An Adaptive Multi-Modal Control Strategy to Attenuate the Limb Position Effect in Myoelectric Pattern Recognition

Over the last few decades, pattern recognition algorithms have shown promising results in the field of upper limb prostheses myoelectric control and are now gradually being incorporated in commercial devices. A widely used approach is based on a classifier which assigns a specific input value to a s...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 21; p. 7404
Main Authors Spieker, Veronika, Ganguly, Amartya, Haddadin, Sami, Piazza, Cristina
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 07.11.2021
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s21217404

Cover

Loading…
Abstract Over the last few decades, pattern recognition algorithms have shown promising results in the field of upper limb prostheses myoelectric control and are now gradually being incorporated in commercial devices. A widely used approach is based on a classifier which assigns a specific input value to a selected hand motion. While this method guarantees good performance and robustness within each class, it still shows limitations in adapting to different conditions encountered in real-world applications, such as changes in limb position or external loads. This paper proposes an adaptive method based on a pattern recognition classifier that takes advantage of an augmented dataset—i.e., representing variations in limb position or external loads—to selectively adapt to underrepresented variations. The proposed method was evaluated using a series of target achievement control tests with ten able-bodied volunteers. Results indicated a higher median completion rate >3.33% for the adapted algorithm compared to a classical pattern recognition classifier used as a baseline model. Subject-specific performance showed the potential for improved control after adaptation and a ≤13% completion rate; and in many instances, the adapted points were able to provide new information within classes. These preliminary results show the potential of the proposed method and encourage further development.
AbstractList Over the last few decades, pattern recognition algorithms have shown promising results in the field of upper limb prostheses myoelectric control and are now gradually being incorporated in commercial devices. A widely used approach is based on a classifier which assigns a specific input value to a selected hand motion. While this method guarantees good performance and robustness within each class, it still shows limitations in adapting to different conditions encountered in real-world applications, such as changes in limb position or external loads. This paper proposes an adaptive method based on a pattern recognition classifier that takes advantage of an augmented dataset—i.e., representing variations in limb position or external loads—to selectively adapt to underrepresented variations. The proposed method was evaluated using a series of target achievement control tests with ten able-bodied volunteers. Results indicated a higher median completion rate >3.33% for the adapted algorithm compared to a classical pattern recognition classifier used as a baseline model. Subject-specific performance showed the potential for improved control after adaptation and a ≤13% completion rate; and in many instances, the adapted points were able to provide new information within classes. These preliminary results show the potential of the proposed method and encourage further development.
Over the last few decades, pattern recognition algorithms have shown promising results in the field of upper limb prostheses myoelectric control and are now gradually being incorporated in commercial devices. A widely used approach is based on a classifier which assigns a specific input value to a selected hand motion. While this method guarantees good performance and robustness within each class, it still shows limitations in adapting to different conditions encountered in real-world applications, such as changes in limb position or external loads. This paper proposes an adaptive method based on a pattern recognition classifier that takes advantage of an augmented dataset-i.e., representing variations in limb position or external loads-to selectively adapt to underrepresented variations. The proposed method was evaluated using a series of target achievement control tests with ten able-bodied volunteers. Results indicated a higher median completion rate >3.33% for the adapted algorithm compared to a classical pattern recognition classifier used as a baseline model. Subject-specific performance showed the potential for improved control after adaptation and a ≤13% completion rate; and in many instances, the adapted points were able to provide new information within classes. These preliminary results show the potential of the proposed method and encourage further development.Over the last few decades, pattern recognition algorithms have shown promising results in the field of upper limb prostheses myoelectric control and are now gradually being incorporated in commercial devices. A widely used approach is based on a classifier which assigns a specific input value to a selected hand motion. While this method guarantees good performance and robustness within each class, it still shows limitations in adapting to different conditions encountered in real-world applications, such as changes in limb position or external loads. This paper proposes an adaptive method based on a pattern recognition classifier that takes advantage of an augmented dataset-i.e., representing variations in limb position or external loads-to selectively adapt to underrepresented variations. The proposed method was evaluated using a series of target achievement control tests with ten able-bodied volunteers. Results indicated a higher median completion rate >3.33% for the adapted algorithm compared to a classical pattern recognition classifier used as a baseline model. Subject-specific performance showed the potential for improved control after adaptation and a ≤13% completion rate; and in many instances, the adapted points were able to provide new information within classes. These preliminary results show the potential of the proposed method and encourage further development.
Author Spieker, Veronika
Ganguly, Amartya
Haddadin, Sami
Piazza, Cristina
AuthorAffiliation 1 Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, 80797 Munich, Germany; v.spieker@tum.de (V.S.); haddadin@tum.de (S.H.); cristina.piazza@tum.de (C.P.)
2 Department of Informatics, Technical University of Munich, 85748 Garching bei München, Germany
AuthorAffiliation_xml – name: 1 Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, 80797 Munich, Germany; v.spieker@tum.de (V.S.); haddadin@tum.de (S.H.); cristina.piazza@tum.de (C.P.)
– name: 2 Department of Informatics, Technical University of Munich, 85748 Garching bei München, Germany
Author_xml – sequence: 1
  givenname: Veronika
  orcidid: 0000-0001-7720-7569
  surname: Spieker
  fullname: Spieker, Veronika
– sequence: 2
  givenname: Amartya
  orcidid: 0000-0003-4093-1101
  surname: Ganguly
  fullname: Ganguly, Amartya
– sequence: 3
  givenname: Sami
  orcidid: 0000-0001-7696-4955
  surname: Haddadin
  fullname: Haddadin, Sami
– sequence: 4
  givenname: Cristina
  orcidid: 0000-0002-0358-8677
  surname: Piazza
  fullname: Piazza, Cristina
BookMark eNptkktvGyEURlGVqnm0i_4DpG7ahRteA8ymkmWlbSRbjfpYI4YBBwuDA0wk__viOIqaqCsucDj6dLnn4CSmaAF4j9FnSnt0WQgmWDDEXoEzzAibSULQyT_1KTgvZYMQoZTKN-CUMiGQQP0ZuJtHOB_1rvp7C1dTqH62SqMOcJFizSnAXzXratd7WBOc12rj1Law3lq49NsB3qTiq08RXjlnTYU-wtU-2dDq7A280e1JjvCnNWkdH8i34LXTodh3j-sF-PP16vfi-2z549v1Yr6cGcZ4bbG7QQzGaumMpgMeHe40R4JzYhEeNNNOYzOw0RBpGkZs77hkqCOuH53D9AJcH71j0hu1y36r814l7dXDQcprpXP1Jlhlur4fuHSEDo4ZwqUwTBLRE6JHIThtri9H124atnY0tvVGh2fS5zfR36p1uleykwLjvgk-PgpyuptsqWrri7Eh6GjTVBTpesEklfyQ-8MLdJOmHFurDhRHXHaka9SnI2VyKiVb9xQGI3UYCvU0FI29fMEaX_XhL1pWH_7z4i_g_bqK
CitedBy_id crossref_primary_10_1371_journal_pone_0291279
crossref_primary_10_1109_JSEN_2022_3169492
crossref_primary_10_3390_s24154840
Cites_doi 10.1371/journal.pone.0186132
10.1109/TBME.2017.2719400
10.1109/TBME.2006.889192
10.1016/j.bspc.2016.08.017
10.1097/JPO.0000000000000041
10.1109/TRA.2003.808873
10.1109/ACCESS.2019.2963881
10.1038/s41551-021-00732-x
10.1109/CISP.2011.6100025
10.1109/ACIRS.2016.7556202
10.1109/IEMBS.2006.260681
10.1109/IEMBS.2008.4650164
10.1186/1475-925X-6-45
10.1682/JRRD.2010.09.0177
10.1007/s00521-021-05743-y
10.1109/TNSRE.2014.2305520
10.1109/JSEN.2015.2450211
10.1109/T-AFFC.2012.3
10.1097/JPO.0000000000000121
10.1682/JRRD.2010.08.0149
10.1016/j.medengphy.2015.02.005
10.3389/conf.fneng.2014.11.00004
10.1109/EMBC.2014.6944635
10.1186/s12984-019-0480-5
10.1146/annurev-control-071020-104336
10.1109/TNSRE.2011.2163529
10.1109/TBME.2015.2469741
10.1080/17483107.2020.1738567
10.1109/TBME.2003.813539
10.20944/preprints202002.0415.v1
10.1371/journal.pone.0203835
10.1016/j.eswa.2016.05.031
10.1186/1743-0003-10-44
10.1109/JSEN.2020.3042510
10.1109/IEMBS.2007.4353424
10.1016/S0736-0266(03)00115-3
10.1088/1741-2560/12/4/046005
10.1109/TNSRE.2019.2911316
10.1007/s40137-013-0044-8
10.1109/TNSRE.2015.2492619
10.1109/TNSRE.2016.2562180
10.1109/EMBC.2014.6943678
10.3389/fnins.2016.00209
10.1186/s12984-018-0361-3
10.1109/EMBC.2013.6610327
10.1109/TBME.2005.856295
10.1016/j.bspc.2021.102509
10.1109/JTEHM.2017.2776925
10.1016/j.bspc.2007.07.009
10.1371/journal.pone.0220899
10.1186/1743-0003-9-74
10.1109/10.204774
10.1186/s12984-018-0396-5
10.1109/TNSRE.2020.2991643
10.1109/TNSRE.2014.2328495
10.1109/TNSRE.2009.2023282
10.1186/1743-0003-11-22
10.1186/1743-0003-6-41
10.1016/j.eswa.2017.11.049
10.1038/sdata.2014.53
10.1016/j.neunet.2014.03.010
10.1186/1751-0473-8-11
10.1109/TNSRE.2014.2305111
10.3390/s19204596
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s21217404
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_c599b68f23bf4c2687c4827922ad7763
PMC8587119
10_3390_s21217404
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c446t-825b7bcea8fca3b1df15a607662e01ba4afa1cb4dc28ccea2e9f684052f9dff13
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:32:33 EDT 2025
Thu Aug 21 18:16:51 EDT 2025
Tue Aug 05 11:36:17 EDT 2025
Fri Jul 25 20:39:23 EDT 2025
Thu Apr 24 23:02:45 EDT 2025
Tue Jul 01 02:41:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-825b7bcea8fca3b1df15a607662e01ba4afa1cb4dc28ccea2e9f684052f9dff13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7696-4955
0000-0001-7720-7569
0000-0002-0358-8677
0000-0003-4093-1101
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21217404
PMID 34770709
PQID 2596068525
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_c599b68f23bf4c2687c4827922ad7763
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8587119
proquest_miscellaneous_2597483861
proquest_journals_2596068525
crossref_primary_10_3390_s21217404
crossref_citationtrail_10_3390_s21217404
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211107
PublicationDateYYYYMMDD 2021-11-07
PublicationDate_xml – month: 11
  year: 2021
  text: 20211107
  day: 7
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Castellini (ref_28) 2009; 6
Yang (ref_30) 2017; 31
Hassan (ref_51) 2020; 32
Liu (ref_74) 2015; 37
Hahne (ref_10) 2014; 22
ref_13
Atzori (ref_66) 2015; 23
ref_56
Zhu (ref_45) 2017; 25
He (ref_67) 2015; 12
Hudgins (ref_60) 1993; 40
Li (ref_19) 2011; 6
ref_52
Fougner (ref_31) 2011; 19
Fukuda (ref_73) 2003; 19
ref_18
ref_17
Resnik (ref_21) 2018; 15
ref_59
Simon (ref_47) 2011; 48
Huang (ref_14) 2005; 52
Batzianoulis (ref_20) 2018; 15
ref_24
ref_68
Woodward (ref_41) 2019; 16
Ding (ref_70) 2019; 27
Khushaba (ref_23) 2015; 24
Oskoei (ref_9) 2007; 2
ref_26
Chen (ref_44) 2013; 10
Khushaba (ref_37) 2014; 55
Soto (ref_25) 2020; 8
Pan (ref_55) 2021; 67
Khezri (ref_58) 2007; 6
Fang (ref_62) 2015; 15
ref_71
Beaulieu (ref_57) 2017; 29
Smith (ref_11) 2015; 63
ref_36
ref_34
ref_32
Scheme (ref_12) 2011; 48
ref_75
Goebel (ref_69) 2013; 61
Coscia (ref_64) 2014; 11
ref_39
Betthauser (ref_46) 2017; 65
Khushaba (ref_27) 2016; 61
Geng (ref_40) 2012; 9
Gu (ref_72) 2018; 96
Pedregosa (ref_61) 2011; 12
Gordon (ref_63) 2004; 22
Atzori (ref_16) 2014; 1
Teh (ref_29) 2020; 28
Radmand (ref_33) 2014; 26
Sensinger (ref_35) 2009; 17
Rajapriya (ref_38) 2021; 21
(ref_53) 2013; 8
Gusman (ref_54) 2017; 5
Cordella (ref_6) 2016; 10
ref_42
Mendez (ref_5) 2021; 4
ref_1
Vidovic (ref_43) 2016; 24
ref_3
Smail (ref_7) 2020; 16
ref_2
ref_49
Farina (ref_65) 2014; 22
ref_48
Roche (ref_8) 2014; 2
Rezazadeh (ref_50) 2012; 3
Hargrove (ref_15) 2007; 54
ref_4
Englehart (ref_22) 2003; 50
References_xml – ident: ref_52
  doi: 10.1371/journal.pone.0186132
– volume: 6
  start-page: 99
  year: 2011
  ident: ref_19
  article-title: Electromyography pattern-recognition-based control of powered multifunctional upper-limb prostheses
  publication-title: Adv. Appl Electromyogr.
– volume: 65
  start-page: 770
  year: 2017
  ident: ref_46
  article-title: Limb position tolerant pattern recognition for myoelectric prosthesis control with adaptive sparse representations from extreme learning
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2719400
– volume: 54
  start-page: 847
  year: 2007
  ident: ref_15
  article-title: A comparison of surface and intramuscular myoelectric signal classification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.889192
– volume: 31
  start-page: 249
  year: 2017
  ident: ref_30
  article-title: Dynamic training protocol improves the robustness of PR-based myoelectric control
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2016.08.017
– volume: 26
  start-page: 185
  year: 2014
  ident: ref_33
  article-title: On the suitability of integrating accelerometry data with electromyography signals for resolving the effect of changes in limb position during dynamic limb movement
  publication-title: JPO J. Prosthetics Orthot.
  doi: 10.1097/JPO.0000000000000041
– volume: 19
  start-page: 210
  year: 2003
  ident: ref_73
  article-title: A human-assisting manipulator teleoperated by EMG signals and arm motions
  publication-title: IEEE Trans. Robot. Automat.
  doi: 10.1109/TRA.2003.808873
– volume: 8
  start-page: 7792
  year: 2020
  ident: ref_25
  article-title: Myoelectric interfaces and related applications: Current state of EMG signal processing–A systematic review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2963881
– ident: ref_39
– ident: ref_1
  doi: 10.1038/s41551-021-00732-x
– ident: ref_26
  doi: 10.1109/CISP.2011.6100025
– ident: ref_59
  doi: 10.1109/ACIRS.2016.7556202
– ident: ref_75
  doi: 10.1109/IEMBS.2006.260681
– ident: ref_13
  doi: 10.1109/IEMBS.2008.4650164
– volume: 6
  start-page: 45
  year: 2007
  ident: ref_58
  article-title: Real-time intelligent pattern recognition algorithm for surface EMG signals
  publication-title: BioMed. Eng. Online
  doi: 10.1186/1475-925X-6-45
– volume: 48
  start-page: 643
  year: 2011
  ident: ref_12
  article-title: Electromyogram pattern recognition for control of powered upper-limb prostheses: State of the art and challenges for clinical use
  publication-title: J. Rehabil. Res. Dev.
  doi: 10.1682/JRRD.2010.09.0177
– ident: ref_42
  doi: 10.1007/s00521-021-05743-y
– volume: 22
  start-page: 269
  year: 2014
  ident: ref_10
  article-title: Linear and nonlinear regression techniques for simultaneous and proportional myoelectric control
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2014.2305520
– ident: ref_4
– volume: 15
  start-page: 6065
  year: 2015
  ident: ref_62
  article-title: Multi-modal sensing techniques for interfacing hand prostheses: A review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2015.2450211
– volume: 3
  start-page: 285
  year: 2012
  ident: ref_50
  article-title: Co-adaptive and affective human–machine interface for improving training performances of virtual myoelectric forearm prosthesis
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2012.3
– volume: 29
  start-page: 54
  year: 2017
  ident: ref_57
  article-title: Multi-position training improves robustness of pattern recognition and reduces limb-position effect in prosthetic control
  publication-title: J. Prosthetics Orthot. JPO
  doi: 10.1097/JPO.0000000000000121
– volume: 48
  start-page: 619
  year: 2011
  ident: ref_47
  article-title: The target achievement control test: Evaluating real-time myoelectric pattern recognition control of a multifunctional upper-limb prosthesis
  publication-title: J. Rehabil. Res. Dev.
  doi: 10.1682/JRRD.2010.08.0149
– volume: 37
  start-page: 424
  year: 2015
  ident: ref_74
  article-title: Adaptive myoelectric pattern recognition toward improved multifunctional prosthesis control
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2015.02.005
– ident: ref_24
  doi: 10.3389/conf.fneng.2014.11.00004
– ident: ref_32
  doi: 10.1109/EMBC.2014.6944635
– volume: 16
  start-page: 11
  year: 2019
  ident: ref_41
  article-title: Adapting myoelectric control in real-time using a virtual environment
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-019-0480-5
– volume: 4
  start-page: 595
  year: 2021
  ident: ref_5
  article-title: Current Solutions and Future Trends for Robotic Prosthetic Hands
  publication-title: Annu. Rev. Control Robot. Auton. Syst.
  doi: 10.1146/annurev-control-071020-104336
– volume: 19
  start-page: 644
  year: 2011
  ident: ref_31
  article-title: Resolving the limb position effect in myoelectric pattern recognition
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2011.2163529
– volume: 63
  start-page: 737
  year: 2015
  ident: ref_11
  article-title: Evaluation of linear regression simultaneous myoelectric control using intramuscular EMG
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2469741
– ident: ref_17
– volume: 16
  start-page: 821
  year: 2020
  ident: ref_7
  article-title: Comfort and function remain key factors in upper limb prosthetic abandonment: Findings of a scoping review
  publication-title: Disabil. Rehabil. Assist. Technol.
  doi: 10.1080/17483107.2020.1738567
– volume: 50
  start-page: 848
  year: 2003
  ident: ref_22
  article-title: A robust, real-time control scheme for multifunction myoelectric control
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2003.813539
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_61
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: J. Mach. Learn. Res.
– ident: ref_34
  doi: 10.20944/preprints202002.0415.v1
– ident: ref_56
  doi: 10.1371/journal.pone.0203835
– volume: 61
  start-page: 154
  year: 2016
  ident: ref_27
  article-title: Combined influence of forearm orientation and muscular contraction on EMG pattern recognition
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.05.031
– volume: 32
  start-page: 378
  year: 2020
  ident: ref_51
  article-title: Teleoperated robotic arm movement using electromyography signal with wearable Myo armband
  publication-title: J. King Saud Univ.—Eng. Sci.
– volume: 10
  start-page: 44
  year: 2013
  ident: ref_44
  article-title: Application of a self-enhancing classification method to electromyography pattern recognition for multifunctional prosthesis control
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-10-44
– volume: 21
  start-page: 6623
  year: 2021
  ident: ref_38
  article-title: Forearm Orientation and Contraction Force Independent Method for EMG-Based Myoelectric Prosthetic Hand
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3042510
– volume: 61
  start-page: 1167
  year: 2013
  ident: ref_69
  article-title: Self-correcting pattern recognition system of surface EMG signals for upper limb prosthesis control
  publication-title: IEEE Trans. Biomed. Eng.
– ident: ref_3
– ident: ref_71
  doi: 10.1109/IEMBS.2007.4353424
– volume: 22
  start-page: 208
  year: 2004
  ident: ref_63
  article-title: Electromyographic activity and strength during maximum isometric pronation and supination efforts in healthy adults
  publication-title: J. Orthop. Res.
  doi: 10.1016/S0736-0266(03)00115-3
– volume: 12
  start-page: 46005
  year: 2015
  ident: ref_67
  article-title: User adaptation in long-term, open-loop myoelectric training: Implications for EMG pattern recognition in prosthesis control
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/4/046005
– volume: 27
  start-page: 1071
  year: 2019
  ident: ref_70
  article-title: Adaptive Hybrid Classifier for Myoelectric Pattern Recognition Against the Interferences of Outlier Motion, Muscle Fatigue, and Electrode Doffing
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2911316
– volume: 2
  start-page: 1
  year: 2014
  ident: ref_8
  article-title: Prosthetic Myoelectric Control Strategies: A Clinical Perspective
  publication-title: Curr. Surg. Rep.
  doi: 10.1007/s40137-013-0044-8
– volume: 24
  start-page: 961
  year: 2016
  ident: ref_43
  article-title: Improving the Robustness of Myoelectric Pattern Recognition for Upper Limb Prostheses by Covariate Shift Adaptation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2015.2492619
– ident: ref_18
– volume: 25
  start-page: 254
  year: 2017
  ident: ref_45
  article-title: Cascaded Adaptation Framework for Fast Calibration of Myoelectric Control
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2562180
– ident: ref_48
  doi: 10.1109/EMBC.2014.6943678
– volume: 10
  start-page: 209
  year: 2016
  ident: ref_6
  article-title: Literature Review on Needs of Upper Limb Prosthesis Users
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2016.00209
– volume: 15
  start-page: 23
  year: 2018
  ident: ref_21
  article-title: Evaluation of EMG pattern recognition for upper limb prosthesis control: A case study in comparison with direct myoelectric control
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-018-0361-3
– ident: ref_68
  doi: 10.1109/EMBC.2013.6610327
– volume: 52
  start-page: 1801
  year: 2005
  ident: ref_14
  article-title: A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2005.856295
– volume: 67
  start-page: 102509
  year: 2021
  ident: ref_55
  article-title: A robust model-based neural-machine interface across different loading weights applied at distal forearm
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102509
– volume: 5
  start-page: 1
  year: 2017
  ident: ref_54
  article-title: Evaluation of Computer-Based Target Achievement Tests for Myoelectric Control
  publication-title: IEEE J. Transl. Eng. Health Med.
  doi: 10.1109/JTEHM.2017.2776925
– ident: ref_2
– volume: 2
  start-page: 275
  year: 2007
  ident: ref_9
  article-title: Myoelectric control systems—A survey
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2007.07.009
– volume: 24
  start-page: 650
  year: 2015
  ident: ref_23
  article-title: Improving the performance against force variation of EMG controlled multifunctional upper-limb prostheses for transradial amputees
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– ident: ref_36
  doi: 10.1371/journal.pone.0220899
– volume: 9
  start-page: 1
  year: 2012
  ident: ref_40
  article-title: Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-9-74
– volume: 40
  start-page: 82
  year: 1993
  ident: ref_60
  article-title: A new strategy for multifunction myoelectric control
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.204774
– volume: 15
  start-page: 57
  year: 2018
  ident: ref_20
  article-title: Decoding the grasping intention from electromyography during reaching motions
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/s12984-018-0396-5
– volume: 28
  start-page: 1605
  year: 2020
  ident: ref_29
  article-title: Understanding Limb Position and External Load Effects on Real-Time Pattern Recognition Control in Amputees
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.2991643
– volume: 23
  start-page: 73
  year: 2015
  ident: ref_66
  article-title: Characterization of a benchmark database for myoelectric movement classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2014.2328495
– volume: 17
  start-page: 270
  year: 2009
  ident: ref_35
  article-title: Adaptive pattern recognition of myoelectric signals: Exploration of conceptual framework and practical algorithms
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2009.2023282
– volume: 11
  start-page: 22
  year: 2014
  ident: ref_64
  article-title: The effect of arm weight support on upper limb muscle synergies during reaching movements
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-11-22
– volume: 6
  start-page: 41
  year: 2009
  ident: ref_28
  article-title: Multi-subject/daily-life activity EMG-based control of mechanical hands
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-6-41
– volume: 96
  start-page: 208
  year: 2018
  ident: ref_72
  article-title: Robust EMG pattern recognition in the presence of confounding factors: Features, classifiers and adaptive learning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.11.049
– volume: 1
  start-page: 140053
  year: 2014
  ident: ref_16
  article-title: Electromyography data for non-invasive naturally-controlled robotic hand prostheses
  publication-title: Sci. Data
  doi: 10.1038/sdata.2014.53
– volume: 55
  start-page: 42
  year: 2014
  ident: ref_37
  article-title: Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.03.010
– volume: 8
  start-page: 11
  year: 2013
  ident: ref_53
  article-title: BioPatRec: A modular research platform for the control of artificial limbs based on pattern recognition algorithms
  publication-title: Source Code Biol. Med.
  doi: 10.1186/1751-0473-8-11
– volume: 22
  start-page: 797
  year: 2014
  ident: ref_65
  article-title: The extraction of neural information from the surface EMG for the control of upper-limb prostheses: Emerging avenues and challenges
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2014.2305111
– ident: ref_49
  doi: 10.3390/s19204596
SSID ssj0023338
Score 2.3573585
Snippet Over the last few decades, pattern recognition algorithms have shown promising results in the field of upper limb prostheses myoelectric control and are now...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 7404
SubjectTerms Activities of daily living
Adaptation
Algorithms
Calibration
Classification
Electromyography
limb effect
linear discriminant analysis
Methods
multi-modal control
myoelectric control
Pattern recognition
Performance evaluation
Prostheses
Sensors
upper-limb prostheses
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhp_RQ-qRu0qKWHnoxWb3l4zYkhNItITSQm5FkiS60ch7eQ_59R7K8rCGQS4-2xyCPZqTvs8ffIPQlg3RI6FpR4Ca8E4vaGitrTh2AhcAcyUpMq5_y_Ip_vxbXO62-Uk3YKA88Ou7YiaaxUgfKbOCOSq1cUq5sKDWdguRIqy_seROZKlSLAfMadYQYkPrje1igAXqXbmzT7pNF-mfIcl4XubPRnL1AzwtCxMtxZC_Rno-v0LMd3cDX6HYZ8bIzN2mpwvkX2nrVd3DTyVh4jovm7AMeerwcABZv4BAD1sM_1n8tviiVWnjULsbriFcP_dgRZ-3wRdbcjPhyKi7q4xt0dXb66-S8Lr0TagcEb6iB-FllnTc6OMMs6QIRRi6UlNQviDXcBEOc5Z2j2oEZ9U1Iui-ChqYLgbC3aD_20b9DWGjfMMmI05pzsLXCcL4wXsIQqfKsQl8nn7auCIun_hZ_WiAYyf3t1v0V-rw1vRnVNB4z-pYmZmuQBLDzCQiLtoRF-1RYVOhomta2ZOV9C1QP-JoWVFTo0_Yy5FP6SGKi7zfZRnHNtCQVUrNwmA1ofiWuf2dlbi2Af5Lm_f94gkN0QFP9THqFrY7Q_nC38R8AAA32Y471f0rGBk8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgXOBQUT5E2oIM4sAl6sbfOaGloqoQiypEpb1FtmPDSuBsu9lD_33HjrNtJNRj4okS2Z7xe_bkDUIfE0gHhy4lAW7CWj4rjTaiZMQCWPDUVkmJafFDnF-yb0u-zBtum5xWOcbEFKjbzsY98hOA6YC1FSf88_qqjFWj4ulqLqHxGD2J0mUxpUsu7wgXBf41qAlRoPYnGwjTAMBzTbZxDUpS_RN8Oc2OvLfcnD1H-xkn4vkwsAfokQsv0LN76oEv0dU84Hmr1zFg4fQjbbnoWnjodEg_x1l59gb3HZ73AI63cIkB8eHvq38GX-R8LTwoGONVwIubbqiLs7L4IilvBvxzTDHqwit0efb11-l5mSsolBZoXl8C_TPSWKeVt5qaqvUV12ImhSBuVhnNtNeVNay1RFkwI672Uf2FE1-33lf0NdoLXXBvEObK1VTQyirFGNgarhmbaSfgE4l0tECfxj5tbJYXj1Uu_jZAM2L3N7vuL9CHnel60NT4n9GXODA7gyiDnW5017-b7FWN5XVthPKEGs8sEUraKGtaE6JbCZGzQMfjsDbZNzfN3Uwq0PtdM3hVPCrRwXXbZCOZokpUBZKT6TD5oGlLWP1J-tyKAwut6sOHX36EnpKYHxO3qOUx2uuvt-4tAJzevEuz-BaDgP6j
  priority: 102
  providerName: ProQuest
Title An Adaptive Multi-Modal Control Strategy to Attenuate the Limb Position Effect in Myoelectric Pattern Recognition
URI https://www.proquest.com/docview/2596068525
https://www.proquest.com/docview/2597483861
https://pubmed.ncbi.nlm.nih.gov/PMC8587119
https://doaj.org/article/c599b68f23bf4c2687c4827922ad7763
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFBZdC6M7jP1kXrugjR128Rbrtw9jpKVZGUsJZYHcjCRLW6Cz29SB5r_fk2yHGnraxWDrCYSenvR99vP3EPoYQToEdCoJcBNW8nFqtBEpIxbAgqc2i0pMswtxvmA_lny5h_oam90E3j5I7UI9qcX66vPdzfYbBPzXwDiBsn-5he0XgHVQBT2AA0mG-Jyx3ccEQoGGtaJCQ_ND9JgyKWHR54NTKYr3DxDnMF_y3gE0fYaedsgRT1pXP0d7rnqBntzTE3yJbiYVnpT6OmxhOP5am87qEjqdtgnpuNOi3eKmxpMG4PIGbjFgQPxz9dfgeZfBhVtNY7yq8Gxbt5VyVhbPoxZnhS_7pKO6eoUW07Nfp-dpV1MhtUD8mhQIoZHGOq281dRkpc-4FmMpBHHjzGimvc6sYaUlyoIZcbkPejCc-Lz0PqOv0X5VV-4Nwly5nAqaWaUYA1vDNWNj7QQMkUhHE_Spn9PCdoLjoe7FVQHEI3ii2HkiQR92ptetysZDRifBMTuDIIwdH9Tr30UXZ4XleW6E8oQazywRStogdJoToksJe2mCjnu3Fv1iK4ACAo9TnPAEvd81Q5yFjye6cvUm2kimqBJZguRgOQwGNGypVn-iYrfiwEuz_O1_9zxChyQk04T32fIY7TfrjXsHaKgxI_RILiVc1fT7CB2cnF3ML0fxzcIoRsE_dPsRvg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcgAOiE8RKGAQSFyiJraTOAeElkK1pbtVhVppb8F2bFipTbbdrND-KX4jYyfZNhLi1mOSyYfsmfF7yeQNwDsP0jGgw4wiN-FlEoVKqjTkVCNYsEzHXolpepSOT_m3WTLbgj_9vzCurLLPiT5Rl7V278h3EaYj1hYJTT4tLkLXNcp9Xe1baLRucWjWv5GyLT8efMH5fU_p_teTvXHYdRUINVKfJkRKpDKljRRWS6bi0saJTJHOp9REsZJcWhlrxUtNhUYzanLrFFESavPS2pjhdW_BbVx4IxdR2eyK4DHke616EWN5tLvEZQEBf9cDrl_zfGuAAZ4dVmNeW972H8D9DpeSUetID2HLVI_g3jW1wsdwMarIqJQLlyCJ_3E3nNYlnrTXlruTTul2TZqajBoE4yvcJIgwyWR-rshxVx9GWsVkMq_IdF23fXjmmhx7pc-KfO9LmurqCZzeyNg-he2qrswzIIkwOUtZrIXgHG1VIjmPpEnxEWlmWAAf-jEtdCdn7rpqnBVIa9zwF5vhD-DtxnTRanj8y-izm5iNgZPd9jvqy59FF8WFTvJcpcJSpizXNBWZdjKqOaWyzDBTB7DTT2vR5YJlceW5AbzZHMYodp9mZGXqlbfJuGAijQPIBu4weKDhkWr-y-uBiwRZb5w____NX8Od8cl0UkwOjg5fwF3qanPc6_FsB7aby5V5ieCqUa-8RxP4cdMh9Bf8AD4v
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkBA8IK4iMMAgkHiJWt9i5wGhslFtbJ0qxKS-BduxoRIk3ZoK9a_x6zh2km6VEG97THJykX3O8fclJ99B6E0E6RDQqaTATXgphqnRJks5tQAWPLMkKjFNTrPDM_55JmY76E__L0woq-xzYkzUZW3DO_IBwHTA2kpQMfBdWcT0YPxhcZ6GDlLhS2vfTqN1kWO3_g30bfn-6ADm-i2l409f9w_TrsNAaoEGNSnQIyONdVp5q5khpSdCZ0DtM-qGxGiuvSbW8NJSZcGMutwHdRRBfV56Txhc9wa6KZkgIcbk7JLsMeB-rZIRY_lwsIQlAsB_1w-uX_9im4AtbLtdmXllqRvfQ3c7jIpHrVPdRzuueoDuXFEufIjORxUelXoRkiWOP_Gmk7qEk_bb0nfcqd6ucVPjUQPAfAWbGNAmPpn_Mnja1YrhVj0Zzys8WddtT565xdOo-lnhL315U109QmfXMraP0W5VV-4JwkK5nGWMWKU4B1sjNOdD7TJ4RCodS9C7fkwL20mbhw4bPwugOGH4i83wJ-j1xnTR6nn8y-hjmJiNQZDgjjvqi-9FF9GFFXluMuUpM55bmilpg6RqTqkuJWTtBO3101p0eWFZXHpxgl5tDkNEh880unL1KtpIrpjKSILkljtsPdD2kWr-I2qDKwEMmORP_3_zl-gWBE9xcnR6_AzdpqFMJ7wpl3tot7lYueeAsxrzIjo0Rt-uO4L-AlD-QmU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Adaptive+Multi-Modal+Control+Strategy+to+Attenuate+the+Limb+Position+Effect+in+Myoelectric+Pattern+Recognition&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Spieker%2C+Veronika&rft.au=Ganguly%2C+Amartya&rft.au=Haddadin%2C+Sami&rft.au=Piazza%2C+Cristina&rft.date=2021-11-07&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=21&rft.issue=21&rft_id=info:doi/10.3390%2Fs21217404&rft_id=info%3Apmid%2F34770709&rft.externalDocID=PMC8587119
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon