Translation of nanotechnology-based implants for orthopedic applications: current barriers and future perspective

The objective of bioimplant engineering is to develop biologically compatible materials for restoring, preserving, or altering damaged tissues and/or organ functions. The variety of substances used for orthopedic implant applications has been substantially influenced by modern material technology. T...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in bioengineering and biotechnology Vol. 11; p. 1206806
Main Authors Chen, Long, Zhou, Chao, Jiang, Chanyi, Huang, Xiaogang, Liu, Zunyong, Zhang, Hengjian, Liang, Wenqing, Zhao, Jiayi
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 22.08.2023
Subjects
Online AccessGet full text
ISSN2296-4185
2296-4185
DOI10.3389/fbioe.2023.1206806

Cover

Loading…
Abstract The objective of bioimplant engineering is to develop biologically compatible materials for restoring, preserving, or altering damaged tissues and/or organ functions. The variety of substances used for orthopedic implant applications has been substantially influenced by modern material technology. Therefore, nanomaterials can mimic the surface properties of normal tissues, including surface chemistry, topography, energy, and wettability. Moreover, the new characteristics of nanomaterials promote their application in sustaining the progression of many tissues. The current review establishes a basis for nanotechnology-driven biomaterials by demonstrating the fundamental design problems that influence the success or failure of an orthopedic graft, cell adhesion, proliferation, antimicrobial/antibacterial activity, and differentiation. In this context, extensive research has been conducted on the nano-functionalization of biomaterial surfaces to enhance cell adhesion, differentiation, propagation, and implant population with potent antimicrobial activity. The possible nanomaterials applications (in terms of a functional nanocoating or a nanostructured surface) may resolve a variety of issues (such as bacterial adhesion and corrosion) associated with conventional metallic or non-metallic grafts, primarily for optimizing implant procedures. Future developments in orthopedic biomaterials, such as smart biomaterials, porous structures, and 3D implants, show promise for achieving the necessary characteristics and shape of a stimuli-responsive implant. Ultimately, the major barriers to the commercialization of nanotechnology-derived biomaterials are addressed to help overcome the limitations of current orthopedic biomaterials in terms of critical fundamental factors including cost of therapy, quality, pain relief, and implant life. Despite the recent success of nanotechnology, there are significant hurdles that must be overcome before nanomedicine may be applied to orthopedics. The objective of this review was to provide a thorough examination of recent advancements, their commercialization prospects, as well as the challenges and potential perspectives associated with them. This review aims to assist healthcare providers and researchers in extracting relevant data to develop translational research within the field. In addition, it will assist the readers in comprehending the scope and gaps of nanomedicine’s applicability in the orthopedics field.
AbstractList The objective of bioimplant engineering is to develop biologically compatible materials for restoring, preserving, or altering damaged tissues and/or organ functions. The variety of substances used for orthopedic implant applications has been substantially influenced by modern material technology. Therefore, nanomaterials can mimic the surface properties of normal tissues, including surface chemistry, topography, energy, and wettability. Moreover, the new characteristics of nanomaterials promote their application in sustaining the progression of many tissues. The current review establishes a basis for nanotechnology-driven biomaterials by demonstrating the fundamental design problems that influence the success or failure of an orthopedic graft, cell adhesion, proliferation, antimicrobial/antibacterial activity, and differentiation. In this context, extensive research has been conducted on the nano-functionalization of biomaterial surfaces to enhance cell adhesion, differentiation, propagation, and implant population with potent antimicrobial activity. The possible nanomaterials applications (in terms of a functional nanocoating or a nanostructured surface) may resolve a variety of issues (such as bacterial adhesion and corrosion) associated with conventional metallic or non-metallic grafts, primarily for optimizing implant procedures. Future developments in orthopedic biomaterials, such as smart biomaterials, porous structures, and 3D implants, show promise for achieving the necessary characteristics and shape of a stimuli-responsive implant. Ultimately, the major barriers to the commercialization of nanotechnology-derived biomaterials are addressed to help overcome the limitations of current orthopedic biomaterials in terms of critical fundamental factors including cost of therapy, quality, pain relief, and implant life. Despite the recent success of nanotechnology, there are significant hurdles that must be overcome before nanomedicine may be applied to orthopedics. The objective of this review was to provide a thorough examination of recent advancements, their commercialization prospects, as well as the challenges and potential perspectives associated with them. This review aims to assist healthcare providers and researchers in extracting relevant data to develop translational research within the field. In addition, it will assist the readers in comprehending the scope and gaps of nanomedicine's applicability in the orthopedics field.The objective of bioimplant engineering is to develop biologically compatible materials for restoring, preserving, or altering damaged tissues and/or organ functions. The variety of substances used for orthopedic implant applications has been substantially influenced by modern material technology. Therefore, nanomaterials can mimic the surface properties of normal tissues, including surface chemistry, topography, energy, and wettability. Moreover, the new characteristics of nanomaterials promote their application in sustaining the progression of many tissues. The current review establishes a basis for nanotechnology-driven biomaterials by demonstrating the fundamental design problems that influence the success or failure of an orthopedic graft, cell adhesion, proliferation, antimicrobial/antibacterial activity, and differentiation. In this context, extensive research has been conducted on the nano-functionalization of biomaterial surfaces to enhance cell adhesion, differentiation, propagation, and implant population with potent antimicrobial activity. The possible nanomaterials applications (in terms of a functional nanocoating or a nanostructured surface) may resolve a variety of issues (such as bacterial adhesion and corrosion) associated with conventional metallic or non-metallic grafts, primarily for optimizing implant procedures. Future developments in orthopedic biomaterials, such as smart biomaterials, porous structures, and 3D implants, show promise for achieving the necessary characteristics and shape of a stimuli-responsive implant. Ultimately, the major barriers to the commercialization of nanotechnology-derived biomaterials are addressed to help overcome the limitations of current orthopedic biomaterials in terms of critical fundamental factors including cost of therapy, quality, pain relief, and implant life. Despite the recent success of nanotechnology, there are significant hurdles that must be overcome before nanomedicine may be applied to orthopedics. The objective of this review was to provide a thorough examination of recent advancements, their commercialization prospects, as well as the challenges and potential perspectives associated with them. This review aims to assist healthcare providers and researchers in extracting relevant data to develop translational research within the field. In addition, it will assist the readers in comprehending the scope and gaps of nanomedicine's applicability in the orthopedics field.
The objective of bioimplant engineering is to develop biologically compatible materials for restoring, preserving, or altering damaged tissues and/or organ functions. The variety of substances used for orthopedic implant applications has been substantially influenced by modern material technology. Therefore, nanomaterials can mimic the surface properties of normal tissues, including surface chemistry, topography, energy, and wettability. Moreover, the new characteristics of nanomaterials promote their application in sustaining the progression of many tissues. The current review establishes a basis for nanotechnology-driven biomaterials by demonstrating the fundamental design problems that influence the success or failure of an orthopedic graft, cell adhesion, proliferation, antimicrobial/antibacterial activity, and differentiation. In this context, extensive research has been conducted on the nano-functionalization of biomaterial surfaces to enhance cell adhesion, differentiation, propagation, and implant population with potent antimicrobial activity. The possible nanomaterials applications (in terms of a functional nanocoating or a nanostructured surface) may resolve a variety of issues (such as bacterial adhesion and corrosion) associated with conventional metallic or non-metallic grafts, primarily for optimizing implant procedures. Future developments in orthopedic biomaterials, such as smart biomaterials, porous structures, and 3D implants, show promise for achieving the necessary characteristics and shape of a stimuli-responsive implant. Ultimately, the major barriers to the commercialization of nanotechnology-derived biomaterials are addressed to help overcome the limitations of current orthopedic biomaterials in terms of critical fundamental factors including cost of therapy, quality, pain relief, and implant life. Despite the recent success of nanotechnology, there are significant hurdles that must be overcome before nanomedicine may be applied to orthopedics. The objective of this review was to provide a thorough examination of recent advancements, their commercialization prospects, as well as the challenges and potential perspectives associated with them. This review aims to assist healthcare providers and researchers in extracting relevant data to develop translational research within the field. In addition, it will assist the readers in comprehending the scope and gaps of nanomedicine’s applicability in the orthopedics field.
Author Jiang, Chanyi
Huang, Xiaogang
Liu, Zunyong
Zhang, Hengjian
Chen, Long
Zhou, Chao
Liang, Wenqing
Zhao, Jiayi
AuthorAffiliation 2 Department of Orthopedics , Zhoushan Guanghua Hospital , Zhoushan , China
4 Department of Orthopedics , Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University , Zhoushan , Zhejiang , China
1 Department of Orthopedics , Affiliated Hospital of Shaoxing University , Shaoxing , Zhejiang , China
3 Department of Pharmacy , Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University , Zhoushan , China
AuthorAffiliation_xml – name: 2 Department of Orthopedics , Zhoushan Guanghua Hospital , Zhoushan , China
– name: 3 Department of Pharmacy , Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University , Zhoushan , China
– name: 1 Department of Orthopedics , Affiliated Hospital of Shaoxing University , Shaoxing , Zhejiang , China
– name: 4 Department of Orthopedics , Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University , Zhoushan , Zhejiang , China
Author_xml – sequence: 1
  givenname: Long
  surname: Chen
  fullname: Chen, Long
– sequence: 2
  givenname: Chao
  surname: Zhou
  fullname: Zhou, Chao
– sequence: 3
  givenname: Chanyi
  surname: Jiang
  fullname: Jiang, Chanyi
– sequence: 4
  givenname: Xiaogang
  surname: Huang
  fullname: Huang, Xiaogang
– sequence: 5
  givenname: Zunyong
  surname: Liu
  fullname: Liu, Zunyong
– sequence: 6
  givenname: Hengjian
  surname: Zhang
  fullname: Zhang, Hengjian
– sequence: 7
  givenname: Wenqing
  surname: Liang
  fullname: Liang, Wenqing
– sequence: 8
  givenname: Jiayi
  surname: Zhao
  fullname: Zhao, Jiayi
BookMark eNp9kUtv1DAURiNUJErpH2DlJZsMjl9x2CBUAa1UiU1ZW9fOzYyrjJ3aTqX-e9yZEWpZsPLrfse-Pu-bsxADNs3Hjm4418PnyfqIG0YZ33SMKk3Vm-acsUG1otPy7MX8XXOZ8z2ltGOyl5qdNw93CUKeofgYSJxIgBALul2Ic9w-tRYyjsTvlxlCyWSKicRUdnHB0TsCyzJ7d8jmL8StKWEoxEJKHlMmEEYyrWVNSJa6XtAV_4gfmrcTzBkvT-NF8_vH97ur6_b218-bq2-3rRNClVYL5CMoHHppda8nZ20ntJgmibTXijMEpWQ_DKiHvpe1OeB2UIhOW6e44hfNzZE7Rrg3S_J7SE8mgjeHjZi2BlLxbkYjBfRcCzpax4TqwFLLrAYObnRcIq-sr0fWsto9jq62mWB-BX19EvzObOOj6ajoNaW6Ej6dCCk-rJiL2fvscK7_inHNhmnFWBWjaS1lx1KXYs4Jp7_3dNQ8CzcH4eZZuDkJryH9T8j5cjBT3-Pn_0X_AG64t8w
CitedBy_id crossref_primary_10_1016_j_tice_2024_102612
crossref_primary_10_3390_coatings15020124
crossref_primary_10_3390_nano14181484
crossref_primary_10_32628_IJSRST241161134
crossref_primary_10_3389_fbioe_2024_1389071
crossref_primary_10_4103_REGENMED_REGENMED_D_24_00024
crossref_primary_10_7759_cureus_72838
crossref_primary_10_1186_s40001_023_01429_4
Cites_doi 10.3390/ijms23031045
10.3390/biomimetics5020027
10.3390/ma12030500
10.1002/mabi.201200097
10.1002/adem.202200833
10.1155/2012/389485
10.1002/bit.25160
10.3390/ma15031148
10.1002/jbm.a.35057
10.1002/btpr.2469
10.1007/s10856-013-4989-z
10.1016/j.gassur.2003.09.025
10.5772/intechopen.83839
10.1016/j.nantod.2008.10.014
10.1007/s10439-012-0605-5
10.1080/10643389.2018.1554402
10.1016/j.bej.2022.108522
10.1016/j.actbio.2016.05.031
10.1016/j.biomaterials.2009.09.057
10.1016/j.msec.2019.05.019
10.1021/nn200500h
10.37358/mp.19.3.5229
10.1016/j.jot.2018.06.006
10.1186/ar2180
10.3390/polym12040905
10.3390/membranes12111112
10.1586/erd.09.59
10.1016/j.actbio.2010.09.015
10.2217/3dp-2022-0007
10.1016/j.mattod.2015.12.003
10.1177/1464420719882458
10.1016/j.yofte.2021.102479
10.37358/rc.19.2.6974
10.1016/j.electacta.2018.10.042
10.1016/j.actbio.2014.10.021
10.1038/jid.2014.90
10.1089/ten.teb.2012.0624
10.12968/hosp.2001.62.2.2379
10.1016/j.actbio.2011.01.011
10.1007/s10439-010-0033-3
10.1016/j.msec.2015.11.049
10.1016/j.matpr.2021.09.459
10.1016/j.biomaterials.2011.10.030
10.1089/ten.teb.2008.0304
10.1039/c4cc02442g
10.1016/j.jma.2021.06.024
10.1039/c8cs90055h
10.1002/jbm.a.32452
10.3928/01477447-20111122-07
10.1016/j.msec.2019.110154
10.1016/j.biopha.2020.111103
10.1007/978-981-16-0002-9_1
10.1016/j.actbio.2016.01.004
10.1038/nm1684
10.3390/met13020200
10.1016/j.jconrel.2014.04.035
10.9790/264X-0403017883
10.3390/nano7060124
10.1021/nl052405t
10.1002/adma.200600319
10.1038/nphoton.2013.34
10.1038/nature14060
10.1002/jbm.a.36930
10.1126/scitranslmed.abb3946
10.1039/d2na00439a
10.1016/j.msea.2012.05.104
10.1002/adhm.201500272
10.1007/s00590-018-2193-z
10.1016/j.cbi.2018.02.006
10.1021/acsnano.5b06663
10.1016/j.biomaterials.2006.11.024
10.1302/0301-620x.85b7.13959
10.1155/2022/8759060
10.1089/ten.2007.13.ft-353
10.3109/17453674.2015.1056702
10.1016/j.actbio.2016.06.023
10.1016/s1047-8477(02)00635-4
10.1021/bm050314k
10.1016/j.arabjc.2020.102977
10.1111/jphp.12672
10.2106/jbjs.f.00983
10.1016/j.bioactmat.2021.11.012
10.1016/B978-0-12-809880-6.00033-3
10.1007/978-1-4614-6255-2_2
10.1016/j.actbio.2018.01.016
10.1039/c0nr00192a
10.3139/146.101520
10.1126/sciadv.abc1725
10.1002/cjce.20411
10.1089/ten.teb.2015.0147
10.1002/jbm.b.31697
10.3390/jfb3020432
10.1038/539177a
10.1007/s10856-005-4713-8
10.15406/atroa.2016.01.00004
10.1016/j.actbio.2022.02.027
10.1016/j.arthro.2007.07.033
10.1002/adma.201502422
10.1177/0363546509333011
10.1016/j.conb.2017.12.009
10.1016/j.biomaterials.2009.11.110
10.1002/jps.24469
10.1021/am405418g
10.1016/j.tcr.2022.100706
10.1038/nature08601
10.3390/ijms19082255
10.2106/jbjs.e.01307
10.3390/ma8095273
10.2147/ijn.s7289
10.3892/etm.2020.9337
10.1021/nn507488s
10.2174/1567201816666190917123948
10.1039/c7cs00807d
10.1002/jbm.b.30170
10.1016/j.matpr.2018.06.393
10.3877/cma.j.issn.2096-112X.2020.01.004
10.1002/mabi.201100508
10.1016/j.tibs.2018.11.001
10.2147/ijn.s270229
10.37358/mp.19.4.5302
10.1186/s13018-019-1097-x
10.1089/ten.tea.2008.0014
10.1016/j.jconrel.2018.12.012
10.1016/j.biomaterials.2009.09.081
10.1016/j.jconrel.2013.10.017
10.3390/pr9111949
10.1016/j.mattod.2015.11.005
10.1016/j.ijbiomac.2015.03.070
10.1515/9783110619249
10.1016/j.jconrel.2008.10.021
10.3892/etm.2021.10427
10.1038/nm.3154
10.1038/s41413-020-00131-z
10.1002/jor.20456
10.1016/j.cobme.2019.02.004
10.1016/j.matdes.2013.09.045
10.1007/s11095-010-0173-z
10.1055/s-2006-933445
10.1016/j.actbio.2008.09.022
10.1002/macp.201400427
10.1302/0301-620x.90b5.20360
10.1016/j.biomaterials.2012.03.076
10.1007/s12011-022-03168-9
10.1016/j.msec.2006.12.012
10.1016/j.msec.2015.01.088
10.1186/s13045-019-0833-3
10.1002/wnan.28
10.1039/c8tx00248g
10.1021/nl901582f
10.5772/19690
10.1007/s40204-018-0083-4
10.1016/j.biotechadv.2012.08.001
10.1002/adma.201300584
10.1242/jcs.01496
10.1021/nl504660t
ContentType Journal Article
Copyright Copyright © 2023 Chen, Zhou, Jiang, Huang, Liu, Zhang, Liang and Zhao.
Copyright © 2023 Chen, Zhou, Jiang, Huang, Liu, Zhang, Liang and Zhao. 2023 Chen, Zhou, Jiang, Huang, Liu, Zhang, Liang and Zhao
Copyright_xml – notice: Copyright © 2023 Chen, Zhou, Jiang, Huang, Liu, Zhang, Liang and Zhao.
– notice: Copyright © 2023 Chen, Zhou, Jiang, Huang, Liu, Zhang, Liang and Zhao. 2023 Chen, Zhou, Jiang, Huang, Liu, Zhang, Liang and Zhao
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fbioe.2023.1206806
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Chen et al
EISSN 2296-4185
ExternalDocumentID oai_doaj_org_article_54a73840dbc2461ab0b2b8a3acdc35e3
PMC10478008
10_3389_fbioe_2023_1206806
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
7X8
5PM
ID FETCH-LOGICAL-c446t-84e3da6e975b878fcbb1484ff5e078632ea665799e89775185a3b96eec8bc6363
IEDL.DBID M48
ISSN 2296-4185
IngestDate Wed Aug 27 01:20:45 EDT 2025
Thu Aug 21 18:36:40 EDT 2025
Thu Jul 10 22:23:48 EDT 2025
Thu Apr 24 22:51:50 EDT 2025
Tue Jul 01 03:36:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-84e3da6e975b878fcbb1484ff5e078632ea665799e89775185a3b96eec8bc6363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Reviewed by: Abbas Rahdar, Zabol University, Iran
Silvia Spriano, Polytechnic University of Turin, Italy
Edited by: Giada Graziana Genchi, University of Bari Aldo Moro, Italy
These authors have contributed equally to this work
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fbioe.2023.1206806
PQID 2862200080
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_54a73840dbc2461ab0b2b8a3acdc35e3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10478008
proquest_miscellaneous_2862200080
crossref_primary_10_3389_fbioe_2023_1206806
crossref_citationtrail_10_3389_fbioe_2023_1206806
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-22
PublicationDateYYYYMMDD 2023-08-22
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-22
  day: 22
PublicationDecade 2020
PublicationTitle Frontiers in bioengineering and biotechnology
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Rani (B106) 2018; 295
Xu (B145) 2020; 1
Xavier (B143) 2015; 9
Kumar (B67) 2017; 69
Castiglioni (B21) 2017; 7
Liu (B77) 2014; 6
Marin (B85) 2020; 108
Morigi (B90) 2012; 2012
Seidi (B115) 2011; 7
Hennig (B55) 2015; 15
Allo (B3) 2012; 3
Panagopoulos (B98) 2012; 35
Shi (B119) 2016; 10
Zakaria (B149) 2013; 19
Badulescu (B10) 2021; 22
Castro (B22) 2012; 40
Gaharwar (B39) 2013; 25
Wang (B141) 2009; 134
Tran (B134) 2010; 5
Qu (B104) 2011; 96
Cazzola (B23) 2018; 19
Gelinsky (B45) 2007; 98
Vieira (B139) 2017; 33
Puckett (B103) 2010; 31
Li (B72) 2020; 15
Nayak (B91) 2011; 5
Todros (B133) 2021; 9
Oh (B94) 2007; 28
Robinson (B109) 2003; 85
Jackson (B59) 2016; 539
Pattanayak (B101) 2021; 63
Sant (B112) 2010; 88
Arifin (B6) 2014; 55
Heimann (B54) 2020
Rani (B107) 2015; 78
Goenka (B49) 2014; 173
Zheng (B155) 2022; 14
Cross (B27) 2016; 42
Kaur (B64) 2015; 104
Butler (B18) 2008; 26
Ossendorf (B95) 2007; 9
Jäger (B60) 2022
Li (B71) 2022; 2022
Filip (B35); 56
Bankoff (B11) 2012; 61
Gaharwar (B40); 111
Gavaskar (B44) 2018; 28
Filip (B36); 56
Donnaloja (B30) 2020; 12
Harper (B52) 2001; 62
Patel (B100) 2016; 32
Ghosh (B48) 2008; 28
Memarian (B86) 2022; 23
Selmi (B116) 2008; 90
Ravichandran (B108) 2012; 33
Gautam (B43) 2022; 50
Love (B80) 2017
Ott (B96) 2008; 14
Holweg (B57) 2022; 42
Zhang (B151) 2009; 4
Feltz (B32) 2022; 6
Scaini (B113) 2018; 50
Singh (B121) 2008; 14
Pek (B102) 2010; 31
Moffat (B88) 2009; 15
Hobson (B56) 2009; 1
Park (B99) 2007; 13
Festas (B34) 2020; 234
Andereya (B4) 2006; 144
Bond (B17) 2008; 24
Sun (B127) 2007; 19
Kumar (B69); 294
Lu (B81) 2021; 134
Hacker (B51) 2019
Saad (B110) 2018; 5
Wang (B140) 2016; 19
Luo (B82) 2023; 201
Mir (B87) 2018; 7
Badulescu (B8) 2019; 70
Soni (B123) 2018; 4
Zizak (B157) 2003; 141
Gaharwar (B41) 2011; 7
Liu (B76) 2015; 517
Adachi (B2) 2007; 89
Dolcimascolo (B29) 2019
Gaharwar (B38); 187
Thanigaivel (B131) 2022; 187
Auyeung (B7) 2010
Cai (B19) 2006; 6
Khanarian (B66) 2012; 33
Li (B74) 2009; 9
Susa (B128) 2011; 28
He (B53) 2015; 50
Wei (B142) 2021; 13
Zhang (B153) 2005; 6
Tian (B132) 2019; 16
Huebsch (B58) 2009; 462
Tejido-Rastrilla (B130) 2019; 12
Spriano (B125) 2023; 13
Bhaskar (B15) 2021
Ghezzi (B47) 2013; 7
Ma (B84) 2021; 14
Basu (B13) 2022; 143
Samanta (B111) 2019; 103
Gao (B42) 2023; 25
Zhang (B152) 2019; 12
Rambaran (B105) 2022; 4
Ning (B93) 2016; 19
Yang (B147) 2019; 16
Yan (B146) 2015; 12
Ferraris (B33) 2016; 60
Carrow (B20) 2015; 216
Serrano (B117) 2012; 12
Kalyanaraman (B63) 2019; 8
Kerativitayanan (B65) 2015; 4
Kumar (B70) 2019; 49
Derwin (B28) 2006; 88
Badulescu (B9) 2020; 20
Bhanjana (B14) 2019; 293
Scotti (B114) 2010; 31
Antoniac (B5) 2022; 15
Sheikh (B118) 2015; 8
Soo Kim (B124) 2014; 102
Basso (B12) 2015; 86
Gaharwar (B37) 2012; 12
Kumar (B68); 44
Ueno (B137) 2004; 8
Achterberg (B1) 2014; 134
Zandi (B150) 2010; 92
Liu (B75) 2009; 5
Sridharan (B126) 2016; 22
Xie (B144) 2010; 2
Liverani (B79) 2012; 557
Song (B122) 2013; 19
Li (B73) 2019; 14
Tatavarty (B129) 2014; 50
Zheng (B156) 2005; 73
Silver (B120) 2016; 1
Bian (B16) 2016; 41
Tsakiris (B135) 2021; 9
Dormer (B31) 2010; 38
Ghasemi-Mobarakeh (B46) 2019; 10
Griffin (B50) 2004; 117
Crawford (B26) 2009; 37
Tuzlakoglu (B136) 2005; 16
Kumar (B62) 2020; 106
Chimene (B25) 2015; 27
Yang (B148) 2020; 6
Zhao (B154) 2013; 31
James (B61) 2010; 7
Liu (B78) 2019; 48
Pal (B97) 2014
Cheng (B24) 2018; 69
Luthringer (B83) 2013; 24
Montoya (B89) 2021; 9
Ulijn (B138) 2018; 47
Nikolova (B92) 2020; 5
References_xml – volume: 23
  start-page: 1045
  year: 2022
  ident: B86
  article-title: Active materials for 3D printing in small animals: Current modalities and future directions for orthopedic applications
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms23031045
– volume: 5
  start-page: 27
  year: 2020
  ident: B92
  article-title: Metal oxide nanoparticles as biomedical materials
  publication-title: Biomimetics
  doi: 10.3390/biomimetics5020027
– volume: 12
  start-page: 500
  year: 2019
  ident: B130
  article-title: Studies on cell compatibility, antibacterial behavior, and zeta potential of Ag-containing polydopamine-coated bioactive glass-ceramic
  publication-title: Materials
  doi: 10.3390/ma12030500
– volume: 12
  start-page: 1156
  year: 2012
  ident: B117
  article-title: Recent insights into the biomedical applications of shape-memory polymers
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201200097
– volume: 25
  start-page: 2200833
  year: 2023
  ident: B42
  article-title: Microstructure and corrosion behavior of selective laser‐melted Al–Ti–Ni coating on 90/10 copper–nickel alloy
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.202200833
– volume: 2012
  start-page: 1
  year: 2012
  ident: B90
  article-title: Nanotechnology in medicine: From inception to market domination
  publication-title: J. drug Deliv.
  doi: 10.1155/2012/389485
– volume: 111
  start-page: 441
  ident: B40
  article-title: Nanocomposite hydrogels for biomedical applications
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.25160
– volume: 15
  start-page: 1148
  year: 2022
  ident: B5
  article-title: Magnesium-based alloys used in orthopedic surgery
  publication-title: Materials
  doi: 10.3390/ma15031148
– volume: 102
  start-page: 4044
  year: 2014
  ident: B124
  article-title: Human collagen‐based multilayer scaffolds for tendon-to-bone interface tissue engineering
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.35057
– volume: 33
  start-page: 590
  year: 2017
  ident: B139
  article-title: Nanoparticles for bone tissue engineering
  publication-title: Biotechnol. Prog.
  doi: 10.1002/btpr.2469
– volume: 24
  start-page: 2337
  year: 2013
  ident: B83
  article-title: Production, characterisation, and cytocompatibility of porous titanium-based particulate scaffolds
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-013-4989-z
– volume: 8
  start-page: 109
  year: 2004
  ident: B137
  article-title: Clinical application of porcine small intestinal submucosa in the management of infected or potentially contaminated abdominal defects
  publication-title: J. Gastrointest. Surg: official journal of the Society for Surgery of the Alimentary Tract
  doi: 10.1016/j.gassur.2003.09.025
– volume-title: Biomaterial-supported tissue reconstruction or regeneration
  year: 2019
  ident: B29
  article-title: Innovative biomaterials for tissue engineering
  doi: 10.5772/intechopen.83839
– volume: 4
  start-page: 66
  year: 2009
  ident: B151
  article-title: Nanotechnology and nanomaterials: Promises for improved tissue regeneration
  publication-title: Nano today
  doi: 10.1016/j.nantod.2008.10.014
– volume: 40
  start-page: 1628
  year: 2012
  ident: B22
  article-title: Recent progress in interfacial tissue engineering approaches for osteochondral defects
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-012-0605-5
– volume: 49
  start-page: 587
  year: 2019
  ident: B70
  article-title: Recent advances and opportunities in the treatment of hydrocarbons and oils: Metal-organic frameworks-based approaches
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2018.1554402
– volume: 187
  start-page: 108522
  year: 2022
  ident: B131
  article-title: Insight on recent development in metallic biomaterials: Strategies involving synthesis, types and surface modification for advanced therapeutic and biomedical applications
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2022.108522
– volume: 41
  start-page: 351
  year: 2016
  ident: B16
  article-title: Fatigue behaviors of HP-Mg, Mg–Ca and Mg–Zn–Ca biodegradable metals in air and simulated body fluid
  publication-title: Acta biomater.
  doi: 10.1016/j.actbio.2016.05.031
– volume: 31
  start-page: 385
  year: 2010
  ident: B102
  article-title: The effect of matrix stiffness on mesenchymal stem cell differentiation in a 3D thixotropic gel
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.09.057
– volume: 103
  start-page: 109734
  year: 2019
  ident: B111
  article-title: Au nanoparticle-decorated aragonite microdumbbells for enhanced antibacterial and anticancer activities
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2019.05.019
– volume: 5
  start-page: 4670
  year: 2011
  ident: B91
  article-title: Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells
  publication-title: ACS Nano
  doi: 10.1021/nn200500h
– volume: 56
  start-page: 559
  ident: B36
  article-title: Preliminary investigation on mechanical properties of polymer coating screws for the future fragility fracture fixation
  publication-title: Mater. Plast.
  doi: 10.37358/mp.19.3.5229
– volume: 16
  start-page: 1
  year: 2019
  ident: B132
  article-title: Hybrid fracture fixation systems developed for orthopaedic applications: A general review
  publication-title: J. Orthop. Transl.
  doi: 10.1016/j.jot.2018.06.006
– volume: 9
  start-page: R41
  year: 2007
  ident: B95
  article-title: Treatment of posttraumatic and focal osteoarthritic cartilage defects of the knee with autologous polymer-based three-dimensional chondrocyte grafts: 2-year clinical results
  publication-title: Arthritis Res. Ther.
  doi: 10.1186/ar2180
– volume: 12
  start-page: 905
  year: 2020
  ident: B30
  article-title: Natural and synthetic polymers for bone scaffolds optimization
  publication-title: Polymers
  doi: 10.3390/polym12040905
– year: 2022
  ident: B60
  article-title: first_page settings order article reprints open AccessArticle pore-level multiphase simulations of realistic distillation membranes for water desalination
  publication-title: Membranes
  doi: 10.3390/membranes12111112
– volume: 7
  start-page: 9
  year: 2010
  ident: B61
  article-title: TissueMend
  publication-title: Expert Rev. Med. Devices
  doi: 10.1586/erd.09.59
– volume: 7
  start-page: 568
  year: 2011
  ident: B41
  article-title: Assessment of using laponite cross-linked poly(ethylene oxide) for controlled cell adhesion and mineralization
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2010.09.015
– volume: 6
  start-page: 129
  year: 2022
  ident: B32
  article-title: Mechanical properties of 3D-printed orthopedic one-third tubular plates and cortical screws
  publication-title: J. 3D Print. Med.
  doi: 10.2217/3dp-2022-0007
– volume: 19
  start-page: 451
  year: 2016
  ident: B140
  article-title: Nanomaterials promise better bone repair
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2015.12.003
– volume: 234
  start-page: 218
  year: 2020
  ident: B34
  article-title: Medical devices biomaterials–A review
  publication-title: Proc. Institution Mech. Eng. Part L J. Mater. Des. Appl.
  doi: 10.1177/1464420719882458
– volume: 63
  start-page: 102479
  year: 2021
  ident: B101
  article-title: Micro engraving on 316L stainless steel orthopedic implant using fiber laser
  publication-title: Opt. Fiber Technol.
  doi: 10.1016/j.yofte.2021.102479
– volume: 70
  start-page: 638
  year: 2019
  ident: B8
  article-title: Tranexamic acid - major antifibrinolytic agent used to achieve hemostasis in hemophilic patients with anti-factor VIII anti-bodies who must undergo total joint replecement
  publication-title: Rev. Chim. Buchar
  doi: 10.37358/rc.19.2.6974
– volume: 293
  start-page: 283
  year: 2019
  ident: B14
  article-title: Novel electrochemical sensor for mononitrotoluenes using silver oxide quantum dots
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2018.10.042
– volume: 12
  start-page: 227
  year: 2015
  ident: B146
  article-title: Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: In vitro and in vivo assessment of biological performance
  publication-title: Acta biomater.
  doi: 10.1016/j.actbio.2014.10.021
– volume: 134
  start-page: 1862
  year: 2014
  ident: B1
  article-title: The nano-scale mechanical properties of the extracellular matrix regulate dermal fibroblast function
  publication-title: J. Investigative Dermatology
  doi: 10.1038/jid.2014.90
– volume: 19
  start-page: 431
  year: 2013
  ident: B149
  article-title: Nanophase hydroxyapatite as a biomaterial in advanced hard tissue engineering: A review
  publication-title: Tissue Eng. Part B Rev.
  doi: 10.1089/ten.teb.2012.0624
– volume: 62
  start-page: 90
  year: 2001
  ident: B52
  article-title: Permacol™: Clinical experience with a new biomaterial
  publication-title: Hosp. Med.
  doi: 10.12968/hosp.2001.62.2.2379
– volume: 7
  start-page: 1441
  year: 2011
  ident: B115
  article-title: Gradient biomaterials for soft-to-hard interface tissue engineering
  publication-title: Acta biomater.
  doi: 10.1016/j.actbio.2011.01.011
– volume: 38
  start-page: 2121
  year: 2010
  ident: B31
  article-title: Emerging techniques in stratified designs and continuous gradients for tissue engineering of interfaces
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-010-0033-3
– volume: 60
  start-page: 384
  year: 2016
  ident: B33
  article-title: Multifunctional commercially pure titanium for the improvement of bone integration: Multiscale topography, wettability, corrosion resistance and biological functionalization
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2015.11.049
– volume: 50
  start-page: 2206
  year: 2022
  ident: B43
  article-title: Processing of biomaterials for bone tissue engineering: State of the art
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2021.09.459
– volume: 33
  start-page: 846
  year: 2012
  ident: B108
  article-title: Precipitation of nanohydroxyapatite on PLLA/PBLG/Collagen nanofibrous structures for the differentiation of adipose derived stem cells to osteogenic lineage
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2011.10.030
– volume: 14
  start-page: 341
  year: 2008
  ident: B121
  article-title: Strategies and applications for incorporating physical and chemical signal gradients in tissue engineering
  publication-title: Tissue Eng. Part B Rev.
  doi: 10.1089/ten.teb.2008.0304
– volume: 50
  start-page: 8484
  year: 2014
  ident: B129
  article-title: Synergistic acceleration in the osteogenesis of human mesenchymal stem cells by graphene oxide–calcium phosphate nanocomposites
  publication-title: Chem. Commun.
  doi: 10.1039/c4cc02442g
– volume: 9
  start-page: 1884
  year: 2021
  ident: B135
  article-title: Biodegradable Mg alloys for orthopedic implants–A review
  publication-title: J. Magnesium Alloys
  doi: 10.1016/j.jma.2021.06.024
– volume: 47
  start-page: 3391
  year: 2018
  ident: B138
  article-title: Peptide and protein nanotechnology into the 2020s: Beyond biology
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c8cs90055h
– volume: 92
  start-page: 1244
  year: 2010
  ident: B150
  article-title: Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.a.32452
– volume: 35
  start-page: e6
  year: 2012
  ident: B98
  article-title: Autologous chondrocyte implantation for knee cartilage injuries: Moderate functional outcome and performance in patients with high-impact activities
  publication-title: Orthopedics
  doi: 10.3928/01477447-20111122-07
– volume: 106
  start-page: 110154
  year: 2020
  ident: B62
  article-title: Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2019.110154
– volume: 134
  start-page: 111103
  year: 2021
  ident: B81
  article-title: Nanomedicines: Redefining traditional medicine
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2020.111103
– start-page: 3
  volume-title: Biomaterials in tissue engineering and regenerative medicine
  year: 2021
  ident: B15
  article-title: Biomaterials, tissue engineering, and regenerative medicine: A brief outline
  doi: 10.1007/978-981-16-0002-9_1
– volume: 32
  start-page: 77
  year: 2016
  ident: B100
  article-title: Carbon-based hierarchical scaffolds for myoblast differentiation: Synergy between nano-functionalization and alignment
  publication-title: Acta biomater.
  doi: 10.1016/j.actbio.2016.01.004
– volume: 14
  start-page: 213
  year: 2008
  ident: B96
  article-title: Perfusion-decellularized matrix: Using nature's platform to engineer a bioartificial heart
  publication-title: Nat. Med.
  doi: 10.1038/nm1684
– volume: 13
  start-page: 200
  year: 2023
  ident: B125
  article-title: Tannic acid coatings to control the degradation of AZ91 Mg alloy porous structures
  publication-title: Metals
  doi: 10.3390/met13020200
– volume: 187
  start-page: 66
  ident: B38
  article-title: Amphiphilic beads as depots for sustained drug release integrated into fibrillar scaffolds
  publication-title: J. Control. release
  doi: 10.1016/j.jconrel.2014.04.035
– volume: 4
  start-page: 78
  year: 2018
  ident: B123
  article-title: Green nanoparticles: Synthesis and applications
  publication-title: IOSR J. Biotechnol. Biochem.
  doi: 10.9790/264X-0403017883
– volume: 7
  start-page: 124
  year: 2017
  ident: B21
  article-title: Silver nanoparticles in orthopedic applications: New insights on their effects on osteogenic cells
  publication-title: Nanomaterials
  doi: 10.3390/nano7060124
– volume: 6
  start-page: 669
  year: 2006
  ident: B19
  article-title: Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects
  publication-title: Nano Lett.
  doi: 10.1021/nl052405t
– volume: 19
  start-page: 921
  year: 2007
  ident: B127
  article-title: Nano-to microscale porous silicon as a cell interface for bone-tissue engineering
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200600319
– volume: 7
  start-page: 400
  year: 2013
  ident: B47
  article-title: A polymer optoelectronic interface restores light sensitivity in blind rat retinas
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.34
– volume: 517
  start-page: 68
  year: 2015
  ident: B76
  article-title: An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets
  publication-title: Nature
  doi: 10.1038/nature14060
– volume: 108
  start-page: 1617
  year: 2020
  ident: B85
  article-title: Biomaterials and biocompatibility: An historical overview
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.36930
– volume: 13
  start-page: eabb3946
  year: 2021
  ident: B142
  article-title: Targeting cartilage EGFR pathway for osteoarthritis treatment
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.abb3946
– volume: 4
  start-page: 3664
  year: 2022
  ident: B105
  article-title: Nanotechnology from lab to industry–a look at current trends
  publication-title: Nanoscale Adv.
  doi: 10.1039/d2na00439a
– volume: 557
  start-page: 54
  year: 2012
  ident: B79
  article-title: Simple fabrication technique for multilayered stratified composite scaffolds suitable for interface tissue engineering
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2012.05.104
– volume: 4
  start-page: 1600
  year: 2015
  ident: B65
  article-title: Nanomaterials for engineering stem cell responses
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201500272
– volume: 28
  start-page: 1257
  year: 2018
  ident: B44
  article-title: Nanotechnology: The scope and potential applications in orthopedic surgery
  publication-title: Eur. J. Orthop. Surg. Traumatology
  doi: 10.1007/s00590-018-2193-z
– volume: 295
  start-page: 119
  year: 2018
  ident: B106
  article-title: Improvement of antihyperglycemic activity of nano-thymoquinone in rat model of type-2 diabetes
  publication-title: Chemico-biological Interact.
  doi: 10.1016/j.cbi.2018.02.006
– volume: 10
  start-page: 1292
  year: 2016
  ident: B119
  article-title: Photo-cross-linked scaffold with kartogenin-encapsulated nanoparticles for cartilage regeneration
  publication-title: Acs Nano
  doi: 10.1021/acsnano.5b06663
– volume: 28
  start-page: 1664
  year: 2007
  ident: B94
  article-title: In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.11.024
– volume: 85
  start-page: 989
  year: 2003
  ident: B109
  article-title: Arthroscopic treatment of osteochondral lesions of the talus
  publication-title: J. Bone & Jt. Surg. Br.
  doi: 10.1302/0301-620x.85b7.13959
– volume: 2022
  start-page: 1
  year: 2022
  ident: B71
  article-title: Application and development of modern 3D printing technology in the field of orthopedics
  publication-title: BioMed Res. Int.
  doi: 10.1155/2022/8759060
– volume: 13
  start-page: 070126052216001
  year: 2007
  ident: B99
  article-title: Nanofabrication and microfabrication of functional materials for tissue engineering
  publication-title: Tissue Eng.
  doi: 10.1089/ten.2007.13.ft-353
– volume: 86
  start-page: S1
  year: 2015
  ident: B12
  article-title: Internal fixation of fragility fractures of the femoral neck: Ex vivo biomechanical studies
  publication-title: Acta Orthop.
  doi: 10.3109/17453674.2015.1056702
– volume: 42
  start-page: 2
  year: 2016
  ident: B27
  article-title: Nanoengineered biomaterials for repair and regeneration of orthopedic tissue interfaces
  publication-title: Acta biomater.
  doi: 10.1016/j.actbio.2016.06.023
– volume: 141
  start-page: 208
  year: 2003
  ident: B157
  article-title: Characteristics of mineral particles in the human bone/cartilage interface
  publication-title: J. Struct. Biol.
  doi: 10.1016/s1047-8477(02)00635-4
– volume: 6
  start-page: 2583
  year: 2005
  ident: B153
  article-title: Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts
  publication-title: Biomacromolecules
  doi: 10.1021/bm050314k
– volume: 14
  start-page: 102977
  year: 2021
  ident: B84
  article-title: PEEK (Polyether-ether-ketone) and its composite materials in orthopedic implantation
  publication-title: Arabian J. Chem.
  doi: 10.1016/j.arabjc.2020.102977
– volume: 69
  start-page: 143
  year: 2017
  ident: B67
  article-title: Metformin-loaded alginate nanoparticles as an effective antidiabetic agent for controlled drug release
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1111/jphp.12672
– volume: 89
  start-page: 2752
  year: 2007
  ident: B2
  article-title: Osteonecrosis of the knee treated with a tissue-engineered cartilage and bone implant: A case report
  publication-title: JBJS
  doi: 10.2106/jbjs.f.00983
– volume: 14
  start-page: 250
  year: 2022
  ident: B155
  article-title: Bone targeting antioxidative nano-iron oxide for treating postmenopausal osteoporosis
  publication-title: Bioact. Mater.
  doi: 10.1016/j.bioactmat.2021.11.012
– start-page: 559
  volume-title: Principles of regenerative medicine
  year: 2019
  ident: B51
  article-title: Synthetic polymers
  doi: 10.1016/B978-0-12-809880-6.00033-3
– start-page: 23
  volume-title: Design of artificial human joints & organs
  year: 2014
  ident: B97
  article-title: Mechanical properties of biological materials
  doi: 10.1007/978-1-4614-6255-2_2
– volume: 69
  start-page: 342
  year: 2018
  ident: B24
  article-title: Synergistic interplay between the two major bone minerals, hydroxyapatite and whitlockite nanoparticles, for osteogenic differentiation of mesenchymal stem cells
  publication-title: Acta biomater.
  doi: 10.1016/j.actbio.2018.01.016
– volume: 2
  start-page: 923
  year: 2010
  ident: B144
  article-title: “Aligned-to-random” nanofiber scaffolds for mimicking the structure of the tendon-to-bone insertion site
  publication-title: Nanoscale
  doi: 10.1039/c0nr00192a
– volume: 98
  start-page: 749
  year: 2007
  ident: B45
  article-title: Biphasic, but monolithic scaffolds for the therapy of osteochondral defects
  publication-title: Int. J. Mater. Res.
  doi: 10.3139/146.101520
– volume: 6
  start-page: eabc1725
  year: 2020
  ident: B148
  article-title: Trisulfide bond–mediated doxorubicin dimeric prodrug nanoassemblies with high drug loading, high self-assembly stability, and high tumor selectivity
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abc1725
– volume: 88
  start-page: 899
  year: 2010
  ident: B112
  article-title: Biomimetic gradient hydrogels for tissue engineering
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.20411
– volume: 22
  start-page: 15
  year: 2016
  ident: B126
  article-title: A road map to commercialization of cartilage therapy in the United States of America
  publication-title: Tissue Eng. Part B Rev.
  doi: 10.1089/ten.teb.2015.0147
– volume: 96
  start-page: 9
  year: 2011
  ident: B104
  article-title: Ectopic osteochondral formation of biomimetic porous PVA-n-HA/PA6 bilayered scaffold and BMSCs construct in rabbit
  publication-title: J. Biomed. Mater. Res. Part B Appl. Biomaterials
  doi: 10.1002/jbm.b.31697
– volume: 3
  start-page: 432
  year: 2012
  ident: B3
  article-title: Bioactive and biodegradable nanocomposites and hybrid biomaterials for bone regeneration
  publication-title: J. Funct. Biomater.
  doi: 10.3390/jfb3020432
– volume: 539
  start-page: 177
  year: 2016
  ident: B59
  article-title: Neural interfaces take another step forward
  publication-title: Nature
  doi: 10.1038/539177a
– volume: 16
  start-page: 1099
  year: 2005
  ident: B136
  article-title: Nano-and micro-fiber combined scaffolds: A new architecture for bone tissue engineering
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-005-4713-8
– volume: 1
  start-page: 20
  year: 2016
  ident: B120
  article-title: Measurement of mechanical properties of natural and engineered implants
  publication-title: Adv. Tissue Eng. Regen. Med. Open Access
  doi: 10.15406/atroa.2016.01.00004
– volume: 143
  start-page: 1
  year: 2022
  ident: B13
  article-title: Biomaterialomics: Data science-driven pathways to develop fourth-generation biomaterials
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2022.02.027
– volume: 24
  start-page: 403. e1
  year: 2008
  ident: B17
  article-title: Arthroscopic replacement of massive, irreparable rotator cuff tears using a GraftJacket allograft: Technique and preliminary results
  publication-title: Arthrosc. J. Arthrosc. Relat. Surg.
  doi: 10.1016/j.arthro.2007.07.033
– volume: 27
  start-page: 7261
  year: 2015
  ident: B25
  article-title: Two-dimensional nanomaterials for biomedical applications: Emerging trends and future prospects
  publication-title: Adv. Mater
  doi: 10.1002/adma.201502422
– volume: 37
  start-page: 1334
  year: 2009
  ident: B26
  article-title: An autologous cartilage tissue implant NeoCart for treatment of grade III chondral injury to the distal femur: Prospective clinical safety trial at 2 years
  publication-title: Am. J. sports Med.
  doi: 10.1177/0363546509333011
– volume: 50
  start-page: 50
  year: 2018
  ident: B113
  article-title: Nanomaterials at the neural interface
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2017.12.009
– volume: 31
  start-page: 2252
  year: 2010
  ident: B114
  article-title: Engineering human cell-based, functionally integrated osteochondral grafts by biological bonding of engineered cartilage tissues to bony scaffolds
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.11.110
– volume: 104
  start-page: 2203
  year: 2015
  ident: B64
  article-title: Coencapsulation of hydrophobic and hydrophilic antituberculosis drugs in synergistic brij 96 microemulsions: A biophysical characterization
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.24469
– volume: 6
  start-page: 2842
  year: 2014
  ident: B77
  article-title: Nanofiber scaffolds with gradients in mineral content for spatial control of osteogenesis
  publication-title: ACS Appl. Mater. interfaces
  doi: 10.1021/am405418g
– volume: 42
  start-page: 100706
  year: 2022
  ident: B57
  article-title: Osteotomy after medial malleolus fracture fixed with magnesium screws ZX00-A case report
  publication-title: Trauma Case Rep.
  doi: 10.1016/j.tcr.2022.100706
– volume: 462
  start-page: 426
  year: 2009
  ident: B58
  article-title: Inspiration and application in the evolution of biomaterials
  publication-title: Nature
  doi: 10.1038/nature08601
– volume: 19
  start-page: 2255
  year: 2018
  ident: B23
  article-title: Green tea polyphenols coupled with a bioactive titanium alloy surface: In vitro characterization of osteoinductive behavior through a KUSA A1 cell study
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19082255
– volume: 88
  start-page: 2665
  year: 2006
  ident: B28
  article-title: Commercial extracellular matrix scaffolds for rotator cuff tendon repair: Biomechanical, biochemical, and cellular properties
  publication-title: JBJS
  doi: 10.2106/jbjs.e.01307
– volume: 8
  start-page: 5744
  year: 2015
  ident: B118
  article-title: Biodegradable materials for bone repair and tissue engineering applications
  publication-title: Mater. (Basel)
  doi: 10.3390/ma8095273
– volume: 5
  start-page: 351
  year: 2010
  ident: B134
  article-title: Differential effects of nanoselenium doping on healthy and cancerous osteoblasts in coculture on titanium
  publication-title: Int. J. nanomedicine
  doi: 10.2147/ijn.s7289
– volume: 20
  start-page: 1
  year: 2020
  ident: B9
  article-title: Current practices in haemophilic patients undergoing orthopedic surgery-a systematic review
  publication-title: Exp. Ther. Med.
  doi: 10.3892/etm.2020.9337
– volume: 9
  start-page: 3109
  year: 2015
  ident: B143
  article-title: Bioactive nanoengineered hydrogels for bone tissue engineering: A growth-factor-free approach
  publication-title: ACS Nano
  doi: 10.1021/nn507488s
– volume: 16
  start-page: 782
  year: 2019
  ident: B147
  article-title: Drug delivery based on nanotechnology for target bone disease
  publication-title: Curr. Drug Deliv.
  doi: 10.2174/1567201816666190917123948
– volume: 48
  start-page: 428
  year: 2019
  ident: B78
  article-title: Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c7cs00807d
– volume: 73
  start-page: 61
  year: 2005
  ident: B156
  article-title: Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: Possible implications in human implantation
  publication-title: J. Biomed. Mater. Res. Part B Appl. Biomaterials
  doi: 10.1002/jbm.b.30170
– volume: 5
  start-page: 20224
  year: 2018
  ident: B110
  article-title: Composite polymer in orthopedic implants: A review
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2018.06.393
– volume: 1
  start-page: 33
  year: 2020
  ident: B145
  article-title: Segmental long bone regeneration guided by degradable synthetic polymeric scaffolds
  publication-title: Biomater. Transl.
  doi: 10.3877/cma.j.issn.2096-112X.2020.01.004
– volume: 12
  start-page: 779
  year: 2012
  ident: B37
  article-title: Physically crosslinked nanocomposites from silicate-crosslinked PEO: Mechanical properties and osteogenic differentiation of human mesenchymal stem cells
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201100508
– volume-title: Orthopaedic proceedings
  year: 2010
  ident: B7
  article-title: Holy cow. Beware of the perils of tutobone in hindfoot fusion
– volume: 44
  start-page: 190
  ident: B68
  article-title: Advanced selection methodologies for DNAzymes in sensing and healthcare applications
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2018.11.001
– volume: 15
  start-page: 7199
  year: 2020
  ident: B72
  article-title: The advances of ceria nanoparticles for biomedical applications in orthopaedics
  publication-title: Int. J. nanomedicine
  doi: 10.2147/ijn.s270229
– volume: 56
  start-page: 1028
  ident: B35
  article-title: Assessment of the mechanical properties of orthopedic screws coated with polyurethane acrylate containing hydroxyapatite, intended to fix the fragility fractures
  publication-title: Mater. Plast.
  doi: 10.37358/mp.19.4.5302
– volume: 14
  start-page: 76
  year: 2019
  ident: B73
  article-title: Comparison of three different internal fixation implants in treatment of femoral neck fracture—A finite element analysis
  publication-title: J. Orthop. Surg. Res.
  doi: 10.1186/s13018-019-1097-x
– volume: 15
  start-page: 115
  year: 2009
  ident: B88
  article-title: Novel nanofiber-based scaffold for rotator cuff repair and augmentation
  publication-title: Tissue Eng. Part A
  doi: 10.1089/ten.tea.2008.0014
– volume: 294
  start-page: 131
  ident: B69
  article-title: Nano-based smart pesticide formulations: Emerging opportunities for agriculture
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2018.12.012
– volume: 31
  start-page: 706
  year: 2010
  ident: B103
  article-title: The relationship between the nanostructure of titanium surfaces and bacterial attachment
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.09.081
– volume: 173
  start-page: 75
  year: 2014
  ident: B49
  article-title: Graphene-based nanomaterials for drug delivery and tissue engineering
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2013.10.017
– volume: 9
  start-page: 1949
  year: 2021
  ident: B133
  article-title: Biomaterials and their biomedical applications: From replacement to regeneration
  publication-title: Processes
  doi: 10.3390/pr9111949
– volume: 19
  start-page: 2
  year: 2016
  ident: B93
  article-title: Fourth-generation biomedical materials
  publication-title: Mat. Today
  doi: 10.1016/j.mattod.2015.11.005
– volume: 78
  start-page: 173
  year: 2015
  ident: B107
  article-title: Optimization and evaluation of bioactive drug-loaded polymeric nanoparticles for drug delivery
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2015.03.070
– volume-title: Materials for medical application
  year: 2020
  ident: B54
  doi: 10.1515/9783110619249
– volume: 134
  start-page: 81
  year: 2009
  ident: B141
  article-title: Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2008.10.021
– volume: 22
  start-page: 995
  year: 2021
  ident: B10
  article-title: Orthopedic surgery in hemophilic patients with musculoskeletal disorders: A systematic review
  publication-title: Exp. Ther. Med.
  doi: 10.3892/etm.2021.10427
– volume: 19
  start-page: 646
  year: 2013
  ident: B122
  article-title: Regeneration and experimental orthotopic transplantation of a bioengineered kidney
  publication-title: Nat. Med.
  doi: 10.1038/nm.3154
– volume: 9
  start-page: 12
  year: 2021
  ident: B89
  article-title: On the road to smart biomaterials for bone research: Definitions, concepts, advances, and outlook
  publication-title: Bone Res.
  doi: 10.1038/s41413-020-00131-z
– volume: 26
  start-page: 1
  year: 2008
  ident: B18
  article-title: Functional tissue engineering for tendon repair: A multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.20456
– volume: 10
  start-page: 45
  year: 2019
  ident: B46
  article-title: Key terminology in biomaterials and biocompatibility
  publication-title: Curr. Opin. Biomed. Eng.
  doi: 10.1016/j.cobme.2019.02.004
– volume: 55
  start-page: 165
  year: 2014
  ident: B6
  article-title: Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: A review
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2013.09.045
– volume: 28
  start-page: 260
  year: 2011
  ident: B128
  article-title: Nanoparticles: A promising modality in the treatment of sarcomas
  publication-title: Pharm. Res.
  doi: 10.1007/s11095-010-0173-z
– volume: 144
  start-page: 272
  year: 2006
  ident: B4
  article-title: First clinical experiences with a novel 3D-collagen gel (CaReS) for the treatment of focal cartilage defects in the knee
  publication-title: Z. fur Orthopadie ihre Grenzgeb.
  doi: 10.1055/s-2006-933445
– volume: 5
  start-page: 661
  year: 2009
  ident: B75
  article-title: Gradient collagen/nanohydroxyapatite composite scaffold: Development and characterization
  publication-title: Acta biomater.
  doi: 10.1016/j.actbio.2008.09.022
– volume: 216
  start-page: 248
  year: 2015
  ident: B20
  article-title: Bioinspired polymeric nanocomposites for regenerative medicine
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.201400427
– volume: 90
  start-page: 597
  year: 2008
  ident: B116
  article-title: Autologous chondrocyte implantation in a novel alginate-agarose hydrogel: Outcome at two years
  publication-title: J. bone Jt. Surg. Br. volume
  doi: 10.1302/0301-620x.90b5.20360
– volume: 33
  start-page: 5247
  year: 2012
  ident: B66
  article-title: A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2012.03.076
– volume: 201
  start-page: 865
  year: 2023
  ident: B82
  article-title: Cerium oxide nanoparticles promote osteoplastic precursor differentiation by activating the Wnt pathway
  publication-title: Biol. Trace Elem. Res.
  doi: 10.1007/s12011-022-03168-9
– volume: 28
  start-page: 80
  year: 2008
  ident: B48
  article-title: Bi-layered constructs based on poly (L-lactic acid) and starch for tissue engineering of osteochondral defects
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2006.12.012
– volume: 50
  start-page: 12
  year: 2015
  ident: B53
  article-title: Design and fabrication of biomimetic multiphased scaffolds for ligament-to-bone fixation
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2015.01.088
– volume: 12
  start-page: 137
  year: 2019
  ident: B152
  article-title: Nanotechnology in cancer diagnosis: Progress, challenges and opportunities
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/s13045-019-0833-3
– volume: 1
  start-page: 189
  year: 2009
  ident: B56
  article-title: Commercialization of nanotechnology
  publication-title: Wiley Interdiscip. Rev. Nanomedicine Nanobiotechnology
  doi: 10.1002/wnan.28
– volume: 8
  start-page: 25
  year: 2019
  ident: B63
  article-title: Biocompatibility studies on cerium oxide nanoparticles–combined study for local effects, systemic toxicity and genotoxicity via implantation route
  publication-title: Toxicol. Res.
  doi: 10.1039/c8tx00248g
– volume: 9
  start-page: 2763
  year: 2009
  ident: B74
  article-title: Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site
  publication-title: Nano Lett.
  doi: 10.1021/nl901582f
– volume: 61
  start-page: 86
  year: 2012
  ident: B11
  article-title: Biomechanical characteristics of the bone
  publication-title: Hum. Musculoskelet. Biomech.
  doi: 10.5772/19690
– volume: 7
  start-page: 1
  year: 2018
  ident: B87
  article-title: Synthetic polymeric biomaterials for wound healing: A review
  publication-title: Prog. biomaterials
  doi: 10.1007/s40204-018-0083-4
– volume: 31
  start-page: 654
  year: 2013
  ident: B154
  article-title: Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2012.08.001
– volume: 25
  start-page: 3329
  year: 2013
  ident: B39
  article-title: Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells
  publication-title: Adv. Mater
  doi: 10.1002/adma.201300584
– volume: 117
  start-page: 5855
  year: 2004
  ident: B50
  article-title: Adhesion-contractile balance in myocyte differentiation
  publication-title: J. Cell. Sci.
  doi: 10.1242/jcs.01496
– volume: 15
  start-page: 1374
  year: 2015
  ident: B55
  article-title: Instant live-cell super-resolution imaging of cellular structures by nanoinjection of fluorescent probes
  publication-title: Nano Lett.
  doi: 10.1021/nl504660t
– volume-title: Biomaterials: A systems approach to engineering concepts
  year: 2017
  ident: B80
SSID ssj0001257582
Score 2.2873533
SecondaryResourceType review_article
Snippet The objective of bioimplant engineering is to develop biologically compatible materials for restoring, preserving, or altering damaged tissues and/or organ...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1206806
SubjectTerms Bioengineering and Biotechnology
bioimplant
biomaterials
nanotechnology
orthopedic
orthopedic implant
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT3CoKB_qQouMxA2F7tqx4_TWIqqKAycq9WZ57Im6Upss7fb_M2OnS3KBC9ckVhzPRPOeZ_xGiE9GLZtoQFeJwnFVt5gqWGGoQlKAdaIYGnO1xQ97eVV_vzbXk1ZfXBNW5IHLwp2YOjSaWEiCyNJnAZagwAUdYoraYNb5pJg3IVNld4VgiFPllAyxsPakg_XAsphKf1kpbjhhZ5EoC_bPUOa8RnISdC5eiv0RLcqzMssD8Qz7V-LFREPwtfiVo02paJNDJ_vQD9vdfnnFUSrJ9d3mlgteJEFUyZmaYcMJGjlNX5_KWLSaJIR77mP3IEOfZBEdkZs_hzLfiKuLbz-_XlZjH4UqEtnbVq5GnYLFtjHgGtdFACJBddcZJIBgtcLA-Ze2RUdo0FAEDxpaixgdRKutfiv2-qHHQyFdQLekYStLvA2I7cTkdJdUtzQGGwsLsXpaUx9HkXHudXHriWywHXy2g2c7-NEOC_F5N2ZTJDb--vQ5m2r3JMtj5wvkNH50Gv8vp1mIj0-G9vQ7cY4k9Dg8PnhFDE9lHL0QbuYBszfO7_TrmyzMnaWOaOy7_zHH9-I5fzfvXyt1JPa29494TABoCx-yr_8GAqYI0g
  priority: 102
  providerName: Directory of Open Access Journals
Title Translation of nanotechnology-based implants for orthopedic applications: current barriers and future perspective
URI https://www.proquest.com/docview/2862200080
https://pubmed.ncbi.nlm.nih.gov/PMC10478008
https://doaj.org/article/54a73840dbc2461ab0b2b8a3acdc35e3
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NixQxEC3W9aIH8RPHjyWCN-l1Jumk04KIissi6MmBvYVUktaBsXt2Zhb031uV7hmnQT147e6iSSrhvZePVwDPtZxWQaMqIsFxUdYpFjhLvvBRYiojYWjIpy0-m_N5-fFCXxzBrtzR0IGbP0o7ric1Xy9Pf1z-fEMT_jUrTsLblw0uOna8lOp0JrmWhLkG1wmZKp6onwa636-5EDmxsr8785fQET5lG_8R9xyfnDyAorPbcGvgkOJtn_Q7cJTau3DzwFnwHlxmDOrPuYmuEa1vu-1-Fb1g7Ipi8X215GMwgoir4P0banpcBHG4qf1KhN7BSaBfc3W7jfBtFL0ViVj9vqp5H-ZnH768Py-G6gpFIAm4LWyZVPQm1ZVGW9kmIJI0KptGJ6INRsnkeVemrpMljqgJ173C2qQULAajjHoAx23XpocgrE92SmEzQ2oOSQOFaFUTZTPVOlUGJzDb9akLg_U4V8BYOpIgnAeX8-A4D27IwwRe7GNWvfHGP79-x6naf8mm2flBt_7qhjnodOkrRYI2YmAXPY9TlGi98iEGpZOawLNdoh1NMt458W3qrjZOku6TmV1PwI5GwOiP4zft4lu2684GSBT76P9DH8MNbi2vZUv5BI6366v0lMjQFk_yIsJJHue_ABxJEG0
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Translation+of+nanotechnology-based+implants+for+orthopedic+applications%3A+current+barriers+and+future+perspective&rft.jtitle=Frontiers+in+bioengineering+and+biotechnology&rft.au=Chen%2C+Long&rft.au=Zhou%2C+Chao&rft.au=Jiang%2C+Chanyi&rft.au=Huang%2C+Xiaogang&rft.date=2023-08-22&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-4185&rft.volume=11&rft_id=info:doi/10.3389%2Ffbioe.2023.1206806&rft.externalDocID=PMC10478008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-4185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-4185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-4185&client=summon