888
crossref_primary_10_1039_C9CP04530A
crossref_primary_10_1016_j_mcat_2019_110731
crossref_primary_10_1021_acs_jpcc_9b00649
crossref_primary_10_1002_aenm_202200875
crossref_primary_10_1063_5_0192055
crossref_primary_10_1021_acs_jpcc_4c03232
crossref_primary_10_1016_j_solidstatesciences_2022_106916
crossref_primary_10_1080_00268976_2023_2183066
crossref_primary_10_1021_acs_jpcc_9b01213
crossref_primary_10_1021_acscatal_3c05660
crossref_primary_10_1063_5_0124095
crossref_primary_10_1021_acs_jcim_8b00657
crossref_primary_10_1002_advs_202304908
crossref_primary_10_1016_j_pecs_2023_101074
crossref_primary_10_1039_C9TA07651D
crossref_primary_10_1007_s40843_022_2251_8
crossref_primary_10_1039_D1SC00304F
crossref_primary_10_1016_j_jcat_2021_10_001
crossref_primary_10_1021_jacs_3c10994
crossref_primary_10_1021_acscatal_8b00881
crossref_primary_10_1016_j_fuel_2021_121641
crossref_primary_10_1016_j_cej_2024_152072
crossref_primary_10_1038_s41557_023_01424_6
crossref_primary_10_1021_acs_jpcc_1c09172
crossref_primary_10_1039_D0TA00375A
crossref_primary_10_1002_cctc_201800635
crossref_primary_10_1002_aesr_202100152
crossref_primary_10_1016_j_pmatsci_2022_100964
crossref_primary_10_1002_cmtd_202100020
crossref_primary_10_1007_s42114_024_01105_z
crossref_primary_10_1039_D0CS00844C
crossref_primary_10_1002_ente_201900732
crossref_primary_10_1021_jacs_1c00539
crossref_primary_10_1016_j_nantod_2020_100917
crossref_primary_10_1063_5_0056774
crossref_primary_10_1007_s41918_022_00142_w
crossref_primary_10_1016_j_jiec_2023_07_031
crossref_primary_10_1021_acs_chemrev_0c01060
crossref_primary_10_3390_catal11121470
crossref_primary_10_1063_5_0130431
crossref_primary_10_1063_5_0045999
crossref_primary_10_1002_ange_202305804
crossref_primary_10_1021_acs_jpclett_2c01519
crossref_primary_10_1038_s41467_020_19524_z
crossref_primary_10_1021_acs_jpclett_3c02551
crossref_primary_10_1039_D1CY00011J
crossref_primary_10_1063_5_0232141
crossref_primary_10_1002_cphc_202000013
crossref_primary_10_1002_adma_202003300
crossref_primary_10_1002_smll_201903395
crossref_primary_10_1021_acs_jpcc_4c01112
crossref_primary_10_1016_j_mtcata_2023_100009
crossref_primary_10_1021_jacsau_1c00384
crossref_primary_10_1002_anie_202305804
crossref_primary_10_1007_s11244_021_01545_7
crossref_primary_10_1021_jacs_3c13119
crossref_primary_10_1021_acs_chemrev_2c00356
crossref_primary_10_1088_1361_651X_ad53ee
crossref_primary_10_1002_cctc_202101481
crossref_primary_10_1002_cctc_201901488
crossref_primary_10_1039_D3DD00244F
crossref_primary_10_1002_smll_202405715
crossref_primary_10_59761_RCR5087
crossref_primary_10_1016_j_apsusc_2025_162358
crossref_primary_10_1039_D4NR03761H
crossref_primary_10_1002_cssc_202201074
crossref_primary_10_1021_jacs_1c09274
crossref_primary_10_1021_acs_chemrev_0c00078
crossref_primary_10_1039_D4CP00070F
crossref_primary_10_1063_5_0045936
crossref_primary_10_1021_acsami_1c23228
crossref_primary_10_1038_s41467_021_25639_8
crossref_primary_10_1007_s12274_021_3479_8
crossref_primary_10_1021_acs_jpcc_9b07513
crossref_primary_10_1002_adma_202311628
crossref_primary_10_1002_aic_18118
crossref_primary_10_1016_j_jcat_2022_09_013
crossref_primary_10_1063_5_0037886
crossref_primary_10_1016_j_cej_2020_127501
crossref_primary_10_1016_j_surfrep_2023_100597
crossref_primary_10_1021_acs_jpcc_2c05718
crossref_primary_10_1016_j_susc_2025_122735
crossref_primary_10_1021_acs_jpcc_2c01630
crossref_primary_10_1063_1674_0068_cjcp2207110
crossref_primary_10_1021_acs_jpcc_4c08571
crossref_primary_10_1007_s40843_022_2501_8
crossref_primary_10_1021_acs_jpclett_3c00738
crossref_primary_10_1002_aenm_201900722
crossref_primary_10_1063_5_0040776
crossref_primary_10_1002_ejic_202300052
crossref_primary_10_1021_acscatal_2c05992
crossref_primary_10_1039_D2SC05772G
crossref_primary_10_1007_s11244_020_01267_2
crossref_primary_10_1038_s41467_021_22048_9
crossref_primary_10_1038_s41929_021_00705_y
crossref_primary_10_1039_D4NR03732D
crossref_primary_10_1039_D2CP04376A
crossref_primary_10_1002_sstr_202000051
crossref_primary_10_1016_j_coche_2020_06_004
crossref_primary_10_1021_acs_jpclett_1c00049
crossref_primary_10_3390_chemistry5010034
crossref_primary_10_1016_j_apsusc_2019_02_112
crossref_primary_10_1016_j_ijhydene_2023_06_291
crossref_primary_10_1021_acscatal_3c03954
crossref_primary_10_1021_acs_jpcc_2c00234
crossref_primary_10_1021_acs_jpcc_4c01308
crossref_primary_10_1038_s41578_021_00360_6
crossref_primary_10_1002_ange_202401214
crossref_primary_10_1002_cphc_202000869
crossref_primary_10_1002_cctc_201901869
crossref_primary_10_1021_acs_accounts_1c00180
crossref_primary_10_1021_acscatal_2c03560
crossref_primary_10_1016_j_cej_2023_142609
crossref_primary_10_1021_acs_accounts_8b00490
crossref_primary_10_1038_s41557_018_0125_5
crossref_primary_10_1002_cctc_202401848
crossref_primary_10_1021_acs_accounts_1c00611
crossref_primary_10_1021_acsomega_1c06067
crossref_primary_10_1021_acs_jpcc_9b04863
crossref_primary_10_1021_acsomega_4c07514
crossref_primary_10_1039_D3RA07029H
crossref_primary_10_1021_acscatal_4c00886
crossref_primary_10_1021_jacs_3c00656
crossref_primary_10_1021_acs_jpclett_1c02497
crossref_primary_10_1021_jacs_1c04234
crossref_primary_10_1063_5_0022076
crossref_primary_10_1038_s41578_019_0152_x
crossref_primary_10_1039_D2SC03650A
crossref_primary_10_1016_j_commatsci_2023_112607
crossref_primary_10_1021_acs_jpcc_0c01492
crossref_primary_10_1039_D0CY00904K
crossref_primary_10_1016_j_ijoes_2023_100173
crossref_primary_10_1016_j_jcat_2024_115523
crossref_primary_10_1021_acscatal_3c06122
crossref_primary_10_1002_anie_202401214
crossref_primary_10_1016_j_jcat_2025_115942
crossref_primary_10_1039_D4CP01084A
crossref_primary_10_1007_s11244_020_01338_4
Cites_doi 10.1063/1.3096964
10.1021/jp7099702
10.1002/ange.200604332
10.1063/1.2900962
10.1103/PhysRevB.47.558
10.1002/anie.200705739
10.1021/acscatal.7b02862
10.1038/nmat1223
10.1021/jp021342p
10.1007/s10562-010-0477-y
10.1016/B978-044452837-7.50005-8
10.1103/PhysRevB.73.245408
10.1039/C4CP00513A
10.1021/acscatal.6b02772
10.1103/PhysRevB.59.15990
10.1103/PhysRevLett.103.246102
10.1021/jp050194a
10.1039/c3cp51538a
10.1126/science.1156660
10.1016/j.susc.2005.04.028
10.1038/nchem.2226
10.1016/j.apcata.2014.08.039
10.1021/acs.jpcc.5b01357
10.1103/PhysRevB.49.14251
10.1021/acscatal.6b03293
10.1021/cs400267x
10.1021/jp810216b
10.1038/ncomms9550
10.1016/j.susc.2008.04.035
10.1021/acs.jpclett.5b02400
10.1103/PhysRevLett.81.2819
10.1103/PhysRevLett.77.3865
10.1016/0255-2701(93)87001-B
10.1103/PhysRevLett.93.156801
10.1038/nchem.367
10.1103/PhysRevLett.99.016105
10.1021/jp035786c
10.1002/anie.200462473
10.1021/acs.jpcc.5b05562
10.1016/j.jcat.2008.04.003
10.1063/1.3437609
10.1063/1.2104507
10.1007/978-94-015-8911-6_11
10.1016/j.susc.2007.06.031
10.1126/science.1135941
10.1021/jp405254z
10.1103/PhysRevB.13.5188
10.1016/j.susc.2008.10.029
10.1103/PhysRevB.54.11169
10.1016/j.cattod.2010.02.021
10.1103/PhysRevB.77.075437
10.1103/PhysRevB.50.17953
10.1038/nchem.2032
10.1016/B978-0-434-90139-5.50007-X
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Copyright Springer Science & Business Media 2018
CorporateAuthor Carnegie Mellon Univ., Pittsburgh, PA (United States)
CorporateAuthor_xml – name: Carnegie Mellon Univ., Pittsburgh, PA (United States)
DBID AAYXX
CITATION
OTOTI
DOI 10.1007/s11244-018-0899-0
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1572-9028
EndPage 474
ExternalDocumentID 1537797
10_1007_s11244_018_0899_0
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDEX
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
AAFGU
AAPBV
ABFGW
ABKAS
ABPTK
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ADMDM
AEFTE
AESTI
AEVTX
AGGBP
AIMYW
AJDOV
AKQUC
OTOTI
SQXTU
UNUBA
ID FETCH-LOGICAL-c446t-88e73ef33463f06c121b4d6e7ea79d799fd024e2c9ccee2758a58da9a56422633
IEDL.DBID U2A
ISSN 1022-5528
IngestDate Fri May 19 02:14:17 EDT 2023
Fri Jul 25 11:12:21 EDT 2025
Thu Apr 24 23:05:55 EDT 2025
Tue Jul 01 01:10:49 EDT 2025
Fri Feb 21 02:36:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5-6
Keywords Density functional theory
D-band model
Single atom alloy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-88e73ef33463f06c121b4d6e7ea79d799fd024e2c9ccee2758a58da9a56422633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Office of Science (SC)
SC0018187
PQID 2030253465
PQPubID 2043828
PageCount 13
ParticipantIDs osti_scitechconnect_1537797
proquest_journals_2030253465
crossref_citationtrail_10_1007_s11244_018_0899_0
crossref_primary_10_1007_s11244_018_0899_0
springer_journals_10_1007_s11244_018_0899_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Topics in catalysis
PublicationTitleAbbrev Top Catal
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Springer
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer
References WyckoffRWGCrystal structures1960New YorkInterscience
MarcinkowskiMDLiuJMurphyCJLirianoMLWasioNALucciFRFlytzani-StephanopoulosMSykesECHSelective formic acid dehydrogenation on Pt-Cu single atom alloysACS Catal20167141342010.1021/acscatal.6b02772
StamenkovicVRFowlerBMunBSWangGRossPNLucasCAMarkovicNMImproved oxygen reduction activity on Pt3Ni\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Pt}_{3}\text{ Ni }}$$\end{document}(111) via increased surface site availabilityScience200731558114934971:CAS:528:DC%2BD2sXotFCjtA%3D%3D10.1126/science.1135941
InderwildiORJenkinsSJKingDAWhen adding an unreactive metal enhances catalytic activity: NOx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{ NO }_{{\rm x}}}$$\end{document} decomposition over silver-rhodium bimetallic surfacesSurf Sci200760117L103L1081:CAS:528:DC%2BD2sXpsFSis7g%3D10.1016/j.susc.2007.06.031
KrekelbergWPGreeleyJMavrikakisMAtomic and molecular adsorption on Ir(111)J Phys Chem B200410839879941:CAS:528:DC%2BD3sXpvVChsLk%3D10.1021/jp035786c
LucciFRLawtonTJPronschinskeASykesECHAtomic scale surface structure of Pt/Cu(111) surface alloysJ Phys Chem C20141186301530221:CAS:528:DC%2BC2cXptlSjsw%3D%3D10.1021/jp405254z
MavrikakisMHammerBNørskovJKEffect of strain on the reactivity of metal surfacesPhys Rev Lett199881132819282210.1103/PhysRevLett.81.2819
KresseGHafnerJAb initio molecular dynamics for liquid metalsPhys Rev B19934715585611:CAS:528:DyaK3sXlt1Gnsr0%3D10.1103/PhysRevB.47.558
PopaCvan BavelAPvan SantenRAFlipseCFJJansenAPJDensity functional theory study of NO on the Rh(100) surfaceSurf Sci200860213218921961:CAS:528:DC%2BD1cXnvVGltb4%3D10.1016/j.susc.2008.04.035
ShethPANeurockMSmithCMA first-principles analysis of acetylene hydrogenation over Pd(111)J Phys Chem B20031079200920171:CAS:528:DC%2BD3sXhtVaku7c%3D10.1021/jp021342p
XinHLinicSCommunications: exceptions to the d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-band model of chemisorption on metal surfaces: the dominant role of repulsion between adsorbate states and metal d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-statesJ Chem Phys20101322222110110.1063/1.3437609
KresseGHafnerJAb initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germaniumPhys Rev B1994492014251142691:CAS:528:DyaK2cXkvFKrtL4%3D10.1103/PhysRevB.49.14251
PopaCFlipseCFJJansenAPJvan SantenRASautetPNO structures adsorbed on Rh(111): theoretical approach to high-coverage STM imagesPhys Rev B2006732424540810.1103/PhysRevB.73.245408
ThomasJMRajaRLewisDWSingle-site heterogeneous catalystsAngew Chem Int Ed20054440645664821:CAS:528:DC%2BD2MXhtFOqurrJ10.1002/anie.200462473
RubanAVSkriverHLNørskovJKSurface segregation energies in transition-metal alloysPhys Rev B199959159901600010.1103/PhysRevB.59.15990
TierneyHLBaberAEKitchinJRHydrogen dissociation and spillover on individual isolated palladium atomsPhys Rev Lett20091032424610210.1103/PhysRevLett.103.246102
KruppeCMKrooswykJDTrenaryMSelective hydrogenation of acetylene to ethylene in the presence of a carbonaceous surface layer on a Pd/Cu(111) single-atom alloyACS Catal20177804280491:CAS:528:DC%2BC2sXhs1KnsLfI10.1021/acscatal.7b02862
KresseGFurthmüllerJEfficient iterative schemes for ab initio total-energy calculations using a plane-wave basis setPhys Rev B1996541611169111861:CAS:528:DyaK28Xms1Whu7Y%3D10.1103/PhysRevB.54.11169
BlöchlPEProjector augmented-wave methodPhys Rev B19945024179531797910.1103/PhysRevB.50.17953
LucciFRLiuJMarcinkowskiMDYangMAllardLFFlytzani-StephanopoulosMSykesECHSelective hydrogenation of 1,3-butadiene on platinum-copper alloys at the single-atom limitNat Commun20156855010.1038/ncomms9550
BosANRWesterterpKRMechanism and kinetics of the selective hydrogenation of ethyne and etheneChem Eng Process1993321171:CAS:528:DyaK3sXkt1Onu74%3D10.1016/0255-2701(93)87001-B
KitchinJRNørskovJKBarteauMAChenJGRole of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfacesPhys Rev Lett200493151568011:STN:280:DC%2BD2crlsVSqsA%3D%3D10.1103/PhysRevLett.93.156801
Bolton W (1988) Alloying of metals. In: Engineering materials. Elsevier BV, Amsterdam, pp 39–51
StudtFAbild-PedersenFBligaardTSorensenRZChristensenCHNørskovJKIdentification of Non-Precious Metal Alloy Catalysts for Selective Hydrogenation of AcetyleneScience20083205881132013221:CAS:528:DC%2BD1cXmslWgtLw%3D10.1126/science.1156660
FernándezEMMosesPGToftelundAHansenHAMartínezJIAbild-PedersenFKleisJHinnemannBRossmeislJBligaardTNørskovJKScaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfacesAngew Chem Int Ed200847254683468610.1002/anie.200705739
ShethPANeurockMSmithCMFirst-principles analysis of the effects of alloying Pd with Ag for the catalytic hydrogenation of acetylene-ethylene mixturesJ Phys Chem B20051092512449124661:CAS:528:DC%2BD2MXksl2mtL8%3D10.1021/jp050194a
PerdewJPBurkeKErnzerhofMGeneralized gradient approximation made simplePhys Rev Lett19967718386538681:CAS:528:DyaK28XmsVCgsbs%3D10.1103/PhysRevLett.77.3865
GreeleyJMavrikakisMAlloy catalysts designed from first principlesNat Mater20043118108151:CAS:528:DC%2BD2cXptV2htLo%3D10.1038/nmat1223
FordDCYeXMavrikakisMAtomic and molecular adsorption on Pt(111)Surf Sci200558731591741:CAS:528:DC%2BD2MXmtlGqtrg%3D10.1016/j.susc.2005.04.028
GajdošMHafnerJEichlerAAb initio density-functional study of NO adsorption on close-packed transition and noble metal surfaces: II. Dissociative adsorptionJ Phys: Condens Matter20051814154
MenningCAChenJGThermodynamics and kinetics of oxygen-induced segregation of 3d metals in Pt-3d-Pt(111) and Pt-3d-Pt(100) bimetallic structuresJ Chem Phys20081281616470310.1063/1.2900962
LucciFRMarcinkowskiMDLawtonTJSykesECHH2 activation and spillover on catalytically relevant Pt-Cu single atom alloysJ Phys Chem C20151194324351243571:CAS:528:DC%2BC2MXhsVWms77P10.1021/acs.jpcc.5b05562
HanJWKitchinJRShollDSStep decoration of chiral metal surfacesJ Chem Phys20091301212471010.1063/1.3096964
ThomasJMThe concept, reality and utility of single-site heterogeneous catalysts (SSHCS)Phys Chem Chem Phys2014161776471:CAS:528:DC%2BC2cXlsFOis7s%3D10.1039/C4CP00513A
SuoYZhuangLJuntaoLFirst-principles considerations in the design of Pd-alloy catalysts for oxygen reductionAngew Chem2007119162920292210.1002/ange.200604332
PeiGXLiuXYYangXZhangLWangALiLWangHWangXZhangTPerformance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditionsACS Catal201772149115001:CAS:528:DC%2BC2sXptlWluw%3D%3D10.1021/acscatal.6b03293
AichPWeiHBasanBKropfAJSchweitzerNMMarshallCLMillerJTMeyerRSingle-atom alloy Pd-Ag catalyst for selective hydrogenation of acroleinJ Phys Chem C20151193218140181481:CAS:528:DC%2BC2MXhtVaktLbP10.1021/acs.jpcc.5b01357
QiangFLuoYActive sites of Pd-doped flat and stepped Cu(111) surfaces for H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{ H }_{2}}$$\end{document} dissociation in heterogeneous catalytic hydrogenationACS Catal2013361245125210.1021/cs400267x
GluhoiACBakkerJWNieuwenhuysBEGold, still a surprising catalyst: selective hydrogenation of acetylene to ethylene over Au nanoparticlesCatal Today20101541–213201:CAS:528:DC%2BC3cXptVarurk%3D10.1016/j.cattod.2010.02.021
WangSTemelBShenJJonesGGrabowLCStudtFBligaardTAbild-PedersenFChristensenCHNørskovJKUniversal Brønsted-Evans-Polanyi relations for C-C, C-O, C-N, N-O, N-N, and O-O dissociation reactionsCatal Lett2010141337037310.1007/s10562-010-0477-y
Calle-VallejoFLoffredaDKoperMTMSautetPIntroducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbersNat Chem2015754034101:CAS:528:DC%2BC2MXmtF2ktLc%3D10.1038/nchem.2226
Bligaard T, Nørskov JK (2008) Heterogeneous catalysis. In: Chemical bonding at surfaces and interfaces. Elsevier BV, Amsterdam, pp 255–321
LarsenAHMortensenJJBlomqvistJCastelliIEChristensenRDułakMFriisJGrovesMNHammerBHargusCHermesEDJenningsPCJensenPBKermodeJKitchinJRKolsbjergELKubalJKaasbjergKLysgaardSMaronssonJBMaxsonTOlsenTPastewkaLPetersonARostgaardCSchiøtzJSchüttOStrangeMThygesenKSVeggeTVilhelmsenLWalterMZengZJacobsenKWThe atomic simulation environment—a python library for working with atomsJ Phys: Condens Matter20172927273002
GrabowLCGokhaleAAEvansSTDumesicJAMavrikakisMMechanism of the water gas shift reaction on Pt: first principles, experiments, and microkinetic modelingJ Phys Chem C200811212460846171:CAS:528:DC%2BD1cXislems78%3D10.1021/jp7099702
YanXWheelerJJangBLinW-YZhaoBStable Au catalysts for selective hydrogenation of acetylene in ethyleneAppl Catal A201448736441:CAS:528:DC%2BC2cXhsFWltrnK10.1016/j.apcata.2014.08.039
NilekarAURubanAVMavrikakisMSurface segregation energies in low-index open surfaces of bimetallic transition metal alloysSurf Sci2009603191961:CAS:528:DC%2BD1MXht1CmsA%3D%3D10.1016/j.susc.2008.10.029
PhatakAADelgassWNRibeiroFHSchneiderWFDensity functional theory comparison of water dissociation steps on Cu, Au, Ni, Pd, and PtJ Phys Chem C200911317726972761:CAS:528:DC%2BD1MXktFOjsL4%3D10.1021/jp810216b
AziziYPetitCPitchonVFormation of polymer-grade ethylene b
JW Han (899_CR24) 2009; 130
G Jones (899_CR49) 2008; 20
F Calle-Vallejo (899_CR50) 2015; 7
J Greeley (899_CR6) 2009; 1
AA Phatak (899_CR34) 2009; 113
GX Pei (899_CR59) 2017; 7
MB Boucher (899_CR12) 2013; 15
PA Sheth (899_CR58) 2005; 109
P Aich (899_CR19) 2015; 119
HL Tierney (899_CR14) 2009; 103
FR Lucci (899_CR20) 2016; 7
PA Sheth (899_CR44) 2003; 107
DC Ford (899_CR55) 2005; 587
899_CR45
LC Grabow (899_CR51) 2008; 112
C Popa (899_CR57) 2008; 602
F Qiang (899_CR13) 2013; 3
M Mavrikakis (899_CR53) 1998; 81
VR Stamenkovic (899_CR4) 2007; 315
Y Suo (899_CR5) 2007; 119
FR Lucci (899_CR18) 2015; 6
JM Thomas (899_CR11) 2014; 16
PE Blöchl (899_CR30) 1994; 50
S Wang (899_CR52) 2010; 141
Hendrik J Monkhorst (899_CR33) 1976; 13
AU Nilekar (899_CR23) 2009; 603
C Popa (899_CR56) 2006; 73
X Yan (899_CR42) 2014; 487
CM Kruppe (899_CR60) 2017; 7
CA Menning (899_CR26) 2008; 128
899_CR37
FR Lucci (899_CR17) 2015; 119
EM Fernández (899_CR48) 2008; 47
AV Ruban (899_CR22) 1999; 59
A Heyden (899_CR36) 2005; 123
RWG Wyckoff (899_CR32) 1960
FR Lucci (899_CR16) 2014; 118
MD Marcinkowski (899_CR21) 2016; 7
A Holewinski (899_CR7) 2014; 6
899_CR2
WP Krekelberg (899_CR54) 2004; 108
GC Bond (899_CR1) 1987
AH Larsen (899_CR35) 2017; 29
Y Azizi (899_CR40) 2008; 256
JP Perdew (899_CR31) 1996; 77
G Kresse (899_CR28) 1994; 49
M Gajdoš (899_CR39) 2005; 18
AC Gluhoi (899_CR41) 2010; 154
F Studt (899_CR9) 2008; 320
J Greeley (899_CR8) 2004; 3
JM Thomas (899_CR10) 2005; 44
H Xin (899_CR46) 2010; 132
JR Kitchin (899_CR3) 2004; 93
OR Inderwildi (899_CR15) 2007; 601
G Kresse (899_CR27) 1993; 47
ANR Bos (899_CR43) 1993; 32
M Gajdoš (899_CR38) 2005; 18
G Kresse (899_CR29) 1996; 54
JR Kitchin (899_CR25) 2008; 77
F Abild-Pedersen (899_CR47) 2007; 99
References_xml – reference: ThomasJMThe concept, reality and utility of single-site heterogeneous catalysts (SSHCS)Phys Chem Chem Phys2014161776471:CAS:528:DC%2BC2cXlsFOis7s%3D10.1039/C4CP00513A
– reference: KresseGFurthmüllerJEfficient iterative schemes for ab initio total-energy calculations using a plane-wave basis setPhys Rev B1996541611169111861:CAS:528:DyaK28Xms1Whu7Y%3D10.1103/PhysRevB.54.11169
– reference: Bolton W (1988) Alloying of metals. In: Engineering materials. Elsevier BV, Amsterdam, pp 39–51
– reference: PeiGXLiuXYYangXZhangLWangALiLWangHWangXZhangTPerformance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditionsACS Catal201772149115001:CAS:528:DC%2BC2sXptlWluw%3D%3D10.1021/acscatal.6b03293
– reference: KruppeCMKrooswykJDTrenaryMSelective hydrogenation of acetylene to ethylene in the presence of a carbonaceous surface layer on a Pd/Cu(111) single-atom alloyACS Catal20177804280491:CAS:528:DC%2BC2sXhs1KnsLfI10.1021/acscatal.7b02862
– reference: YanXWheelerJJangBLinW-YZhaoBStable Au catalysts for selective hydrogenation of acetylene in ethyleneAppl Catal A201448736441:CAS:528:DC%2BC2cXhsFWltrnK10.1016/j.apcata.2014.08.039
– reference: GreeleyJMavrikakisMAlloy catalysts designed from first principlesNat Mater20043118108151:CAS:528:DC%2BD2cXptV2htLo%3D10.1038/nmat1223
– reference: ThomasJMRajaRLewisDWSingle-site heterogeneous catalystsAngew Chem Int Ed20054440645664821:CAS:528:DC%2BD2MXhtFOqurrJ10.1002/anie.200462473
– reference: QiangFLuoYActive sites of Pd-doped flat and stepped Cu(111) surfaces for H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{ H }_{2}}$$\end{document} dissociation in heterogeneous catalytic hydrogenationACS Catal2013361245125210.1021/cs400267x
– reference: GajdošMHafnerJEichlerAAb initio density-functional study of NO on close-packed transition and noble metal surfaces: I. Molecular adsorptionJ Phys: Condens Matter20051811340
– reference: Hammer B, Nørskov JK (1997) Theory of adsorption and surface reactions. In: Chemisorption and reactivity on supported clusters and thin films. Springer Science + Business Media, pp 285–351
– reference: StudtFAbild-PedersenFBligaardTSorensenRZChristensenCHNørskovJKIdentification of Non-Precious Metal Alloy Catalysts for Selective Hydrogenation of AcetyleneScience20083205881132013221:CAS:528:DC%2BD1cXmslWgtLw%3D10.1126/science.1156660
– reference: GluhoiACBakkerJWNieuwenhuysBEGold, still a surprising catalyst: selective hydrogenation of acetylene to ethylene over Au nanoparticlesCatal Today20101541–213201:CAS:528:DC%2BC3cXptVarurk%3D10.1016/j.cattod.2010.02.021
– reference: Calle-VallejoFLoffredaDKoperMTMSautetPIntroducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbersNat Chem2015754034101:CAS:528:DC%2BC2MXmtF2ktLc%3D10.1038/nchem.2226
– reference: SuoYZhuangLJuntaoLFirst-principles considerations in the design of Pd-alloy catalysts for oxygen reductionAngew Chem2007119162920292210.1002/ange.200604332
– reference: LucciFRDarbyMTMatteraMFGIvimeyCJTherrienAJMichaelidesAStamatakisMSykesECHControlling hydrogen activation, spillover, and desorption with Pd-Au single-atom alloysJ Phys Chem Lett2016734804851:CAS:528:DC%2BC28XltlCquw%3D%3D10.1021/acs.jpclett.5b02400
– reference: Bligaard T, Nørskov JK (2008) Heterogeneous catalysis. In: Chemical bonding at surfaces and interfaces. Elsevier BV, Amsterdam, pp 255–321
– reference: BlöchlPEProjector augmented-wave methodPhys Rev B19945024179531797910.1103/PhysRevB.50.17953
– reference: RubanAVSkriverHLNørskovJKSurface segregation energies in transition-metal alloysPhys Rev B199959159901600010.1103/PhysRevB.59.15990
– reference: XinHLinicSCommunications: exceptions to the d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-band model of chemisorption on metal surfaces: the dominant role of repulsion between adsorbate states and metal d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-statesJ Chem Phys20101322222110110.1063/1.3437609
– reference: HanJWKitchinJRShollDSStep decoration of chiral metal surfacesJ Chem Phys20091301212471010.1063/1.3096964
– reference: LucciFRLawtonTJPronschinskeASykesECHAtomic scale surface structure of Pt/Cu(111) surface alloysJ Phys Chem C20141186301530221:CAS:528:DC%2BC2cXptlSjsw%3D%3D10.1021/jp405254z
– reference: PopaCvan BavelAPvan SantenRAFlipseCFJJansenAPJDensity functional theory study of NO on the Rh(100) surfaceSurf Sci200860213218921961:CAS:528:DC%2BD1cXnvVGltb4%3D10.1016/j.susc.2008.04.035
– reference: PerdewJPBurkeKErnzerhofMGeneralized gradient approximation made simplePhys Rev Lett19967718386538681:CAS:528:DyaK28XmsVCgsbs%3D10.1103/PhysRevLett.77.3865
– reference: FernándezEMMosesPGToftelundAHansenHAMartínezJIAbild-PedersenFKleisJHinnemannBRossmeislJBligaardTNørskovJKScaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfacesAngew Chem Int Ed200847254683468610.1002/anie.200705739
– reference: MavrikakisMHammerBNørskovJKEffect of strain on the reactivity of metal surfacesPhys Rev Lett199881132819282210.1103/PhysRevLett.81.2819
– reference: LucciFRLiuJMarcinkowskiMDYangMAllardLFFlytzani-StephanopoulosMSykesECHSelective hydrogenation of 1,3-butadiene on platinum-copper alloys at the single-atom limitNat Commun20156855010.1038/ncomms9550
– reference: FordDCYeXMavrikakisMAtomic and molecular adsorption on Pt(111)Surf Sci200558731591741:CAS:528:DC%2BD2MXmtlGqtrg%3D10.1016/j.susc.2005.04.028
– reference: Abild-PedersenFGreeleyJStudtFRossmeislJMunterTRMosesPGSkulasonEBligaardTNørskovJKScaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfacesPhys Rev Lett20079910161051:STN:280:DC%2BD2svmtFartQ%3D%3D10.1103/PhysRevLett.99.016105
– reference: BondGCHeterogeneous catalysis: principles and applications1987OxfordClarendon Press
– reference: WyckoffRWGCrystal structures1960New YorkInterscience
– reference: AziziYPetitCPitchonVFormation of polymer-grade ethylene by selective hydrogenation of acetylene over Au/CeO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{ Au/CeO }_{2}}$$\end{document} catalystJ Catal200825623383441:CAS:528:DC%2BD1cXmtlCjs7w%3D10.1016/j.jcat.2008.04.003
– reference: PhatakAADelgassWNRibeiroFHSchneiderWFDensity functional theory comparison of water dissociation steps on Cu, Au, Ni, Pd, and PtJ Phys Chem C200911317726972761:CAS:528:DC%2BD1MXktFOjsL4%3D10.1021/jp810216b
– reference: BosANRWesterterpKRMechanism and kinetics of the selective hydrogenation of ethyne and etheneChem Eng Process1993321171:CAS:528:DyaK3sXkt1Onu74%3D10.1016/0255-2701(93)87001-B
– reference: JonesGBligaardTAbild-PedersenFNørskovJKUsing scaling relations to understand trends in the catalytic activity of transition metalsJ Phys: Condens Matter20082060642391:STN:280:DC%2BC3MnisVyltg%3D%3D
– reference: KitchinJRNørskovJKBarteauMAChenJGRole of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfacesPhys Rev Lett200493151568011:STN:280:DC%2BD2crlsVSqsA%3D%3D10.1103/PhysRevLett.93.156801
– reference: TierneyHLBaberAEKitchinJRHydrogen dissociation and spillover on individual isolated palladium atomsPhys Rev Lett20091032424610210.1103/PhysRevLett.103.246102
– reference: KresseGHafnerJAb initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germaniumPhys Rev B1994492014251142691:CAS:528:DyaK2cXkvFKrtL4%3D10.1103/PhysRevB.49.14251
– reference: GajdošMHafnerJEichlerAAb initio density-functional study of NO adsorption on close-packed transition and noble metal surfaces: II. Dissociative adsorptionJ Phys: Condens Matter20051814154
– reference: KresseGHafnerJAb initio molecular dynamics for liquid metalsPhys Rev B19934715585611:CAS:528:DyaK3sXlt1Gnsr0%3D10.1103/PhysRevB.47.558
– reference: PopaCFlipseCFJJansenAPJvan SantenRASautetPNO structures adsorbed on Rh(111): theoretical approach to high-coverage STM imagesPhys Rev B2006732424540810.1103/PhysRevB.73.245408
– reference: GreeleyJStephensIELBondarenkoASJohanssonTPHansenHAJaramilloTFRossmeislJChorkendorffINørskovJKAlloys of platinum and early transition metals as oxygen reduction electrocatalystsNat Chem2009175525561:CAS:528:DC%2BD1MXhtFKnsrzK10.1038/nchem.367
– reference: WangSTemelBShenJJonesGGrabowLCStudtFBligaardTAbild-PedersenFChristensenCHNørskovJKUniversal Brønsted-Evans-Polanyi relations for C-C, C-O, C-N, N-O, N-N, and O-O dissociation reactionsCatal Lett2010141337037310.1007/s10562-010-0477-y
– reference: MarcinkowskiMDLiuJMurphyCJLirianoMLWasioNALucciFRFlytzani-StephanopoulosMSykesECHSelective formic acid dehydrogenation on Pt-Cu single atom alloysACS Catal20167141342010.1021/acscatal.6b02772
– reference: HolewinskiAIdroboJ-CLinicSHigh-performance Ag-Co alloy catalysts for electrochemical oxygen reductionNat Chem2014698288341:CAS:528:DC%2BC2cXhtlahu7vI10.1038/nchem.2032
– reference: StamenkovicVRFowlerBMunBSWangGRossPNLucasCAMarkovicNMImproved oxygen reduction activity on Pt3Ni\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Pt}_{3}\text{ Ni }}$$\end{document}(111) via increased surface site availabilityScience200731558114934971:CAS:528:DC%2BD2sXotFCjtA%3D%3D10.1126/science.1135941
– reference: BoucherMBZugicBCladarasGKammertJMarcinkowskiMDLawtonTJSykesECHFlytzani-StephanopoulosMSingle atom alloy surface analogs in Pd0.18Cu15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{ Pd }_{0.18}\text{ Cu }_{15}}$$\end{document} nanoparticles for selective hydrogenation reactionsPhys Chem Chem Phys20131529121871:CAS:528:DC%2BC3sXhtFSrt7jK10.1039/c3cp51538a
– reference: AichPWeiHBasanBKropfAJSchweitzerNMMarshallCLMillerJTMeyerRSingle-atom alloy Pd-Ag catalyst for selective hydrogenation of acroleinJ Phys Chem C20151193218140181481:CAS:528:DC%2BC2MXhtVaktLbP10.1021/acs.jpcc.5b01357
– reference: NilekarAURubanAVMavrikakisMSurface segregation energies in low-index open surfaces of bimetallic transition metal alloysSurf Sci2009603191961:CAS:528:DC%2BD1MXht1CmsA%3D%3D10.1016/j.susc.2008.10.029
– reference: ShethPANeurockMSmithCMA first-principles analysis of acetylene hydrogenation over Pd(111)J Phys Chem B20031079200920171:CAS:528:DC%2BD3sXhtVaku7c%3D10.1021/jp021342p
– reference: HeydenABellATKeilFJEfficient methods for finding transition states in chemical reactions: comparison of improved dimer method and partitioned rational function optimization methodJ Chem Phys20051232222410110.1063/1.2104507
– reference: KitchinJRReuterKSchefflerMAlloy surface segregation in reactive environments: first-principles atomistic thermodynamics study of Ag3Pd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{ Ag }_3{\rm Pd}}$$\end{document}(111) in oxygen atmospheresPhys Rev B200877707543710.1103/PhysRevB.77.075437
– reference: LarsenAHMortensenJJBlomqvistJCastelliIEChristensenRDułakMFriisJGrovesMNHammerBHargusCHermesEDJenningsPCJensenPBKermodeJKitchinJRKolsbjergELKubalJKaasbjergKLysgaardSMaronssonJBMaxsonTOlsenTPastewkaLPetersonARostgaardCSchiøtzJSchüttOStrangeMThygesenKSVeggeTVilhelmsenLWalterMZengZJacobsenKWThe atomic simulation environment—a python library for working with atomsJ Phys: Condens Matter20172927273002
– reference: MonkhorstHendrik JPackJames DSpecial points for brillouin-zone integrationsPhys Rev B197613125188519210.1103/PhysRevB.13.5188
– reference: InderwildiORJenkinsSJKingDAWhen adding an unreactive metal enhances catalytic activity: NOx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{ NO }_{{\rm x}}}$$\end{document} decomposition over silver-rhodium bimetallic surfacesSurf Sci200760117L103L1081:CAS:528:DC%2BD2sXpsFSis7g%3D10.1016/j.susc.2007.06.031
– reference: GrabowLCGokhaleAAEvansSTDumesicJAMavrikakisMMechanism of the water gas shift reaction on Pt: first principles, experiments, and microkinetic modelingJ Phys Chem C200811212460846171:CAS:528:DC%2BD1cXislems78%3D10.1021/jp7099702
– reference: KrekelbergWPGreeleyJMavrikakisMAtomic and molecular adsorption on Ir(111)J Phys Chem B200410839879941:CAS:528:DC%2BD3sXpvVChsLk%3D10.1021/jp035786c
– reference: MenningCAChenJGThermodynamics and kinetics of oxygen-induced segregation of 3d metals in Pt-3d-Pt(111) and Pt-3d-Pt(100) bimetallic structuresJ Chem Phys20081281616470310.1063/1.2900962
– reference: ShethPANeurockMSmithCMFirst-principles analysis of the effects of alloying Pd with Ag for the catalytic hydrogenation of acetylene-ethylene mixturesJ Phys Chem B20051092512449124661:CAS:528:DC%2BD2MXksl2mtL8%3D10.1021/jp050194a
– reference: LucciFRMarcinkowskiMDLawtonTJSykesECHH2 activation and spillover on catalytically relevant Pt-Cu single atom alloysJ Phys Chem C20151194324351243571:CAS:528:DC%2BC2MXhsVWms77P10.1021/acs.jpcc.5b05562
– volume: 130
  start-page: 124710
  issue: 12
  year: 2009
  ident: 899_CR24
  publication-title: J Chem Phys
  doi: 10.1063/1.3096964
– volume: 112
  start-page: 4608
  issue: 12
  year: 2008
  ident: 899_CR51
  publication-title: J Phys Chem C
  doi: 10.1021/jp7099702
– volume: 18
  start-page: 41
  issue: 1
  year: 2005
  ident: 899_CR39
  publication-title: J Phys: Condens Matter
– volume: 119
  start-page: 2920
  issue: 16
  year: 2007
  ident: 899_CR5
  publication-title: Angew Chem
  doi: 10.1002/ange.200604332
– volume: 128
  start-page: 164703
  issue: 16
  year: 2008
  ident: 899_CR26
  publication-title: J Chem Phys
  doi: 10.1063/1.2900962
– volume: 47
  start-page: 558
  issue: 1
  year: 1993
  ident: 899_CR27
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.47.558
– volume: 47
  start-page: 4683
  issue: 25
  year: 2008
  ident: 899_CR48
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200705739
– volume: 7
  start-page: 8042
  year: 2017
  ident: 899_CR60
  publication-title: ACS Catal
  doi: 10.1021/acscatal.7b02862
– volume: 3
  start-page: 810
  issue: 11
  year: 2004
  ident: 899_CR8
  publication-title: Nat Mater
  doi: 10.1038/nmat1223
– volume: 107
  start-page: 2009
  issue: 9
  year: 2003
  ident: 899_CR44
  publication-title: J Phys Chem B
  doi: 10.1021/jp021342p
– volume: 141
  start-page: 370
  issue: 3
  year: 2010
  ident: 899_CR52
  publication-title: Catal Lett
  doi: 10.1007/s10562-010-0477-y
– volume: 29
  start-page: 273002
  issue: 27
  year: 2017
  ident: 899_CR35
  publication-title: J Phys: Condens Matter
– ident: 899_CR37
  doi: 10.1016/B978-044452837-7.50005-8
– volume: 73
  start-page: 245408
  issue: 24
  year: 2006
  ident: 899_CR56
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.73.245408
– volume: 16
  start-page: 7647
  issue: 17
  year: 2014
  ident: 899_CR11
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C4CP00513A
– volume: 7
  start-page: 413
  issue: 1
  year: 2016
  ident: 899_CR21
  publication-title: ACS Catal
  doi: 10.1021/acscatal.6b02772
– volume: 18
  start-page: 13
  issue: 1
  year: 2005
  ident: 899_CR38
  publication-title: J Phys: Condens Matter
– volume: 59
  start-page: 15990
  year: 1999
  ident: 899_CR22
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.59.15990
– volume: 103
  start-page: 246102
  issue: 24
  year: 2009
  ident: 899_CR14
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.103.246102
– volume: 109
  start-page: 12449
  issue: 25
  year: 2005
  ident: 899_CR58
  publication-title: J Phys Chem B
  doi: 10.1021/jp050194a
– volume: 15
  start-page: 12187
  issue: 29
  year: 2013
  ident: 899_CR12
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/c3cp51538a
– volume: 320
  start-page: 1320
  issue: 5881
  year: 2008
  ident: 899_CR9
  publication-title: Science
  doi: 10.1126/science.1156660
– volume: 587
  start-page: 159
  issue: 3
  year: 2005
  ident: 899_CR55
  publication-title: Surf Sci
  doi: 10.1016/j.susc.2005.04.028
– volume: 7
  start-page: 403
  issue: 5
  year: 2015
  ident: 899_CR50
  publication-title: Nat Chem
  doi: 10.1038/nchem.2226
– volume: 487
  start-page: 36
  year: 2014
  ident: 899_CR42
  publication-title: Appl Catal A
  doi: 10.1016/j.apcata.2014.08.039
– volume: 20
  start-page: 064239
  issue: 6
  year: 2008
  ident: 899_CR49
  publication-title: J Phys: Condens Matter
– volume: 119
  start-page: 18140
  issue: 32
  year: 2015
  ident: 899_CR19
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.5b01357
– volume: 49
  start-page: 14251
  issue: 20
  year: 1994
  ident: 899_CR28
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.49.14251
– volume: 7
  start-page: 1491
  issue: 2
  year: 2017
  ident: 899_CR59
  publication-title: ACS Catal
  doi: 10.1021/acscatal.6b03293
– volume: 3
  start-page: 1245
  issue: 6
  year: 2013
  ident: 899_CR13
  publication-title: ACS Catal
  doi: 10.1021/cs400267x
– volume: 113
  start-page: 7269
  issue: 17
  year: 2009
  ident: 899_CR34
  publication-title: J Phys Chem C
  doi: 10.1021/jp810216b
– volume: 6
  start-page: 8550
  year: 2015
  ident: 899_CR18
  publication-title: Nat Commun
  doi: 10.1038/ncomms9550
– volume: 602
  start-page: 2189
  issue: 13
  year: 2008
  ident: 899_CR57
  publication-title: Surf Sci
  doi: 10.1016/j.susc.2008.04.035
– volume: 7
  start-page: 480
  issue: 3
  year: 2016
  ident: 899_CR20
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.5b02400
– volume: 81
  start-page: 2819
  issue: 13
  year: 1998
  ident: 899_CR53
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.81.2819
– volume: 77
  start-page: 3865
  issue: 18
  year: 1996
  ident: 899_CR31
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.77.3865
– volume: 32
  start-page: 1
  issue: 1
  year: 1993
  ident: 899_CR43
  publication-title: Chem Eng Process
  doi: 10.1016/0255-2701(93)87001-B
– volume: 93
  start-page: 156801
  issue: 15
  year: 2004
  ident: 899_CR3
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.93.156801
– volume: 1
  start-page: 552
  issue: 7
  year: 2009
  ident: 899_CR6
  publication-title: Nat Chem
  doi: 10.1038/nchem.367
– volume: 99
  start-page: 016105
  issue: 1
  year: 2007
  ident: 899_CR47
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.99.016105
– volume: 108
  start-page: 987
  issue: 3
  year: 2004
  ident: 899_CR54
  publication-title: J Phys Chem B
  doi: 10.1021/jp035786c
– volume: 44
  start-page: 6456
  issue: 40
  year: 2005
  ident: 899_CR10
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200462473
– volume-title: Heterogeneous catalysis: principles and applications
  year: 1987
  ident: 899_CR1
– volume: 119
  start-page: 24351
  issue: 43
  year: 2015
  ident: 899_CR17
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.5b05562
– volume: 256
  start-page: 338
  issue: 2
  year: 2008
  ident: 899_CR40
  publication-title: J Catal
  doi: 10.1016/j.jcat.2008.04.003
– volume: 132
  start-page: 221101
  issue: 22
  year: 2010
  ident: 899_CR46
  publication-title: J Chem Phys
  doi: 10.1063/1.3437609
– volume: 123
  start-page: 224101
  issue: 22
  year: 2005
  ident: 899_CR36
  publication-title: J Chem Phys
  doi: 10.1063/1.2104507
– ident: 899_CR2
  doi: 10.1007/978-94-015-8911-6_11
– volume: 601
  start-page: L103
  issue: 17
  year: 2007
  ident: 899_CR15
  publication-title: Surf Sci
  doi: 10.1016/j.susc.2007.06.031
– volume: 315
  start-page: 493
  issue: 5811
  year: 2007
  ident: 899_CR4
  publication-title: Science
  doi: 10.1126/science.1135941
– volume: 118
  start-page: 3015
  issue: 6
  year: 2014
  ident: 899_CR16
  publication-title: J Phys Chem C
  doi: 10.1021/jp405254z
– volume: 13
  start-page: 5188
  issue: 12
  year: 1976
  ident: 899_CR33
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.13.5188
– volume-title: Crystal structures
  year: 1960
  ident: 899_CR32
– volume: 603
  start-page: 91
  issue: 1
  year: 2009
  ident: 899_CR23
  publication-title: Surf Sci
  doi: 10.1016/j.susc.2008.10.029
– volume: 54
  start-page: 11169
  issue: 16
  year: 1996
  ident: 899_CR29
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.54.11169
– volume: 154
  start-page: 13
  issue: 1–2
  year: 2010
  ident: 899_CR41
  publication-title: Catal Today
  doi: 10.1016/j.cattod.2010.02.021
– volume: 77
  start-page: 075437
  issue: 7
  year: 2008
  ident: 899_CR25
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.77.075437
– volume: 50
  start-page: 17953
  issue: 24
  year: 1994
  ident: 899_CR30
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.50.17953
– volume: 6
  start-page: 828
  issue: 9
  year: 2014
  ident: 899_CR7
  publication-title: Nat Chem
  doi: 10.1038/nchem.2032
– ident: 899_CR45
  doi: 10.1016/B978-0-434-90139-5.50007-X
SSID ssj0021799
Score 2.561559
Snippet Single atom alloys are gaining importance as atom-efficient catalysts which can be extremely selective and active towards the formation of desired products....
Not provided.
SourceID osti
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 462
SubjectTerms Acetylene
Alloy development
Alloy systems
Catalysis
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Copper
Density functional theory
Electronic structure
Free energy
Gold base alloys
Hydrogen storage
Industrial Chemistry/Chemical Engineering
Iridium
Nitric oxide
Original Paper
Palladium
Pharmacy
Physical Chemistry
Platinum
Quantum theory
Reactivity
Rhodium
Title Investigating the Reactivity of Single Atom Alloys Using Density Functional Theory
URI https://link.springer.com/article/10.1007/s11244-018-0899-0
https://www.proquest.com/docview/2030253465
https://www.osti.gov/biblio/1537797
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BO8CCeIpQQB6YQJEaO88xQAMCwQBUKpPl2g5LaBANA_-euzRpAQESU6LEed3Zd_flXgBHwrO-Msq4KH9jBCi5j0sqFq4WgVXJWAsVUe7wzW14OfSvRsGoyeOettHurUuyltSLZDdSRQh9qaIypc4vQzdA6E5xXEOezlEWlTirXZyEsgIet67Mn27xRRl1SlxUXwzNb77RWuVk67DW2IosnTF3A5bsZBNWztoWbVtw96lKxuSJoS3H7ixlKlBDCFbm7B4PF5alVfnM0qIo36esjhFg5xS3jmMyVGuzv4FslqW_DcNs8HB26TZNElyNSK5y49hGwuZC-KHI-6H2uDf2TWgjq6LEIC1yg2rYcp1o1Icc4YEKYqMSFYSURCvEDnQm5cTuAuOxCRNj0QTS1veMh_tGq9DwKEp07ucO9FtqSd1UEKdGFoVc1D4mAksksCQCy74Dx_NLXmblM_4a3CMWSNT9VMBWU6SPriTKZHyByIH9ljOyWWdTyVFG8QC_PXDgpOXW4vSvj9r71-gerPJ60lCc4z50qtc3e4C2SDU-hG56en6a0fbi8XpwWM_FD4an2BY
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oHvBifEYEdQ-eNE3obp9HghJU4ICQcNssu1svSI3Ug__emdKCGDXx1rTbdjuzO4_OfDMAV8K1njLKOCh_I3RQEg-3VCQcLXyr4qkWKiTscH8QdMfew8SfFDjuRZntXoYkc0m9BruRKkLXlyoqE3R-G3bQFohoKY95a-VlUYmzPMRJXpbPozKU-dMjNpRRJcVNtWFofouN5iqnsw97ha3IWkvmHsCWnR9CtV22aDuC4ZcqGfNnhrYcG1pCKlBDCJYm7AlPzyxrZekLa81m6ceC5TkC7Jby1nFMB9Xa8m8gW6L0j2HcuRu1u07RJMHR6MllThTZUNhECC8QSTPQLnennglsaFUYG6RFYlANW65jjfqQo3ug_MioWPkBgWiFOIHKPJ3bU2A8MkFsLJpA2nqucfHYaBUYHoaxTrykBs2SWlIXFcSpkcVMrmsfE4ElElgSgWWzBterW16X5TP-GlwnFkjU_VTAVlOmj84kymScQFiDRskZWeyzheQoo7iP3-7X4Kbk1vryr686-9foS6h2R_2e7N0PHuuwy_MFRDmPDahkb-_2HO2SbHqRr8NPUZXYAw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSMAF8RSDATlwAlWsSZ_HaWPiOSFg0m5RlqRcRotYOfDvsfvYAAESt6lLX3YS27W_zwDHwrWeMso4uP9GGKAkHi6pSDha-FbFYy1USNjh20FwMfSuRv6o6nM6ravd65RkiWkglqY0P3sxydkc-EZmCcNgYlcmGP0iLHkEBsYJPeSdWcRFdGdFupMiLp9HdVrzp0t8MUyNDBfYF6fzW560MD_9dVir_EbWKRW9AQs23YSVbt2ubQvuPzFmpE8M_Tp2bwm1QM0hWJawBzw8sayTZ8-sM5lk71NW1AuwHtWw45g-mrjyyyArEfvbMOyfP3YvnKphgqMxqsudKLKhsIkQXiCSdqBd7o49E9jQqjA2KIvEoEm2XMcabSPHUEH5kVGx8gMC1AqxA400S-0uMB6ZIDYW3SFtPde4-NtoFRgehrFOvKQJ7VpaUlds4tTUYiLnPMgkYIkCliRg2W7CyeyUl5JK46_B-6QCiX4AkdlqqvrRucT9GR8gbEKr1oys1txUctyvuI_v7jfhtNbW_O9fb7X3r9FHsHzX68uby8H1PqzyYv5Q-WMLGvnrmz1AFyUfHxbT8APkCtw2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+the+Reactivity+of+Single+Atom+Alloys+Using+Density+Functional+Theory&rft.jtitle=Topics+in+catalysis&rft.au=Thirumalai%2C+Hari&rft.au=Kitchin%2C+John+R.&rft.date=2018-05-01&rft.pub=Springer&rft.issn=1022-5528&rft.eissn=1572-9028&rft.volume=61&rft.issue=5-6&rft_id=info:doi/10.1007%2Fs11244-018-0899-0&rft.externalDocID=1537797
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-5528&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-5528&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-5528&client=summon