Translation of nanotechnology-based implants for orthopedic applications: current barriers and future perspective
The objective of bioimplant engineering is to develop biologically compatible materials for restoring, preserving, or altering damaged tissues and/or organ functions. The variety of substances used for orthopedic implant applications has been substantially influenced by modern material technology. T...
Saved in:
Published in | Frontiers in bioengineering and biotechnology Vol. 11; p. 1206806 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
22.08.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2296-4185 2296-4185 |
DOI | 10.3389/fbioe.2023.1206806 |
Cover
Loading…
Abstract | The objective of bioimplant engineering is to develop biologically compatible materials for restoring, preserving, or altering damaged tissues and/or organ functions. The variety of substances used for orthopedic implant applications has been substantially influenced by modern material technology. Therefore, nanomaterials can mimic the surface properties of normal tissues, including surface chemistry, topography, energy, and wettability. Moreover, the new characteristics of nanomaterials promote their application in sustaining the progression of many tissues. The current review establishes a basis for nanotechnology-driven biomaterials by demonstrating the fundamental design problems that influence the success or failure of an orthopedic graft, cell adhesion, proliferation, antimicrobial/antibacterial activity, and differentiation. In this context, extensive research has been conducted on the nano-functionalization of biomaterial surfaces to enhance cell adhesion, differentiation, propagation, and implant population with potent antimicrobial activity. The possible nanomaterials applications (in terms of a functional nanocoating or a nanostructured surface) may resolve a variety of issues (such as bacterial adhesion and corrosion) associated with conventional metallic or non-metallic grafts, primarily for optimizing implant procedures. Future developments in orthopedic biomaterials, such as smart biomaterials, porous structures, and 3D implants, show promise for achieving the necessary characteristics and shape of a stimuli-responsive implant. Ultimately, the major barriers to the commercialization of nanotechnology-derived biomaterials are addressed to help overcome the limitations of current orthopedic biomaterials in terms of critical fundamental factors including cost of therapy, quality, pain relief, and implant life. Despite the recent success of nanotechnology, there are significant hurdles that must be overcome before nanomedicine may be applied to orthopedics. The objective of this review was to provide a thorough examination of recent advancements, their commercialization prospects, as well as the challenges and potential perspectives associated with them. This review aims to assist healthcare providers and researchers in extracting relevant data to develop translational research within the field. In addition, it will assist the readers in comprehending the scope and gaps of nanomedicine’s applicability in the orthopedics field. |
---|---|
AbstractList | The objective of bioimplant engineering is to develop biologically compatible materials for restoring, preserving, or altering damaged tissues and/or organ functions. The variety of substances used for orthopedic implant applications has been substantially influenced by modern material technology. Therefore, nanomaterials can mimic the surface properties of normal tissues, including surface chemistry, topography, energy, and wettability. Moreover, the new characteristics of nanomaterials promote their application in sustaining the progression of many tissues. The current review establishes a basis for nanotechnology-driven biomaterials by demonstrating the fundamental design problems that influence the success or failure of an orthopedic graft, cell adhesion, proliferation, antimicrobial/antibacterial activity, and differentiation. In this context, extensive research has been conducted on the nano-functionalization of biomaterial surfaces to enhance cell adhesion, differentiation, propagation, and implant population with potent antimicrobial activity. The possible nanomaterials applications (in terms of a functional nanocoating or a nanostructured surface) may resolve a variety of issues (such as bacterial adhesion and corrosion) associated with conventional metallic or non-metallic grafts, primarily for optimizing implant procedures. Future developments in orthopedic biomaterials, such as smart biomaterials, porous structures, and 3D implants, show promise for achieving the necessary characteristics and shape of a stimuli-responsive implant. Ultimately, the major barriers to the commercialization of nanotechnology-derived biomaterials are addressed to help overcome the limitations of current orthopedic biomaterials in terms of critical fundamental factors including cost of therapy, quality, pain relief, and implant life. Despite the recent success of nanotechnology, there are significant hurdles that must be overcome before nanomedicine may be applied to orthopedics. The objective of this review was to provide a thorough examination of recent advancements, their commercialization prospects, as well as the challenges and potential perspectives associated with them. This review aims to assist healthcare providers and researchers in extracting relevant data to develop translational research within the field. In addition, it will assist the readers in comprehending the scope and gaps of nanomedicine's applicability in the orthopedics field.The objective of bioimplant engineering is to develop biologically compatible materials for restoring, preserving, or altering damaged tissues and/or organ functions. The variety of substances used for orthopedic implant applications has been substantially influenced by modern material technology. Therefore, nanomaterials can mimic the surface properties of normal tissues, including surface chemistry, topography, energy, and wettability. Moreover, the new characteristics of nanomaterials promote their application in sustaining the progression of many tissues. The current review establishes a basis for nanotechnology-driven biomaterials by demonstrating the fundamental design problems that influence the success or failure of an orthopedic graft, cell adhesion, proliferation, antimicrobial/antibacterial activity, and differentiation. In this context, extensive research has been conducted on the nano-functionalization of biomaterial surfaces to enhance cell adhesion, differentiation, propagation, and implant population with potent antimicrobial activity. The possible nanomaterials applications (in terms of a functional nanocoating or a nanostructured surface) may resolve a variety of issues (such as bacterial adhesion and corrosion) associated with conventional metallic or non-metallic grafts, primarily for optimizing implant procedures. Future developments in orthopedic biomaterials, such as smart biomaterials, porous structures, and 3D implants, show promise for achieving the necessary characteristics and shape of a stimuli-responsive implant. Ultimately, the major barriers to the commercialization of nanotechnology-derived biomaterials are addressed to help overcome the limitations of current orthopedic biomaterials in terms of critical fundamental factors including cost of therapy, quality, pain relief, and implant life. Despite the recent success of nanotechnology, there are significant hurdles that must be overcome before nanomedicine may be applied to orthopedics. The objective of this review was to provide a thorough examination of recent advancements, their commercialization prospects, as well as the challenges and potential perspectives associated with them. This review aims to assist healthcare providers and researchers in extracting relevant data to develop translational research within the field. In addition, it will assist the readers in comprehending the scope and gaps of nanomedicine's applicability in the orthopedics field. The objective of bioimplant engineering is to develop biologically compatible materials for restoring, preserving, or altering damaged tissues and/or organ functions. The variety of substances used for orthopedic implant applications has been substantially influenced by modern material technology. Therefore, nanomaterials can mimic the surface properties of normal tissues, including surface chemistry, topography, energy, and wettability. Moreover, the new characteristics of nanomaterials promote their application in sustaining the progression of many tissues. The current review establishes a basis for nanotechnology-driven biomaterials by demonstrating the fundamental design problems that influence the success or failure of an orthopedic graft, cell adhesion, proliferation, antimicrobial/antibacterial activity, and differentiation. In this context, extensive research has been conducted on the nano-functionalization of biomaterial surfaces to enhance cell adhesion, differentiation, propagation, and implant population with potent antimicrobial activity. The possible nanomaterials applications (in terms of a functional nanocoating or a nanostructured surface) may resolve a variety of issues (such as bacterial adhesion and corrosion) associated with conventional metallic or non-metallic grafts, primarily for optimizing implant procedures. Future developments in orthopedic biomaterials, such as smart biomaterials, porous structures, and 3D implants, show promise for achieving the necessary characteristics and shape of a stimuli-responsive implant. Ultimately, the major barriers to the commercialization of nanotechnology-derived biomaterials are addressed to help overcome the limitations of current orthopedic biomaterials in terms of critical fundamental factors including cost of therapy, quality, pain relief, and implant life. Despite the recent success of nanotechnology, there are significant hurdles that must be overcome before nanomedicine may be applied to orthopedics. The objective of this review was to provide a thorough examination of recent advancements, their commercialization prospects, as well as the challenges and potential perspectives associated with them. This review aims to assist healthcare providers and researchers in extracting relevant data to develop translational research within the field. In addition, it will assist the readers in comprehending the scope and gaps of nanomedicine’s applicability in the orthopedics field. |
Author | Jiang, Chanyi Huang, Xiaogang Liu, Zunyong Zhang, Hengjian Chen, Long Zhou, Chao Liang, Wenqing Zhao, Jiayi |
AuthorAffiliation | 2 Department of Orthopedics , Zhoushan Guanghua Hospital , Zhoushan , China 4 Department of Orthopedics , Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University , Zhoushan , Zhejiang , China 1 Department of Orthopedics , Affiliated Hospital of Shaoxing University , Shaoxing , Zhejiang , China 3 Department of Pharmacy , Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University , Zhoushan , China |
AuthorAffiliation_xml | – name: 2 Department of Orthopedics , Zhoushan Guanghua Hospital , Zhoushan , China – name: 3 Department of Pharmacy , Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University , Zhoushan , China – name: 1 Department of Orthopedics , Affiliated Hospital of Shaoxing University , Shaoxing , Zhejiang , China – name: 4 Department of Orthopedics , Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University , Zhoushan , Zhejiang , China |
Author_xml | – sequence: 1 givenname: Long surname: Chen fullname: Chen, Long – sequence: 2 givenname: Chao surname: Zhou fullname: Zhou, Chao – sequence: 3 givenname: Chanyi surname: Jiang fullname: Jiang, Chanyi – sequence: 4 givenname: Xiaogang surname: Huang fullname: Huang, Xiaogang – sequence: 5 givenname: Zunyong surname: Liu fullname: Liu, Zunyong – sequence: 6 givenname: Hengjian surname: Zhang fullname: Zhang, Hengjian – sequence: 7 givenname: Wenqing surname: Liang fullname: Liang, Wenqing – sequence: 8 givenname: Jiayi surname: Zhao fullname: Zhao, Jiayi |
BookMark | eNp9kUtv1DAURiNUJErpH2DlJZsMjl9x2CBUAa1UiU1ZW9fOzYyrjJ3aTqX-e9yZEWpZsPLrfse-Pu-bsxADNs3Hjm4418PnyfqIG0YZ33SMKk3Vm-acsUG1otPy7MX8XXOZ8z2ltGOyl5qdNw93CUKeofgYSJxIgBALul2Ic9w-tRYyjsTvlxlCyWSKicRUdnHB0TsCyzJ7d8jmL8StKWEoxEJKHlMmEEYyrWVNSJa6XtAV_4gfmrcTzBkvT-NF8_vH97ur6_b218-bq2-3rRNClVYL5CMoHHppda8nZ20ntJgmibTXijMEpWQ_DKiHvpe1OeB2UIhOW6e44hfNzZE7Rrg3S_J7SE8mgjeHjZi2BlLxbkYjBfRcCzpax4TqwFLLrAYObnRcIq-sr0fWsto9jq62mWB-BX19EvzObOOj6ajoNaW6Ej6dCCk-rJiL2fvscK7_inHNhmnFWBWjaS1lx1KXYs4Jp7_3dNQ8CzcH4eZZuDkJryH9T8j5cjBT3-Pn_0X_AG64t8w |
CitedBy_id | crossref_primary_10_1016_j_tice_2024_102612 crossref_primary_10_3390_coatings15020124 crossref_primary_10_3390_nano14181484 crossref_primary_10_32628_IJSRST241161134 crossref_primary_10_3389_fbioe_2024_1389071 crossref_primary_10_4103_REGENMED_REGENMED_D_24_00024 crossref_primary_10_7759_cureus_72838 crossref_primary_10_1186_s40001_023_01429_4 |
Cites_doi | 10.3390/ijms23031045 10.3390/biomimetics5020027 10.3390/ma12030500 10.1002/mabi.201200097 10.1002/adem.202200833 10.1155/2012/389485 10.1002/bit.25160 10.3390/ma15031148 10.1002/jbm.a.35057 10.1002/btpr.2469 10.1007/s10856-013-4989-z 10.1016/j.gassur.2003.09.025 10.5772/intechopen.83839 10.1016/j.nantod.2008.10.014 10.1007/s10439-012-0605-5 10.1080/10643389.2018.1554402 10.1016/j.bej.2022.108522 10.1016/j.actbio.2016.05.031 10.1016/j.biomaterials.2009.09.057 10.1016/j.msec.2019.05.019 10.1021/nn200500h 10.37358/mp.19.3.5229 10.1016/j.jot.2018.06.006 10.1186/ar2180 10.3390/polym12040905 10.3390/membranes12111112 10.1586/erd.09.59 10.1016/j.actbio.2010.09.015 10.2217/3dp-2022-0007 10.1016/j.mattod.2015.12.003 10.1177/1464420719882458 10.1016/j.yofte.2021.102479 10.37358/rc.19.2.6974 10.1016/j.electacta.2018.10.042 10.1016/j.actbio.2014.10.021 10.1038/jid.2014.90 10.1089/ten.teb.2012.0624 10.12968/hosp.2001.62.2.2379 10.1016/j.actbio.2011.01.011 10.1007/s10439-010-0033-3 10.1016/j.msec.2015.11.049 10.1016/j.matpr.2021.09.459 10.1016/j.biomaterials.2011.10.030 10.1089/ten.teb.2008.0304 10.1039/c4cc02442g 10.1016/j.jma.2021.06.024 10.1039/c8cs90055h 10.1002/jbm.a.32452 10.3928/01477447-20111122-07 10.1016/j.msec.2019.110154 10.1016/j.biopha.2020.111103 10.1007/978-981-16-0002-9_1 10.1016/j.actbio.2016.01.004 10.1038/nm1684 10.3390/met13020200 10.1016/j.jconrel.2014.04.035 10.9790/264X-0403017883 10.3390/nano7060124 10.1021/nl052405t 10.1002/adma.200600319 10.1038/nphoton.2013.34 10.1038/nature14060 10.1002/jbm.a.36930 10.1126/scitranslmed.abb3946 10.1039/d2na00439a 10.1016/j.msea.2012.05.104 10.1002/adhm.201500272 10.1007/s00590-018-2193-z 10.1016/j.cbi.2018.02.006 10.1021/acsnano.5b06663 10.1016/j.biomaterials.2006.11.024 10.1302/0301-620x.85b7.13959 10.1155/2022/8759060 10.1089/ten.2007.13.ft-353 10.3109/17453674.2015.1056702 10.1016/j.actbio.2016.06.023 10.1016/s1047-8477(02)00635-4 10.1021/bm050314k 10.1016/j.arabjc.2020.102977 10.1111/jphp.12672 10.2106/jbjs.f.00983 10.1016/j.bioactmat.2021.11.012 10.1016/B978-0-12-809880-6.00033-3 10.1007/978-1-4614-6255-2_2 10.1016/j.actbio.2018.01.016 10.1039/c0nr00192a 10.3139/146.101520 10.1126/sciadv.abc1725 10.1002/cjce.20411 10.1089/ten.teb.2015.0147 10.1002/jbm.b.31697 10.3390/jfb3020432 10.1038/539177a 10.1007/s10856-005-4713-8 10.15406/atroa.2016.01.00004 10.1016/j.actbio.2022.02.027 10.1016/j.arthro.2007.07.033 10.1002/adma.201502422 10.1177/0363546509333011 10.1016/j.conb.2017.12.009 10.1016/j.biomaterials.2009.11.110 10.1002/jps.24469 10.1021/am405418g 10.1016/j.tcr.2022.100706 10.1038/nature08601 10.3390/ijms19082255 10.2106/jbjs.e.01307 10.3390/ma8095273 10.2147/ijn.s7289 10.3892/etm.2020.9337 10.1021/nn507488s 10.2174/1567201816666190917123948 10.1039/c7cs00807d 10.1002/jbm.b.30170 10.1016/j.matpr.2018.06.393 10.3877/cma.j.issn.2096-112X.2020.01.004 10.1002/mabi.201100508 10.1016/j.tibs.2018.11.001 10.2147/ijn.s270229 10.37358/mp.19.4.5302 10.1186/s13018-019-1097-x 10.1089/ten.tea.2008.0014 10.1016/j.jconrel.2018.12.012 10.1016/j.biomaterials.2009.09.081 10.1016/j.jconrel.2013.10.017 10.3390/pr9111949 10.1016/j.mattod.2015.11.005 10.1016/j.ijbiomac.2015.03.070 10.1515/9783110619249 10.1016/j.jconrel.2008.10.021 10.3892/etm.2021.10427 10.1038/nm.3154 10.1038/s41413-020-00131-z 10.1002/jor.20456 10.1016/j.cobme.2019.02.004 10.1016/j.matdes.2013.09.045 10.1007/s11095-010-0173-z 10.1055/s-2006-933445 10.1016/j.actbio.2008.09.022 10.1002/macp.201400427 10.1302/0301-620x.90b5.20360 10.1016/j.biomaterials.2012.03.076 10.1007/s12011-022-03168-9 10.1016/j.msec.2006.12.012 10.1016/j.msec.2015.01.088 10.1186/s13045-019-0833-3 10.1002/wnan.28 10.1039/c8tx00248g 10.1021/nl901582f 10.5772/19690 10.1007/s40204-018-0083-4 10.1016/j.biotechadv.2012.08.001 10.1002/adma.201300584 10.1242/jcs.01496 10.1021/nl504660t |
ContentType | Journal Article |
Copyright | Copyright © 2023 Chen, Zhou, Jiang, Huang, Liu, Zhang, Liang and Zhao. Copyright © 2023 Chen, Zhou, Jiang, Huang, Liu, Zhang, Liang and Zhao. 2023 Chen, Zhou, Jiang, Huang, Liu, Zhang, Liang and Zhao |
Copyright_xml | – notice: Copyright © 2023 Chen, Zhou, Jiang, Huang, Liu, Zhang, Liang and Zhao. – notice: Copyright © 2023 Chen, Zhou, Jiang, Huang, Liu, Zhang, Liang and Zhao. 2023 Chen, Zhou, Jiang, Huang, Liu, Zhang, Liang and Zhao |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fbioe.2023.1206806 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Chen et al |
EISSN | 2296-4185 |
ExternalDocumentID | oai_doaj_org_article_54a73840dbc2461ab0b2b8a3acdc35e3 PMC10478008 10_3389_fbioe_2023_1206806 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RPM 7X8 5PM |
ID | FETCH-LOGICAL-c446t-84e3da6e975b878fcbb1484ff5e078632ea665799e89775185a3b96eec8bc6363 |
IEDL.DBID | M48 |
ISSN | 2296-4185 |
IngestDate | Wed Aug 27 01:20:45 EDT 2025 Thu Aug 21 18:36:40 EDT 2025 Thu Jul 10 22:23:48 EDT 2025 Thu Apr 24 22:51:50 EDT 2025 Tue Jul 01 03:36:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-84e3da6e975b878fcbb1484ff5e078632ea665799e89775185a3b96eec8bc6363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Reviewed by: Abbas Rahdar, Zabol University, Iran Silvia Spriano, Polytechnic University of Turin, Italy Edited by: Giada Graziana Genchi, University of Bari Aldo Moro, Italy These authors have contributed equally to this work |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fbioe.2023.1206806 |
PQID | 2862200080 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_54a73840dbc2461ab0b2b8a3acdc35e3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10478008 proquest_miscellaneous_2862200080 crossref_primary_10_3389_fbioe_2023_1206806 crossref_citationtrail_10_3389_fbioe_2023_1206806 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-22 |
PublicationDateYYYYMMDD | 2023-08-22 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-22 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in bioengineering and biotechnology |
PublicationYear | 2023 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Rani (B106) 2018; 295 Xu (B145) 2020; 1 Xavier (B143) 2015; 9 Kumar (B67) 2017; 69 Castiglioni (B21) 2017; 7 Liu (B77) 2014; 6 Marin (B85) 2020; 108 Morigi (B90) 2012; 2012 Seidi (B115) 2011; 7 Hennig (B55) 2015; 15 Allo (B3) 2012; 3 Panagopoulos (B98) 2012; 35 Shi (B119) 2016; 10 Zakaria (B149) 2013; 19 Badulescu (B10) 2021; 22 Castro (B22) 2012; 40 Gaharwar (B39) 2013; 25 Wang (B141) 2009; 134 Tran (B134) 2010; 5 Qu (B104) 2011; 96 Cazzola (B23) 2018; 19 Gelinsky (B45) 2007; 98 Vieira (B139) 2017; 33 Puckett (B103) 2010; 31 Li (B72) 2020; 15 Nayak (B91) 2011; 5 Todros (B133) 2021; 9 Oh (B94) 2007; 28 Robinson (B109) 2003; 85 Jackson (B59) 2016; 539 Pattanayak (B101) 2021; 63 Sant (B112) 2010; 88 Arifin (B6) 2014; 55 Heimann (B54) 2020 Rani (B107) 2015; 78 Goenka (B49) 2014; 173 Zheng (B155) 2022; 14 Cross (B27) 2016; 42 Kaur (B64) 2015; 104 Butler (B18) 2008; 26 Ossendorf (B95) 2007; 9 Jäger (B60) 2022 Li (B71) 2022; 2022 Filip (B35); 56 Bankoff (B11) 2012; 61 Gaharwar (B40); 111 Gavaskar (B44) 2018; 28 Filip (B36); 56 Donnaloja (B30) 2020; 12 Harper (B52) 2001; 62 Patel (B100) 2016; 32 Ghosh (B48) 2008; 28 Memarian (B86) 2022; 23 Selmi (B116) 2008; 90 Ravichandran (B108) 2012; 33 Gautam (B43) 2022; 50 Love (B80) 2017 Ott (B96) 2008; 14 Holweg (B57) 2022; 42 Zhang (B151) 2009; 4 Feltz (B32) 2022; 6 Scaini (B113) 2018; 50 Singh (B121) 2008; 14 Pek (B102) 2010; 31 Moffat (B88) 2009; 15 Hobson (B56) 2009; 1 Park (B99) 2007; 13 Festas (B34) 2020; 234 Andereya (B4) 2006; 144 Bond (B17) 2008; 24 Sun (B127) 2007; 19 Kumar (B69); 294 Lu (B81) 2021; 134 Hacker (B51) 2019 Saad (B110) 2018; 5 Wang (B140) 2016; 19 Luo (B82) 2023; 201 Mir (B87) 2018; 7 Badulescu (B8) 2019; 70 Soni (B123) 2018; 4 Zizak (B157) 2003; 141 Gaharwar (B41) 2011; 7 Liu (B76) 2015; 517 Adachi (B2) 2007; 89 Dolcimascolo (B29) 2019 Gaharwar (B38); 187 Thanigaivel (B131) 2022; 187 Auyeung (B7) 2010 Cai (B19) 2006; 6 Khanarian (B66) 2012; 33 Li (B74) 2009; 9 Susa (B128) 2011; 28 He (B53) 2015; 50 Wei (B142) 2021; 13 Zhang (B153) 2005; 6 Tian (B132) 2019; 16 Huebsch (B58) 2009; 462 Tejido-Rastrilla (B130) 2019; 12 Spriano (B125) 2023; 13 Bhaskar (B15) 2021 Ghezzi (B47) 2013; 7 Ma (B84) 2021; 14 Basu (B13) 2022; 143 Samanta (B111) 2019; 103 Gao (B42) 2023; 25 Zhang (B152) 2019; 12 Rambaran (B105) 2022; 4 Ning (B93) 2016; 19 Yang (B147) 2019; 16 Yan (B146) 2015; 12 Ferraris (B33) 2016; 60 Carrow (B20) 2015; 216 Serrano (B117) 2012; 12 Kalyanaraman (B63) 2019; 8 Kerativitayanan (B65) 2015; 4 Kumar (B70) 2019; 49 Derwin (B28) 2006; 88 Badulescu (B9) 2020; 20 Bhanjana (B14) 2019; 293 Scotti (B114) 2010; 31 Antoniac (B5) 2022; 15 Sheikh (B118) 2015; 8 Soo Kim (B124) 2014; 102 Basso (B12) 2015; 86 Gaharwar (B37) 2012; 12 Kumar (B68); 44 Ueno (B137) 2004; 8 Achterberg (B1) 2014; 134 Zandi (B150) 2010; 92 Liu (B75) 2009; 5 Sridharan (B126) 2016; 22 Xie (B144) 2010; 2 Liverani (B79) 2012; 557 Song (B122) 2013; 19 Li (B73) 2019; 14 Tatavarty (B129) 2014; 50 Zheng (B156) 2005; 73 Silver (B120) 2016; 1 Bian (B16) 2016; 41 Tsakiris (B135) 2021; 9 Dormer (B31) 2010; 38 Ghasemi-Mobarakeh (B46) 2019; 10 Griffin (B50) 2004; 117 Crawford (B26) 2009; 37 Tuzlakoglu (B136) 2005; 16 Kumar (B62) 2020; 106 Chimene (B25) 2015; 27 Yang (B148) 2020; 6 Zhao (B154) 2013; 31 James (B61) 2010; 7 Liu (B78) 2019; 48 Pal (B97) 2014 Cheng (B24) 2018; 69 Luthringer (B83) 2013; 24 Montoya (B89) 2021; 9 Ulijn (B138) 2018; 47 Nikolova (B92) 2020; 5 |
References_xml | – volume: 23 start-page: 1045 year: 2022 ident: B86 article-title: Active materials for 3D printing in small animals: Current modalities and future directions for orthopedic applications publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms23031045 – volume: 5 start-page: 27 year: 2020 ident: B92 article-title: Metal oxide nanoparticles as biomedical materials publication-title: Biomimetics doi: 10.3390/biomimetics5020027 – volume: 12 start-page: 500 year: 2019 ident: B130 article-title: Studies on cell compatibility, antibacterial behavior, and zeta potential of Ag-containing polydopamine-coated bioactive glass-ceramic publication-title: Materials doi: 10.3390/ma12030500 – volume: 12 start-page: 1156 year: 2012 ident: B117 article-title: Recent insights into the biomedical applications of shape-memory polymers publication-title: Macromol. Biosci. doi: 10.1002/mabi.201200097 – volume: 25 start-page: 2200833 year: 2023 ident: B42 article-title: Microstructure and corrosion behavior of selective laser‐melted Al–Ti–Ni coating on 90/10 copper–nickel alloy publication-title: Adv. Eng. Mater. doi: 10.1002/adem.202200833 – volume: 2012 start-page: 1 year: 2012 ident: B90 article-title: Nanotechnology in medicine: From inception to market domination publication-title: J. drug Deliv. doi: 10.1155/2012/389485 – volume: 111 start-page: 441 ident: B40 article-title: Nanocomposite hydrogels for biomedical applications publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.25160 – volume: 15 start-page: 1148 year: 2022 ident: B5 article-title: Magnesium-based alloys used in orthopedic surgery publication-title: Materials doi: 10.3390/ma15031148 – volume: 102 start-page: 4044 year: 2014 ident: B124 article-title: Human collagen‐based multilayer scaffolds for tendon-to-bone interface tissue engineering publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.35057 – volume: 33 start-page: 590 year: 2017 ident: B139 article-title: Nanoparticles for bone tissue engineering publication-title: Biotechnol. Prog. doi: 10.1002/btpr.2469 – volume: 24 start-page: 2337 year: 2013 ident: B83 article-title: Production, characterisation, and cytocompatibility of porous titanium-based particulate scaffolds publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-013-4989-z – volume: 8 start-page: 109 year: 2004 ident: B137 article-title: Clinical application of porcine small intestinal submucosa in the management of infected or potentially contaminated abdominal defects publication-title: J. Gastrointest. Surg: official journal of the Society for Surgery of the Alimentary Tract doi: 10.1016/j.gassur.2003.09.025 – volume-title: Biomaterial-supported tissue reconstruction or regeneration year: 2019 ident: B29 article-title: Innovative biomaterials for tissue engineering doi: 10.5772/intechopen.83839 – volume: 4 start-page: 66 year: 2009 ident: B151 article-title: Nanotechnology and nanomaterials: Promises for improved tissue regeneration publication-title: Nano today doi: 10.1016/j.nantod.2008.10.014 – volume: 40 start-page: 1628 year: 2012 ident: B22 article-title: Recent progress in interfacial tissue engineering approaches for osteochondral defects publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-012-0605-5 – volume: 49 start-page: 587 year: 2019 ident: B70 article-title: Recent advances and opportunities in the treatment of hydrocarbons and oils: Metal-organic frameworks-based approaches publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2018.1554402 – volume: 187 start-page: 108522 year: 2022 ident: B131 article-title: Insight on recent development in metallic biomaterials: Strategies involving synthesis, types and surface modification for advanced therapeutic and biomedical applications publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2022.108522 – volume: 41 start-page: 351 year: 2016 ident: B16 article-title: Fatigue behaviors of HP-Mg, Mg–Ca and Mg–Zn–Ca biodegradable metals in air and simulated body fluid publication-title: Acta biomater. doi: 10.1016/j.actbio.2016.05.031 – volume: 31 start-page: 385 year: 2010 ident: B102 article-title: The effect of matrix stiffness on mesenchymal stem cell differentiation in a 3D thixotropic gel publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.09.057 – volume: 103 start-page: 109734 year: 2019 ident: B111 article-title: Au nanoparticle-decorated aragonite microdumbbells for enhanced antibacterial and anticancer activities publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2019.05.019 – volume: 5 start-page: 4670 year: 2011 ident: B91 article-title: Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells publication-title: ACS Nano doi: 10.1021/nn200500h – volume: 56 start-page: 559 ident: B36 article-title: Preliminary investigation on mechanical properties of polymer coating screws for the future fragility fracture fixation publication-title: Mater. Plast. doi: 10.37358/mp.19.3.5229 – volume: 16 start-page: 1 year: 2019 ident: B132 article-title: Hybrid fracture fixation systems developed for orthopaedic applications: A general review publication-title: J. Orthop. Transl. doi: 10.1016/j.jot.2018.06.006 – volume: 9 start-page: R41 year: 2007 ident: B95 article-title: Treatment of posttraumatic and focal osteoarthritic cartilage defects of the knee with autologous polymer-based three-dimensional chondrocyte grafts: 2-year clinical results publication-title: Arthritis Res. Ther. doi: 10.1186/ar2180 – volume: 12 start-page: 905 year: 2020 ident: B30 article-title: Natural and synthetic polymers for bone scaffolds optimization publication-title: Polymers doi: 10.3390/polym12040905 – year: 2022 ident: B60 article-title: first_page settings order article reprints open AccessArticle pore-level multiphase simulations of realistic distillation membranes for water desalination publication-title: Membranes doi: 10.3390/membranes12111112 – volume: 7 start-page: 9 year: 2010 ident: B61 article-title: TissueMend publication-title: Expert Rev. Med. Devices doi: 10.1586/erd.09.59 – volume: 7 start-page: 568 year: 2011 ident: B41 article-title: Assessment of using laponite cross-linked poly(ethylene oxide) for controlled cell adhesion and mineralization publication-title: Acta Biomater. doi: 10.1016/j.actbio.2010.09.015 – volume: 6 start-page: 129 year: 2022 ident: B32 article-title: Mechanical properties of 3D-printed orthopedic one-third tubular plates and cortical screws publication-title: J. 3D Print. Med. doi: 10.2217/3dp-2022-0007 – volume: 19 start-page: 451 year: 2016 ident: B140 article-title: Nanomaterials promise better bone repair publication-title: Mater. Today doi: 10.1016/j.mattod.2015.12.003 – volume: 234 start-page: 218 year: 2020 ident: B34 article-title: Medical devices biomaterials–A review publication-title: Proc. Institution Mech. Eng. Part L J. Mater. Des. Appl. doi: 10.1177/1464420719882458 – volume: 63 start-page: 102479 year: 2021 ident: B101 article-title: Micro engraving on 316L stainless steel orthopedic implant using fiber laser publication-title: Opt. Fiber Technol. doi: 10.1016/j.yofte.2021.102479 – volume: 70 start-page: 638 year: 2019 ident: B8 article-title: Tranexamic acid - major antifibrinolytic agent used to achieve hemostasis in hemophilic patients with anti-factor VIII anti-bodies who must undergo total joint replecement publication-title: Rev. Chim. Buchar doi: 10.37358/rc.19.2.6974 – volume: 293 start-page: 283 year: 2019 ident: B14 article-title: Novel electrochemical sensor for mononitrotoluenes using silver oxide quantum dots publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2018.10.042 – volume: 12 start-page: 227 year: 2015 ident: B146 article-title: Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: In vitro and in vivo assessment of biological performance publication-title: Acta biomater. doi: 10.1016/j.actbio.2014.10.021 – volume: 134 start-page: 1862 year: 2014 ident: B1 article-title: The nano-scale mechanical properties of the extracellular matrix regulate dermal fibroblast function publication-title: J. Investigative Dermatology doi: 10.1038/jid.2014.90 – volume: 19 start-page: 431 year: 2013 ident: B149 article-title: Nanophase hydroxyapatite as a biomaterial in advanced hard tissue engineering: A review publication-title: Tissue Eng. Part B Rev. doi: 10.1089/ten.teb.2012.0624 – volume: 62 start-page: 90 year: 2001 ident: B52 article-title: Permacol™: Clinical experience with a new biomaterial publication-title: Hosp. Med. doi: 10.12968/hosp.2001.62.2.2379 – volume: 7 start-page: 1441 year: 2011 ident: B115 article-title: Gradient biomaterials for soft-to-hard interface tissue engineering publication-title: Acta biomater. doi: 10.1016/j.actbio.2011.01.011 – volume: 38 start-page: 2121 year: 2010 ident: B31 article-title: Emerging techniques in stratified designs and continuous gradients for tissue engineering of interfaces publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-010-0033-3 – volume: 60 start-page: 384 year: 2016 ident: B33 article-title: Multifunctional commercially pure titanium for the improvement of bone integration: Multiscale topography, wettability, corrosion resistance and biological functionalization publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2015.11.049 – volume: 50 start-page: 2206 year: 2022 ident: B43 article-title: Processing of biomaterials for bone tissue engineering: State of the art publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2021.09.459 – volume: 33 start-page: 846 year: 2012 ident: B108 article-title: Precipitation of nanohydroxyapatite on PLLA/PBLG/Collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage publication-title: Biomaterials doi: 10.1016/j.biomaterials.2011.10.030 – volume: 14 start-page: 341 year: 2008 ident: B121 article-title: Strategies and applications for incorporating physical and chemical signal gradients in tissue engineering publication-title: Tissue Eng. Part B Rev. doi: 10.1089/ten.teb.2008.0304 – volume: 50 start-page: 8484 year: 2014 ident: B129 article-title: Synergistic acceleration in the osteogenesis of human mesenchymal stem cells by graphene oxide–calcium phosphate nanocomposites publication-title: Chem. Commun. doi: 10.1039/c4cc02442g – volume: 9 start-page: 1884 year: 2021 ident: B135 article-title: Biodegradable Mg alloys for orthopedic implants–A review publication-title: J. Magnesium Alloys doi: 10.1016/j.jma.2021.06.024 – volume: 47 start-page: 3391 year: 2018 ident: B138 article-title: Peptide and protein nanotechnology into the 2020s: Beyond biology publication-title: Chem. Soc. Rev. doi: 10.1039/c8cs90055h – volume: 92 start-page: 1244 year: 2010 ident: B150 article-title: Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.a.32452 – volume: 35 start-page: e6 year: 2012 ident: B98 article-title: Autologous chondrocyte implantation for knee cartilage injuries: Moderate functional outcome and performance in patients with high-impact activities publication-title: Orthopedics doi: 10.3928/01477447-20111122-07 – volume: 106 start-page: 110154 year: 2020 ident: B62 article-title: Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2019.110154 – volume: 134 start-page: 111103 year: 2021 ident: B81 article-title: Nanomedicines: Redefining traditional medicine publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2020.111103 – start-page: 3 volume-title: Biomaterials in tissue engineering and regenerative medicine year: 2021 ident: B15 article-title: Biomaterials, tissue engineering, and regenerative medicine: A brief outline doi: 10.1007/978-981-16-0002-9_1 – volume: 32 start-page: 77 year: 2016 ident: B100 article-title: Carbon-based hierarchical scaffolds for myoblast differentiation: Synergy between nano-functionalization and alignment publication-title: Acta biomater. doi: 10.1016/j.actbio.2016.01.004 – volume: 14 start-page: 213 year: 2008 ident: B96 article-title: Perfusion-decellularized matrix: Using nature's platform to engineer a bioartificial heart publication-title: Nat. Med. doi: 10.1038/nm1684 – volume: 13 start-page: 200 year: 2023 ident: B125 article-title: Tannic acid coatings to control the degradation of AZ91 Mg alloy porous structures publication-title: Metals doi: 10.3390/met13020200 – volume: 187 start-page: 66 ident: B38 article-title: Amphiphilic beads as depots for sustained drug release integrated into fibrillar scaffolds publication-title: J. Control. release doi: 10.1016/j.jconrel.2014.04.035 – volume: 4 start-page: 78 year: 2018 ident: B123 article-title: Green nanoparticles: Synthesis and applications publication-title: IOSR J. Biotechnol. Biochem. doi: 10.9790/264X-0403017883 – volume: 7 start-page: 124 year: 2017 ident: B21 article-title: Silver nanoparticles in orthopedic applications: New insights on their effects on osteogenic cells publication-title: Nanomaterials doi: 10.3390/nano7060124 – volume: 6 start-page: 669 year: 2006 ident: B19 article-title: Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects publication-title: Nano Lett. doi: 10.1021/nl052405t – volume: 19 start-page: 921 year: 2007 ident: B127 article-title: Nano-to microscale porous silicon as a cell interface for bone-tissue engineering publication-title: Adv. Mater. doi: 10.1002/adma.200600319 – volume: 7 start-page: 400 year: 2013 ident: B47 article-title: A polymer optoelectronic interface restores light sensitivity in blind rat retinas publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.34 – volume: 517 start-page: 68 year: 2015 ident: B76 article-title: An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets publication-title: Nature doi: 10.1038/nature14060 – volume: 108 start-page: 1617 year: 2020 ident: B85 article-title: Biomaterials and biocompatibility: An historical overview publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.36930 – volume: 13 start-page: eabb3946 year: 2021 ident: B142 article-title: Targeting cartilage EGFR pathway for osteoarthritis treatment publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abb3946 – volume: 4 start-page: 3664 year: 2022 ident: B105 article-title: Nanotechnology from lab to industry–a look at current trends publication-title: Nanoscale Adv. doi: 10.1039/d2na00439a – volume: 557 start-page: 54 year: 2012 ident: B79 article-title: Simple fabrication technique for multilayered stratified composite scaffolds suitable for interface tissue engineering publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2012.05.104 – volume: 4 start-page: 1600 year: 2015 ident: B65 article-title: Nanomaterials for engineering stem cell responses publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201500272 – volume: 28 start-page: 1257 year: 2018 ident: B44 article-title: Nanotechnology: The scope and potential applications in orthopedic surgery publication-title: Eur. J. Orthop. Surg. Traumatology doi: 10.1007/s00590-018-2193-z – volume: 295 start-page: 119 year: 2018 ident: B106 article-title: Improvement of antihyperglycemic activity of nano-thymoquinone in rat model of type-2 diabetes publication-title: Chemico-biological Interact. doi: 10.1016/j.cbi.2018.02.006 – volume: 10 start-page: 1292 year: 2016 ident: B119 article-title: Photo-cross-linked scaffold with kartogenin-encapsulated nanoparticles for cartilage regeneration publication-title: Acs Nano doi: 10.1021/acsnano.5b06663 – volume: 28 start-page: 1664 year: 2007 ident: B94 article-title: In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.11.024 – volume: 85 start-page: 989 year: 2003 ident: B109 article-title: Arthroscopic treatment of osteochondral lesions of the talus publication-title: J. Bone & Jt. Surg. Br. doi: 10.1302/0301-620x.85b7.13959 – volume: 2022 start-page: 1 year: 2022 ident: B71 article-title: Application and development of modern 3D printing technology in the field of orthopedics publication-title: BioMed Res. Int. doi: 10.1155/2022/8759060 – volume: 13 start-page: 070126052216001 year: 2007 ident: B99 article-title: Nanofabrication and microfabrication of functional materials for tissue engineering publication-title: Tissue Eng. doi: 10.1089/ten.2007.13.ft-353 – volume: 86 start-page: S1 year: 2015 ident: B12 article-title: Internal fixation of fragility fractures of the femoral neck: Ex vivo biomechanical studies publication-title: Acta Orthop. doi: 10.3109/17453674.2015.1056702 – volume: 42 start-page: 2 year: 2016 ident: B27 article-title: Nanoengineered biomaterials for repair and regeneration of orthopedic tissue interfaces publication-title: Acta biomater. doi: 10.1016/j.actbio.2016.06.023 – volume: 141 start-page: 208 year: 2003 ident: B157 article-title: Characteristics of mineral particles in the human bone/cartilage interface publication-title: J. Struct. Biol. doi: 10.1016/s1047-8477(02)00635-4 – volume: 6 start-page: 2583 year: 2005 ident: B153 article-title: Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts publication-title: Biomacromolecules doi: 10.1021/bm050314k – volume: 14 start-page: 102977 year: 2021 ident: B84 article-title: PEEK (Polyether-ether-ketone) and its composite materials in orthopedic implantation publication-title: Arabian J. Chem. doi: 10.1016/j.arabjc.2020.102977 – volume: 69 start-page: 143 year: 2017 ident: B67 article-title: Metformin-loaded alginate nanoparticles as an effective antidiabetic agent for controlled drug release publication-title: J. Pharm. Pharmacol. doi: 10.1111/jphp.12672 – volume: 89 start-page: 2752 year: 2007 ident: B2 article-title: Osteonecrosis of the knee treated with a tissue-engineered cartilage and bone implant: A case report publication-title: JBJS doi: 10.2106/jbjs.f.00983 – volume: 14 start-page: 250 year: 2022 ident: B155 article-title: Bone targeting antioxidative nano-iron oxide for treating postmenopausal osteoporosis publication-title: Bioact. Mater. doi: 10.1016/j.bioactmat.2021.11.012 – start-page: 559 volume-title: Principles of regenerative medicine year: 2019 ident: B51 article-title: Synthetic polymers doi: 10.1016/B978-0-12-809880-6.00033-3 – start-page: 23 volume-title: Design of artificial human joints & organs year: 2014 ident: B97 article-title: Mechanical properties of biological materials doi: 10.1007/978-1-4614-6255-2_2 – volume: 69 start-page: 342 year: 2018 ident: B24 article-title: Synergistic interplay between the two major bone minerals, hydroxyapatite and whitlockite nanoparticles, for osteogenic differentiation of mesenchymal stem cells publication-title: Acta biomater. doi: 10.1016/j.actbio.2018.01.016 – volume: 2 start-page: 923 year: 2010 ident: B144 article-title: “Aligned-to-random” nanofiber scaffolds for mimicking the structure of the tendon-to-bone insertion site publication-title: Nanoscale doi: 10.1039/c0nr00192a – volume: 98 start-page: 749 year: 2007 ident: B45 article-title: Biphasic, but monolithic scaffolds for the therapy of osteochondral defects publication-title: Int. J. Mater. Res. doi: 10.3139/146.101520 – volume: 6 start-page: eabc1725 year: 2020 ident: B148 article-title: Trisulfide bond–mediated doxorubicin dimeric prodrug nanoassemblies with high drug loading, high self-assembly stability, and high tumor selectivity publication-title: Sci. Adv. doi: 10.1126/sciadv.abc1725 – volume: 88 start-page: 899 year: 2010 ident: B112 article-title: Biomimetic gradient hydrogels for tissue engineering publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.20411 – volume: 22 start-page: 15 year: 2016 ident: B126 article-title: A road map to commercialization of cartilage therapy in the United States of America publication-title: Tissue Eng. Part B Rev. doi: 10.1089/ten.teb.2015.0147 – volume: 96 start-page: 9 year: 2011 ident: B104 article-title: Ectopic osteochondral formation of biomimetic porous PVA-n-HA/PA6 bilayered scaffold and BMSCs construct in rabbit publication-title: J. Biomed. Mater. Res. Part B Appl. Biomaterials doi: 10.1002/jbm.b.31697 – volume: 3 start-page: 432 year: 2012 ident: B3 article-title: Bioactive and biodegradable nanocomposites and hybrid biomaterials for bone regeneration publication-title: J. Funct. Biomater. doi: 10.3390/jfb3020432 – volume: 539 start-page: 177 year: 2016 ident: B59 article-title: Neural interfaces take another step forward publication-title: Nature doi: 10.1038/539177a – volume: 16 start-page: 1099 year: 2005 ident: B136 article-title: Nano-and micro-fiber combined scaffolds: A new architecture for bone tissue engineering publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-005-4713-8 – volume: 1 start-page: 20 year: 2016 ident: B120 article-title: Measurement of mechanical properties of natural and engineered implants publication-title: Adv. Tissue Eng. Regen. Med. Open Access doi: 10.15406/atroa.2016.01.00004 – volume: 143 start-page: 1 year: 2022 ident: B13 article-title: Biomaterialomics: Data science-driven pathways to develop fourth-generation biomaterials publication-title: Acta Biomater. doi: 10.1016/j.actbio.2022.02.027 – volume: 24 start-page: 403. e1 year: 2008 ident: B17 article-title: Arthroscopic replacement of massive, irreparable rotator cuff tears using a GraftJacket allograft: Technique and preliminary results publication-title: Arthrosc. J. Arthrosc. Relat. Surg. doi: 10.1016/j.arthro.2007.07.033 – volume: 27 start-page: 7261 year: 2015 ident: B25 article-title: Two-dimensional nanomaterials for biomedical applications: Emerging trends and future prospects publication-title: Adv. Mater doi: 10.1002/adma.201502422 – volume: 37 start-page: 1334 year: 2009 ident: B26 article-title: An autologous cartilage tissue implant NeoCart for treatment of grade III chondral injury to the distal femur: Prospective clinical safety trial at 2 years publication-title: Am. J. sports Med. doi: 10.1177/0363546509333011 – volume: 50 start-page: 50 year: 2018 ident: B113 article-title: Nanomaterials at the neural interface publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2017.12.009 – volume: 31 start-page: 2252 year: 2010 ident: B114 article-title: Engineering human cell-based, functionally integrated osteochondral grafts by biological bonding of engineered cartilage tissues to bony scaffolds publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.11.110 – volume: 104 start-page: 2203 year: 2015 ident: B64 article-title: Coencapsulation of hydrophobic and hydrophilic antituberculosis drugs in synergistic brij 96 microemulsions: A biophysical characterization publication-title: J. Pharm. Sci. doi: 10.1002/jps.24469 – volume: 6 start-page: 2842 year: 2014 ident: B77 article-title: Nanofiber scaffolds with gradients in mineral content for spatial control of osteogenesis publication-title: ACS Appl. Mater. interfaces doi: 10.1021/am405418g – volume: 42 start-page: 100706 year: 2022 ident: B57 article-title: Osteotomy after medial malleolus fracture fixed with magnesium screws ZX00-A case report publication-title: Trauma Case Rep. doi: 10.1016/j.tcr.2022.100706 – volume: 462 start-page: 426 year: 2009 ident: B58 article-title: Inspiration and application in the evolution of biomaterials publication-title: Nature doi: 10.1038/nature08601 – volume: 19 start-page: 2255 year: 2018 ident: B23 article-title: Green tea polyphenols coupled with a bioactive titanium alloy surface: In vitro characterization of osteoinductive behavior through a KUSA A1 cell study publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19082255 – volume: 88 start-page: 2665 year: 2006 ident: B28 article-title: Commercial extracellular matrix scaffolds for rotator cuff tendon repair: Biomechanical, biochemical, and cellular properties publication-title: JBJS doi: 10.2106/jbjs.e.01307 – volume: 8 start-page: 5744 year: 2015 ident: B118 article-title: Biodegradable materials for bone repair and tissue engineering applications publication-title: Mater. (Basel) doi: 10.3390/ma8095273 – volume: 5 start-page: 351 year: 2010 ident: B134 article-title: Differential effects of nanoselenium doping on healthy and cancerous osteoblasts in coculture on titanium publication-title: Int. J. nanomedicine doi: 10.2147/ijn.s7289 – volume: 20 start-page: 1 year: 2020 ident: B9 article-title: Current practices in haemophilic patients undergoing orthopedic surgery-a systematic review publication-title: Exp. Ther. Med. doi: 10.3892/etm.2020.9337 – volume: 9 start-page: 3109 year: 2015 ident: B143 article-title: Bioactive nanoengineered hydrogels for bone tissue engineering: A growth-factor-free approach publication-title: ACS Nano doi: 10.1021/nn507488s – volume: 16 start-page: 782 year: 2019 ident: B147 article-title: Drug delivery based on nanotechnology for target bone disease publication-title: Curr. Drug Deliv. doi: 10.2174/1567201816666190917123948 – volume: 48 start-page: 428 year: 2019 ident: B78 article-title: Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control publication-title: Chem. Soc. Rev. doi: 10.1039/c7cs00807d – volume: 73 start-page: 61 year: 2005 ident: B156 article-title: Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: Possible implications in human implantation publication-title: J. Biomed. Mater. Res. Part B Appl. Biomaterials doi: 10.1002/jbm.b.30170 – volume: 5 start-page: 20224 year: 2018 ident: B110 article-title: Composite polymer in orthopedic implants: A review publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2018.06.393 – volume: 1 start-page: 33 year: 2020 ident: B145 article-title: Segmental long bone regeneration guided by degradable synthetic polymeric scaffolds publication-title: Biomater. Transl. doi: 10.3877/cma.j.issn.2096-112X.2020.01.004 – volume: 12 start-page: 779 year: 2012 ident: B37 article-title: Physically crosslinked nanocomposites from silicate-crosslinked PEO: Mechanical properties and osteogenic differentiation of human mesenchymal stem cells publication-title: Macromol. Biosci. doi: 10.1002/mabi.201100508 – volume-title: Orthopaedic proceedings year: 2010 ident: B7 article-title: Holy cow. Beware of the perils of tutobone in hindfoot fusion – volume: 44 start-page: 190 ident: B68 article-title: Advanced selection methodologies for DNAzymes in sensing and healthcare applications publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2018.11.001 – volume: 15 start-page: 7199 year: 2020 ident: B72 article-title: The advances of ceria nanoparticles for biomedical applications in orthopaedics publication-title: Int. J. nanomedicine doi: 10.2147/ijn.s270229 – volume: 56 start-page: 1028 ident: B35 article-title: Assessment of the mechanical properties of orthopedic screws coated with polyurethane acrylate containing hydroxyapatite, intended to fix the fragility fractures publication-title: Mater. Plast. doi: 10.37358/mp.19.4.5302 – volume: 14 start-page: 76 year: 2019 ident: B73 article-title: Comparison of three different internal fixation implants in treatment of femoral neck fracture—A finite element analysis publication-title: J. Orthop. Surg. Res. doi: 10.1186/s13018-019-1097-x – volume: 15 start-page: 115 year: 2009 ident: B88 article-title: Novel nanofiber-based scaffold for rotator cuff repair and augmentation publication-title: Tissue Eng. Part A doi: 10.1089/ten.tea.2008.0014 – volume: 294 start-page: 131 ident: B69 article-title: Nano-based smart pesticide formulations: Emerging opportunities for agriculture publication-title: J. Control. Release doi: 10.1016/j.jconrel.2018.12.012 – volume: 31 start-page: 706 year: 2010 ident: B103 article-title: The relationship between the nanostructure of titanium surfaces and bacterial attachment publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.09.081 – volume: 173 start-page: 75 year: 2014 ident: B49 article-title: Graphene-based nanomaterials for drug delivery and tissue engineering publication-title: J. Control. Release doi: 10.1016/j.jconrel.2013.10.017 – volume: 9 start-page: 1949 year: 2021 ident: B133 article-title: Biomaterials and their biomedical applications: From replacement to regeneration publication-title: Processes doi: 10.3390/pr9111949 – volume: 19 start-page: 2 year: 2016 ident: B93 article-title: Fourth-generation biomedical materials publication-title: Mat. Today doi: 10.1016/j.mattod.2015.11.005 – volume: 78 start-page: 173 year: 2015 ident: B107 article-title: Optimization and evaluation of bioactive drug-loaded polymeric nanoparticles for drug delivery publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2015.03.070 – volume-title: Materials for medical application year: 2020 ident: B54 doi: 10.1515/9783110619249 – volume: 134 start-page: 81 year: 2009 ident: B141 article-title: Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering publication-title: J. Control. Release doi: 10.1016/j.jconrel.2008.10.021 – volume: 22 start-page: 995 year: 2021 ident: B10 article-title: Orthopedic surgery in hemophilic patients with musculoskeletal disorders: A systematic review publication-title: Exp. Ther. Med. doi: 10.3892/etm.2021.10427 – volume: 19 start-page: 646 year: 2013 ident: B122 article-title: Regeneration and experimental orthotopic transplantation of a bioengineered kidney publication-title: Nat. Med. doi: 10.1038/nm.3154 – volume: 9 start-page: 12 year: 2021 ident: B89 article-title: On the road to smart biomaterials for bone research: Definitions, concepts, advances, and outlook publication-title: Bone Res. doi: 10.1038/s41413-020-00131-z – volume: 26 start-page: 1 year: 2008 ident: B18 article-title: Functional tissue engineering for tendon repair: A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation publication-title: J. Orthop. Res. doi: 10.1002/jor.20456 – volume: 10 start-page: 45 year: 2019 ident: B46 article-title: Key terminology in biomaterials and biocompatibility publication-title: Curr. Opin. Biomed. Eng. doi: 10.1016/j.cobme.2019.02.004 – volume: 55 start-page: 165 year: 2014 ident: B6 article-title: Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: A review publication-title: Mater. Des. doi: 10.1016/j.matdes.2013.09.045 – volume: 28 start-page: 260 year: 2011 ident: B128 article-title: Nanoparticles: A promising modality in the treatment of sarcomas publication-title: Pharm. Res. doi: 10.1007/s11095-010-0173-z – volume: 144 start-page: 272 year: 2006 ident: B4 article-title: First clinical experiences with a novel 3D-collagen gel (CaReS) for the treatment of focal cartilage defects in the knee publication-title: Z. fur Orthopadie ihre Grenzgeb. doi: 10.1055/s-2006-933445 – volume: 5 start-page: 661 year: 2009 ident: B75 article-title: Gradient collagen/nanohydroxyapatite composite scaffold: Development and characterization publication-title: Acta biomater. doi: 10.1016/j.actbio.2008.09.022 – volume: 216 start-page: 248 year: 2015 ident: B20 article-title: Bioinspired polymeric nanocomposites for regenerative medicine publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.201400427 – volume: 90 start-page: 597 year: 2008 ident: B116 article-title: Autologous chondrocyte implantation in a novel alginate-agarose hydrogel: Outcome at two years publication-title: J. bone Jt. Surg. Br. volume doi: 10.1302/0301-620x.90b5.20360 – volume: 33 start-page: 5247 year: 2012 ident: B66 article-title: A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2012.03.076 – volume: 201 start-page: 865 year: 2023 ident: B82 article-title: Cerium oxide nanoparticles promote osteoplastic precursor differentiation by activating the Wnt pathway publication-title: Biol. Trace Elem. Res. doi: 10.1007/s12011-022-03168-9 – volume: 28 start-page: 80 year: 2008 ident: B48 article-title: Bi-layered constructs based on poly (L-lactic acid) and starch for tissue engineering of osteochondral defects publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2006.12.012 – volume: 50 start-page: 12 year: 2015 ident: B53 article-title: Design and fabrication of biomimetic multiphased scaffolds for ligament-to-bone fixation publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2015.01.088 – volume: 12 start-page: 137 year: 2019 ident: B152 article-title: Nanotechnology in cancer diagnosis: Progress, challenges and opportunities publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-019-0833-3 – volume: 1 start-page: 189 year: 2009 ident: B56 article-title: Commercialization of nanotechnology publication-title: Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology doi: 10.1002/wnan.28 – volume: 8 start-page: 25 year: 2019 ident: B63 article-title: Biocompatibility studies on cerium oxide nanoparticles–combined study for local effects, systemic toxicity and genotoxicity via implantation route publication-title: Toxicol. Res. doi: 10.1039/c8tx00248g – volume: 9 start-page: 2763 year: 2009 ident: B74 article-title: Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site publication-title: Nano Lett. doi: 10.1021/nl901582f – volume: 61 start-page: 86 year: 2012 ident: B11 article-title: Biomechanical characteristics of the bone publication-title: Hum. Musculoskelet. Biomech. doi: 10.5772/19690 – volume: 7 start-page: 1 year: 2018 ident: B87 article-title: Synthetic polymeric biomaterials for wound healing: A review publication-title: Prog. biomaterials doi: 10.1007/s40204-018-0083-4 – volume: 31 start-page: 654 year: 2013 ident: B154 article-title: Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2012.08.001 – volume: 25 start-page: 3329 year: 2013 ident: B39 article-title: Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells publication-title: Adv. Mater doi: 10.1002/adma.201300584 – volume: 117 start-page: 5855 year: 2004 ident: B50 article-title: Adhesion-contractile balance in myocyte differentiation publication-title: J. Cell. Sci. doi: 10.1242/jcs.01496 – volume: 15 start-page: 1374 year: 2015 ident: B55 article-title: Instant live-cell super-resolution imaging of cellular structures by nanoinjection of fluorescent probes publication-title: Nano Lett. doi: 10.1021/nl504660t – volume-title: Biomaterials: A systems approach to engineering concepts year: 2017 ident: B80 |
SSID | ssj0001257582 |
Score | 2.2873533 |
SecondaryResourceType | review_article |
Snippet | The objective of bioimplant engineering is to develop biologically compatible materials for restoring, preserving, or altering damaged tissues and/or organ... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1206806 |
SubjectTerms | Bioengineering and Biotechnology bioimplant biomaterials nanotechnology orthopedic orthopedic implant |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT3CoKB_qQouMxA2F7tqx4_TWIqqKAycq9WZ57Im6Upss7fb_M2OnS3KBC9ckVhzPRPOeZ_xGiE9GLZtoQFeJwnFVt5gqWGGoQlKAdaIYGnO1xQ97eVV_vzbXk1ZfXBNW5IHLwp2YOjSaWEiCyNJnAZagwAUdYoraYNb5pJg3IVNld4VgiFPllAyxsPakg_XAsphKf1kpbjhhZ5EoC_bPUOa8RnISdC5eiv0RLcqzMssD8Qz7V-LFREPwtfiVo02paJNDJ_vQD9vdfnnFUSrJ9d3mlgteJEFUyZmaYcMJGjlNX5_KWLSaJIR77mP3IEOfZBEdkZs_hzLfiKuLbz-_XlZjH4UqEtnbVq5GnYLFtjHgGtdFACJBddcZJIBgtcLA-Ze2RUdo0FAEDxpaixgdRKutfiv2-qHHQyFdQLekYStLvA2I7cTkdJdUtzQGGwsLsXpaUx9HkXHudXHriWywHXy2g2c7-NEOC_F5N2ZTJDb--vQ5m2r3JMtj5wvkNH50Gv8vp1mIj0-G9vQ7cY4k9Dg8PnhFDE9lHL0QbuYBszfO7_TrmyzMnaWOaOy7_zHH9-I5fzfvXyt1JPa29494TABoCx-yr_8GAqYI0g priority: 102 providerName: Directory of Open Access Journals |
Title | Translation of nanotechnology-based implants for orthopedic applications: current barriers and future perspective |
URI | https://www.proquest.com/docview/2862200080 https://pubmed.ncbi.nlm.nih.gov/PMC10478008 https://doaj.org/article/54a73840dbc2461ab0b2b8a3acdc35e3 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NixQxEC3W9aIH8RPHjyWCN-l1Jumk04KIissi6MmBvYVUktaBsXt2Zhb031uV7hmnQT147e6iSSrhvZePVwDPtZxWQaMqIsFxUdYpFjhLvvBRYiojYWjIpy0-m_N5-fFCXxzBrtzR0IGbP0o7ric1Xy9Pf1z-fEMT_jUrTsLblw0uOna8lOp0JrmWhLkG1wmZKp6onwa636-5EDmxsr8785fQET5lG_8R9xyfnDyAorPbcGvgkOJtn_Q7cJTau3DzwFnwHlxmDOrPuYmuEa1vu-1-Fb1g7Ipi8X215GMwgoir4P0banpcBHG4qf1KhN7BSaBfc3W7jfBtFL0ViVj9vqp5H-ZnH768Py-G6gpFIAm4LWyZVPQm1ZVGW9kmIJI0KptGJ6INRsnkeVemrpMljqgJ173C2qQULAajjHoAx23XpocgrE92SmEzQ2oOSQOFaFUTZTPVOlUGJzDb9akLg_U4V8BYOpIgnAeX8-A4D27IwwRe7GNWvfHGP79-x6naf8mm2flBt_7qhjnodOkrRYI2YmAXPY9TlGi98iEGpZOawLNdoh1NMt458W3qrjZOku6TmV1PwI5GwOiP4zft4lu2684GSBT76P9DH8MNbi2vZUv5BI6366v0lMjQFk_yIsJJHue_ABxJEG0 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Translation+of+nanotechnology-based+implants+for+orthopedic+applications%3A+current+barriers+and+future+perspective&rft.jtitle=Frontiers+in+bioengineering+and+biotechnology&rft.au=Chen%2C+Long&rft.au=Zhou%2C+Chao&rft.au=Jiang%2C+Chanyi&rft.au=Huang%2C+Xiaogang&rft.date=2023-08-22&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-4185&rft.volume=11&rft_id=info:doi/10.3389%2Ffbioe.2023.1206806&rft.externalDocID=PMC10478008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-4185&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-4185&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-4185&client=summon |