Investigating the Reactivity of Single Atom Alloys Using Density Functional Theory
Single atom alloys are gaining importance as atom-efficient catalysts which can be extremely selective and active towards the formation of desired products. They possess such desirable characteristics because of the presence of a highly reactive single atom in a less reactive host surface. In this w...
Saved in:
Published in | Topics in catalysis Vol. 61; no. 5-6; pp. 462 - 474 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2018
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single atom alloys are gaining importance as atom-efficient catalysts which can be extremely selective and active towards the formation of desired products. They possess such desirable characteristics because of the presence of a highly reactive single atom in a less reactive host surface. In this work, we calculated the electronic structure of several representative single atom alloys. We examined single atom alloys of gold, silver and copper doped with single atoms of platinum, palladium, iridium, rhodium and nickel in the context of the
d
-band model of Hammer and Nørskov. The reactivity of these alloys was probed through the dissociation of water and nitric oxide and the hydrogenation of acetylene to ethylene. We observed that these alloys exhibit a sharp peak in their atom projected
d
-band density of states, which we hypothesize could be the cause of high surface reactivity. We found that the
d
-band centers and
d
-band widths of these systems correlated linearly as with other alloys, but that the energy of adsorption of a hydrogen atom on these surfaces could not be correlated with the
d
-band center, or the average reactivity of the surface. Finally, the single atom alloys, with the exception of copper–palladium showed good catalytic behavior by activating the reactant molecules more strongly than the bulk atom behavior and showing favorable reaction pathways on the free energy diagrams for the reactions investigated. |
---|---|
AbstractList | Single atom alloys are gaining importance as atom-efficient catalysts which can be extremely selective and active towards the formation of desired products. They possess such desirable characteristics because of the presence of a highly reactive single atom in a less reactive host surface. In this work, we calculated the electronic structure of several representative single atom alloys. We examined single atom alloys of gold, silver and copper doped with single atoms of platinum, palladium, iridium, rhodium and nickel in the context of the d-band model of Hammer and Nørskov. The reactivity of these alloys was probed through the dissociation of water and nitric oxide and the hydrogenation of acetylene to ethylene. We observed that these alloys exhibit a sharp peak in their atom projected d-band density of states, which we hypothesize could be the cause of high surface reactivity. We found that the d-band centers and d-band widths of these systems correlated linearly as with other alloys, but that the energy of adsorption of a hydrogen atom on these surfaces could not be correlated with the d-band center, or the average reactivity of the surface. Finally, the single atom alloys, with the exception of copper–palladium showed good catalytic behavior by activating the reactant molecules more strongly than the bulk atom behavior and showing favorable reaction pathways on the free energy diagrams for the reactions investigated. Single atom alloys are gaining importance as atom-efficient catalysts which can be extremely selective and active towards the formation of desired products. They possess such desirable characteristics because of the presence of a highly reactive single atom in a less reactive host surface. In this work, we calculated the electronic structure of several representative single atom alloys. We examined single atom alloys of gold, silver and copper doped with single atoms of platinum, palladium, iridium, rhodium and nickel in the context of the d -band model of Hammer and Nørskov. The reactivity of these alloys was probed through the dissociation of water and nitric oxide and the hydrogenation of acetylene to ethylene. We observed that these alloys exhibit a sharp peak in their atom projected d -band density of states, which we hypothesize could be the cause of high surface reactivity. We found that the d -band centers and d -band widths of these systems correlated linearly as with other alloys, but that the energy of adsorption of a hydrogen atom on these surfaces could not be correlated with the d -band center, or the average reactivity of the surface. Finally, the single atom alloys, with the exception of copper–palladium showed good catalytic behavior by activating the reactant molecules more strongly than the bulk atom behavior and showing favorable reaction pathways on the free energy diagrams for the reactions investigated. Not provided. |
Author | Kitchin, John R. Thirumalai, Hari |
Author_xml | – sequence: 1 givenname: Hari surname: Thirumalai fullname: Thirumalai, Hari organization: Department of Chemical Engineering, Carnegie Mellon University – sequence: 2 givenname: John R. surname: Kitchin fullname: Kitchin, John R. email: jkitchin@andrew.cmu.edu organization: Department of Chemical Engineering, Carnegie Mellon University |
BackLink | https://www.osti.gov/biblio/1537797$$D View this record in Osti.gov |
BookMark | eNp9kNFKwzAUhoNMcJs-gHdFr6tJ2jTN5ZhOBwNhbtchZqdbR5fMJBv07U2pIAh6lRC-7-Q__wgNjDWA0C3BDwRj_ugJoXmeYlKmuBQixRdoSBinqcC0HMQ7pjRljJZXaOT9HmNKuBBDtJybM_hQb1WozTYJO0iWoHSoz3VoE1sl7_G5gWQS7CGZNI1tfbL2HfoExnfM7GQibo1qktUOrGuv0WWlGg833-cYrWfPq-lrunh7mU8ni1TneRHSsgSeQZVleZFVuNCEko98UwAHxcUmhqs2mOZAtdAagHJWKlZulFCsyCktsmyM7vq5NuaXXtcB9E5bY0AHSVjGueARuu-ho7Ofp7ip3NuTi2G9pDjDlMXvWaR4T2lnvXdQyThNdVsFp-pGEiy7lmXfsowty65liaNJfplHVx-Ua_91aO_4yJotuJ9Mf0tfgrKQLw |
CitedBy_id | crossref_primary_10_1021_acs_jpclett_8b01888 crossref_primary_10_1039_C9CP04530A crossref_primary_10_1016_j_mcat_2019_110731 crossref_primary_10_1021_acs_jpcc_9b00649 crossref_primary_10_1002_aenm_202200875 crossref_primary_10_1063_5_0192055 crossref_primary_10_1021_acs_jpcc_4c03232 crossref_primary_10_1016_j_solidstatesciences_2022_106916 crossref_primary_10_1080_00268976_2023_2183066 crossref_primary_10_1021_acs_jpcc_9b01213 crossref_primary_10_1021_acscatal_3c05660 crossref_primary_10_1063_5_0124095 crossref_primary_10_1021_acs_jcim_8b00657 crossref_primary_10_1002_advs_202304908 crossref_primary_10_1016_j_pecs_2023_101074 crossref_primary_10_1039_C9TA07651D crossref_primary_10_1007_s40843_022_2251_8 crossref_primary_10_1039_D1SC00304F crossref_primary_10_1016_j_jcat_2021_10_001 crossref_primary_10_1021_jacs_3c10994 crossref_primary_10_1021_acscatal_8b00881 crossref_primary_10_1016_j_fuel_2021_121641 crossref_primary_10_1016_j_cej_2024_152072 crossref_primary_10_1038_s41557_023_01424_6 crossref_primary_10_1021_acs_jpcc_1c09172 crossref_primary_10_1039_D0TA00375A crossref_primary_10_1002_cctc_201800635 crossref_primary_10_1002_aesr_202100152 crossref_primary_10_1016_j_pmatsci_2022_100964 crossref_primary_10_1002_cmtd_202100020 crossref_primary_10_1007_s42114_024_01105_z crossref_primary_10_1039_D0CS00844C crossref_primary_10_1002_ente_201900732 crossref_primary_10_1021_jacs_1c00539 crossref_primary_10_1016_j_nantod_2020_100917 crossref_primary_10_1063_5_0056774 crossref_primary_10_1007_s41918_022_00142_w crossref_primary_10_1016_j_jiec_2023_07_031 crossref_primary_10_1021_acs_chemrev_0c01060 crossref_primary_10_3390_catal11121470 crossref_primary_10_1063_5_0130431 crossref_primary_10_1063_5_0045999 crossref_primary_10_1002_ange_202305804 crossref_primary_10_1021_acs_jpclett_2c01519 crossref_primary_10_1038_s41467_020_19524_z crossref_primary_10_1021_acs_jpclett_3c02551 crossref_primary_10_1039_D1CY00011J crossref_primary_10_1063_5_0232141 crossref_primary_10_1002_cphc_202000013 crossref_primary_10_1002_adma_202003300 crossref_primary_10_1002_smll_201903395 crossref_primary_10_1021_acs_jpcc_4c01112 crossref_primary_10_1016_j_mtcata_2023_100009 crossref_primary_10_1021_jacsau_1c00384 crossref_primary_10_1002_anie_202305804 crossref_primary_10_1007_s11244_021_01545_7 crossref_primary_10_1021_jacs_3c13119 crossref_primary_10_1021_acs_chemrev_2c00356 crossref_primary_10_1088_1361_651X_ad53ee crossref_primary_10_1002_cctc_202101481 crossref_primary_10_1002_cctc_201901488 crossref_primary_10_1039_D3DD00244F crossref_primary_10_1002_smll_202405715 crossref_primary_10_59761_RCR5087 crossref_primary_10_1016_j_apsusc_2025_162358 crossref_primary_10_1039_D4NR03761H crossref_primary_10_1002_cssc_202201074 crossref_primary_10_1021_jacs_1c09274 crossref_primary_10_1021_acs_chemrev_0c00078 crossref_primary_10_1039_D4CP00070F crossref_primary_10_1063_5_0045936 crossref_primary_10_1021_acsami_1c23228 crossref_primary_10_1038_s41467_021_25639_8 crossref_primary_10_1007_s12274_021_3479_8 crossref_primary_10_1021_acs_jpcc_9b07513 crossref_primary_10_1002_adma_202311628 crossref_primary_10_1002_aic_18118 crossref_primary_10_1016_j_jcat_2022_09_013 crossref_primary_10_1063_5_0037886 crossref_primary_10_1016_j_cej_2020_127501 crossref_primary_10_1016_j_surfrep_2023_100597 crossref_primary_10_1021_acs_jpcc_2c05718 crossref_primary_10_1016_j_susc_2025_122735 crossref_primary_10_1021_acs_jpcc_2c01630 crossref_primary_10_1063_1674_0068_cjcp2207110 crossref_primary_10_1021_acs_jpcc_4c08571 crossref_primary_10_1007_s40843_022_2501_8 crossref_primary_10_1021_acs_jpclett_3c00738 crossref_primary_10_1002_aenm_201900722 crossref_primary_10_1063_5_0040776 crossref_primary_10_1002_ejic_202300052 crossref_primary_10_1021_acscatal_2c05992 crossref_primary_10_1039_D2SC05772G crossref_primary_10_1007_s11244_020_01267_2 crossref_primary_10_1038_s41467_021_22048_9 crossref_primary_10_1038_s41929_021_00705_y crossref_primary_10_1039_D4NR03732D crossref_primary_10_1039_D2CP04376A crossref_primary_10_1002_sstr_202000051 crossref_primary_10_1016_j_coche_2020_06_004 crossref_primary_10_1021_acs_jpclett_1c00049 crossref_primary_10_3390_chemistry5010034 crossref_primary_10_1016_j_apsusc_2019_02_112 crossref_primary_10_1016_j_ijhydene_2023_06_291 crossref_primary_10_1021_acscatal_3c03954 crossref_primary_10_1021_acs_jpcc_2c00234 crossref_primary_10_1021_acs_jpcc_4c01308 crossref_primary_10_1038_s41578_021_00360_6 crossref_primary_10_1002_ange_202401214 crossref_primary_10_1002_cphc_202000869 crossref_primary_10_1002_cctc_201901869 crossref_primary_10_1021_acs_accounts_1c00180 crossref_primary_10_1021_acscatal_2c03560 crossref_primary_10_1016_j_cej_2023_142609 crossref_primary_10_1021_acs_accounts_8b00490 crossref_primary_10_1038_s41557_018_0125_5 crossref_primary_10_1002_cctc_202401848 crossref_primary_10_1021_acs_accounts_1c00611 crossref_primary_10_1021_acsomega_1c06067 crossref_primary_10_1021_acs_jpcc_9b04863 crossref_primary_10_1021_acsomega_4c07514 crossref_primary_10_1039_D3RA07029H crossref_primary_10_1021_acscatal_4c00886 crossref_primary_10_1021_jacs_3c00656 crossref_primary_10_1021_acs_jpclett_1c02497 crossref_primary_10_1021_jacs_1c04234 crossref_primary_10_1063_5_0022076 crossref_primary_10_1038_s41578_019_0152_x crossref_primary_10_1039_D2SC03650A crossref_primary_10_1016_j_commatsci_2023_112607 crossref_primary_10_1021_acs_jpcc_0c01492 crossref_primary_10_1039_D0CY00904K crossref_primary_10_1016_j_ijoes_2023_100173 crossref_primary_10_1016_j_jcat_2024_115523 crossref_primary_10_1021_acscatal_3c06122 crossref_primary_10_1002_anie_202401214 crossref_primary_10_1016_j_jcat_2025_115942 crossref_primary_10_1039_D4CP01084A crossref_primary_10_1007_s11244_020_01338_4 |
Cites_doi | 10.1063/1.3096964 10.1021/jp7099702 10.1002/ange.200604332 10.1063/1.2900962 10.1103/PhysRevB.47.558 10.1002/anie.200705739 10.1021/acscatal.7b02862 10.1038/nmat1223 10.1021/jp021342p 10.1007/s10562-010-0477-y 10.1016/B978-044452837-7.50005-8 10.1103/PhysRevB.73.245408 10.1039/C4CP00513A 10.1021/acscatal.6b02772 10.1103/PhysRevB.59.15990 10.1103/PhysRevLett.103.246102 10.1021/jp050194a 10.1039/c3cp51538a 10.1126/science.1156660 10.1016/j.susc.2005.04.028 10.1038/nchem.2226 10.1016/j.apcata.2014.08.039 10.1021/acs.jpcc.5b01357 10.1103/PhysRevB.49.14251 10.1021/acscatal.6b03293 10.1021/cs400267x 10.1021/jp810216b 10.1038/ncomms9550 10.1016/j.susc.2008.04.035 10.1021/acs.jpclett.5b02400 10.1103/PhysRevLett.81.2819 10.1103/PhysRevLett.77.3865 10.1016/0255-2701(93)87001-B 10.1103/PhysRevLett.93.156801 10.1038/nchem.367 10.1103/PhysRevLett.99.016105 10.1021/jp035786c 10.1002/anie.200462473 10.1021/acs.jpcc.5b05562 10.1016/j.jcat.2008.04.003 10.1063/1.3437609 10.1063/1.2104507 10.1007/978-94-015-8911-6_11 10.1016/j.susc.2007.06.031 10.1126/science.1135941 10.1021/jp405254z 10.1103/PhysRevB.13.5188 10.1016/j.susc.2008.10.029 10.1103/PhysRevB.54.11169 10.1016/j.cattod.2010.02.021 10.1103/PhysRevB.77.075437 10.1103/PhysRevB.50.17953 10.1038/nchem.2032 10.1016/B978-0-434-90139-5.50007-X |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 Copyright Springer Science & Business Media 2018 |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: Copyright Springer Science & Business Media 2018 |
CorporateAuthor | Carnegie Mellon Univ., Pittsburgh, PA (United States) |
CorporateAuthor_xml | – name: Carnegie Mellon Univ., Pittsburgh, PA (United States) |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1007/s11244-018-0899-0 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1572-9028 |
EndPage | 474 |
ExternalDocumentID | 1537797 10_1007_s11244_018_0899_0 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDEX ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ AAFGU AAPBV ABFGW ABKAS ABPTK ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ADMDM AEFTE AESTI AEVTX AGGBP AIMYW AJDOV AKQUC OTOTI SQXTU UNUBA |
ID | FETCH-LOGICAL-c446t-88e73ef33463f06c121b4d6e7ea79d799fd024e2c9ccee2758a58da9a56422633 |
IEDL.DBID | U2A |
ISSN | 1022-5528 |
IngestDate | Fri May 19 02:14:17 EDT 2023 Fri Jul 25 11:12:21 EDT 2025 Thu Apr 24 23:05:55 EDT 2025 Tue Jul 01 01:10:49 EDT 2025 Fri Feb 21 02:36:11 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5-6 |
Keywords | Density functional theory D-band model Single atom alloy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-88e73ef33463f06c121b4d6e7ea79d799fd024e2c9ccee2758a58da9a56422633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Office of Science (SC) SC0018187 |
PQID | 2030253465 |
PQPubID | 2043828 |
PageCount | 13 |
ParticipantIDs | osti_scitechconnect_1537797 proquest_journals_2030253465 crossref_citationtrail_10_1007_s11244_018_0899_0 crossref_primary_10_1007_s11244_018_0899_0 springer_journals_10_1007_s11244_018_0899_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-01 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Topics in catalysis |
PublicationTitleAbbrev | Top Catal |
PublicationYear | 2018 |
Publisher | Springer US Springer Nature B.V Springer |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer |
References | WyckoffRWGCrystal structures1960New YorkInterscience MarcinkowskiMDLiuJMurphyCJLirianoMLWasioNALucciFRFlytzani-StephanopoulosMSykesECHSelective formic acid dehydrogenation on Pt-Cu single atom alloysACS Catal20167141342010.1021/acscatal.6b02772 StamenkovicVRFowlerBMunBSWangGRossPNLucasCAMarkovicNMImproved oxygen reduction activity on Pt3Ni\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Pt}_{3}\text{ Ni }}$$\end{document}(111) via increased surface site availabilityScience200731558114934971:CAS:528:DC%2BD2sXotFCjtA%3D%3D10.1126/science.1135941 InderwildiORJenkinsSJKingDAWhen adding an unreactive metal enhances catalytic activity: NOx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{ NO }_{{\rm x}}}$$\end{document} decomposition over silver-rhodium bimetallic surfacesSurf Sci200760117L103L1081:CAS:528:DC%2BD2sXpsFSis7g%3D10.1016/j.susc.2007.06.031 KrekelbergWPGreeleyJMavrikakisMAtomic and molecular adsorption on Ir(111)J Phys Chem B200410839879941:CAS:528:DC%2BD3sXpvVChsLk%3D10.1021/jp035786c LucciFRLawtonTJPronschinskeASykesECHAtomic scale surface structure of Pt/Cu(111) surface alloysJ Phys Chem C20141186301530221:CAS:528:DC%2BC2cXptlSjsw%3D%3D10.1021/jp405254z MavrikakisMHammerBNørskovJKEffect of strain on the reactivity of metal surfacesPhys Rev Lett199881132819282210.1103/PhysRevLett.81.2819 KresseGHafnerJAb initio molecular dynamics for liquid metalsPhys Rev B19934715585611:CAS:528:DyaK3sXlt1Gnsr0%3D10.1103/PhysRevB.47.558 PopaCvan BavelAPvan SantenRAFlipseCFJJansenAPJDensity functional theory study of NO on the Rh(100) surfaceSurf Sci200860213218921961:CAS:528:DC%2BD1cXnvVGltb4%3D10.1016/j.susc.2008.04.035 ShethPANeurockMSmithCMA first-principles analysis of acetylene hydrogenation over Pd(111)J Phys Chem B20031079200920171:CAS:528:DC%2BD3sXhtVaku7c%3D10.1021/jp021342p XinHLinicSCommunications: exceptions to the d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-band model of chemisorption on metal surfaces: the dominant role of repulsion between adsorbate states and metal d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-statesJ Chem Phys20101322222110110.1063/1.3437609 KresseGHafnerJAb initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germaniumPhys Rev B1994492014251142691:CAS:528:DyaK2cXkvFKrtL4%3D10.1103/PhysRevB.49.14251 PopaCFlipseCFJJansenAPJvan SantenRASautetPNO structures adsorbed on Rh(111): theoretical approach to high-coverage STM imagesPhys Rev B2006732424540810.1103/PhysRevB.73.245408 ThomasJMRajaRLewisDWSingle-site heterogeneous catalystsAngew Chem Int Ed20054440645664821:CAS:528:DC%2BD2MXhtFOqurrJ10.1002/anie.200462473 RubanAVSkriverHLNørskovJKSurface segregation energies in transition-metal alloysPhys Rev B199959159901600010.1103/PhysRevB.59.15990 TierneyHLBaberAEKitchinJRHydrogen dissociation and spillover on individual isolated palladium atomsPhys Rev Lett20091032424610210.1103/PhysRevLett.103.246102 KruppeCMKrooswykJDTrenaryMSelective hydrogenation of acetylene to ethylene in the presence of a carbonaceous surface layer on a Pd/Cu(111) single-atom alloyACS Catal20177804280491:CAS:528:DC%2BC2sXhs1KnsLfI10.1021/acscatal.7b02862 KresseGFurthmüllerJEfficient iterative schemes for ab initio total-energy calculations using a plane-wave basis setPhys Rev B1996541611169111861:CAS:528:DyaK28Xms1Whu7Y%3D10.1103/PhysRevB.54.11169 BlöchlPEProjector augmented-wave methodPhys Rev B19945024179531797910.1103/PhysRevB.50.17953 LucciFRLiuJMarcinkowskiMDYangMAllardLFFlytzani-StephanopoulosMSykesECHSelective hydrogenation of 1,3-butadiene on platinum-copper alloys at the single-atom limitNat Commun20156855010.1038/ncomms9550 BosANRWesterterpKRMechanism and kinetics of the selective hydrogenation of ethyne and etheneChem Eng Process1993321171:CAS:528:DyaK3sXkt1Onu74%3D10.1016/0255-2701(93)87001-B KitchinJRNørskovJKBarteauMAChenJGRole of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfacesPhys Rev Lett200493151568011:STN:280:DC%2BD2crlsVSqsA%3D%3D10.1103/PhysRevLett.93.156801 Bolton W (1988) Alloying of metals. In: Engineering materials. Elsevier BV, Amsterdam, pp 39–51 StudtFAbild-PedersenFBligaardTSorensenRZChristensenCHNørskovJKIdentification of Non-Precious Metal Alloy Catalysts for Selective Hydrogenation of AcetyleneScience20083205881132013221:CAS:528:DC%2BD1cXmslWgtLw%3D10.1126/science.1156660 FernándezEMMosesPGToftelundAHansenHAMartínezJIAbild-PedersenFKleisJHinnemannBRossmeislJBligaardTNørskovJKScaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfacesAngew Chem Int Ed200847254683468610.1002/anie.200705739 ShethPANeurockMSmithCMFirst-principles analysis of the effects of alloying Pd with Ag for the catalytic hydrogenation of acetylene-ethylene mixturesJ Phys Chem B20051092512449124661:CAS:528:DC%2BD2MXksl2mtL8%3D10.1021/jp050194a PerdewJPBurkeKErnzerhofMGeneralized gradient approximation made simplePhys Rev Lett19967718386538681:CAS:528:DyaK28XmsVCgsbs%3D10.1103/PhysRevLett.77.3865 GreeleyJMavrikakisMAlloy catalysts designed from first principlesNat Mater20043118108151:CAS:528:DC%2BD2cXptV2htLo%3D10.1038/nmat1223 FordDCYeXMavrikakisMAtomic and molecular adsorption on Pt(111)Surf Sci200558731591741:CAS:528:DC%2BD2MXmtlGqtrg%3D10.1016/j.susc.2005.04.028 GajdošMHafnerJEichlerAAb initio density-functional study of NO adsorption on close-packed transition and noble metal surfaces: II. Dissociative adsorptionJ Phys: Condens Matter20051814154 MenningCAChenJGThermodynamics and kinetics of oxygen-induced segregation of 3d metals in Pt-3d-Pt(111) and Pt-3d-Pt(100) bimetallic structuresJ Chem Phys20081281616470310.1063/1.2900962 LucciFRMarcinkowskiMDLawtonTJSykesECHH2 activation and spillover on catalytically relevant Pt-Cu single atom alloysJ Phys Chem C20151194324351243571:CAS:528:DC%2BC2MXhsVWms77P10.1021/acs.jpcc.5b05562 HanJWKitchinJRShollDSStep decoration of chiral metal surfacesJ Chem Phys20091301212471010.1063/1.3096964 ThomasJMThe concept, reality and utility of single-site heterogeneous catalysts (SSHCS)Phys Chem Chem Phys2014161776471:CAS:528:DC%2BC2cXlsFOis7s%3D10.1039/C4CP00513A SuoYZhuangLJuntaoLFirst-principles considerations in the design of Pd-alloy catalysts for oxygen reductionAngew Chem2007119162920292210.1002/ange.200604332 PeiGXLiuXYYangXZhangLWangALiLWangHWangXZhangTPerformance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditionsACS Catal201772149115001:CAS:528:DC%2BC2sXptlWluw%3D%3D10.1021/acscatal.6b03293 AichPWeiHBasanBKropfAJSchweitzerNMMarshallCLMillerJTMeyerRSingle-atom alloy Pd-Ag catalyst for selective hydrogenation of acroleinJ Phys Chem C20151193218140181481:CAS:528:DC%2BC2MXhtVaktLbP10.1021/acs.jpcc.5b01357 QiangFLuoYActive sites of Pd-doped flat and stepped Cu(111) surfaces for H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{ H }_{2}}$$\end{document} dissociation in heterogeneous catalytic hydrogenationACS Catal2013361245125210.1021/cs400267x GluhoiACBakkerJWNieuwenhuysBEGold, still a surprising catalyst: selective hydrogenation of acetylene to ethylene over Au nanoparticlesCatal Today20101541–213201:CAS:528:DC%2BC3cXptVarurk%3D10.1016/j.cattod.2010.02.021 WangSTemelBShenJJonesGGrabowLCStudtFBligaardTAbild-PedersenFChristensenCHNørskovJKUniversal Brønsted-Evans-Polanyi relations for C-C, C-O, C-N, N-O, N-N, and O-O dissociation reactionsCatal Lett2010141337037310.1007/s10562-010-0477-y Calle-VallejoFLoffredaDKoperMTMSautetPIntroducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbersNat Chem2015754034101:CAS:528:DC%2BC2MXmtF2ktLc%3D10.1038/nchem.2226 Bligaard T, Nørskov JK (2008) Heterogeneous catalysis. In: Chemical bonding at surfaces and interfaces. Elsevier BV, Amsterdam, pp 255–321 LarsenAHMortensenJJBlomqvistJCastelliIEChristensenRDułakMFriisJGrovesMNHammerBHargusCHermesEDJenningsPCJensenPBKermodeJKitchinJRKolsbjergELKubalJKaasbjergKLysgaardSMaronssonJBMaxsonTOlsenTPastewkaLPetersonARostgaardCSchiøtzJSchüttOStrangeMThygesenKSVeggeTVilhelmsenLWalterMZengZJacobsenKWThe atomic simulation environment—a python library for working with atomsJ Phys: Condens Matter20172927273002 GrabowLCGokhaleAAEvansSTDumesicJAMavrikakisMMechanism of the water gas shift reaction on Pt: first principles, experiments, and microkinetic modelingJ Phys Chem C200811212460846171:CAS:528:DC%2BD1cXislems78%3D10.1021/jp7099702 YanXWheelerJJangBLinW-YZhaoBStable Au catalysts for selective hydrogenation of acetylene in ethyleneAppl Catal A201448736441:CAS:528:DC%2BC2cXhsFWltrnK10.1016/j.apcata.2014.08.039 NilekarAURubanAVMavrikakisMSurface segregation energies in low-index open surfaces of bimetallic transition metal alloysSurf Sci2009603191961:CAS:528:DC%2BD1MXht1CmsA%3D%3D10.1016/j.susc.2008.10.029 PhatakAADelgassWNRibeiroFHSchneiderWFDensity functional theory comparison of water dissociation steps on Cu, Au, Ni, Pd, and PtJ Phys Chem C200911317726972761:CAS:528:DC%2BD1MXktFOjsL4%3D10.1021/jp810216b AziziYPetitCPitchonVFormation of polymer-grade ethylene b JW Han (899_CR24) 2009; 130 G Jones (899_CR49) 2008; 20 F Calle-Vallejo (899_CR50) 2015; 7 J Greeley (899_CR6) 2009; 1 AA Phatak (899_CR34) 2009; 113 GX Pei (899_CR59) 2017; 7 MB Boucher (899_CR12) 2013; 15 PA Sheth (899_CR58) 2005; 109 P Aich (899_CR19) 2015; 119 HL Tierney (899_CR14) 2009; 103 FR Lucci (899_CR20) 2016; 7 PA Sheth (899_CR44) 2003; 107 DC Ford (899_CR55) 2005; 587 899_CR45 LC Grabow (899_CR51) 2008; 112 C Popa (899_CR57) 2008; 602 F Qiang (899_CR13) 2013; 3 M Mavrikakis (899_CR53) 1998; 81 VR Stamenkovic (899_CR4) 2007; 315 Y Suo (899_CR5) 2007; 119 FR Lucci (899_CR18) 2015; 6 JM Thomas (899_CR11) 2014; 16 PE Blöchl (899_CR30) 1994; 50 S Wang (899_CR52) 2010; 141 Hendrik J Monkhorst (899_CR33) 1976; 13 AU Nilekar (899_CR23) 2009; 603 C Popa (899_CR56) 2006; 73 X Yan (899_CR42) 2014; 487 CM Kruppe (899_CR60) 2017; 7 CA Menning (899_CR26) 2008; 128 899_CR37 FR Lucci (899_CR17) 2015; 119 EM Fernández (899_CR48) 2008; 47 AV Ruban (899_CR22) 1999; 59 A Heyden (899_CR36) 2005; 123 RWG Wyckoff (899_CR32) 1960 FR Lucci (899_CR16) 2014; 118 MD Marcinkowski (899_CR21) 2016; 7 A Holewinski (899_CR7) 2014; 6 899_CR2 WP Krekelberg (899_CR54) 2004; 108 GC Bond (899_CR1) 1987 AH Larsen (899_CR35) 2017; 29 Y Azizi (899_CR40) 2008; 256 JP Perdew (899_CR31) 1996; 77 G Kresse (899_CR28) 1994; 49 M Gajdoš (899_CR39) 2005; 18 AC Gluhoi (899_CR41) 2010; 154 F Studt (899_CR9) 2008; 320 J Greeley (899_CR8) 2004; 3 JM Thomas (899_CR10) 2005; 44 H Xin (899_CR46) 2010; 132 JR Kitchin (899_CR3) 2004; 93 OR Inderwildi (899_CR15) 2007; 601 G Kresse (899_CR27) 1993; 47 ANR Bos (899_CR43) 1993; 32 M Gajdoš (899_CR38) 2005; 18 G Kresse (899_CR29) 1996; 54 JR Kitchin (899_CR25) 2008; 77 F Abild-Pedersen (899_CR47) 2007; 99 |
References_xml | – reference: ThomasJMThe concept, reality and utility of single-site heterogeneous catalysts (SSHCS)Phys Chem Chem Phys2014161776471:CAS:528:DC%2BC2cXlsFOis7s%3D10.1039/C4CP00513A – reference: KresseGFurthmüllerJEfficient iterative schemes for ab initio total-energy calculations using a plane-wave basis setPhys Rev B1996541611169111861:CAS:528:DyaK28Xms1Whu7Y%3D10.1103/PhysRevB.54.11169 – reference: Bolton W (1988) Alloying of metals. In: Engineering materials. Elsevier BV, Amsterdam, pp 39–51 – reference: PeiGXLiuXYYangXZhangLWangALiLWangHWangXZhangTPerformance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditionsACS Catal201772149115001:CAS:528:DC%2BC2sXptlWluw%3D%3D10.1021/acscatal.6b03293 – reference: KruppeCMKrooswykJDTrenaryMSelective hydrogenation of acetylene to ethylene in the presence of a carbonaceous surface layer on a Pd/Cu(111) single-atom alloyACS Catal20177804280491:CAS:528:DC%2BC2sXhs1KnsLfI10.1021/acscatal.7b02862 – reference: YanXWheelerJJangBLinW-YZhaoBStable Au catalysts for selective hydrogenation of acetylene in ethyleneAppl Catal A201448736441:CAS:528:DC%2BC2cXhsFWltrnK10.1016/j.apcata.2014.08.039 – reference: GreeleyJMavrikakisMAlloy catalysts designed from first principlesNat Mater20043118108151:CAS:528:DC%2BD2cXptV2htLo%3D10.1038/nmat1223 – reference: ThomasJMRajaRLewisDWSingle-site heterogeneous catalystsAngew Chem Int Ed20054440645664821:CAS:528:DC%2BD2MXhtFOqurrJ10.1002/anie.200462473 – reference: QiangFLuoYActive sites of Pd-doped flat and stepped Cu(111) surfaces for H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{ H }_{2}}$$\end{document} dissociation in heterogeneous catalytic hydrogenationACS Catal2013361245125210.1021/cs400267x – reference: GajdošMHafnerJEichlerAAb initio density-functional study of NO on close-packed transition and noble metal surfaces: I. Molecular adsorptionJ Phys: Condens Matter20051811340 – reference: Hammer B, Nørskov JK (1997) Theory of adsorption and surface reactions. In: Chemisorption and reactivity on supported clusters and thin films. Springer Science + Business Media, pp 285–351 – reference: StudtFAbild-PedersenFBligaardTSorensenRZChristensenCHNørskovJKIdentification of Non-Precious Metal Alloy Catalysts for Selective Hydrogenation of AcetyleneScience20083205881132013221:CAS:528:DC%2BD1cXmslWgtLw%3D10.1126/science.1156660 – reference: GluhoiACBakkerJWNieuwenhuysBEGold, still a surprising catalyst: selective hydrogenation of acetylene to ethylene over Au nanoparticlesCatal Today20101541–213201:CAS:528:DC%2BC3cXptVarurk%3D10.1016/j.cattod.2010.02.021 – reference: Calle-VallejoFLoffredaDKoperMTMSautetPIntroducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbersNat Chem2015754034101:CAS:528:DC%2BC2MXmtF2ktLc%3D10.1038/nchem.2226 – reference: SuoYZhuangLJuntaoLFirst-principles considerations in the design of Pd-alloy catalysts for oxygen reductionAngew Chem2007119162920292210.1002/ange.200604332 – reference: LucciFRDarbyMTMatteraMFGIvimeyCJTherrienAJMichaelidesAStamatakisMSykesECHControlling hydrogen activation, spillover, and desorption with Pd-Au single-atom alloysJ Phys Chem Lett2016734804851:CAS:528:DC%2BC28XltlCquw%3D%3D10.1021/acs.jpclett.5b02400 – reference: Bligaard T, Nørskov JK (2008) Heterogeneous catalysis. In: Chemical bonding at surfaces and interfaces. Elsevier BV, Amsterdam, pp 255–321 – reference: BlöchlPEProjector augmented-wave methodPhys Rev B19945024179531797910.1103/PhysRevB.50.17953 – reference: RubanAVSkriverHLNørskovJKSurface segregation energies in transition-metal alloysPhys Rev B199959159901600010.1103/PhysRevB.59.15990 – reference: XinHLinicSCommunications: exceptions to the d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-band model of chemisorption on metal surfaces: the dominant role of repulsion between adsorbate states and metal d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d$$\end{document}-statesJ Chem Phys20101322222110110.1063/1.3437609 – reference: HanJWKitchinJRShollDSStep decoration of chiral metal surfacesJ Chem Phys20091301212471010.1063/1.3096964 – reference: LucciFRLawtonTJPronschinskeASykesECHAtomic scale surface structure of Pt/Cu(111) surface alloysJ Phys Chem C20141186301530221:CAS:528:DC%2BC2cXptlSjsw%3D%3D10.1021/jp405254z – reference: PopaCvan BavelAPvan SantenRAFlipseCFJJansenAPJDensity functional theory study of NO on the Rh(100) surfaceSurf Sci200860213218921961:CAS:528:DC%2BD1cXnvVGltb4%3D10.1016/j.susc.2008.04.035 – reference: PerdewJPBurkeKErnzerhofMGeneralized gradient approximation made simplePhys Rev Lett19967718386538681:CAS:528:DyaK28XmsVCgsbs%3D10.1103/PhysRevLett.77.3865 – reference: FernándezEMMosesPGToftelundAHansenHAMartínezJIAbild-PedersenFKleisJHinnemannBRossmeislJBligaardTNørskovJKScaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfacesAngew Chem Int Ed200847254683468610.1002/anie.200705739 – reference: MavrikakisMHammerBNørskovJKEffect of strain on the reactivity of metal surfacesPhys Rev Lett199881132819282210.1103/PhysRevLett.81.2819 – reference: LucciFRLiuJMarcinkowskiMDYangMAllardLFFlytzani-StephanopoulosMSykesECHSelective hydrogenation of 1,3-butadiene on platinum-copper alloys at the single-atom limitNat Commun20156855010.1038/ncomms9550 – reference: FordDCYeXMavrikakisMAtomic and molecular adsorption on Pt(111)Surf Sci200558731591741:CAS:528:DC%2BD2MXmtlGqtrg%3D10.1016/j.susc.2005.04.028 – reference: Abild-PedersenFGreeleyJStudtFRossmeislJMunterTRMosesPGSkulasonEBligaardTNørskovJKScaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfacesPhys Rev Lett20079910161051:STN:280:DC%2BD2svmtFartQ%3D%3D10.1103/PhysRevLett.99.016105 – reference: BondGCHeterogeneous catalysis: principles and applications1987OxfordClarendon Press – reference: WyckoffRWGCrystal structures1960New YorkInterscience – reference: AziziYPetitCPitchonVFormation of polymer-grade ethylene by selective hydrogenation of acetylene over Au/CeO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{ Au/CeO }_{2}}$$\end{document} catalystJ Catal200825623383441:CAS:528:DC%2BD1cXmtlCjs7w%3D10.1016/j.jcat.2008.04.003 – reference: PhatakAADelgassWNRibeiroFHSchneiderWFDensity functional theory comparison of water dissociation steps on Cu, Au, Ni, Pd, and PtJ Phys Chem C200911317726972761:CAS:528:DC%2BD1MXktFOjsL4%3D10.1021/jp810216b – reference: BosANRWesterterpKRMechanism and kinetics of the selective hydrogenation of ethyne and etheneChem Eng Process1993321171:CAS:528:DyaK3sXkt1Onu74%3D10.1016/0255-2701(93)87001-B – reference: JonesGBligaardTAbild-PedersenFNørskovJKUsing scaling relations to understand trends in the catalytic activity of transition metalsJ Phys: Condens Matter20082060642391:STN:280:DC%2BC3MnisVyltg%3D%3D – reference: KitchinJRNørskovJKBarteauMAChenJGRole of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfacesPhys Rev Lett200493151568011:STN:280:DC%2BD2crlsVSqsA%3D%3D10.1103/PhysRevLett.93.156801 – reference: TierneyHLBaberAEKitchinJRHydrogen dissociation and spillover on individual isolated palladium atomsPhys Rev Lett20091032424610210.1103/PhysRevLett.103.246102 – reference: KresseGHafnerJAb initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germaniumPhys Rev B1994492014251142691:CAS:528:DyaK2cXkvFKrtL4%3D10.1103/PhysRevB.49.14251 – reference: GajdošMHafnerJEichlerAAb initio density-functional study of NO adsorption on close-packed transition and noble metal surfaces: II. Dissociative adsorptionJ Phys: Condens Matter20051814154 – reference: KresseGHafnerJAb initio molecular dynamics for liquid metalsPhys Rev B19934715585611:CAS:528:DyaK3sXlt1Gnsr0%3D10.1103/PhysRevB.47.558 – reference: PopaCFlipseCFJJansenAPJvan SantenRASautetPNO structures adsorbed on Rh(111): theoretical approach to high-coverage STM imagesPhys Rev B2006732424540810.1103/PhysRevB.73.245408 – reference: GreeleyJStephensIELBondarenkoASJohanssonTPHansenHAJaramilloTFRossmeislJChorkendorffINørskovJKAlloys of platinum and early transition metals as oxygen reduction electrocatalystsNat Chem2009175525561:CAS:528:DC%2BD1MXhtFKnsrzK10.1038/nchem.367 – reference: WangSTemelBShenJJonesGGrabowLCStudtFBligaardTAbild-PedersenFChristensenCHNørskovJKUniversal Brønsted-Evans-Polanyi relations for C-C, C-O, C-N, N-O, N-N, and O-O dissociation reactionsCatal Lett2010141337037310.1007/s10562-010-0477-y – reference: MarcinkowskiMDLiuJMurphyCJLirianoMLWasioNALucciFRFlytzani-StephanopoulosMSykesECHSelective formic acid dehydrogenation on Pt-Cu single atom alloysACS Catal20167141342010.1021/acscatal.6b02772 – reference: HolewinskiAIdroboJ-CLinicSHigh-performance Ag-Co alloy catalysts for electrochemical oxygen reductionNat Chem2014698288341:CAS:528:DC%2BC2cXhtlahu7vI10.1038/nchem.2032 – reference: StamenkovicVRFowlerBMunBSWangGRossPNLucasCAMarkovicNMImproved oxygen reduction activity on Pt3Ni\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Pt}_{3}\text{ Ni }}$$\end{document}(111) via increased surface site availabilityScience200731558114934971:CAS:528:DC%2BD2sXotFCjtA%3D%3D10.1126/science.1135941 – reference: BoucherMBZugicBCladarasGKammertJMarcinkowskiMDLawtonTJSykesECHFlytzani-StephanopoulosMSingle atom alloy surface analogs in Pd0.18Cu15\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{ Pd }_{0.18}\text{ Cu }_{15}}$$\end{document} nanoparticles for selective hydrogenation reactionsPhys Chem Chem Phys20131529121871:CAS:528:DC%2BC3sXhtFSrt7jK10.1039/c3cp51538a – reference: AichPWeiHBasanBKropfAJSchweitzerNMMarshallCLMillerJTMeyerRSingle-atom alloy Pd-Ag catalyst for selective hydrogenation of acroleinJ Phys Chem C20151193218140181481:CAS:528:DC%2BC2MXhtVaktLbP10.1021/acs.jpcc.5b01357 – reference: NilekarAURubanAVMavrikakisMSurface segregation energies in low-index open surfaces of bimetallic transition metal alloysSurf Sci2009603191961:CAS:528:DC%2BD1MXht1CmsA%3D%3D10.1016/j.susc.2008.10.029 – reference: ShethPANeurockMSmithCMA first-principles analysis of acetylene hydrogenation over Pd(111)J Phys Chem B20031079200920171:CAS:528:DC%2BD3sXhtVaku7c%3D10.1021/jp021342p – reference: HeydenABellATKeilFJEfficient methods for finding transition states in chemical reactions: comparison of improved dimer method and partitioned rational function optimization methodJ Chem Phys20051232222410110.1063/1.2104507 – reference: KitchinJRReuterKSchefflerMAlloy surface segregation in reactive environments: first-principles atomistic thermodynamics study of Ag3Pd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{ Ag }_3{\rm Pd}}$$\end{document}(111) in oxygen atmospheresPhys Rev B200877707543710.1103/PhysRevB.77.075437 – reference: LarsenAHMortensenJJBlomqvistJCastelliIEChristensenRDułakMFriisJGrovesMNHammerBHargusCHermesEDJenningsPCJensenPBKermodeJKitchinJRKolsbjergELKubalJKaasbjergKLysgaardSMaronssonJBMaxsonTOlsenTPastewkaLPetersonARostgaardCSchiøtzJSchüttOStrangeMThygesenKSVeggeTVilhelmsenLWalterMZengZJacobsenKWThe atomic simulation environment—a python library for working with atomsJ Phys: Condens Matter20172927273002 – reference: MonkhorstHendrik JPackJames DSpecial points for brillouin-zone integrationsPhys Rev B197613125188519210.1103/PhysRevB.13.5188 – reference: InderwildiORJenkinsSJKingDAWhen adding an unreactive metal enhances catalytic activity: NOx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{ NO }_{{\rm x}}}$$\end{document} decomposition over silver-rhodium bimetallic surfacesSurf Sci200760117L103L1081:CAS:528:DC%2BD2sXpsFSis7g%3D10.1016/j.susc.2007.06.031 – reference: GrabowLCGokhaleAAEvansSTDumesicJAMavrikakisMMechanism of the water gas shift reaction on Pt: first principles, experiments, and microkinetic modelingJ Phys Chem C200811212460846171:CAS:528:DC%2BD1cXislems78%3D10.1021/jp7099702 – reference: KrekelbergWPGreeleyJMavrikakisMAtomic and molecular adsorption on Ir(111)J Phys Chem B200410839879941:CAS:528:DC%2BD3sXpvVChsLk%3D10.1021/jp035786c – reference: MenningCAChenJGThermodynamics and kinetics of oxygen-induced segregation of 3d metals in Pt-3d-Pt(111) and Pt-3d-Pt(100) bimetallic structuresJ Chem Phys20081281616470310.1063/1.2900962 – reference: ShethPANeurockMSmithCMFirst-principles analysis of the effects of alloying Pd with Ag for the catalytic hydrogenation of acetylene-ethylene mixturesJ Phys Chem B20051092512449124661:CAS:528:DC%2BD2MXksl2mtL8%3D10.1021/jp050194a – reference: LucciFRMarcinkowskiMDLawtonTJSykesECHH2 activation and spillover on catalytically relevant Pt-Cu single atom alloysJ Phys Chem C20151194324351243571:CAS:528:DC%2BC2MXhsVWms77P10.1021/acs.jpcc.5b05562 – volume: 130 start-page: 124710 issue: 12 year: 2009 ident: 899_CR24 publication-title: J Chem Phys doi: 10.1063/1.3096964 – volume: 112 start-page: 4608 issue: 12 year: 2008 ident: 899_CR51 publication-title: J Phys Chem C doi: 10.1021/jp7099702 – volume: 18 start-page: 41 issue: 1 year: 2005 ident: 899_CR39 publication-title: J Phys: Condens Matter – volume: 119 start-page: 2920 issue: 16 year: 2007 ident: 899_CR5 publication-title: Angew Chem doi: 10.1002/ange.200604332 – volume: 128 start-page: 164703 issue: 16 year: 2008 ident: 899_CR26 publication-title: J Chem Phys doi: 10.1063/1.2900962 – volume: 47 start-page: 558 issue: 1 year: 1993 ident: 899_CR27 publication-title: Phys Rev B doi: 10.1103/PhysRevB.47.558 – volume: 47 start-page: 4683 issue: 25 year: 2008 ident: 899_CR48 publication-title: Angew Chem Int Ed doi: 10.1002/anie.200705739 – volume: 7 start-page: 8042 year: 2017 ident: 899_CR60 publication-title: ACS Catal doi: 10.1021/acscatal.7b02862 – volume: 3 start-page: 810 issue: 11 year: 2004 ident: 899_CR8 publication-title: Nat Mater doi: 10.1038/nmat1223 – volume: 107 start-page: 2009 issue: 9 year: 2003 ident: 899_CR44 publication-title: J Phys Chem B doi: 10.1021/jp021342p – volume: 141 start-page: 370 issue: 3 year: 2010 ident: 899_CR52 publication-title: Catal Lett doi: 10.1007/s10562-010-0477-y – volume: 29 start-page: 273002 issue: 27 year: 2017 ident: 899_CR35 publication-title: J Phys: Condens Matter – ident: 899_CR37 doi: 10.1016/B978-044452837-7.50005-8 – volume: 73 start-page: 245408 issue: 24 year: 2006 ident: 899_CR56 publication-title: Phys Rev B doi: 10.1103/PhysRevB.73.245408 – volume: 16 start-page: 7647 issue: 17 year: 2014 ident: 899_CR11 publication-title: Phys Chem Chem Phys doi: 10.1039/C4CP00513A – volume: 7 start-page: 413 issue: 1 year: 2016 ident: 899_CR21 publication-title: ACS Catal doi: 10.1021/acscatal.6b02772 – volume: 18 start-page: 13 issue: 1 year: 2005 ident: 899_CR38 publication-title: J Phys: Condens Matter – volume: 59 start-page: 15990 year: 1999 ident: 899_CR22 publication-title: Phys Rev B doi: 10.1103/PhysRevB.59.15990 – volume: 103 start-page: 246102 issue: 24 year: 2009 ident: 899_CR14 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.103.246102 – volume: 109 start-page: 12449 issue: 25 year: 2005 ident: 899_CR58 publication-title: J Phys Chem B doi: 10.1021/jp050194a – volume: 15 start-page: 12187 issue: 29 year: 2013 ident: 899_CR12 publication-title: Phys Chem Chem Phys doi: 10.1039/c3cp51538a – volume: 320 start-page: 1320 issue: 5881 year: 2008 ident: 899_CR9 publication-title: Science doi: 10.1126/science.1156660 – volume: 587 start-page: 159 issue: 3 year: 2005 ident: 899_CR55 publication-title: Surf Sci doi: 10.1016/j.susc.2005.04.028 – volume: 7 start-page: 403 issue: 5 year: 2015 ident: 899_CR50 publication-title: Nat Chem doi: 10.1038/nchem.2226 – volume: 487 start-page: 36 year: 2014 ident: 899_CR42 publication-title: Appl Catal A doi: 10.1016/j.apcata.2014.08.039 – volume: 20 start-page: 064239 issue: 6 year: 2008 ident: 899_CR49 publication-title: J Phys: Condens Matter – volume: 119 start-page: 18140 issue: 32 year: 2015 ident: 899_CR19 publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.5b01357 – volume: 49 start-page: 14251 issue: 20 year: 1994 ident: 899_CR28 publication-title: Phys Rev B doi: 10.1103/PhysRevB.49.14251 – volume: 7 start-page: 1491 issue: 2 year: 2017 ident: 899_CR59 publication-title: ACS Catal doi: 10.1021/acscatal.6b03293 – volume: 3 start-page: 1245 issue: 6 year: 2013 ident: 899_CR13 publication-title: ACS Catal doi: 10.1021/cs400267x – volume: 113 start-page: 7269 issue: 17 year: 2009 ident: 899_CR34 publication-title: J Phys Chem C doi: 10.1021/jp810216b – volume: 6 start-page: 8550 year: 2015 ident: 899_CR18 publication-title: Nat Commun doi: 10.1038/ncomms9550 – volume: 602 start-page: 2189 issue: 13 year: 2008 ident: 899_CR57 publication-title: Surf Sci doi: 10.1016/j.susc.2008.04.035 – volume: 7 start-page: 480 issue: 3 year: 2016 ident: 899_CR20 publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.5b02400 – volume: 81 start-page: 2819 issue: 13 year: 1998 ident: 899_CR53 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.81.2819 – volume: 77 start-page: 3865 issue: 18 year: 1996 ident: 899_CR31 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.77.3865 – volume: 32 start-page: 1 issue: 1 year: 1993 ident: 899_CR43 publication-title: Chem Eng Process doi: 10.1016/0255-2701(93)87001-B – volume: 93 start-page: 156801 issue: 15 year: 2004 ident: 899_CR3 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.93.156801 – volume: 1 start-page: 552 issue: 7 year: 2009 ident: 899_CR6 publication-title: Nat Chem doi: 10.1038/nchem.367 – volume: 99 start-page: 016105 issue: 1 year: 2007 ident: 899_CR47 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.99.016105 – volume: 108 start-page: 987 issue: 3 year: 2004 ident: 899_CR54 publication-title: J Phys Chem B doi: 10.1021/jp035786c – volume: 44 start-page: 6456 issue: 40 year: 2005 ident: 899_CR10 publication-title: Angew Chem Int Ed doi: 10.1002/anie.200462473 – volume-title: Heterogeneous catalysis: principles and applications year: 1987 ident: 899_CR1 – volume: 119 start-page: 24351 issue: 43 year: 2015 ident: 899_CR17 publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.5b05562 – volume: 256 start-page: 338 issue: 2 year: 2008 ident: 899_CR40 publication-title: J Catal doi: 10.1016/j.jcat.2008.04.003 – volume: 132 start-page: 221101 issue: 22 year: 2010 ident: 899_CR46 publication-title: J Chem Phys doi: 10.1063/1.3437609 – volume: 123 start-page: 224101 issue: 22 year: 2005 ident: 899_CR36 publication-title: J Chem Phys doi: 10.1063/1.2104507 – ident: 899_CR2 doi: 10.1007/978-94-015-8911-6_11 – volume: 601 start-page: L103 issue: 17 year: 2007 ident: 899_CR15 publication-title: Surf Sci doi: 10.1016/j.susc.2007.06.031 – volume: 315 start-page: 493 issue: 5811 year: 2007 ident: 899_CR4 publication-title: Science doi: 10.1126/science.1135941 – volume: 118 start-page: 3015 issue: 6 year: 2014 ident: 899_CR16 publication-title: J Phys Chem C doi: 10.1021/jp405254z – volume: 13 start-page: 5188 issue: 12 year: 1976 ident: 899_CR33 publication-title: Phys Rev B doi: 10.1103/PhysRevB.13.5188 – volume-title: Crystal structures year: 1960 ident: 899_CR32 – volume: 603 start-page: 91 issue: 1 year: 2009 ident: 899_CR23 publication-title: Surf Sci doi: 10.1016/j.susc.2008.10.029 – volume: 54 start-page: 11169 issue: 16 year: 1996 ident: 899_CR29 publication-title: Phys Rev B doi: 10.1103/PhysRevB.54.11169 – volume: 154 start-page: 13 issue: 1–2 year: 2010 ident: 899_CR41 publication-title: Catal Today doi: 10.1016/j.cattod.2010.02.021 – volume: 77 start-page: 075437 issue: 7 year: 2008 ident: 899_CR25 publication-title: Phys Rev B doi: 10.1103/PhysRevB.77.075437 – volume: 50 start-page: 17953 issue: 24 year: 1994 ident: 899_CR30 publication-title: Phys Rev B doi: 10.1103/PhysRevB.50.17953 – volume: 6 start-page: 828 issue: 9 year: 2014 ident: 899_CR7 publication-title: Nat Chem doi: 10.1038/nchem.2032 – ident: 899_CR45 doi: 10.1016/B978-0-434-90139-5.50007-X |
SSID | ssj0021799 |
Score | 2.561559 |
Snippet | Single atom alloys are gaining importance as atom-efficient catalysts which can be extremely selective and active towards the formation of desired products.... Not provided. |
SourceID | osti proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 462 |
SubjectTerms | Acetylene Alloy development Alloy systems Catalysis Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Copper Density functional theory Electronic structure Free energy Gold base alloys Hydrogen storage Industrial Chemistry/Chemical Engineering Iridium Nitric oxide Original Paper Palladium Pharmacy Physical Chemistry Platinum Quantum theory Reactivity Rhodium |
Title | Investigating the Reactivity of Single Atom Alloys Using Density Functional Theory |
URI | https://link.springer.com/article/10.1007/s11244-018-0899-0 https://www.proquest.com/docview/2030253465 https://www.osti.gov/biblio/1537797 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BO8CCeIpQQB6YQJEaO88xQAMCwQBUKpPl2g5LaBANA_-euzRpAQESU6LEed3Zd_flXgBHwrO-Msq4KH9jBCi5j0sqFq4WgVXJWAsVUe7wzW14OfSvRsGoyeOettHurUuyltSLZDdSRQh9qaIypc4vQzdA6E5xXEOezlEWlTirXZyEsgIet67Mn27xRRl1SlxUXwzNb77RWuVk67DW2IosnTF3A5bsZBNWztoWbVtw96lKxuSJoS3H7ixlKlBDCFbm7B4PF5alVfnM0qIo36esjhFg5xS3jmMyVGuzv4FslqW_DcNs8HB26TZNElyNSK5y49hGwuZC-KHI-6H2uDf2TWgjq6LEIC1yg2rYcp1o1Icc4YEKYqMSFYSURCvEDnQm5cTuAuOxCRNj0QTS1veMh_tGq9DwKEp07ucO9FtqSd1UEKdGFoVc1D4mAksksCQCy74Dx_NLXmblM_4a3CMWSNT9VMBWU6SPriTKZHyByIH9ljOyWWdTyVFG8QC_PXDgpOXW4vSvj9r71-gerPJ60lCc4z50qtc3e4C2SDU-hG56en6a0fbi8XpwWM_FD4an2BY |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oHvBifEYEdQ-eNE3obp9HghJU4ICQcNssu1svSI3Ug__emdKCGDXx1rTbdjuzO4_OfDMAV8K1njLKOCh_I3RQEg-3VCQcLXyr4qkWKiTscH8QdMfew8SfFDjuRZntXoYkc0m9BruRKkLXlyoqE3R-G3bQFohoKY95a-VlUYmzPMRJXpbPozKU-dMjNpRRJcVNtWFofouN5iqnsw97ha3IWkvmHsCWnR9CtV22aDuC4ZcqGfNnhrYcG1pCKlBDCJYm7AlPzyxrZekLa81m6ceC5TkC7Jby1nFMB9Xa8m8gW6L0j2HcuRu1u07RJMHR6MllThTZUNhECC8QSTPQLnennglsaFUYG6RFYlANW65jjfqQo3ug_MioWPkBgWiFOIHKPJ3bU2A8MkFsLJpA2nqucfHYaBUYHoaxTrykBs2SWlIXFcSpkcVMrmsfE4ElElgSgWWzBterW16X5TP-GlwnFkjU_VTAVlOmj84kymScQFiDRskZWeyzheQoo7iP3-7X4Kbk1vryr686-9foS6h2R_2e7N0PHuuwy_MFRDmPDahkb-_2HO2SbHqRr8NPUZXYAw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSMAF8RSDATlwAlWsSZ_HaWPiOSFg0m5RlqRcRotYOfDvsfvYAAESt6lLX3YS27W_zwDHwrWeMso4uP9GGKAkHi6pSDha-FbFYy1USNjh20FwMfSuRv6o6nM6ravd65RkiWkglqY0P3sxydkc-EZmCcNgYlcmGP0iLHkEBsYJPeSdWcRFdGdFupMiLp9HdVrzp0t8MUyNDBfYF6fzW560MD_9dVir_EbWKRW9AQs23YSVbt2ubQvuPzFmpE8M_Tp2bwm1QM0hWJawBzw8sayTZ8-sM5lk71NW1AuwHtWw45g-mrjyyyArEfvbMOyfP3YvnKphgqMxqsudKLKhsIkQXiCSdqBd7o49E9jQqjA2KIvEoEm2XMcabSPHUEH5kVGx8gMC1AqxA400S-0uMB6ZIDYW3SFtPde4-NtoFRgehrFOvKQJ7VpaUlds4tTUYiLnPMgkYIkCliRg2W7CyeyUl5JK46_B-6QCiX4AkdlqqvrRucT9GR8gbEKr1oys1txUctyvuI_v7jfhtNbW_O9fb7X3r9FHsHzX68uby8H1PqzyYv5Q-WMLGvnrmz1AFyUfHxbT8APkCtw2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+the+Reactivity+of+Single+Atom+Alloys+Using+Density+Functional+Theory&rft.jtitle=Topics+in+catalysis&rft.au=Thirumalai%2C+Hari&rft.au=Kitchin%2C+John+R.&rft.date=2018-05-01&rft.pub=Springer&rft.issn=1022-5528&rft.eissn=1572-9028&rft.volume=61&rft.issue=5-6&rft_id=info:doi/10.1007%2Fs11244-018-0899-0&rft.externalDocID=1537797 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-5528&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-5528&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-5528&client=summon |