Adaptive Neural Network Control of a Flexible Spacecraft Subject to Input Nonlinearity and Asymmetric Output Constraint

This article focuses on the vibration reducing and angle tracking problems of a flexible unmanned spacecraft system subject to input nonlinearity, asymmetric output constraint, and system parameter uncertainties. Using the backstepping technique, a boundary control scheme is designed to suppress the...

Full description

Saved in:
Bibliographic Details
Published inIEEE Transactions on Neural Networks and Learning Systems Vol. 33; no. 11; pp. 6226 - 6234
Main Authors Liu, Yu, Chen, Xiongbin, Wu, Yilin, Cai, He, Yokoi, Hiroshi
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2022
Institute of Electrical and Electronics Engineers (IEEE)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article focuses on the vibration reducing and angle tracking problems of a flexible unmanned spacecraft system subject to input nonlinearity, asymmetric output constraint, and system parameter uncertainties. Using the backstepping technique, a boundary control scheme is designed to suppress the vibration and regulate the angle of the spacecraft. A modified asymmetric barrier Lyapunov function is utilized to ensure that the output constraint is never transgressed. Considering the system robustness, neural networks are used to handle the system parameter uncertainties and compensate for the effect of input nonlinearity. With the proposed adaptive neural network control law, the stability of the closed-loop system is proved based on the Lyapunov analysis, and numerical simulations are carried out to show the validity of the developed control scheme.
AbstractList This article focuses on the vibration reducing and angle tracking problems of a flexible unmanned spacecraft system subject to input nonlinearity, asymmetric output constraint, and system parameter uncertainties. Using the backstepping technique, a boundary control scheme is designed to suppress the vibration and regulate the angle of the spacecraft. A modified asymmetric barrier Lyapunov function is utilized to ensure that the output constraint is never transgressed. Considering the system robustness, neural networks are used to handle the system parameter uncertainties and compensate for the effect of input nonlinearity. With the proposed adaptive neural network control law, the stability of the closed-loop system is proved based on the Lyapunov analysis, and numerical simulations are carried out to show the validity of the developed control scheme.
This article focuses on the vibration reducing and angle tracking problems of a flexible unmanned spacecraft system subject to input nonlinearity, asymmetric output constraint, and system parameter uncertainties. Using the backstepping technique, a boundary control scheme is designed to suppress the vibration and regulate the angle of the spacecraft. A modified asymmetric barrier Lyapunov function is utilized to ensure that the output constraint is never transgressed. Considering the system robustness, neural networks are used to handle the system parameter uncertainties and compensate for the effect of input nonlinearity. With the proposed adaptive neural network control law, the stability of the closed-loop system is proved based on the Lyapunov analysis, and numerical simulations are carried out to show the validity of the developed control scheme.This article focuses on the vibration reducing and angle tracking problems of a flexible unmanned spacecraft system subject to input nonlinearity, asymmetric output constraint, and system parameter uncertainties. Using the backstepping technique, a boundary control scheme is designed to suppress the vibration and regulate the angle of the spacecraft. A modified asymmetric barrier Lyapunov function is utilized to ensure that the output constraint is never transgressed. Considering the system robustness, neural networks are used to handle the system parameter uncertainties and compensate for the effect of input nonlinearity. With the proposed adaptive neural network control law, the stability of the closed-loop system is proved based on the Lyapunov analysis, and numerical simulations are carried out to show the validity of the developed control scheme.
Author Liu, Yu
Chen, Xiongbin
Yokoi, Hiroshi
Wu, Yilin
Cai, He
Author_xml – sequence: 1
  givenname: Yu
  orcidid: 0000-0002-4191-5974
  surname: Liu
  fullname: Liu, Yu
  email: auylau@scut.edu.cn
  organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 2
  givenname: Xiongbin
  surname: Chen
  fullname: Chen, Xiongbin
  email: aucxb@mail.scut.edu.cn
  organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 3
  givenname: Yilin
  orcidid: 0000-0003-1721-1931
  surname: Wu
  fullname: Wu, Yilin
  email: lyw@gdei.edu.cn
  organization: Department of Computer Science, Guangdong University of Education, Guangzhou, China
– sequence: 4
  givenname: He
  orcidid: 0000-0002-0411-1774
  surname: Cai
  fullname: Cai, He
  email: caihe@scut.edu.cn
  organization: School of Automation Science and Engineering, South China University of Technology, Guangzhou, China
– sequence: 5
  givenname: Hiroshi
  surname: Yokoi
  fullname: Yokoi, Hiroshi
  email: yokoi@mce.uec.ac.jp
  organization: Department of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications, Chofu, Japan
BackLink https://cir.nii.ac.jp/crid/1872553967815468544$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/33999824$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1UREvpC4CELNEFmxn8mzjL0YhCpdF0MUViZznOjeQhsYPjUObt6zDTLrrAC18vvnN8dc5bdOaDB4TeU7KklFRf7rfbzW7JCKNLTkpWkfIVumC0YAvGlTp7fpc_z9HVOO5JPgWRhajeoHPOq6pSTFygh1VjhuT-AN7CFE2XR3oI8RdeB59i6HBoscE3Hfx1dQd4NxgLNpo24d1U78EmnAK-9cOU8Db4znkw0aUDNr7Bq_HQ95Cis_huSjOSTccUjfPpHXrdmm6Eq9O8RD9uvt6vvy82d99u16vNwgpRpIVSeemyBSkbYgGASCUJsW3ZcNOSqiGsVrw0VQMNZQURxKiaClEWwOrGcMMv0eej7xDD7wnGpHs3Wug64yFMo2aSKUUFJTyjn16g-zBFn7fTLAdc8EIykqmPJ2qqe2j0EF1v4kE_RZoBdQRsDOMYodXWJZPcnKdxnaZEzwXqfwXquUB9KjBL2Qvpk_t_RddHkXcufzXfVJVMSl4VpaJSFEqKea0PR8zlGJ99K8GZIpQ_AqzRsLs
CODEN ITNNAL
CitedBy_id crossref_primary_10_1007_s11071_024_10015_0
crossref_primary_10_3934_mbe_2023906
crossref_primary_10_1109_TFUZZ_2024_3410269
crossref_primary_10_1109_TFUZZ_2022_3199573
crossref_primary_10_1007_s12555_023_0104_5
crossref_primary_10_1016_j_oceaneng_2024_120020
crossref_primary_10_1109_TASE_2023_3340332
crossref_primary_10_1109_TSMC_2023_3283492
crossref_primary_10_1109_TNNLS_2022_3157950
crossref_primary_10_1002_asjc_2767
crossref_primary_10_1109_ACCESS_2024_3474301
crossref_primary_10_1109_TII_2023_3316222
crossref_primary_10_1109_TFUZZ_2024_3442308
crossref_primary_10_1109_JAS_2023_123213
crossref_primary_10_1007_s11071_022_07888_4
crossref_primary_10_1016_j_ijnonlinmec_2024_104914
crossref_primary_10_1007_s12555_022_0707_2
crossref_primary_10_1109_TFUZZ_2024_3375449
crossref_primary_10_1016_j_engappai_2023_107503
crossref_primary_10_1016_j_automatica_2024_111815
crossref_primary_10_1109_TFUZZ_2023_3328030
crossref_primary_10_1109_TFUZZ_2024_3485098
crossref_primary_10_1109_TAES_2024_3367964
crossref_primary_10_1109_JAS_2022_106040
crossref_primary_10_1016_j_ymssp_2024_111640
crossref_primary_10_1109_TCST_2021_3104648
crossref_primary_10_1016_j_ast_2023_108640
crossref_primary_10_1016_j_jfranklin_2024_01_040
crossref_primary_10_1109_TAES_2024_3358778
crossref_primary_10_1007_s11424_023_2312_8
crossref_primary_10_1007_s11071_024_10809_2
crossref_primary_10_1109_TSMC_2024_3492053
crossref_primary_10_1109_TMECH_2021_3126686
crossref_primary_10_1109_TSMC_2022_3149283
crossref_primary_10_1109_TFUZZ_2023_3293194
crossref_primary_10_1631_FITEE_2300679
crossref_primary_10_1109_TFUZZ_2024_3466218
crossref_primary_10_1016_j_ejcon_2023_100780
crossref_primary_10_1002_asjc_3265
crossref_primary_10_1016_j_ast_2024_109244
crossref_primary_10_1007_s13344_024_0023_0
crossref_primary_10_1109_TFUZZ_2022_3164512
crossref_primary_10_1007_s12555_021_0181_2
crossref_primary_10_1109_TIE_2022_3227288
crossref_primary_10_1109_TAES_2022_3183550
crossref_primary_10_1109_TAI_2023_3347182
crossref_primary_10_1109_TNNLS_2023_3263946
crossref_primary_10_1007_s11633_022_1346_z
crossref_primary_10_1109_TSMC_2024_3449343
crossref_primary_10_1016_j_ejcon_2024_100970
crossref_primary_10_1016_j_ast_2024_109093
crossref_primary_10_1177_10775463241275720
crossref_primary_10_1016_j_oceaneng_2022_113001
crossref_primary_10_1016_j_ast_2023_108504
crossref_primary_10_1109_TSMC_2022_3221734
crossref_primary_10_1080_00207179_2025_2473676
crossref_primary_10_1016_j_cnsns_2025_108697
crossref_primary_10_1109_TFUZZ_2022_3165634
crossref_primary_10_1109_TFUZZ_2024_3455939
crossref_primary_10_1007_s11071_022_07980_9
crossref_primary_10_1109_TFUZZ_2024_3489719
crossref_primary_10_1109_TASE_2023_3326347
crossref_primary_10_1016_j_asr_2024_07_004
crossref_primary_10_1016_j_ast_2023_108470
crossref_primary_10_1109_LRA_2024_3405386
crossref_primary_10_1109_TMECH_2023_3287915
crossref_primary_10_1007_s11071_024_10063_6
crossref_primary_10_1109_TCYB_2021_3055151
crossref_primary_10_1109_TFUZZ_2022_3164536
crossref_primary_10_1002_oca_2952
crossref_primary_10_1007_s11432_024_4293_3
crossref_primary_10_1109_TIE_2023_3269481
crossref_primary_10_3390_asi5040061
crossref_primary_10_1016_j_jfranklin_2024_107395
crossref_primary_10_1002_rnc_7634
crossref_primary_10_1007_s12555_022_0675_6
crossref_primary_10_1002_rnc_7355
crossref_primary_10_1080_00207179_2024_2442734
crossref_primary_10_1016_j_neucom_2024_127382
crossref_primary_10_1002_asjc_3231
crossref_primary_10_1016_j_jfranklin_2023_09_035
crossref_primary_10_1016_j_ins_2023_120014
crossref_primary_10_1109_TFUZZ_2024_3365072
crossref_primary_10_1002_rnc_6723
crossref_primary_10_1080_00207721_2025_2480203
crossref_primary_10_1007_s11071_022_07784_x
crossref_primary_10_1109_TCYB_2024_3524242
crossref_primary_10_1109_TFUZZ_2024_3434690
crossref_primary_10_1109_TMECH_2023_3235054
crossref_primary_10_1080_00207721_2024_2411039
crossref_primary_10_1002_acs_3633
crossref_primary_10_1016_j_nahs_2023_101405
crossref_primary_10_1109_TMECH_2024_3359334
crossref_primary_10_1109_JAS_2023_123093
crossref_primary_10_1016_j_conengprac_2023_105627
crossref_primary_10_1007_s11071_023_08389_8
crossref_primary_10_1109_JSTSP_2024_3430822
crossref_primary_10_1016_j_jfranklin_2023_07_035
crossref_primary_10_1109_TFUZZ_2024_3418772
crossref_primary_10_1177_10775463221124640
Cites_doi 10.1109/TII.2018.2873175
10.1109/TIE.2016.2530789
10.1109/TSMC.2020.2999485
10.1016/j.automatica.2017.07.028
10.1007/s11432-019-2893-y
10.1109/CCA.2013.6662773
10.1109/TSMC.2018.2882734
10.1109/TIE.2018.2884172
10.1109/TSMC.2019.2944900
10.1109/TCYB.2016.2581173
10.1109/TNNLS.2019.2952175
10.1109/TSMC.2018.2843523
10.1109/TIE.2017.2694391
10.1109/CDC.2005.1583507
10.1109/TMECH.2017.2721553
10.1016/j.automatica.2014.10.117
10.1109/TCST.2017.2780055
10.1109/TAC.2015.2471815
10.1016/j.automatica.2011.08.044
10.1109/TFUZZ.2015.2486811
10.1109/TCYB.2019.2923461
10.1109/ACCESS.2018.2805800
10.1109/TSMC.2016.2562506
10.1109/TMECH.2019.2951812
10.1109/TCST.2008.2012166
10.1109/TFUZZ.2018.2882173
10.1109/TFUZZ.2018.2826475
10.1007/s11432-019-2714-7
10.1109/TIE.2015.2432107
10.1109/TCYB.2017.2667680
10.1109/TFUZZ.2017.2761323
10.1109/TSMC.2015.2504552
10.1109/TNNLS.2017.2665581
10.1109/TCYB.2021.3055151
10.1109/TMECH.2020.2975567
10.1109/TIE.2019.2931230
10.1109/TIE.2019.2946554
10.1109/TNNLS.2018.2872595
10.1016/j.automatica.2014.09.006
10.1016/j.isatra.2016.04.006
10.1109/TCYB.2015.2456028
10.1016/j.automatica.2016.11.002
10.1109/TMECH.2020.2987963
10.1109/TNN.2010.2047115
10.1109/TCYB.2018.2808321
10.1007/BF00940460
10.1007/BF00934533
10.1109/TAC.2009.2020638
10.1109/TIE.2015.2421884
10.1109/TAC.2018.2874746
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
RYH
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2021.3072907
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CiNii Complete
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 6234
ExternalDocumentID 33999824
10_1109_TNNLS_2021_3072907
9432801
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2020B1515120071
– fundername: National Natural Science Foundation of China
  grantid: 61203060
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities of SCUT
  grantid: 2020ZYGXZR059
  funderid: 10.13039/501100012226
– fundername: Science and Technology Planning Project of Guangdong Province
  grantid: 2019A050510015
  funderid: 10.13039/501100012245
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
RYH
AAYXX
CITATION
RIG
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c446t-880607fe55d0ceee058500cf7d3af09d02b837a9ded126040a8b14476e2bda3a3
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Fri Jul 11 16:55:41 EDT 2025
Mon Jun 30 07:07:03 EDT 2025
Thu Apr 03 07:00:51 EDT 2025
Tue Jul 01 00:27:39 EDT 2025
Thu Apr 24 23:12:00 EDT 2025
Thu Jun 26 22:41:37 EDT 2025
Wed Aug 27 02:14:42 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-880607fe55d0ceee058500cf7d3af09d02b837a9ded126040a8b14476e2bda3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4191-5974
0000-0002-0411-1774
0000-0003-1721-1931
PMID 33999824
PQID 2729636520
PQPubID 85436
PageCount 9
ParticipantIDs pubmed_primary_33999824
nii_cinii_1872553967815468544
ieee_primary_9432801
proquest_miscellaneous_2528814103
crossref_citationtrail_10_1109_TNNLS_2021_3072907
crossref_primary_10_1109_TNNLS_2021_3072907
proquest_journals_2729636520
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE Transactions on Neural Networks and Learning Systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2022
Publisher IEEE
Institute of Electrical and Electronics Engineers (IEEE)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers (IEEE)
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref10
  doi: 10.1109/TII.2018.2873175
– ident: ref1
  doi: 10.1109/TIE.2016.2530789
– ident: ref18
  doi: 10.1109/TSMC.2020.2999485
– ident: ref27
  doi: 10.1016/j.automatica.2017.07.028
– ident: ref46
  doi: 10.1007/s11432-019-2893-y
– ident: ref6
  doi: 10.1109/CCA.2013.6662773
– ident: ref38
  doi: 10.1109/TSMC.2018.2882734
– ident: ref49
  doi: 10.1109/TIE.2018.2884172
– ident: ref48
  doi: 10.1109/TSMC.2019.2944900
– ident: ref45
  doi: 10.1109/TCYB.2016.2581173
– ident: ref31
  doi: 10.1109/TNNLS.2019.2952175
– ident: ref21
  doi: 10.1109/TSMC.2018.2843523
– ident: ref35
  doi: 10.1109/TIE.2017.2694391
– ident: ref47
  doi: 10.1109/CDC.2005.1583507
– ident: ref39
  doi: 10.1109/TMECH.2017.2721553
– ident: ref12
  doi: 10.1016/j.automatica.2014.10.117
– ident: ref19
  doi: 10.1109/TCST.2017.2780055
– ident: ref17
  doi: 10.1109/TAC.2015.2471815
– ident: ref44
  doi: 10.1016/j.automatica.2011.08.044
– ident: ref26
  doi: 10.1109/TFUZZ.2015.2486811
– ident: ref40
  doi: 10.1109/TCYB.2019.2923461
– ident: ref25
  doi: 10.1109/ACCESS.2018.2805800
– ident: ref14
  doi: 10.1109/TSMC.2016.2562506
– ident: ref4
  doi: 10.1109/TMECH.2019.2951812
– ident: ref5
  doi: 10.1109/TCST.2008.2012166
– ident: ref42
  doi: 10.1109/TFUZZ.2018.2882173
– ident: ref8
  doi: 10.1109/TFUZZ.2018.2826475
– ident: ref43
  doi: 10.1007/s11432-019-2714-7
– ident: ref3
  doi: 10.1109/TIE.2015.2432107
– ident: ref29
  doi: 10.1109/TCYB.2017.2667680
– ident: ref41
  doi: 10.1109/TFUZZ.2017.2761323
– ident: ref9
  doi: 10.1109/TSMC.2015.2504552
– ident: ref36
  doi: 10.1109/TNNLS.2017.2665581
– ident: ref50
  doi: 10.1109/TCYB.2021.3055151
– ident: ref28
  doi: 10.1109/TMECH.2020.2975567
– ident: ref16
  doi: 10.1109/TIE.2019.2931230
– ident: ref32
  doi: 10.1109/TIE.2019.2946554
– ident: ref37
  doi: 10.1109/TNNLS.2018.2872595
– ident: ref13
  doi: 10.1016/j.automatica.2014.09.006
– ident: ref20
  doi: 10.1016/j.isatra.2016.04.006
– ident: ref24
  doi: 10.1109/TCYB.2015.2456028
– ident: ref22
  doi: 10.1016/j.automatica.2016.11.002
– ident: ref11
  doi: 10.1109/TMECH.2020.2987963
– ident: ref34
  doi: 10.1109/TNN.2010.2047115
– ident: ref30
  doi: 10.1109/TCYB.2018.2808321
– ident: ref2
  doi: 10.1007/BF00940460
– ident: ref15
  doi: 10.1007/BF00934533
– ident: ref33
  doi: 10.1109/TAC.2009.2020638
– ident: ref7
  doi: 10.1109/TIE.2015.2421884
– ident: ref23
  doi: 10.1109/TAC.2018.2874746
SSID ssj0000605649
ssib030786659
ssib058575017
ssib053393622
Score 2.6614454
Snippet This article focuses on the vibration reducing and angle tracking problems of a flexible unmanned spacecraft system subject to input nonlinearity, asymmetric...
SourceID proquest
pubmed
crossref
nii
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6226
SubjectTerms Adaptive control
Adaptive neural network control
Adaptive systems
asymmetric constraint
Asymmetry
Backstepping
backstepping technique
Boundary control
Control theory
Feedback control
Flexible spacecraft
flexible unmanned spacecraft
Liapunov functions
Lyapunov methods
Network control
Neural networks
Nonlinear systems
Nonlinearity
Parameter uncertainty
Robustness (mathematics)
Space vehicles
Spacecraft
Stability analysis
Uncertainty
Unmanned spacecraft
Vibration
vibration control
Vibrations
Title Adaptive Neural Network Control of a Flexible Spacecraft Subject to Input Nonlinearity and Asymmetric Output Constraint
URI https://ieeexplore.ieee.org/document/9432801
https://cir.nii.ac.jp/crid/1872553967815468544
https://www.ncbi.nlm.nih.gov/pubmed/33999824
https://www.proquest.com/docview/2729636520
https://www.proquest.com/docview/2528814103
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9UwELZKT1woUJZAi4zEDfLq2I4TH58qngqCcGgrvVtkx7ZU0SZVm6gqv54ZZ5FAgLhEkTJeohl75rNnIeQdqmSJET1c2ZDKXITU2kalXBqTeR2YHb0tKnVyLj9v8-0O-bDEwnjvo_OZX-FrvMt3XTPgUdmRloKXGKz1AIDbGKu1nKcwsMtVtHZ5pnjKRbGdY2SYPjqrqi-ngAZ5thKYK5th8T0BylmXXP6ikmKNFVA07cXF343OqHw2e-TrPO3R5-T7aujtqvnxW0bH__2vx-TRZIXS9Sg2T8iOb5-SvbnCA50W_D65WztzjRsixSQe0KIavcbp8ejhTrtADd1gUk176ekpAHAwQ03oKWxIeMJD-45-aqFXWo05OQwWy6OmdXR9e391hfW8Gvpt6JEEi4fGkhX9M3K--Xh2fJJOpRrSBjjdp7ALKFYEn-eOgdr1DFAIY00onDCBace4BSRstPMuAwQlmSktQLlCeW6dEUY8J7tt1_qXhPLARGgypYIAa4dJi_c3Tpfa5KYQNiQkm7lVN1Mec5zbZR3xDNN1ZHaNzK4nZifk_dLmeszi8U_qfeTRQjmxJyGHIBQwJj6zsgAwJjToejBCVZlLmZCDWVzqaSO4rTn0qITKOUvI2-UzLGG8lzGt7wagyXlZor-tSMiLUcyWsWcZffXnOb0mDznGY8TgyAOy298M_hCspN6-icvjJ1kxCEE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcoALBQol0IKR4ISydezESQ4cVoVVly7h0K20t2AntlTRZldsVlV5Fl6Fd2MmfxIIuFXiEkWK4zjJ55lv7PkBeEUqOaSIHqGM88NIOt-YQvki1DqwqeOm9bbI1PFZ-GERLbbg-xALY61tnM_siE6bvfxyWWxoqewwDaVAidq5UJ7Y6ys00NZvp-_wb74WYvJ-fnTsdzUE_AKHUPsIT8VjZ6Oo5KgPLEd6zHnh4lJqx9OSC4Mmmk5LWwZI7UOuE4M2RqysMKWWWmK_t-A28oxItNFhwwoOdhyphl-LQAlfyHjRR-Xw9HCeZbNTtD9FMJKUnZtTuT-JdCBNRPiLEmyquqBqq87P_05zG3U32YEf_YdqvVy-jDa1GRXffssh-b9-yftwr-PZbNxOjAewZauHsNPXsGCdSNuFq3GpVyTyGaUpwTuy1i-eHbU-_GzpmGYTShtqLiw7XekCibZ2NUORS2tYrF6yaYW9sqzNOqKpHCDTVcnG6-vLS6pYVrBPm5qaUHnUpihH_QjObuT1H8N2tazsE2DCcemKQCknkc_x0NAOVZkmqY50LI3zIOjRkRddpnYa20XeWGw8zRtw5QSuvAOXB2-Ge1ZtnpJ_tt4lTAwtOzh4cIAgxGfSMUhiNDdlimwGabZKojD0YL-HZ96JunUusEclVSS4By-HyyikaOdJV3a5wTaRSBLyKJYe7LWwHp7dz4mnfx7TC7hzPP84y2fT7OQZ3BUUfdKEgu7Ddv11Yw-QE9bmeTM1GXy-aQT_BL_7Zck
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Neural+Network+Control+of+a+Flexible+Spacecraft+Subject+to+Input+Nonlinearity+and+Asymmetric+Output+Constraint&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Liu%2C+Yu&rft.au=Chen%2C+Xiongbin&rft.au=Wu%2C+Yilin&rft.au=Cai%2C+He&rft.date=2022-11-01&rft.issn=2162-2388&rft.eissn=2162-2388&rft.volume=33&rft.issue=11&rft.spage=6226&rft_id=info:doi/10.1109%2FTNNLS.2021.3072907&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon