SIR: Deterministic protein inference from peptides assigned to MS data
Currently the bottom up approach is the most popular for characterizing protein samples by mass spectrometry. This is mainly attributed to the fact that the bottom up approach has been successfully optimized for high throughput studies. However, the bottom up approach is associated with a number of...
Saved in:
Published in | Journal of proteomics Vol. 75; no. 13; pp. 4176 - 4183 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier B.V
16.07.2012
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Currently the bottom up approach is the most popular for characterizing protein samples by mass spectrometry. This is mainly attributed to the fact that the bottom up approach has been successfully optimized for high throughput studies. However, the bottom up approach is associated with a number of challenges such as loss of linkage information between peptides. Previous publications have addressed some of these problems which are commonly referred to as protein inference. Nevertheless, all previous publications on the subject are oversimplified and do not represent the full complexity of the proteins identified. To this end we present here SIR (spectra based isoform resolver) that uses a novel transparent and systematic approach for organizing and presenting identified proteins based on peptide spectra assignments. The algorithm groups peptides and proteins into five evidence groups and calculates sixteen parameters for each identified protein that are useful for cases where deterministic protein inference is the goal. The novel approach has been incorporated into SIR which is a user-friendly tool only concerned with protein inference based on imports of Mascot search results. SIR has in addition two visualization tools that facilitate further exploration of the protein inference problem.
► Explorative protein inference for deterministic protein identification. ► Protein inference based on peptide spectra assignments rather than peptides. ► Calculation of sixteen parameters useful for protein inference. ► Visual tools displaying alignments and peptide–protein network for further exploration. ► First search engine with direct support for advanced protein inference. |
---|---|
AbstractList | Currently the bottom up approach is the most popular for characterizing protein samples by mass spectrometry. This is mainly attributed to the fact that the bottom up approach has been successfully optimized for high throughput studies. However, the bottom up approach is associated with a number of challenges such as loss of linkage information between peptides. Previous publications have addressed some of these problems which are commonly referred to as protein inference. Nevertheless, all previous publications on the subject are oversimplified and do not represent the full complexity of the proteins identified. To this end we present here SIR (spectra based isoform resolver) that uses a novel transparent and systematic approach for organizing and presenting identified proteins based on peptide spectra assignments. The algorithm groups peptides and proteins into five evidence groups and calculates sixteen parameters for each identified protein that are useful for cases where deterministic protein inference is the goal. The novel approach has been incorporated into SIR which is a user-friendly tool only concerned with protein inference based on imports of Mascot search results. SIR has in addition two visualization tools that facilitate further exploration of the protein inference problem. Currently the bottom up approach is the most popular for characterizing protein samples by mass spectrometry. This is mainly attributed to the fact that the bottom up approach has been successfully optimized for high throughput studies. However, the bottom up approach is associated with a number of challenges such as loss of linkage information between peptides. Previous publications have addressed some of these problems which are commonly referred to as protein inference. Nevertheless, all previous publications on the subject are oversimplified and do not represent the full complexity of the proteins identified. To this end we present here SIR (spectra based isoform resolver) that uses a novel transparent and systematic approach for organizing and presenting identified proteins based on peptide spectra assignments. The algorithm groups peptides and proteins into five evidence groups and calculates sixteen parameters for each identified protein that are useful for cases where deterministic protein inference is the goal. The novel approach has been incorporated into SIR which is a user-friendly tool only concerned with protein inference based on imports of Mascot search results. SIR has in addition two visualization tools that facilitate further exploration of the protein inference problem. ► Explorative protein inference for deterministic protein identification. ► Protein inference based on peptide spectra assignments rather than peptides. ► Calculation of sixteen parameters useful for protein inference. ► Visual tools displaying alignments and peptide–protein network for further exploration. ► First search engine with direct support for advanced protein inference. |
Author | Prieto, Gorka Aloria, Kerman Carvalho, Ana S. Amorim, Antonio Arizmendi, Jesus M. Fullaondo, Asier Matthiesen, Rune |
Author_xml | – sequence: 1 givenname: Rune surname: Matthiesen fullname: Matthiesen, Rune email: rmatthiesen@ipatimup.pt organization: Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200‐465 Porto, Portugal – sequence: 2 givenname: Gorka surname: Prieto fullname: Prieto, Gorka organization: Department of Electronics and Telecommunications, University of the Basque Country, UPV/EHU, Spain – sequence: 3 givenname: Antonio surname: Amorim fullname: Amorim, Antonio organization: Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200‐465 Porto, Portugal – sequence: 4 givenname: Kerman surname: Aloria fullname: Aloria, Kerman organization: Proteomics Core Facility-SGIKER, University of the Basque Country, UPV/EHU, Spain – sequence: 5 givenname: Asier surname: Fullaondo fullname: Fullaondo, Asier organization: Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, Spain – sequence: 6 givenname: Ana S. surname: Carvalho fullname: Carvalho, Ana S. organization: Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200‐465 Porto, Portugal – sequence: 7 givenname: Jesus M. surname: Arizmendi fullname: Arizmendi, Jesus M. organization: Department of Biochemistry and Molecular Biology, University of the Basque Country, UPV/EHU, Spain |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26078819$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22626983$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1rFTEUhoNU7Je_QNDZCG5mTCaTL8GFVKuFlkKvXYczmTMll5nMNckV_Pfm9t4iuOgqWTzvm3PynJKjsAQk5A2jDaNMflw3601cctNS1jZUNJTRF-SEaSVrpbg6erx3NTfMHJPTlNaUSqaMekWO21a20mh-Qi5XV3efqq-YMc4--JS9q3at6EPlw4gRg8NqjMtcbXCT_YCpgpT8Q8Chykt1s6oGyHBOXo4wJXx9OM_I_eW3nxc_6uvb71cXX65r13Uy11q3XICUo0FnkLUCmAIlhg40pwCIQmghlQHqtB5Q9V3Xm15rx3k_gkZ-Rj7se8uMv7aYsp19cjhNEHDZJsukaqkUUuuCvj2g237GwW6inyH-sU-7F-D9AYDkYBojBOfTP05SpTUzhTN7zsUlpYijdT5D9kvIEfxkGbU7H3ZtH33YnQ9LhS0-Spb_l32qfz71bp8aYbHwEMtU96sCCEopl9KoQnzeE1g--7fHaJPzO1WDj-iyHRb_7At_AU4trVc |
CitedBy_id | crossref_primary_10_3389_fcell_2020_592518 crossref_primary_10_3390_ijms232113327 crossref_primary_10_1038_srep42190 crossref_primary_10_3390_cancers14040923 crossref_primary_10_3390_cancers14184366 crossref_primary_10_3390_cancers16112031 crossref_primary_10_3390_cells11182800 crossref_primary_10_3390_cancers12113450 crossref_primary_10_3390_cells8040353 crossref_primary_10_1161_JAHA_123_030021 crossref_primary_10_1007_s00018_018_2896_7 crossref_primary_10_1016_j_sleep_2014_11_014 crossref_primary_10_1074_mcp_M113_034363 crossref_primary_10_1126_sciadv_abm1140 crossref_primary_10_3390_cancers15174387 crossref_primary_10_1016_j_jprot_2016_12_017 crossref_primary_10_1038_srep18826 crossref_primary_10_1002_pmic_201200371 crossref_primary_10_1038_s41467_018_04411_5 crossref_primary_10_3390_ijms222011004 crossref_primary_10_1016_j_jneuroim_2022_577847 crossref_primary_10_1074_mcp_TIR118_000850 crossref_primary_10_1016_j_freeradbiomed_2024_08_017 |
Cites_doi | 10.1021/ac035229m 10.1016/S0968-0004(01)02021-7 10.1021/pr101065j 10.1021/pr200039p 10.1021/pr050264q 10.1089/cmb.2009.0018 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2 10.1073/pnas.0907654107 10.1074/mcp.R500012-MCP200 10.1093/bioinformatics/btm555 10.1021/ac0341261 10.1016/S1044-0305(01)00328-2 10.1074/mcp.M600007-MCP200 10.1038/nbt0710-647 10.1016/0022-2836(70)90057-4 |
ContentType | Journal Article |
Copyright | 2012 Elsevier B.V. 2015 INIST-CNRS Copyright © 2012 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2012 Elsevier B.V. – notice: 2015 INIST-CNRS – notice: Copyright © 2012 Elsevier B.V. All rights reserved. |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7S9 L.6 |
DOI | 10.1016/j.jprot.2012.05.010 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1876-7737 |
EndPage | 4183 |
ExternalDocumentID | 22626983 26078819 10_1016_j_jprot_2012_05_010 US201500036697 S1874391912002989 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABGSF ABMAC ABUDA ABXDB ABYKQ ACDAQ ACIUM ACNNM ACRLP ADBBV ADECG ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EO9 EP2 EP3 F5P FDB FEDTE FIRID FLBIZ FNPLU FYGXN GBLVA HVGLF HZ~ J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG ROL SDF SDG SES SPC SPCBC SSK SSU SSZ T5K ~G- ABFNM ABPIF ABPTK EJD FBQ AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW ABJNI CGR CUY CVF ECM EIF NPM 7S9 L.6 |
ID | FETCH-LOGICAL-c446t-88235a66f9ec9e125a17a75d4a830aaee5585679a0c88de7b44b9b88c33bfa8e3 |
IEDL.DBID | .~1 |
ISSN | 1874-3919 |
IngestDate | Thu Jul 10 23:12:57 EDT 2025 Thu Jan 02 22:40:47 EST 2025 Mon Jul 21 09:14:44 EDT 2025 Tue Jul 01 01:41:56 EDT 2025 Thu Apr 24 22:57:52 EDT 2025 Wed Dec 27 19:21:29 EST 2023 Fri Feb 23 02:28:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | Computational proteomics Database dependent search Protein inference Peptides Proteomics Database Inference Data Protein |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright © 2012 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-88235a66f9ec9e125a17a75d4a830aaee5585679a0c88de7b44b9b88c33bfa8e3 |
Notes | http://dx.doi.org/10.1016/j.jprot.2012.05.010 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 22626983 |
PQID | 1672065688 |
PQPubID | 24069 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1672065688 pubmed_primary_22626983 pascalfrancis_primary_26078819 crossref_citationtrail_10_1016_j_jprot_2012_05_010 crossref_primary_10_1016_j_jprot_2012_05_010 fao_agris_US201500036697 elsevier_sciencedirect_doi_10_1016_j_jprot_2012_05_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-07-16 |
PublicationDateYYYYMMDD | 2012-07-16 |
PublicationDate_xml | – month: 07 year: 2012 text: 2012-07-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: Netherlands |
PublicationTitle | Journal of proteomics |
PublicationTitleAlternate | J Proteomics |
PublicationYear | 2012 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Nesvizhskii, Aebersold (bb0025) 2005; 4 Shen, Wang, Shankar, Zhang, Li (bb0030) 2008; 24 Matthiesen, Trelle, Højrup, Bunkenborg, Jensen (bb0065) 2005; 4 Qeli, Ahrens (bb0045) 2010; 28 Resing, Meyer-Arendt, Mendoza, Aveline-Wolf, Jonscher, Pierce (bb0050) 2004; 76 Cox, Neuhauser, Michalski, Scheltema, Olsen, Mann (bb0075) 2011; 10 Nesvizhskii, Keller, Kolker, Aebersold (bb0005) 2003; 75 Sonsmann, Romer, Schomburg (bb0010) 2002; 13 Gerster, Qeli, Ahrens, Bühlmann (bb0035) 2010; 107 Rappsilber, Mann (bb0020) 2002; 27 Meyer-Arendt, Old, Houel, Renganathan, Eichelberger, Resing (bb0055) 2011; 10 Perkins, Pappin, Creasy, Cottrell (bb0015) 1999; 20 Needleman, Wunsch (bb0070) 1970; 48 Beck, Nielsen, Matthiesen, Jensen, Sehested, Finn (bb0060) 2006; 5 Li, Arnold, Li, Radivojac, Sheng, Tang (bb0040) 2009; 16 Resing (10.1016/j.jprot.2012.05.010_bb0050) 2004; 76 Li (10.1016/j.jprot.2012.05.010_bb0040) 2009; 16 Perkins (10.1016/j.jprot.2012.05.010_bb0015) 1999; 20 Rappsilber (10.1016/j.jprot.2012.05.010_bb0020) 2002; 27 Nesvizhskii (10.1016/j.jprot.2012.05.010_bb0025) 2005; 4 Needleman (10.1016/j.jprot.2012.05.010_bb0070) 1970; 48 Nesvizhskii (10.1016/j.jprot.2012.05.010_bb0005) 2003; 75 Gerster (10.1016/j.jprot.2012.05.010_bb0035) 2010; 107 Meyer-Arendt (10.1016/j.jprot.2012.05.010_bb0055) 2011; 10 Beck (10.1016/j.jprot.2012.05.010_bb0060) 2006; 5 Qeli (10.1016/j.jprot.2012.05.010_bb0045) 2010; 28 Matthiesen (10.1016/j.jprot.2012.05.010_bb0065) 2005; 4 Shen (10.1016/j.jprot.2012.05.010_bb0030) 2008; 24 Cox (10.1016/j.jprot.2012.05.010_bb0075) 2011; 10 Sonsmann (10.1016/j.jprot.2012.05.010_bb0010) 2002; 13 |
References_xml | – volume: 20 start-page: 3551 year: 1999 end-page: 3567 ident: bb0015 article-title: Probability-based protein identification by searching sequence databases using mass spectrometry data publication-title: Electrophoresis – volume: 4 start-page: 2338 year: 2005 end-page: 2347 ident: bb0065 article-title: VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins publication-title: J Proteome Res – volume: 10 start-page: 3060 year: 2011 end-page: 3075 ident: bb0055 article-title: IsoformResolver: A peptide-centric algorithm for protein inference publication-title: J Proteome Res – volume: 10 start-page: 1794 year: 2011 end-page: 1805 ident: bb0075 article-title: Andromeda: a peptide search engine integrated into the MaxQuant environment publication-title: J Proteome Res – volume: 27 start-page: 74 year: 2002 end-page: 78 ident: bb0020 article-title: What does it mean to identify a protein in proteomics? publication-title: Trends Biochem Sci – volume: 24 start-page: 202 year: 2008 end-page: 208 ident: bb0030 article-title: A hierarchical statistical model to assess the confidence of peptides and proteins inferred from tandem mass spectrometry publication-title: Bioinformatics – volume: 5 start-page: 1314 year: 2006 end-page: 1325 ident: bb0060 article-title: Quantitative proteomic analysis of post-translational modifications of human histones publication-title: Mol Cell Proteomics – volume: 16 start-page: 1183 year: 2009 end-page: 1193 ident: bb0040 article-title: A Bayesian approach to protein inference problem in shotgun proteomics publication-title: J Comput Biol – volume: 76 start-page: 3556 year: 2004 end-page: 3568 ident: bb0050 article-title: Improving reproducibility and sensitivity in identifying human proteins by shotgun proteomics publication-title: Anal Chem – volume: 13 start-page: 47 year: 2002 end-page: 58 ident: bb0010 article-title: Investigation of the influence of charge derivatization on the fragmentation of multiply protonated peptides publication-title: J Am Soc Mass Spectrom – volume: 4 start-page: 1419 year: 2005 end-page: 1440 ident: bb0025 article-title: Interpretation of shotgun proteomic data: the protein inference problem publication-title: Mol Cell Proteomics – volume: 75 start-page: 4646 year: 2003 end-page: 4658 ident: bb0005 article-title: A statistical model for identifying proteins by tandem mass spectrometry publication-title: Anal Chem – volume: 28 start-page: 647 year: 2010 end-page: 650 ident: bb0045 article-title: PeptideClassifier for protein inference and targeted quantitative proteomics publication-title: Nat Biotechnol – volume: 48 start-page: 443 year: 1970 end-page: 453 ident: bb0070 article-title: A general method applicable to the search for similarities in the amino acid sequence of two proteins publication-title: J Mol Biol – volume: 107 start-page: 12101 year: 2010 end-page: 12106 ident: bb0035 article-title: Protein and gene model inference based on statistical modeling in k-partite graphs publication-title: Proc Natl Acad Sci U S A – volume: 76 start-page: 3556 year: 2004 ident: 10.1016/j.jprot.2012.05.010_bb0050 article-title: Improving reproducibility and sensitivity in identifying human proteins by shotgun proteomics publication-title: Anal Chem doi: 10.1021/ac035229m – volume: 27 start-page: 74 issue: 2 year: 2002 ident: 10.1016/j.jprot.2012.05.010_bb0020 article-title: What does it mean to identify a protein in proteomics? publication-title: Trends Biochem Sci doi: 10.1016/S0968-0004(01)02021-7 – volume: 10 start-page: 1794 issue: 4 year: 2011 ident: 10.1016/j.jprot.2012.05.010_bb0075 article-title: Andromeda: a peptide search engine integrated into the MaxQuant environment publication-title: J Proteome Res doi: 10.1021/pr101065j – volume: 10 start-page: 3060 issue: 7 year: 2011 ident: 10.1016/j.jprot.2012.05.010_bb0055 article-title: IsoformResolver: A peptide-centric algorithm for protein inference publication-title: J Proteome Res doi: 10.1021/pr200039p – volume: 4 start-page: 2338 issue: 6 year: 2005 ident: 10.1016/j.jprot.2012.05.010_bb0065 article-title: VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins publication-title: J Proteome Res doi: 10.1021/pr050264q – volume: 16 start-page: 1183 issue: 8 year: 2009 ident: 10.1016/j.jprot.2012.05.010_bb0040 article-title: A Bayesian approach to protein inference problem in shotgun proteomics publication-title: J Comput Biol doi: 10.1089/cmb.2009.0018 – volume: 20 start-page: 3551 issue: 18 year: 1999 ident: 10.1016/j.jprot.2012.05.010_bb0015 article-title: Probability-based protein identification by searching sequence databases using mass spectrometry data publication-title: Electrophoresis doi: 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2 – volume: 107 start-page: 12101 issue: 27 year: 2010 ident: 10.1016/j.jprot.2012.05.010_bb0035 article-title: Protein and gene model inference based on statistical modeling in k-partite graphs publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0907654107 – volume: 4 start-page: 1419 issue: 10 year: 2005 ident: 10.1016/j.jprot.2012.05.010_bb0025 article-title: Interpretation of shotgun proteomic data: the protein inference problem publication-title: Mol Cell Proteomics doi: 10.1074/mcp.R500012-MCP200 – volume: 24 start-page: 202 issue: 2 year: 2008 ident: 10.1016/j.jprot.2012.05.010_bb0030 article-title: A hierarchical statistical model to assess the confidence of peptides and proteins inferred from tandem mass spectrometry publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm555 – volume: 75 start-page: 4646 issue: 17 year: 2003 ident: 10.1016/j.jprot.2012.05.010_bb0005 article-title: A statistical model for identifying proteins by tandem mass spectrometry publication-title: Anal Chem doi: 10.1021/ac0341261 – volume: 13 start-page: 47 issue: 1 year: 2002 ident: 10.1016/j.jprot.2012.05.010_bb0010 article-title: Investigation of the influence of charge derivatization on the fragmentation of multiply protonated peptides publication-title: J Am Soc Mass Spectrom doi: 10.1016/S1044-0305(01)00328-2 – volume: 5 start-page: 1314 issue: 7 year: 2006 ident: 10.1016/j.jprot.2012.05.010_bb0060 article-title: Quantitative proteomic analysis of post-translational modifications of human histones publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M600007-MCP200 – volume: 28 start-page: 647 issue: 7 year: 2010 ident: 10.1016/j.jprot.2012.05.010_bb0045 article-title: PeptideClassifier for protein inference and targeted quantitative proteomics publication-title: Nat Biotechnol doi: 10.1038/nbt0710-647 – volume: 48 start-page: 443 issue: 3 year: 1970 ident: 10.1016/j.jprot.2012.05.010_bb0070 article-title: A general method applicable to the search for similarities in the amino acid sequence of two proteins publication-title: J Mol Biol doi: 10.1016/0022-2836(70)90057-4 |
SSID | ssj0061797 ssib053392237 |
Score | 2.126989 |
Snippet | Currently the bottom up approach is the most popular for characterizing protein samples by mass spectrometry. This is mainly attributed to the fact that the... |
SourceID | proquest pubmed pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4176 |
SubjectTerms | Algorithms analysis Biological and medical sciences Computational proteomics Database dependent search Databases, Protein Diverse techniques Fundamental and applied biological sciences. Psychology Humans mass spectrometry Mass Spectrometry - methods methods Molecular and cellular biology peptides Protein inference Protein Isoforms Protein Isoforms - analysis proteins Proteomics Proteomics - methods Software Tandem Mass Spectrometry Tandem Mass Spectrometry - methods |
Title | SIR: Deterministic protein inference from peptides assigned to MS data |
URI | https://dx.doi.org/10.1016/j.jprot.2012.05.010 https://www.ncbi.nlm.nih.gov/pubmed/22626983 https://www.proquest.com/docview/1672065688 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbGuHBBgwHLgMpIiBOhbuz4B7eqrOqAVdNKpd0sx3GmTJBWtDtw4W_nPScp2mE77BTFsSXrPfv5Ped73yPkvWKe6UrnsNNYmQopq9SNSpFqEQpZGc9UGVG-czlbiq-X-eUemfS5MAir7Gx_a9Ojte5ahp00h-u6Hi6wmhw3EG9kLY84ZrALhav8098dzAMO6LbACnROsXfPPBQxXtdIhoD4rqyl72R3nU6PKrdC2KTbgOSqtuTF3T5pPJumB-Rp51TScTvvZ2QvNM_J4biBgPrXH_qBRphnvD8_JNPF6cVn-qVDwUSaZhrJGuqG1n32H8WsE7pGxEsZNhQc7PoK7DHdrujZgiKq9AVZTk9-TGZpV0wh9RDxbVPwpHnuQBcmeBPArXEj5VReCqc5cy6EHAIHqYxjXusyqEKIwhRae86LyunAX5L9ZtWEI0KVgQ-lECXPvcgddwxZB1XBuXFGepGQrBei9R3TOBa8-Gl7SNm1jZK3KHnLcguST8jH3aB1S7Rxf3fZa8feWi8WjoL7Bx6BLq27Ahtql4sMb3yQlEcalZDBLQXv5gExH7Lum4S86zVuYRfirxXXhNXNxo6kysCZk1on5FW7FP6PziBoNJofP3TKr8kTfMMb5ZF8Q_a3v2_CW3CFtsUgrvUBeTyeXHw_x-fpt9kcWufnZ_8A7_QHSw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED4kztAuQdu0jfpIWaDoVMG0SPHRzUhq2E3ioY6BbAQlUYGCVjZiZ-i_750eKTIkQ1aRBxB35D2oj98BfNE856Y0KZ40XsRSqTL2o0LGRoZMlTbnumhQvnM1Xcqfl-nlDhz3b2EIVtn5_tanN966-zLstDlcV9VwQd3khMV6I2l5xHdhj9ip0gHsjWen03nvkDFGtz1WcH5MAj35UAPzuiY-BIJ4JS2DJ38oQO2WfkXISb9B5ZVt14uH09ImPE1ewH6XV7Jxu_SXsBPqV3AwrrGm_vOXfWUN0rO5Qj-AyWL26zs76YAwDVMza_gaqppV_QNARg9P2JpAL0XYMMyxqyt0yWy7YucLRsDS17Cc_Lg4nsZdP4U4x6JvG2MyLVKP5rAhtwEzGz_SXqeF9EZw70NIsXZQ2nqeG1MEnUmZ2cyYXIis9CaINzCoV3U4BKYtDhRSFiLNZeqF50Q8qDMhrLcqlxEkvRJd3pGNU8-L365HlV27RvOONO946lDzEXy7E1q3XBuPT1e9ddy9LeMwGjwueIi2dP4K3ahbLhK69CFeHmV1BEf3DHy3Diz7iHjfRvC5t7jDg0h_V3wdVrcbN1I6wXxOGRPB23Yr_JdOsG60Rrx76pI_wbPpxfmZO5vNT9_DcxqhC-aR-gCD7c1t-IiZ0TY76nb-P4yWB1s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SIR%3A+Deterministic+protein+inference+from+peptides+assigned+to+MS+data&rft.jtitle=Journal+of+proteomics&rft.au=Matthiesen%2C+Rune&rft.au=Prieto%2C+Gorka&rft.au=Amorim%2C+Antonio&rft.au=Aloria%2C+Kerman&rft.date=2012-07-16&rft.pub=Elsevier+B.V&rft.issn=1874-3919&rft.volume=75&rft.issue=13&rft.spage=4176&rft.epage=4183&rft_id=info:doi/10.1016%2Fj.jprot.2012.05.010&rft.externalDocID=US201500036697 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1874-3919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1874-3919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1874-3919&client=summon |