SIR: Deterministic protein inference from peptides assigned to MS data

Currently the bottom up approach is the most popular for characterizing protein samples by mass spectrometry. This is mainly attributed to the fact that the bottom up approach has been successfully optimized for high throughput studies. However, the bottom up approach is associated with a number of...

Full description

Saved in:
Bibliographic Details
Published inJournal of proteomics Vol. 75; no. 13; pp. 4176 - 4183
Main Authors Matthiesen, Rune, Prieto, Gorka, Amorim, Antonio, Aloria, Kerman, Fullaondo, Asier, Carvalho, Ana S., Arizmendi, Jesus M.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier B.V 16.07.2012
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Currently the bottom up approach is the most popular for characterizing protein samples by mass spectrometry. This is mainly attributed to the fact that the bottom up approach has been successfully optimized for high throughput studies. However, the bottom up approach is associated with a number of challenges such as loss of linkage information between peptides. Previous publications have addressed some of these problems which are commonly referred to as protein inference. Nevertheless, all previous publications on the subject are oversimplified and do not represent the full complexity of the proteins identified. To this end we present here SIR (spectra based isoform resolver) that uses a novel transparent and systematic approach for organizing and presenting identified proteins based on peptide spectra assignments. The algorithm groups peptides and proteins into five evidence groups and calculates sixteen parameters for each identified protein that are useful for cases where deterministic protein inference is the goal. The novel approach has been incorporated into SIR which is a user-friendly tool only concerned with protein inference based on imports of Mascot search results. SIR has in addition two visualization tools that facilitate further exploration of the protein inference problem. ► Explorative protein inference for deterministic protein identification. ► Protein inference based on peptide spectra assignments rather than peptides. ► Calculation of sixteen parameters useful for protein inference. ► Visual tools displaying alignments and peptide–protein network for further exploration. ► First search engine with direct support for advanced protein inference.
AbstractList Currently the bottom up approach is the most popular for characterizing protein samples by mass spectrometry. This is mainly attributed to the fact that the bottom up approach has been successfully optimized for high throughput studies. However, the bottom up approach is associated with a number of challenges such as loss of linkage information between peptides. Previous publications have addressed some of these problems which are commonly referred to as protein inference. Nevertheless, all previous publications on the subject are oversimplified and do not represent the full complexity of the proteins identified. To this end we present here SIR (spectra based isoform resolver) that uses a novel transparent and systematic approach for organizing and presenting identified proteins based on peptide spectra assignments. The algorithm groups peptides and proteins into five evidence groups and calculates sixteen parameters for each identified protein that are useful for cases where deterministic protein inference is the goal. The novel approach has been incorporated into SIR which is a user-friendly tool only concerned with protein inference based on imports of Mascot search results. SIR has in addition two visualization tools that facilitate further exploration of the protein inference problem.
Currently the bottom up approach is the most popular for characterizing protein samples by mass spectrometry. This is mainly attributed to the fact that the bottom up approach has been successfully optimized for high throughput studies. However, the bottom up approach is associated with a number of challenges such as loss of linkage information between peptides. Previous publications have addressed some of these problems which are commonly referred to as protein inference. Nevertheless, all previous publications on the subject are oversimplified and do not represent the full complexity of the proteins identified. To this end we present here SIR (spectra based isoform resolver) that uses a novel transparent and systematic approach for organizing and presenting identified proteins based on peptide spectra assignments. The algorithm groups peptides and proteins into five evidence groups and calculates sixteen parameters for each identified protein that are useful for cases where deterministic protein inference is the goal. The novel approach has been incorporated into SIR which is a user-friendly tool only concerned with protein inference based on imports of Mascot search results. SIR has in addition two visualization tools that facilitate further exploration of the protein inference problem. ► Explorative protein inference for deterministic protein identification. ► Protein inference based on peptide spectra assignments rather than peptides. ► Calculation of sixteen parameters useful for protein inference. ► Visual tools displaying alignments and peptide–protein network for further exploration. ► First search engine with direct support for advanced protein inference.
Author Prieto, Gorka
Aloria, Kerman
Carvalho, Ana S.
Amorim, Antonio
Arizmendi, Jesus M.
Fullaondo, Asier
Matthiesen, Rune
Author_xml – sequence: 1
  givenname: Rune
  surname: Matthiesen
  fullname: Matthiesen, Rune
  email: rmatthiesen@ipatimup.pt
  organization: Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200‐465 Porto, Portugal
– sequence: 2
  givenname: Gorka
  surname: Prieto
  fullname: Prieto, Gorka
  organization: Department of Electronics and Telecommunications, University of the Basque Country, UPV/EHU, Spain
– sequence: 3
  givenname: Antonio
  surname: Amorim
  fullname: Amorim, Antonio
  organization: Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200‐465 Porto, Portugal
– sequence: 4
  givenname: Kerman
  surname: Aloria
  fullname: Aloria, Kerman
  organization: Proteomics Core Facility-SGIKER, University of the Basque Country, UPV/EHU, Spain
– sequence: 5
  givenname: Asier
  surname: Fullaondo
  fullname: Fullaondo, Asier
  organization: Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, Spain
– sequence: 6
  givenname: Ana S.
  surname: Carvalho
  fullname: Carvalho, Ana S.
  organization: Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias s/n, 4200‐465 Porto, Portugal
– sequence: 7
  givenname: Jesus M.
  surname: Arizmendi
  fullname: Arizmendi, Jesus M.
  organization: Department of Biochemistry and Molecular Biology, University of the Basque Country, UPV/EHU, Spain
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26078819$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22626983$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rFTEUhoNU7Je_QNDZCG5mTCaTL8GFVKuFlkKvXYczmTMll5nMNckV_Pfm9t4iuOgqWTzvm3PynJKjsAQk5A2jDaNMflw3601cctNS1jZUNJTRF-SEaSVrpbg6erx3NTfMHJPTlNaUSqaMekWO21a20mh-Qi5XV3efqq-YMc4--JS9q3at6EPlw4gRg8NqjMtcbXCT_YCpgpT8Q8Chykt1s6oGyHBOXo4wJXx9OM_I_eW3nxc_6uvb71cXX65r13Uy11q3XICUo0FnkLUCmAIlhg40pwCIQmghlQHqtB5Q9V3Xm15rx3k_gkZ-Rj7se8uMv7aYsp19cjhNEHDZJsukaqkUUuuCvj2g237GwW6inyH-sU-7F-D9AYDkYBojBOfTP05SpTUzhTN7zsUlpYijdT5D9kvIEfxkGbU7H3ZtH33YnQ9LhS0-Spb_l32qfz71bp8aYbHwEMtU96sCCEopl9KoQnzeE1g--7fHaJPzO1WDj-iyHRb_7At_AU4trVc
CitedBy_id crossref_primary_10_3389_fcell_2020_592518
crossref_primary_10_3390_ijms232113327
crossref_primary_10_1038_srep42190
crossref_primary_10_3390_cancers14040923
crossref_primary_10_3390_cancers14184366
crossref_primary_10_3390_cancers16112031
crossref_primary_10_3390_cells11182800
crossref_primary_10_3390_cancers12113450
crossref_primary_10_3390_cells8040353
crossref_primary_10_1161_JAHA_123_030021
crossref_primary_10_1007_s00018_018_2896_7
crossref_primary_10_1016_j_sleep_2014_11_014
crossref_primary_10_1074_mcp_M113_034363
crossref_primary_10_1126_sciadv_abm1140
crossref_primary_10_3390_cancers15174387
crossref_primary_10_1016_j_jprot_2016_12_017
crossref_primary_10_1038_srep18826
crossref_primary_10_1002_pmic_201200371
crossref_primary_10_1038_s41467_018_04411_5
crossref_primary_10_3390_ijms222011004
crossref_primary_10_1016_j_jneuroim_2022_577847
crossref_primary_10_1074_mcp_TIR118_000850
crossref_primary_10_1016_j_freeradbiomed_2024_08_017
Cites_doi 10.1021/ac035229m
10.1016/S0968-0004(01)02021-7
10.1021/pr101065j
10.1021/pr200039p
10.1021/pr050264q
10.1089/cmb.2009.0018
10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
10.1073/pnas.0907654107
10.1074/mcp.R500012-MCP200
10.1093/bioinformatics/btm555
10.1021/ac0341261
10.1016/S1044-0305(01)00328-2
10.1074/mcp.M600007-MCP200
10.1038/nbt0710-647
10.1016/0022-2836(70)90057-4
ContentType Journal Article
Copyright 2012 Elsevier B.V.
2015 INIST-CNRS
Copyright © 2012 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2012 Elsevier B.V. All rights reserved.
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
DOI 10.1016/j.jprot.2012.05.010
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1876-7737
EndPage 4183
ExternalDocumentID 22626983
26078819
10_1016_j_jprot_2012_05_010
US201500036697
S1874391912002989
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABGSF
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACIUM
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FLBIZ
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SDG
SES
SPC
SPCBC
SSK
SSU
SSZ
T5K
~G-
ABFNM
ABPIF
ABPTK
EJD
FBQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
ABJNI
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
ID FETCH-LOGICAL-c446t-88235a66f9ec9e125a17a75d4a830aaee5585679a0c88de7b44b9b88c33bfa8e3
IEDL.DBID .~1
ISSN 1874-3919
IngestDate Thu Jul 10 23:12:57 EDT 2025
Thu Jan 02 22:40:47 EST 2025
Mon Jul 21 09:14:44 EDT 2025
Tue Jul 01 01:41:56 EDT 2025
Thu Apr 24 22:57:52 EDT 2025
Wed Dec 27 19:21:29 EST 2023
Fri Feb 23 02:28:04 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Computational proteomics
Database dependent search
Protein inference
Peptides
Proteomics
Database
Inference
Data
Protein
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2012 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-88235a66f9ec9e125a17a75d4a830aaee5585679a0c88de7b44b9b88c33bfa8e3
Notes http://dx.doi.org/10.1016/j.jprot.2012.05.010
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22626983
PQID 1672065688
PQPubID 24069
PageCount 8
ParticipantIDs proquest_miscellaneous_1672065688
pubmed_primary_22626983
pascalfrancis_primary_26078819
crossref_citationtrail_10_1016_j_jprot_2012_05_010
crossref_primary_10_1016_j_jprot_2012_05_010
fao_agris_US201500036697
elsevier_sciencedirect_doi_10_1016_j_jprot_2012_05_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-07-16
PublicationDateYYYYMMDD 2012-07-16
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07-16
  day: 16
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: Netherlands
PublicationTitle Journal of proteomics
PublicationTitleAlternate J Proteomics
PublicationYear 2012
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Nesvizhskii, Aebersold (bb0025) 2005; 4
Shen, Wang, Shankar, Zhang, Li (bb0030) 2008; 24
Matthiesen, Trelle, Højrup, Bunkenborg, Jensen (bb0065) 2005; 4
Qeli, Ahrens (bb0045) 2010; 28
Resing, Meyer-Arendt, Mendoza, Aveline-Wolf, Jonscher, Pierce (bb0050) 2004; 76
Cox, Neuhauser, Michalski, Scheltema, Olsen, Mann (bb0075) 2011; 10
Nesvizhskii, Keller, Kolker, Aebersold (bb0005) 2003; 75
Sonsmann, Romer, Schomburg (bb0010) 2002; 13
Gerster, Qeli, Ahrens, Bühlmann (bb0035) 2010; 107
Rappsilber, Mann (bb0020) 2002; 27
Meyer-Arendt, Old, Houel, Renganathan, Eichelberger, Resing (bb0055) 2011; 10
Perkins, Pappin, Creasy, Cottrell (bb0015) 1999; 20
Needleman, Wunsch (bb0070) 1970; 48
Beck, Nielsen, Matthiesen, Jensen, Sehested, Finn (bb0060) 2006; 5
Li, Arnold, Li, Radivojac, Sheng, Tang (bb0040) 2009; 16
Resing (10.1016/j.jprot.2012.05.010_bb0050) 2004; 76
Li (10.1016/j.jprot.2012.05.010_bb0040) 2009; 16
Perkins (10.1016/j.jprot.2012.05.010_bb0015) 1999; 20
Rappsilber (10.1016/j.jprot.2012.05.010_bb0020) 2002; 27
Nesvizhskii (10.1016/j.jprot.2012.05.010_bb0025) 2005; 4
Needleman (10.1016/j.jprot.2012.05.010_bb0070) 1970; 48
Nesvizhskii (10.1016/j.jprot.2012.05.010_bb0005) 2003; 75
Gerster (10.1016/j.jprot.2012.05.010_bb0035) 2010; 107
Meyer-Arendt (10.1016/j.jprot.2012.05.010_bb0055) 2011; 10
Beck (10.1016/j.jprot.2012.05.010_bb0060) 2006; 5
Qeli (10.1016/j.jprot.2012.05.010_bb0045) 2010; 28
Matthiesen (10.1016/j.jprot.2012.05.010_bb0065) 2005; 4
Shen (10.1016/j.jprot.2012.05.010_bb0030) 2008; 24
Cox (10.1016/j.jprot.2012.05.010_bb0075) 2011; 10
Sonsmann (10.1016/j.jprot.2012.05.010_bb0010) 2002; 13
References_xml – volume: 20
  start-page: 3551
  year: 1999
  end-page: 3567
  ident: bb0015
  article-title: Probability-based protein identification by searching sequence databases using mass spectrometry data
  publication-title: Electrophoresis
– volume: 4
  start-page: 2338
  year: 2005
  end-page: 2347
  ident: bb0065
  article-title: VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins
  publication-title: J Proteome Res
– volume: 10
  start-page: 3060
  year: 2011
  end-page: 3075
  ident: bb0055
  article-title: IsoformResolver: A peptide-centric algorithm for protein inference
  publication-title: J Proteome Res
– volume: 10
  start-page: 1794
  year: 2011
  end-page: 1805
  ident: bb0075
  article-title: Andromeda: a peptide search engine integrated into the MaxQuant environment
  publication-title: J Proteome Res
– volume: 27
  start-page: 74
  year: 2002
  end-page: 78
  ident: bb0020
  article-title: What does it mean to identify a protein in proteomics?
  publication-title: Trends Biochem Sci
– volume: 24
  start-page: 202
  year: 2008
  end-page: 208
  ident: bb0030
  article-title: A hierarchical statistical model to assess the confidence of peptides and proteins inferred from tandem mass spectrometry
  publication-title: Bioinformatics
– volume: 5
  start-page: 1314
  year: 2006
  end-page: 1325
  ident: bb0060
  article-title: Quantitative proteomic analysis of post-translational modifications of human histones
  publication-title: Mol Cell Proteomics
– volume: 16
  start-page: 1183
  year: 2009
  end-page: 1193
  ident: bb0040
  article-title: A Bayesian approach to protein inference problem in shotgun proteomics
  publication-title: J Comput Biol
– volume: 76
  start-page: 3556
  year: 2004
  end-page: 3568
  ident: bb0050
  article-title: Improving reproducibility and sensitivity in identifying human proteins by shotgun proteomics
  publication-title: Anal Chem
– volume: 13
  start-page: 47
  year: 2002
  end-page: 58
  ident: bb0010
  article-title: Investigation of the influence of charge derivatization on the fragmentation of multiply protonated peptides
  publication-title: J Am Soc Mass Spectrom
– volume: 4
  start-page: 1419
  year: 2005
  end-page: 1440
  ident: bb0025
  article-title: Interpretation of shotgun proteomic data: the protein inference problem
  publication-title: Mol Cell Proteomics
– volume: 75
  start-page: 4646
  year: 2003
  end-page: 4658
  ident: bb0005
  article-title: A statistical model for identifying proteins by tandem mass spectrometry
  publication-title: Anal Chem
– volume: 28
  start-page: 647
  year: 2010
  end-page: 650
  ident: bb0045
  article-title: PeptideClassifier for protein inference and targeted quantitative proteomics
  publication-title: Nat Biotechnol
– volume: 48
  start-page: 443
  year: 1970
  end-page: 453
  ident: bb0070
  article-title: A general method applicable to the search for similarities in the amino acid sequence of two proteins
  publication-title: J Mol Biol
– volume: 107
  start-page: 12101
  year: 2010
  end-page: 12106
  ident: bb0035
  article-title: Protein and gene model inference based on statistical modeling in k-partite graphs
  publication-title: Proc Natl Acad Sci U S A
– volume: 76
  start-page: 3556
  year: 2004
  ident: 10.1016/j.jprot.2012.05.010_bb0050
  article-title: Improving reproducibility and sensitivity in identifying human proteins by shotgun proteomics
  publication-title: Anal Chem
  doi: 10.1021/ac035229m
– volume: 27
  start-page: 74
  issue: 2
  year: 2002
  ident: 10.1016/j.jprot.2012.05.010_bb0020
  article-title: What does it mean to identify a protein in proteomics?
  publication-title: Trends Biochem Sci
  doi: 10.1016/S0968-0004(01)02021-7
– volume: 10
  start-page: 1794
  issue: 4
  year: 2011
  ident: 10.1016/j.jprot.2012.05.010_bb0075
  article-title: Andromeda: a peptide search engine integrated into the MaxQuant environment
  publication-title: J Proteome Res
  doi: 10.1021/pr101065j
– volume: 10
  start-page: 3060
  issue: 7
  year: 2011
  ident: 10.1016/j.jprot.2012.05.010_bb0055
  article-title: IsoformResolver: A peptide-centric algorithm for protein inference
  publication-title: J Proteome Res
  doi: 10.1021/pr200039p
– volume: 4
  start-page: 2338
  issue: 6
  year: 2005
  ident: 10.1016/j.jprot.2012.05.010_bb0065
  article-title: VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins
  publication-title: J Proteome Res
  doi: 10.1021/pr050264q
– volume: 16
  start-page: 1183
  issue: 8
  year: 2009
  ident: 10.1016/j.jprot.2012.05.010_bb0040
  article-title: A Bayesian approach to protein inference problem in shotgun proteomics
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2009.0018
– volume: 20
  start-page: 3551
  issue: 18
  year: 1999
  ident: 10.1016/j.jprot.2012.05.010_bb0015
  article-title: Probability-based protein identification by searching sequence databases using mass spectrometry data
  publication-title: Electrophoresis
  doi: 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
– volume: 107
  start-page: 12101
  issue: 27
  year: 2010
  ident: 10.1016/j.jprot.2012.05.010_bb0035
  article-title: Protein and gene model inference based on statistical modeling in k-partite graphs
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0907654107
– volume: 4
  start-page: 1419
  issue: 10
  year: 2005
  ident: 10.1016/j.jprot.2012.05.010_bb0025
  article-title: Interpretation of shotgun proteomic data: the protein inference problem
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.R500012-MCP200
– volume: 24
  start-page: 202
  issue: 2
  year: 2008
  ident: 10.1016/j.jprot.2012.05.010_bb0030
  article-title: A hierarchical statistical model to assess the confidence of peptides and proteins inferred from tandem mass spectrometry
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm555
– volume: 75
  start-page: 4646
  issue: 17
  year: 2003
  ident: 10.1016/j.jprot.2012.05.010_bb0005
  article-title: A statistical model for identifying proteins by tandem mass spectrometry
  publication-title: Anal Chem
  doi: 10.1021/ac0341261
– volume: 13
  start-page: 47
  issue: 1
  year: 2002
  ident: 10.1016/j.jprot.2012.05.010_bb0010
  article-title: Investigation of the influence of charge derivatization on the fragmentation of multiply protonated peptides
  publication-title: J Am Soc Mass Spectrom
  doi: 10.1016/S1044-0305(01)00328-2
– volume: 5
  start-page: 1314
  issue: 7
  year: 2006
  ident: 10.1016/j.jprot.2012.05.010_bb0060
  article-title: Quantitative proteomic analysis of post-translational modifications of human histones
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.M600007-MCP200
– volume: 28
  start-page: 647
  issue: 7
  year: 2010
  ident: 10.1016/j.jprot.2012.05.010_bb0045
  article-title: PeptideClassifier for protein inference and targeted quantitative proteomics
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt0710-647
– volume: 48
  start-page: 443
  issue: 3
  year: 1970
  ident: 10.1016/j.jprot.2012.05.010_bb0070
  article-title: A general method applicable to the search for similarities in the amino acid sequence of two proteins
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(70)90057-4
SSID ssj0061797
ssib053392237
Score 2.126989
Snippet Currently the bottom up approach is the most popular for characterizing protein samples by mass spectrometry. This is mainly attributed to the fact that the...
SourceID proquest
pubmed
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4176
SubjectTerms Algorithms
analysis
Biological and medical sciences
Computational proteomics
Database dependent search
Databases, Protein
Diverse techniques
Fundamental and applied biological sciences. Psychology
Humans
mass spectrometry
Mass Spectrometry - methods
methods
Molecular and cellular biology
peptides
Protein inference
Protein Isoforms
Protein Isoforms - analysis
proteins
Proteomics
Proteomics - methods
Software
Tandem Mass Spectrometry
Tandem Mass Spectrometry - methods
Title SIR: Deterministic protein inference from peptides assigned to MS data
URI https://dx.doi.org/10.1016/j.jprot.2012.05.010
https://www.ncbi.nlm.nih.gov/pubmed/22626983
https://www.proquest.com/docview/1672065688
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbGuHBBgwHLgMpIiBOhbuz4B7eqrOqAVdNKpd0sx3GmTJBWtDtw4W_nPScp2mE77BTFsSXrPfv5Ped73yPkvWKe6UrnsNNYmQopq9SNSpFqEQpZGc9UGVG-czlbiq-X-eUemfS5MAir7Gx_a9Ojte5ahp00h-u6Hi6wmhw3EG9kLY84ZrALhav8098dzAMO6LbACnROsXfPPBQxXtdIhoD4rqyl72R3nU6PKrdC2KTbgOSqtuTF3T5pPJumB-Rp51TScTvvZ2QvNM_J4biBgPrXH_qBRphnvD8_JNPF6cVn-qVDwUSaZhrJGuqG1n32H8WsE7pGxEsZNhQc7PoK7DHdrujZgiKq9AVZTk9-TGZpV0wh9RDxbVPwpHnuQBcmeBPArXEj5VReCqc5cy6EHAIHqYxjXusyqEKIwhRae86LyunAX5L9ZtWEI0KVgQ-lECXPvcgddwxZB1XBuXFGepGQrBei9R3TOBa8-Gl7SNm1jZK3KHnLcguST8jH3aB1S7Rxf3fZa8feWi8WjoL7Bx6BLq27Ahtql4sMb3yQlEcalZDBLQXv5gExH7Lum4S86zVuYRfirxXXhNXNxo6kysCZk1on5FW7FP6PziBoNJofP3TKr8kTfMMb5ZF8Q_a3v2_CW3CFtsUgrvUBeTyeXHw_x-fpt9kcWufnZ_8A7_QHSw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED4kztAuQdu0jfpIWaDoVMG0SPHRzUhq2E3ioY6BbAQlUYGCVjZiZ-i_750eKTIkQ1aRBxB35D2oj98BfNE856Y0KZ40XsRSqTL2o0LGRoZMlTbnumhQvnM1Xcqfl-nlDhz3b2EIVtn5_tanN966-zLstDlcV9VwQd3khMV6I2l5xHdhj9ip0gHsjWen03nvkDFGtz1WcH5MAj35UAPzuiY-BIJ4JS2DJ38oQO2WfkXISb9B5ZVt14uH09ImPE1ewH6XV7Jxu_SXsBPqV3AwrrGm_vOXfWUN0rO5Qj-AyWL26zs76YAwDVMza_gaqppV_QNARg9P2JpAL0XYMMyxqyt0yWy7YucLRsDS17Cc_Lg4nsZdP4U4x6JvG2MyLVKP5rAhtwEzGz_SXqeF9EZw70NIsXZQ2nqeG1MEnUmZ2cyYXIis9CaINzCoV3U4BKYtDhRSFiLNZeqF50Q8qDMhrLcqlxEkvRJd3pGNU8-L365HlV27RvOONO946lDzEXy7E1q3XBuPT1e9ddy9LeMwGjwueIi2dP4K3ahbLhK69CFeHmV1BEf3DHy3Diz7iHjfRvC5t7jDg0h_V3wdVrcbN1I6wXxOGRPB23Yr_JdOsG60Rrx76pI_wbPpxfmZO5vNT9_DcxqhC-aR-gCD7c1t-IiZ0TY76nb-P4yWB1s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SIR%3A+Deterministic+protein+inference+from+peptides+assigned+to+MS+data&rft.jtitle=Journal+of+proteomics&rft.au=Matthiesen%2C+Rune&rft.au=Prieto%2C+Gorka&rft.au=Amorim%2C+Antonio&rft.au=Aloria%2C+Kerman&rft.date=2012-07-16&rft.pub=Elsevier+B.V&rft.issn=1874-3919&rft.volume=75&rft.issue=13&rft.spage=4176&rft.epage=4183&rft_id=info:doi/10.1016%2Fj.jprot.2012.05.010&rft.externalDocID=US201500036697
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1874-3919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1874-3919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1874-3919&client=summon