Anatomy of Photoevaporation Base: Linking the Property of the Launched Wind to Irradiation Flux

Ultraviolet and X-rays from radiation sources disperse nearby gas clumps by driving winds due to heating associated with the photochemical processes. This dispersal process, photoevaporation, constrains the lifetimes of the parental bodies of stars and planets. To understand this process in a univer...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 930; no. 2; pp. 124 - 137
Main Authors Nakatani, Riouhei, Takasao, Shinsuke
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.05.2022
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ultraviolet and X-rays from radiation sources disperse nearby gas clumps by driving winds due to heating associated with the photochemical processes. This dispersal process, photoevaporation, constrains the lifetimes of the parental bodies of stars and planets. To understand this process in a universal picture, we develop an analytical model that describes the fundamental physics in the vicinity of the wind-launching region. The model explicitly links the density and velocity of photoevaporative winds at the launch points to the radiation flux reaching the wind-launching base, using a jump condition. The model gives a natural boundary condition for the wind-emanating points. We compare the analytical model with the results of radiation hydrodynamic simulations, where a protoplanetary disk is irradiated by the stellar extreme-ultraviolet, and confirm good agreement of the base density and velocity, and radial profiles of mass-loss rates. We expect that our analytical model is applicable to other objects subject to photoevaporation not only by extreme-ultraviolet but by far-ultraviolet/X-rays with suitable modifications. Future self-consistent numerical studies can test the applicability.
AbstractList Ultraviolet and X-rays from radiation sources disperse nearby gas clumps by driving winds due to heating associated with the photochemical processes. This dispersal process, photoevaporation, constrains the lifetimes of the parental bodies of stars and planets. To understand this process in a universal picture, we develop an analytical model that describes the fundamental physics in the vicinity of the wind-launching region. The model explicitly links the density and velocity of photoevaporative winds at the launch points to the radiation flux reaching the wind-launching base, using a jump condition. The model gives a natural boundary condition for the wind-emanating points. We compare the analytical model with the results of radiation hydrodynamic simulations, where a protoplanetary disk is irradiated by the stellar extreme-ultraviolet, and confirm good agreement of the base density and velocity, and radial profiles of mass-loss rates. We expect that our analytical model is applicable to other objects subject to photoevaporation not only by extreme-ultraviolet but by far-ultraviolet/X-rays with suitable modifications. Future self-consistent numerical studies can test the applicability.
Author Nakatani, Riouhei
Takasao, Shinsuke
Author_xml – sequence: 1
  givenname: Riouhei
  orcidid: 0000-0002-1803-0203
  surname: Nakatani
  fullname: Nakatani, Riouhei
  organization: RIKEN Cluster for Pioneering Research , 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
– sequence: 2
  givenname: Shinsuke
  orcidid: 0000-0003-3882-3945
  surname: Takasao
  fullname: Takasao, Shinsuke
  organization: Osaka University Department of Earth and Space Science, Graduate School of Science, Toyonaka, Osaka 560-0043, Japan
BookMark eNp9kMFLwzAUh4MouE3vHgPizbqk6ZLW2xxOBwN3UPQWXtPUZc6kppm4_952FQURISS88H3vPX59tG-d1QidUHLB0kQM6YilUcJGYgiKMyB7qPf9tY96hJAk4kw8HaJ-Xa_aMs6yHpJjC8G9brEr8WLpgtPvUDkPwTiLr6DWl3hu7IuxzzgsNV54V2kfdnhbz2Fj1VIX-NHYAgeHZ95DYTp9ut58HKGDEta1Pv56B-hhen0_uY3mdzezyXgeqSThIUpjRTgrSqVBFaDyuLkzzjKgnAiaqUSUApgWVDFaUKFKVmqR5izPBeQpK9gAnXZ9K-_eNroOcuU23jYjZcx5LJqTiIbiHaW8q2uvS6lM2C0bPJi1pES2Yco2OdkmJ7swG5H8EitvXsFv_1POO8W46meZf_CzP3CoVjJjRMaSxomsipJ9AlQWlRU
CitedBy_id crossref_primary_10_3847_1538_4357_ad7583
crossref_primary_10_3847_1538_4357_acdedf
crossref_primary_10_3847_1538_4357_ad7fdf
Cites_doi 10.1086/162480
10.1086/174276
10.1086/307055
10.1086/131865
10.1086/150026
10.1098/rsta.1961.0002
10.3847/1538-4365/ab9a36
10.1086/174363
10.1002/9783527617722
10.3847/1538-4357/abc5b4
10.1086/154291
10.1088/0004-637X/699/2/1639
10.1086/177532
10.3847/1538-4357/ab380a
10.1016/0019-1035(81)90101-9
10.1103/RevModPhys.30.1062
10.3847/1538-4357/ac0137
10.1086/185015
10.1016/S1384-1076(97)00009-2
10.1088/0004-637X/690/2/1539
10.1051/0004-6361/200912355
10.1086/305658
10.1111/j.1365-2966.2004.07364.x
10.1088/0004-637X/804/1/29
10.1088/0004-637X/705/2/1237
10.1088/0004-637X/693/1/23
10.1111/j.1365-2966.2005.09155.x
10.1051/0004-6361/202039658
10.3847/1538-4357/aa8726
10.1086/145958
10.1086/168055
10.1098/rsta.1961.0001
10.3847/1538-4357/aad9fd
10.1086/309198
10.1051/0004-6361/201321404
10.1093/mnras/stz1166
10.1093/mnras/stab1693
10.1086/383518
10.1111/j.1365-2966.2004.08161.x
10.1016/j.icarus.2004.02.008
10.1086/513316
10.3847/1538-4357/aab70b
10.1093/mnras/stw1178
10.1086/168713
10.1111/j.1365-2966.2009.15771.x
10.1086/590490
10.1093/mnras/stz2939
10.1111/j.1365-2966.2006.10293.x
10.1093/mnras/stab2590
10.1086/380815
10.1086/117902
10.3847/0004-637X/831/1/86
10.1086/185048
10.3847/1538-4357/abe2af
ContentType Journal Article
Copyright 2022. The Author(s). Published by the American Astronomical Society.
2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. The Author(s). Published by the American Astronomical Society.
– notice: 2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOI 10.3847/1538-4357/ac63a0
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database
CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
ExternalDocumentID 10_3847_1538_4357_ac63a0
apjac63a0
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
TSCCA
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ID FETCH-LOGICAL-c446t-82c063dfceacdacb2cda9639a160719c47f7a3e71c31d17cf3fe78b3bb7ab83d3
IEDL.DBID O3W
ISSN 0004-637X
IngestDate Wed Aug 13 06:41:48 EDT 2025
Tue Jul 01 03:24:53 EDT 2025
Thu Apr 24 23:12:04 EDT 2025
Wed Aug 21 03:33:23 EDT 2024
Tue Aug 20 22:16:51 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-82c063dfceacdacb2cda9639a160719c47f7a3e71c31d17cf3fe78b3bb7ab83d3
Notes AAS33473
Interstellar Matter and the Local Universe
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3882-3945
0000-0002-1803-0203
OpenAccessLink https://iopscience.iop.org/article/10.3847/1538-4357/ac63a0
PQID 2662762747
PQPubID 4562441
PageCount 14
ParticipantIDs proquest_journals_2662762747
crossref_citationtrail_10_3847_1538_4357_ac63a0
iop_journals_10_3847_1538_4357_ac63a0
crossref_primary_10_3847_1538_4357_ac63a0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2022
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Gorti (apjac63a0bib19) 2015; 804
Oort (apjac63a0bib41) 1955; 121
Lefloch (apjac63a0bib30) 1994; 289
Clarke (apjac63a0bib7) 2016; 460
Elmergreen (apjac63a0bib10) 1976; 205
O’dell (apjac63a0bib40) 1996; 111
Spitzer (apjac63a0bib54) 1978
Owen (apjac63a0bib43) 2010; 401
Goldsworthy (apjac63a0bib16) 1961; 253
Yelle (apjac63a0bib60) 2004; 170
Goldsworthy (apjac63a0bib15) 1958; 30
Hollenbach (apjac63a0bib21) 1994; 428
Shapiro (apjac63a0bib51) 1987; 321
Bertoldi (apjac63a0bib6) 1990; 354
Kuiper (apjac63a0bib26) 2010; 511
Wölfer (apjac63a0bib59) 2019; 490
Font (apjac63a0bib14) 2004; 607
Kahn (apjac63a0bib24) 1954; 12
Maloney (apjac63a0bib31) 1996; 466
Monsch (apjac63a0bib33) 2021; 646
Lammer (apjac63a0bib29) 2003; 598
Nakatani (apjac63a0bib36) 2018a; 857
Ercolano (apjac63a0bib11) 2009; 699
Störzer (apjac63a0bib55) 1999; 515
Nakatani (apjac63a0bib39) 2019; 883
Sellek (apjac63a0bib49) 2021; 506
Nakatani (apjac63a0bib37) 2018b; 865
Ercolano (apjac63a0bib13) 2021; 508
Shapiro (apjac63a0bib50) 1986; 98
Henney (apjac63a0bib20) 2001
Iliev (apjac63a0bib22) 2005; 361
Osterbrock (apjac63a0bib42) 2006
Richling (apjac63a0bib48) 2000; 539
Mignone (apjac63a0bib32) 2007; 170
Shapiro (apjac63a0bib52) 2004; 348
Nakatani (apjac63a0bib35) 2020; 905
Tarter (apjac63a0bib56) 1969; 156
Alexander (apjac63a0bib1) 2004; 354
Picogna (apjac63a0bib45) 2019; 487
Gorti (apjac63a0bib18) 2009; 690
Kuiper (apjac63a0bib27) 2013; 555
Richling (apjac63a0bib47) 1997; 327
Yorke (apjac63a0bib61) 1996; 315
Murray-Clay (apjac63a0bib34) 2009; 693
Ercolano (apjac63a0bib12) 2008; 688
Komaki (apjac63a0bib25) 2021; 910
Wang (apjac63a0bib57) 2017; 847
Kuiper (apjac63a0bib28) 2020; 250
Anninos (apjac63a0bib3) 1997; 2
Axford (apjac63a0bib4) 1961; 253
Draine (apjac63a0bib9) 1984; 285
Park (apjac63a0bib44) 2016; 831
Johnstone (apjac63a0bib23) 1998; 499
Alexander (apjac63a0bib2) 2006; 369
Watson (apjac63a0bib58) 1981; 48
Nakatani (apjac63a0bib38) 2021; 915
Shu (apjac63a0bib53) 1994; 429
Reipurth (apjac63a0bib46) 1983; 117
Gorti (apjac63a0bib17) 2009; 705
Bertoldi (apjac63a0bib5) 1989; 346
Donahue (apjac63a0bib8) 1987; 323
References_xml – volume: 117
  start-page: 183
  year: 1983
  ident: apjac63a0bib46
  publication-title: A&A
– volume: 285
  start-page: 89
  year: 1984
  ident: apjac63a0bib9
  publication-title: ApJ
  doi: 10.1086/162480
– volume: 428
  start-page: 654
  year: 1994
  ident: apjac63a0bib21
  publication-title: ApJ
  doi: 10.1086/174276
– volume: 515
  start-page: 669
  year: 1999
  ident: apjac63a0bib55
  publication-title: ApJ
  doi: 10.1086/307055
– volume: 98
  start-page: 1014
  year: 1986
  ident: apjac63a0bib50
  publication-title: PASP
  doi: 10.1086/131865
– volume: 156
  start-page: 943
  year: 1969
  ident: apjac63a0bib56
  publication-title: ApJ
  doi: 10.1086/150026
– volume: 253
  start-page: 301
  year: 1961
  ident: apjac63a0bib4
  publication-title: RSPTA
  doi: 10.1098/rsta.1961.0002
– volume: 250
  start-page: 13
  year: 2020
  ident: apjac63a0bib28
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab9a36
– volume: 429
  start-page: 781
  year: 1994
  ident: apjac63a0bib53
  publication-title: ApJ
  doi: 10.1086/174363
– year: 1978
  ident: apjac63a0bib54
  doi: 10.1002/9783527617722
– volume: 315
  start-page: 555
  year: 1996
  ident: apjac63a0bib61
  publication-title: A&A
– volume: 905
  start-page: 151
  year: 2020
  ident: apjac63a0bib35
  publication-title: ApJ
  doi: 10.3847/1538-4357/abc5b4
– volume: 205
  start-page: 405
  year: 1976
  ident: apjac63a0bib10
  publication-title: ApJ
  doi: 10.1086/154291
– volume: 699
  start-page: 1639
  year: 2009
  ident: apjac63a0bib11
  publication-title: ApJ
  doi: 10.1088/0004-637X/699/2/1639
– start-page: 57
  year: 2001
  ident: apjac63a0bib20
– volume: 327
  start-page: 317
  year: 1997
  ident: apjac63a0bib47
  publication-title: A&A
– volume: 466
  start-page: 561
  year: 1996
  ident: apjac63a0bib31
  publication-title: ApJ
  doi: 10.1086/177532
– volume: 883
  start-page: 127
  year: 2019
  ident: apjac63a0bib39
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab380a
– volume: 48
  start-page: 150
  year: 1981
  ident: apjac63a0bib58
  publication-title: Icar
  doi: 10.1016/0019-1035(81)90101-9
– volume: 30
  start-page: 1062
  year: 1958
  ident: apjac63a0bib15
  publication-title: RvMP
  doi: 10.1103/RevModPhys.30.1062
– volume: 915
  start-page: 90
  year: 2021
  ident: apjac63a0bib38
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac0137
– volume: 321
  start-page: L107
  year: 1987
  ident: apjac63a0bib51
  publication-title: ApJL
  doi: 10.1086/185015
– volume: 2
  start-page: 209
  year: 1997
  ident: apjac63a0bib3
  publication-title: Natur
  doi: 10.1016/S1384-1076(97)00009-2
– volume: 690
  start-page: 1539
  year: 2009
  ident: apjac63a0bib18
  publication-title: ApJ
  doi: 10.1088/0004-637X/690/2/1539
– volume: 511
  start-page: A81
  year: 2010
  ident: apjac63a0bib26
  publication-title: A&A
  doi: 10.1051/0004-6361/200912355
– volume: 499
  start-page: 758
  year: 1998
  ident: apjac63a0bib23
  publication-title: ApJ
  doi: 10.1086/305658
– volume: 348
  start-page: 753
  year: 2004
  ident: apjac63a0bib52
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.07364.x
– volume: 804
  start-page: 29
  year: 2015
  ident: apjac63a0bib19
  publication-title: ApJ
  doi: 10.1088/0004-637X/804/1/29
– volume: 705
  start-page: 1237
  year: 2009
  ident: apjac63a0bib17
  publication-title: ApJ
  doi: 10.1088/0004-637X/705/2/1237
– volume: 693
  start-page: 23
  year: 2009
  ident: apjac63a0bib34
  publication-title: ApJ
  doi: 10.1088/0004-637X/693/1/23
– volume: 361
  start-page: 405
  year: 2005
  ident: apjac63a0bib22
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09155.x
– volume: 646
  start-page: A169
  year: 2021
  ident: apjac63a0bib33
  publication-title: A&A
  doi: 10.1051/0004-6361/202039658
– volume: 847
  start-page: 11
  year: 2017
  ident: apjac63a0bib57
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa8726
– volume: 121
  start-page: 6
  year: 1955
  ident: apjac63a0bib41
  publication-title: ApJ
  doi: 10.1086/145958
– volume: 346
  start-page: 735
  year: 1989
  ident: apjac63a0bib5
  publication-title: ApJ
  doi: 10.1086/168055
– volume: 253
  start-page: 277
  year: 1961
  ident: apjac63a0bib16
  publication-title: RSPTA
  doi: 10.1098/rsta.1961.0001
– volume: 865
  start-page: 75
  year: 2018b
  ident: apjac63a0bib37
  publication-title: ApJ
  doi: 10.3847/1538-4357/aad9fd
– volume: 539
  start-page: 258
  year: 2000
  ident: apjac63a0bib48
  publication-title: ApJ
  doi: 10.1086/309198
– volume: 555
  start-page: A7
  year: 2013
  ident: apjac63a0bib27
  publication-title: A&A
  doi: 10.1051/0004-6361/201321404
– volume: 487
  start-page: 691
  year: 2019
  ident: apjac63a0bib45
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1166
– volume: 506
  start-page: 1
  year: 2021
  ident: apjac63a0bib49
  publication-title: MNRAS
  doi: 10.1093/mnras/stab1693
– volume: 607
  start-page: 890
  year: 2004
  ident: apjac63a0bib14
  publication-title: ApJ
  doi: 10.1086/383518
– volume: 289
  start-page: 559
  year: 1994
  ident: apjac63a0bib30
  publication-title: A&A
– volume: 354
  start-page: 71
  year: 2004
  ident: apjac63a0bib1
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.08161.x
– volume: 170
  start-page: 167
  year: 2004
  ident: apjac63a0bib60
  publication-title: Icar
  doi: 10.1016/j.icarus.2004.02.008
– volume: 170
  start-page: 228
  year: 2007
  ident: apjac63a0bib32
  publication-title: ApJS
  doi: 10.1086/513316
– volume: 857
  start-page: 57
  year: 2018a
  ident: apjac63a0bib36
  publication-title: ApJ
  doi: 10.3847/1538-4357/aab70b
– volume: 460
  start-page: 3044
  year: 2016
  ident: apjac63a0bib7
  publication-title: MNRAS
  doi: 10.1093/mnras/stw1178
– volume: 354
  start-page: 529
  year: 1990
  ident: apjac63a0bib6
  publication-title: ApJ
  doi: 10.1086/168713
– volume: 401
  start-page: 1415
  year: 2010
  ident: apjac63a0bib43
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15771.x
– volume: 12
  start-page: 187
  year: 1954
  ident: apjac63a0bib24
  publication-title: BAN
– volume: 688
  start-page: 398
  year: 2008
  ident: apjac63a0bib12
  publication-title: ApJ
  doi: 10.1086/590490
– volume: 490
  start-page: 5596
  year: 2019
  ident: apjac63a0bib59
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2939
– volume: 369
  start-page: 216
  year: 2006
  ident: apjac63a0bib2
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.10293.x
– volume: 508
  start-page: 1675
  year: 2021
  ident: apjac63a0bib13
  publication-title: MNRAS
  doi: 10.1093/mnras/stab2590
– volume: 598
  start-page: L121
  year: 2003
  ident: apjac63a0bib29
  publication-title: ApJL
  doi: 10.1086/380815
– year: 2006
  ident: apjac63a0bib42
– volume: 111
  start-page: 1630
  year: 1996
  ident: apjac63a0bib40
  publication-title: AJ
  doi: 10.1086/117902
– volume: 831
  start-page: 86
  year: 2016
  ident: apjac63a0bib44
  publication-title: ApJ
  doi: 10.3847/0004-637X/831/1/86
– volume: 323
  start-page: L13
  year: 1987
  ident: apjac63a0bib8
  publication-title: ApJL
  doi: 10.1086/185048
– volume: 910
  start-page: 51
  year: 2021
  ident: apjac63a0bib25
  publication-title: ApJ
  doi: 10.3847/1538-4357/abe2af
SSID ssj0004299
Score 2.4127958
Snippet Ultraviolet and X-rays from radiation sources disperse nearby gas clumps by driving winds due to heating associated with the photochemical processes. This...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 124
SubjectTerms Astrophysical fluid dynamics
Astrophysics
Boundary conditions
Clumps
Density
Dispersion
H II regions
Hydrodynamical simulations
Hydrodynamics
Interdisciplinary astronomy
Interstellar medium wind
Irradiation
Launching bases
Mathematical analysis
Mathematical models
Modelling
Photochemicals
Planet formation
Protoplanetary disks
Radiation
Radiation flux
Radiation sources
Ultraviolet radiation
Wind
X-rays
Title Anatomy of Photoevaporation Base: Linking the Property of the Launched Wind to Irradiation Flux
URI https://iopscience.iop.org/article/10.3847/1538-4357/ac63a0
https://www.proquest.com/docview/2662762747
Volume 930
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-ELyIT1wfSw4qeKi7TbpNq6dVXFR87EFxbyFPRHRbdrui_95JUhVRxEtIYZKUmc7jS5MZhHaMlbHIQQKSxipKWFtHmSI6ajMLHiElxPizOVfX6dldcjHoDKbQ0eddmKKsTf8BdEOi4MBCp98UbGnL6yh4edYSKqUC8PoszdLMIa8bev91KZLkdeybRCllg_CP8tcZvvmkaVj3h2H23qa3iBbqMBF3w0stoSkzXEbr3bHbuC6e3_Ae9v2wLzFeRnP90FtBvDsEHA0khcX9h6IqzIsoaznjY_BZh_gy1EvAEPvhvtuMH1We3D1fCnB0D0bjewDruCrw-Wjk0hf44b2nyesquuud3p6cRXUVhUgB1KuijCgIQ7RVYGK1UJJAC1qXC59aLlcJs0xQw2JFYx0zZak1LJNUSiZkRjVdQzPDYmjWEc6tFbIjtdRUJ4ICtkoSo5nMYRaZE9VArQ8-clWnGHeVLp44QA3Hee44zx3neeB8A-1_jihDeo0_aHdBNLzWsfEfdM1vdKJ85Dltc8IhluGltg209SHdLyriMuG7QkRs45_rbKJ54u5C-NOPW2imGk3MNkQolWx6ZA_t-U2_6b_Kd_W84YI
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1dT9sw8DSYNu0FMWCifM0PgLSH0MZO44a38lHBKKwPIPpm-VNogiZqA2L_fmc7gNAQ2kt0kc52dOf7jH0HsG2dSmWBHFAs1UnGOybpaWqSDndoEXJKbTibc36Rn1xlP8fdcdPnNNyFKatG9e8hGAsFRxJ6-WaoS9tBRtHK87bUOZOddmXcHHzssjz3vRt-seuXi5G0aPzfLMkZH8f_lG_O8souzeHa_yjnYHEGi7DQuIqkHz_sK3ywkyVY7c988rq8-0N2SYBjbmK2BJ9GEVoG0Z9gLI0opSOjm7Iu7YOsGl6TA7Rb-2QYeyYQ9P_IyCfkp3VA9-9DicbuxhpyjQE7qUtyOp36EgZh-OD2_nEFrgbHl4cnSdNJIdEY7tVJj2p0RYzTqGaN1IriEyWvkKG8XKEz7rhklqeapSbl2jFneU8xpbhUPWbYN5iflBO7CqRwTqquMsowk0mG8VWWWcNVgbOoguoWtJ_oKHRTZtx3u7gVGG54ygtPeeEpLyLlW_DjeUQVS2y8g7uDrBGNnM3ewdt6hSer36JgHUEF-jMCN0wLNp64-4JFfTV834yIr_3nOt_h8-hoIIanF2fr8IX6qxHhMOQGzNfTe7uJDkuttsKm_AtHUONz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anatomy+of+Photoevaporation+Base%3A+Linking+the+Property+of+the+Launched+Wind+to+Irradiation+Flux&rft.jtitle=The+Astrophysical+journal&rft.au=Nakatani%2C+Riouhei&rft.au=Takasao%2C+Shinsuke&rft.date=2022-05-01&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=930&rft.issue=2&rft.spage=124&rft_id=info:doi/10.3847%2F1538-4357%2Fac63a0&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_ac63a0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon