An Adaptive Multi-Modal Control Strategy to Attenuate the Limb Position Effect in Myoelectric Pattern Recognition
Over the last few decades, pattern recognition algorithms have shown promising results in the field of upper limb prostheses myoelectric control and are now gradually being incorporated in commercial devices. A widely used approach is based on a classifier which assigns a specific input value to a s...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 21; no. 21; p. 7404 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
07.11.2021
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8220 1424-8220 |
DOI | 10.3390/s21217404 |
Cover
Loading…
Abstract | Over the last few decades, pattern recognition algorithms have shown promising results in the field of upper limb prostheses myoelectric control and are now gradually being incorporated in commercial devices. A widely used approach is based on a classifier which assigns a specific input value to a selected hand motion. While this method guarantees good performance and robustness within each class, it still shows limitations in adapting to different conditions encountered in real-world applications, such as changes in limb position or external loads. This paper proposes an adaptive method based on a pattern recognition classifier that takes advantage of an augmented dataset—i.e., representing variations in limb position or external loads—to selectively adapt to underrepresented variations. The proposed method was evaluated using a series of target achievement control tests with ten able-bodied volunteers. Results indicated a higher median completion rate >3.33% for the adapted algorithm compared to a classical pattern recognition classifier used as a baseline model. Subject-specific performance showed the potential for improved control after adaptation and a ≤13% completion rate; and in many instances, the adapted points were able to provide new information within classes. These preliminary results show the potential of the proposed method and encourage further development. |
---|---|
AbstractList | Over the last few decades, pattern recognition algorithms have shown promising results in the field of upper limb prostheses myoelectric control and are now gradually being incorporated in commercial devices. A widely used approach is based on a classifier which assigns a specific input value to a selected hand motion. While this method guarantees good performance and robustness within each class, it still shows limitations in adapting to different conditions encountered in real-world applications, such as changes in limb position or external loads. This paper proposes an adaptive method based on a pattern recognition classifier that takes advantage of an augmented dataset—i.e., representing variations in limb position or external loads—to selectively adapt to underrepresented variations. The proposed method was evaluated using a series of target achievement control tests with ten able-bodied volunteers. Results indicated a higher median completion rate >3.33% for the adapted algorithm compared to a classical pattern recognition classifier used as a baseline model. Subject-specific performance showed the potential for improved control after adaptation and a ≤13% completion rate; and in many instances, the adapted points were able to provide new information within classes. These preliminary results show the potential of the proposed method and encourage further development. Over the last few decades, pattern recognition algorithms have shown promising results in the field of upper limb prostheses myoelectric control and are now gradually being incorporated in commercial devices. A widely used approach is based on a classifier which assigns a specific input value to a selected hand motion. While this method guarantees good performance and robustness within each class, it still shows limitations in adapting to different conditions encountered in real-world applications, such as changes in limb position or external loads. This paper proposes an adaptive method based on a pattern recognition classifier that takes advantage of an augmented dataset-i.e., representing variations in limb position or external loads-to selectively adapt to underrepresented variations. The proposed method was evaluated using a series of target achievement control tests with ten able-bodied volunteers. Results indicated a higher median completion rate >3.33% for the adapted algorithm compared to a classical pattern recognition classifier used as a baseline model. Subject-specific performance showed the potential for improved control after adaptation and a ≤13% completion rate; and in many instances, the adapted points were able to provide new information within classes. These preliminary results show the potential of the proposed method and encourage further development.Over the last few decades, pattern recognition algorithms have shown promising results in the field of upper limb prostheses myoelectric control and are now gradually being incorporated in commercial devices. A widely used approach is based on a classifier which assigns a specific input value to a selected hand motion. While this method guarantees good performance and robustness within each class, it still shows limitations in adapting to different conditions encountered in real-world applications, such as changes in limb position or external loads. This paper proposes an adaptive method based on a pattern recognition classifier that takes advantage of an augmented dataset-i.e., representing variations in limb position or external loads-to selectively adapt to underrepresented variations. The proposed method was evaluated using a series of target achievement control tests with ten able-bodied volunteers. Results indicated a higher median completion rate >3.33% for the adapted algorithm compared to a classical pattern recognition classifier used as a baseline model. Subject-specific performance showed the potential for improved control after adaptation and a ≤13% completion rate; and in many instances, the adapted points were able to provide new information within classes. These preliminary results show the potential of the proposed method and encourage further development. |
Author | Spieker, Veronika Ganguly, Amartya Haddadin, Sami Piazza, Cristina |
AuthorAffiliation | 1 Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, 80797 Munich, Germany; v.spieker@tum.de (V.S.); haddadin@tum.de (S.H.); cristina.piazza@tum.de (C.P.) 2 Department of Informatics, Technical University of Munich, 85748 Garching bei München, Germany |
AuthorAffiliation_xml | – name: 1 Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, 80797 Munich, Germany; v.spieker@tum.de (V.S.); haddadin@tum.de (S.H.); cristina.piazza@tum.de (C.P.) – name: 2 Department of Informatics, Technical University of Munich, 85748 Garching bei München, Germany |
Author_xml | – sequence: 1 givenname: Veronika orcidid: 0000-0001-7720-7569 surname: Spieker fullname: Spieker, Veronika – sequence: 2 givenname: Amartya orcidid: 0000-0003-4093-1101 surname: Ganguly fullname: Ganguly, Amartya – sequence: 3 givenname: Sami orcidid: 0000-0001-7696-4955 surname: Haddadin fullname: Haddadin, Sami – sequence: 4 givenname: Cristina orcidid: 0000-0002-0358-8677 surname: Piazza fullname: Piazza, Cristina |
BookMark | eNptkktvGyEURlGVqnm0i_4DpG7ahRteA8ymkmWlbSRbjfpYI4YBBwuDA0wk__viOIqaqCsucDj6dLnn4CSmaAF4j9FnSnt0WQgmWDDEXoEzzAibSULQyT_1KTgvZYMQoZTKN-CUMiGQQP0ZuJtHOB_1rvp7C1dTqH62SqMOcJFizSnAXzXratd7WBOc12rj1Law3lq49NsB3qTiq08RXjlnTYU-wtU-2dDq7A280e1JjvCnNWkdH8i34LXTodh3j-sF-PP16vfi-2z549v1Yr6cGcZ4bbG7QQzGaumMpgMeHe40R4JzYhEeNNNOYzOw0RBpGkZs77hkqCOuH53D9AJcH71j0hu1y36r814l7dXDQcprpXP1Jlhlur4fuHSEDo4ZwqUwTBLRE6JHIThtri9H124atnY0tvVGh2fS5zfR36p1uleykwLjvgk-PgpyuptsqWrri7Eh6GjTVBTpesEklfyQ-8MLdJOmHFurDhRHXHaka9SnI2VyKiVb9xQGI3UYCvU0FI29fMEaX_XhL1pWH_7z4i_g_bqK |
CitedBy_id | crossref_primary_10_1371_journal_pone_0291279 crossref_primary_10_1109_JSEN_2022_3169492 crossref_primary_10_3390_s24154840 |
Cites_doi | 10.1371/journal.pone.0186132 10.1109/TBME.2017.2719400 10.1109/TBME.2006.889192 10.1016/j.bspc.2016.08.017 10.1097/JPO.0000000000000041 10.1109/TRA.2003.808873 10.1109/ACCESS.2019.2963881 10.1038/s41551-021-00732-x 10.1109/CISP.2011.6100025 10.1109/ACIRS.2016.7556202 10.1109/IEMBS.2006.260681 10.1109/IEMBS.2008.4650164 10.1186/1475-925X-6-45 10.1682/JRRD.2010.09.0177 10.1007/s00521-021-05743-y 10.1109/TNSRE.2014.2305520 10.1109/JSEN.2015.2450211 10.1109/T-AFFC.2012.3 10.1097/JPO.0000000000000121 10.1682/JRRD.2010.08.0149 10.1016/j.medengphy.2015.02.005 10.3389/conf.fneng.2014.11.00004 10.1109/EMBC.2014.6944635 10.1186/s12984-019-0480-5 10.1146/annurev-control-071020-104336 10.1109/TNSRE.2011.2163529 10.1109/TBME.2015.2469741 10.1080/17483107.2020.1738567 10.1109/TBME.2003.813539 10.20944/preprints202002.0415.v1 10.1371/journal.pone.0203835 10.1016/j.eswa.2016.05.031 10.1186/1743-0003-10-44 10.1109/JSEN.2020.3042510 10.1109/IEMBS.2007.4353424 10.1016/S0736-0266(03)00115-3 10.1088/1741-2560/12/4/046005 10.1109/TNSRE.2019.2911316 10.1007/s40137-013-0044-8 10.1109/TNSRE.2015.2492619 10.1109/TNSRE.2016.2562180 10.1109/EMBC.2014.6943678 10.3389/fnins.2016.00209 10.1186/s12984-018-0361-3 10.1109/EMBC.2013.6610327 10.1109/TBME.2005.856295 10.1016/j.bspc.2021.102509 10.1109/JTEHM.2017.2776925 10.1016/j.bspc.2007.07.009 10.1371/journal.pone.0220899 10.1186/1743-0003-9-74 10.1109/10.204774 10.1186/s12984-018-0396-5 10.1109/TNSRE.2020.2991643 10.1109/TNSRE.2014.2328495 10.1109/TNSRE.2009.2023282 10.1186/1743-0003-11-22 10.1186/1743-0003-6-41 10.1016/j.eswa.2017.11.049 10.1038/sdata.2014.53 10.1016/j.neunet.2014.03.010 10.1186/1751-0473-8-11 10.1109/TNSRE.2014.2305111 10.3390/s19204596 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s21217404 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_c599b68f23bf4c2687c4827922ad7763 PMC8587119 10_3390_s21217404 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c446t-825b7bcea8fca3b1df15a607662e01ba4afa1cb4dc28ccea2e9f684052f9dff13 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:32:33 EDT 2025 Thu Aug 21 18:16:51 EDT 2025 Tue Aug 05 11:36:17 EDT 2025 Fri Jul 25 20:39:23 EDT 2025 Thu Apr 24 23:02:45 EDT 2025 Tue Jul 01 02:41:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-825b7bcea8fca3b1df15a607662e01ba4afa1cb4dc28ccea2e9f684052f9dff13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7696-4955 0000-0001-7720-7569 0000-0002-0358-8677 0000-0003-4093-1101 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21217404 |
PMID | 34770709 |
PQID | 2596068525 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c599b68f23bf4c2687c4827922ad7763 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8587119 proquest_miscellaneous_2597483861 proquest_journals_2596068525 crossref_primary_10_3390_s21217404 crossref_citationtrail_10_3390_s21217404 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211107 |
PublicationDateYYYYMMDD | 2021-11-07 |
PublicationDate_xml | – month: 11 year: 2021 text: 20211107 day: 7 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Castellini (ref_28) 2009; 6 Yang (ref_30) 2017; 31 Hassan (ref_51) 2020; 32 Liu (ref_74) 2015; 37 Hahne (ref_10) 2014; 22 ref_13 Atzori (ref_66) 2015; 23 ref_56 Zhu (ref_45) 2017; 25 He (ref_67) 2015; 12 Hudgins (ref_60) 1993; 40 Li (ref_19) 2011; 6 ref_52 Fougner (ref_31) 2011; 19 Fukuda (ref_73) 2003; 19 ref_18 ref_17 Resnik (ref_21) 2018; 15 ref_59 Simon (ref_47) 2011; 48 Huang (ref_14) 2005; 52 Batzianoulis (ref_20) 2018; 15 ref_24 ref_68 Woodward (ref_41) 2019; 16 Ding (ref_70) 2019; 27 Khushaba (ref_23) 2015; 24 Oskoei (ref_9) 2007; 2 ref_26 Chen (ref_44) 2013; 10 Khushaba (ref_37) 2014; 55 Soto (ref_25) 2020; 8 Pan (ref_55) 2021; 67 Khezri (ref_58) 2007; 6 Fang (ref_62) 2015; 15 ref_71 Beaulieu (ref_57) 2017; 29 Smith (ref_11) 2015; 63 ref_36 ref_34 ref_32 Scheme (ref_12) 2011; 48 ref_75 Goebel (ref_69) 2013; 61 Coscia (ref_64) 2014; 11 ref_39 Betthauser (ref_46) 2017; 65 Khushaba (ref_27) 2016; 61 Geng (ref_40) 2012; 9 Gu (ref_72) 2018; 96 Pedregosa (ref_61) 2011; 12 Gordon (ref_63) 2004; 22 Atzori (ref_16) 2014; 1 Teh (ref_29) 2020; 28 Radmand (ref_33) 2014; 26 Sensinger (ref_35) 2009; 17 Rajapriya (ref_38) 2021; 21 (ref_53) 2013; 8 Gusman (ref_54) 2017; 5 Cordella (ref_6) 2016; 10 ref_42 Mendez (ref_5) 2021; 4 ref_1 Vidovic (ref_43) 2016; 24 ref_3 Smail (ref_7) 2020; 16 ref_2 ref_49 Farina (ref_65) 2014; 22 ref_48 Roche (ref_8) 2014; 2 Rezazadeh (ref_50) 2012; 3 Hargrove (ref_15) 2007; 54 ref_4 Englehart (ref_22) 2003; 50 |
References_xml | – ident: ref_52 doi: 10.1371/journal.pone.0186132 – volume: 6 start-page: 99 year: 2011 ident: ref_19 article-title: Electromyography pattern-recognition-based control of powered multifunctional upper-limb prostheses publication-title: Adv. Appl Electromyogr. – volume: 65 start-page: 770 year: 2017 ident: ref_46 article-title: Limb position tolerant pattern recognition for myoelectric prosthesis control with adaptive sparse representations from extreme learning publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2719400 – volume: 54 start-page: 847 year: 2007 ident: ref_15 article-title: A comparison of surface and intramuscular myoelectric signal classification publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.889192 – volume: 31 start-page: 249 year: 2017 ident: ref_30 article-title: Dynamic training protocol improves the robustness of PR-based myoelectric control publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2016.08.017 – volume: 26 start-page: 185 year: 2014 ident: ref_33 article-title: On the suitability of integrating accelerometry data with electromyography signals for resolving the effect of changes in limb position during dynamic limb movement publication-title: JPO J. Prosthetics Orthot. doi: 10.1097/JPO.0000000000000041 – volume: 19 start-page: 210 year: 2003 ident: ref_73 article-title: A human-assisting manipulator teleoperated by EMG signals and arm motions publication-title: IEEE Trans. Robot. Automat. doi: 10.1109/TRA.2003.808873 – volume: 8 start-page: 7792 year: 2020 ident: ref_25 article-title: Myoelectric interfaces and related applications: Current state of EMG signal processing–A systematic review publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2963881 – ident: ref_39 – ident: ref_1 doi: 10.1038/s41551-021-00732-x – ident: ref_26 doi: 10.1109/CISP.2011.6100025 – ident: ref_59 doi: 10.1109/ACIRS.2016.7556202 – ident: ref_75 doi: 10.1109/IEMBS.2006.260681 – ident: ref_13 doi: 10.1109/IEMBS.2008.4650164 – volume: 6 start-page: 45 year: 2007 ident: ref_58 article-title: Real-time intelligent pattern recognition algorithm for surface EMG signals publication-title: BioMed. Eng. Online doi: 10.1186/1475-925X-6-45 – volume: 48 start-page: 643 year: 2011 ident: ref_12 article-title: Electromyogram pattern recognition for control of powered upper-limb prostheses: State of the art and challenges for clinical use publication-title: J. Rehabil. Res. Dev. doi: 10.1682/JRRD.2010.09.0177 – ident: ref_42 doi: 10.1007/s00521-021-05743-y – volume: 22 start-page: 269 year: 2014 ident: ref_10 article-title: Linear and nonlinear regression techniques for simultaneous and proportional myoelectric control publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2014.2305520 – ident: ref_4 – volume: 15 start-page: 6065 year: 2015 ident: ref_62 article-title: Multi-modal sensing techniques for interfacing hand prostheses: A review publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2015.2450211 – volume: 3 start-page: 285 year: 2012 ident: ref_50 article-title: Co-adaptive and affective human–machine interface for improving training performances of virtual myoelectric forearm prosthesis publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2012.3 – volume: 29 start-page: 54 year: 2017 ident: ref_57 article-title: Multi-position training improves robustness of pattern recognition and reduces limb-position effect in prosthetic control publication-title: J. Prosthetics Orthot. JPO doi: 10.1097/JPO.0000000000000121 – volume: 48 start-page: 619 year: 2011 ident: ref_47 article-title: The target achievement control test: Evaluating real-time myoelectric pattern recognition control of a multifunctional upper-limb prosthesis publication-title: J. Rehabil. Res. Dev. doi: 10.1682/JRRD.2010.08.0149 – volume: 37 start-page: 424 year: 2015 ident: ref_74 article-title: Adaptive myoelectric pattern recognition toward improved multifunctional prosthesis control publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2015.02.005 – ident: ref_24 doi: 10.3389/conf.fneng.2014.11.00004 – ident: ref_32 doi: 10.1109/EMBC.2014.6944635 – volume: 16 start-page: 11 year: 2019 ident: ref_41 article-title: Adapting myoelectric control in real-time using a virtual environment publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-019-0480-5 – volume: 4 start-page: 595 year: 2021 ident: ref_5 article-title: Current Solutions and Future Trends for Robotic Prosthetic Hands publication-title: Annu. Rev. Control Robot. Auton. Syst. doi: 10.1146/annurev-control-071020-104336 – volume: 19 start-page: 644 year: 2011 ident: ref_31 article-title: Resolving the limb position effect in myoelectric pattern recognition publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2011.2163529 – volume: 63 start-page: 737 year: 2015 ident: ref_11 article-title: Evaluation of linear regression simultaneous myoelectric control using intramuscular EMG publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2469741 – ident: ref_17 – volume: 16 start-page: 821 year: 2020 ident: ref_7 article-title: Comfort and function remain key factors in upper limb prosthetic abandonment: Findings of a scoping review publication-title: Disabil. Rehabil. Assist. Technol. doi: 10.1080/17483107.2020.1738567 – volume: 50 start-page: 848 year: 2003 ident: ref_22 article-title: A robust, real-time control scheme for multifunction myoelectric control publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2003.813539 – volume: 12 start-page: 2825 year: 2011 ident: ref_61 article-title: Scikit-learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. – ident: ref_34 doi: 10.20944/preprints202002.0415.v1 – ident: ref_56 doi: 10.1371/journal.pone.0203835 – volume: 61 start-page: 154 year: 2016 ident: ref_27 article-title: Combined influence of forearm orientation and muscular contraction on EMG pattern recognition publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.05.031 – volume: 32 start-page: 378 year: 2020 ident: ref_51 article-title: Teleoperated robotic arm movement using electromyography signal with wearable Myo armband publication-title: J. King Saud Univ.—Eng. Sci. – volume: 10 start-page: 44 year: 2013 ident: ref_44 article-title: Application of a self-enhancing classification method to electromyography pattern recognition for multifunctional prosthesis control publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-10-44 – volume: 21 start-page: 6623 year: 2021 ident: ref_38 article-title: Forearm Orientation and Contraction Force Independent Method for EMG-Based Myoelectric Prosthetic Hand publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3042510 – volume: 61 start-page: 1167 year: 2013 ident: ref_69 article-title: Self-correcting pattern recognition system of surface EMG signals for upper limb prosthesis control publication-title: IEEE Trans. Biomed. Eng. – ident: ref_3 – ident: ref_71 doi: 10.1109/IEMBS.2007.4353424 – volume: 22 start-page: 208 year: 2004 ident: ref_63 article-title: Electromyographic activity and strength during maximum isometric pronation and supination efforts in healthy adults publication-title: J. Orthop. Res. doi: 10.1016/S0736-0266(03)00115-3 – volume: 12 start-page: 46005 year: 2015 ident: ref_67 article-title: User adaptation in long-term, open-loop myoelectric training: Implications for EMG pattern recognition in prosthesis control publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/4/046005 – volume: 27 start-page: 1071 year: 2019 ident: ref_70 article-title: Adaptive Hybrid Classifier for Myoelectric Pattern Recognition Against the Interferences of Outlier Motion, Muscle Fatigue, and Electrode Doffing publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2911316 – volume: 2 start-page: 1 year: 2014 ident: ref_8 article-title: Prosthetic Myoelectric Control Strategies: A Clinical Perspective publication-title: Curr. Surg. Rep. doi: 10.1007/s40137-013-0044-8 – volume: 24 start-page: 961 year: 2016 ident: ref_43 article-title: Improving the Robustness of Myoelectric Pattern Recognition for Upper Limb Prostheses by Covariate Shift Adaptation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2015.2492619 – ident: ref_18 – volume: 25 start-page: 254 year: 2017 ident: ref_45 article-title: Cascaded Adaptation Framework for Fast Calibration of Myoelectric Control publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2562180 – ident: ref_48 doi: 10.1109/EMBC.2014.6943678 – volume: 10 start-page: 209 year: 2016 ident: ref_6 article-title: Literature Review on Needs of Upper Limb Prosthesis Users publication-title: Front. Neurosci. doi: 10.3389/fnins.2016.00209 – volume: 15 start-page: 23 year: 2018 ident: ref_21 article-title: Evaluation of EMG pattern recognition for upper limb prosthesis control: A case study in comparison with direct myoelectric control publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-018-0361-3 – ident: ref_68 doi: 10.1109/EMBC.2013.6610327 – volume: 52 start-page: 1801 year: 2005 ident: ref_14 article-title: A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2005.856295 – volume: 67 start-page: 102509 year: 2021 ident: ref_55 article-title: A robust model-based neural-machine interface across different loading weights applied at distal forearm publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102509 – volume: 5 start-page: 1 year: 2017 ident: ref_54 article-title: Evaluation of Computer-Based Target Achievement Tests for Myoelectric Control publication-title: IEEE J. Transl. Eng. Health Med. doi: 10.1109/JTEHM.2017.2776925 – ident: ref_2 – volume: 2 start-page: 275 year: 2007 ident: ref_9 article-title: Myoelectric control systems—A survey publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2007.07.009 – volume: 24 start-page: 650 year: 2015 ident: ref_23 article-title: Improving the performance against force variation of EMG controlled multifunctional upper-limb prostheses for transradial amputees publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – ident: ref_36 doi: 10.1371/journal.pone.0220899 – volume: 9 start-page: 1 year: 2012 ident: ref_40 article-title: Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-9-74 – volume: 40 start-page: 82 year: 1993 ident: ref_60 article-title: A new strategy for multifunction myoelectric control publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.204774 – volume: 15 start-page: 57 year: 2018 ident: ref_20 article-title: Decoding the grasping intention from electromyography during reaching motions publication-title: J. Neuroeng. Rehabil. doi: 10.1186/s12984-018-0396-5 – volume: 28 start-page: 1605 year: 2020 ident: ref_29 article-title: Understanding Limb Position and External Load Effects on Real-Time Pattern Recognition Control in Amputees publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.2991643 – volume: 23 start-page: 73 year: 2015 ident: ref_66 article-title: Characterization of a benchmark database for myoelectric movement classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2014.2328495 – volume: 17 start-page: 270 year: 2009 ident: ref_35 article-title: Adaptive pattern recognition of myoelectric signals: Exploration of conceptual framework and practical algorithms publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2009.2023282 – volume: 11 start-page: 22 year: 2014 ident: ref_64 article-title: The effect of arm weight support on upper limb muscle synergies during reaching movements publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-11-22 – volume: 6 start-page: 41 year: 2009 ident: ref_28 article-title: Multi-subject/daily-life activity EMG-based control of mechanical hands publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-6-41 – volume: 96 start-page: 208 year: 2018 ident: ref_72 article-title: Robust EMG pattern recognition in the presence of confounding factors: Features, classifiers and adaptive learning publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.11.049 – volume: 1 start-page: 140053 year: 2014 ident: ref_16 article-title: Electromyography data for non-invasive naturally-controlled robotic hand prostheses publication-title: Sci. Data doi: 10.1038/sdata.2014.53 – volume: 55 start-page: 42 year: 2014 ident: ref_37 article-title: Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features publication-title: Neural Netw. doi: 10.1016/j.neunet.2014.03.010 – volume: 8 start-page: 11 year: 2013 ident: ref_53 article-title: BioPatRec: A modular research platform for the control of artificial limbs based on pattern recognition algorithms publication-title: Source Code Biol. Med. doi: 10.1186/1751-0473-8-11 – volume: 22 start-page: 797 year: 2014 ident: ref_65 article-title: The extraction of neural information from the surface EMG for the control of upper-limb prostheses: Emerging avenues and challenges publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2014.2305111 – ident: ref_49 doi: 10.3390/s19204596 |
SSID | ssj0023338 |
Score | 2.3573585 |
Snippet | Over the last few decades, pattern recognition algorithms have shown promising results in the field of upper limb prostheses myoelectric control and are now... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 7404 |
SubjectTerms | Activities of daily living Adaptation Algorithms Calibration Classification Electromyography limb effect linear discriminant analysis Methods multi-modal control myoelectric control Pattern recognition Performance evaluation Prostheses Sensors upper-limb prostheses |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhp_RQ-qRu0qKWHnoxWb3l4zYkhNItITSQm5FkiS60ch7eQ_59R7K8rCGQS4-2xyCPZqTvs8ffIPQlg3RI6FpR4Ca8E4vaGitrTh2AhcAcyUpMq5_y_Ip_vxbXO62-Uk3YKA88Ou7YiaaxUgfKbOCOSq1cUq5sKDWdguRIqy_seROZKlSLAfMadYQYkPrje1igAXqXbmzT7pNF-mfIcl4XubPRnL1AzwtCxMtxZC_Rno-v0LMd3cDX6HYZ8bIzN2mpwvkX2nrVd3DTyVh4jovm7AMeerwcABZv4BAD1sM_1n8tviiVWnjULsbriFcP_dgRZ-3wRdbcjPhyKi7q4xt0dXb66-S8Lr0TagcEb6iB-FllnTc6OMMs6QIRRi6UlNQviDXcBEOc5Z2j2oEZ9U1Iui-ChqYLgbC3aD_20b9DWGjfMMmI05pzsLXCcL4wXsIQqfKsQl8nn7auCIun_hZ_WiAYyf3t1v0V-rw1vRnVNB4z-pYmZmuQBLDzCQiLtoRF-1RYVOhomta2ZOV9C1QP-JoWVFTo0_Yy5FP6SGKi7zfZRnHNtCQVUrNwmA1ofiWuf2dlbi2Af5Lm_f94gkN0QFP9THqFrY7Q_nC38R8AAA32Y471f0rGBk8 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgXOBQUT5E2oIM4sAl6sbfOaGloqoQiypEpb1FtmPDSuBsu9lD_33HjrNtJNRj4okS2Z7xe_bkDUIfE0gHhy4lAW7CWj4rjTaiZMQCWPDUVkmJafFDnF-yb0u-zBtum5xWOcbEFKjbzsY98hOA6YC1FSf88_qqjFWj4ulqLqHxGD2J0mUxpUsu7wgXBf41qAlRoPYnGwjTAMBzTbZxDUpS_RN8Oc2OvLfcnD1H-xkn4vkwsAfokQsv0LN76oEv0dU84Hmr1zFg4fQjbbnoWnjodEg_x1l59gb3HZ73AI63cIkB8eHvq38GX-R8LTwoGONVwIubbqiLs7L4IilvBvxzTDHqwit0efb11-l5mSsolBZoXl8C_TPSWKeVt5qaqvUV12ImhSBuVhnNtNeVNay1RFkwI672Uf2FE1-33lf0NdoLXXBvEObK1VTQyirFGNgarhmbaSfgE4l0tECfxj5tbJYXj1Uu_jZAM2L3N7vuL9CHnel60NT4n9GXODA7gyiDnW5017-b7FWN5XVthPKEGs8sEUraKGtaE6JbCZGzQMfjsDbZNzfN3Uwq0PtdM3hVPCrRwXXbZCOZokpUBZKT6TD5oGlLWP1J-tyKAwut6sOHX36EnpKYHxO3qOUx2uuvt-4tAJzevEuz-BaDgP6j priority: 102 providerName: ProQuest |
Title | An Adaptive Multi-Modal Control Strategy to Attenuate the Limb Position Effect in Myoelectric Pattern Recognition |
URI | https://www.proquest.com/docview/2596068525 https://www.proquest.com/docview/2597483861 https://pubmed.ncbi.nlm.nih.gov/PMC8587119 https://doaj.org/article/c599b68f23bf4c2687c4827922ad7763 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFBZdC6M7jP1kXrugjR128Rbrtw9jpKVZGUsJZYHcjCRLW6Cz29SB5r_fk2yHGnraxWDrCYSenvR99vP3EPoYQToEdCoJcBNW8nFqtBEpIxbAgqc2i0pMswtxvmA_lny5h_oam90E3j5I7UI9qcX66vPdzfYbBPzXwDiBsn-5he0XgHVQBT2AA0mG-Jyx3ccEQoGGtaJCQ_ND9JgyKWHR54NTKYr3DxDnMF_y3gE0fYaedsgRT1pXP0d7rnqBntzTE3yJbiYVnpT6OmxhOP5am87qEjqdtgnpuNOi3eKmxpMG4PIGbjFgQPxz9dfgeZfBhVtNY7yq8Gxbt5VyVhbPoxZnhS_7pKO6eoUW07Nfp-dpV1MhtUD8mhQIoZHGOq281dRkpc-4FmMpBHHjzGimvc6sYaUlyoIZcbkPejCc-Lz0PqOv0X5VV-4Nwly5nAqaWaUYA1vDNWNj7QQMkUhHE_Spn9PCdoLjoe7FVQHEI3ii2HkiQR92ptetysZDRifBMTuDIIwdH9Tr30UXZ4XleW6E8oQazywRStogdJoToksJe2mCjnu3Fv1iK4ACAo9TnPAEvd81Q5yFjye6cvUm2kimqBJZguRgOQwGNGypVn-iYrfiwEuz_O1_9zxChyQk04T32fIY7TfrjXsHaKgxI_RILiVc1fT7CB2cnF3ML0fxzcIoRsE_dPsRvg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VcgAOiE8RKGAQSFyiJraTOAeElkK1pbtVhVppb8F2bFipTbbdrND-KX4jYyfZNhLi1mOSyYfsmfF7yeQNwDsP0jGgw4wiN-FlEoVKqjTkVCNYsEzHXolpepSOT_m3WTLbgj_9vzCurLLPiT5Rl7V278h3EaYj1hYJTT4tLkLXNcp9Xe1baLRucWjWv5GyLT8efMH5fU_p_teTvXHYdRUINVKfJkRKpDKljRRWS6bi0saJTJHOp9REsZJcWhlrxUtNhUYzanLrFFESavPS2pjhdW_BbVx4IxdR2eyK4DHke616EWN5tLvEZQEBf9cDrl_zfGuAAZ4dVmNeW972H8D9DpeSUetID2HLVI_g3jW1wsdwMarIqJQLlyCJ_3E3nNYlnrTXlruTTul2TZqajBoE4yvcJIgwyWR-rshxVx9GWsVkMq_IdF23fXjmmhx7pc-KfO9LmurqCZzeyNg-he2qrswzIIkwOUtZrIXgHG1VIjmPpEnxEWlmWAAf-jEtdCdn7rpqnBVIa9zwF5vhD-DtxnTRanj8y-izm5iNgZPd9jvqy59FF8WFTvJcpcJSpizXNBWZdjKqOaWyzDBTB7DTT2vR5YJlceW5AbzZHMYodp9mZGXqlbfJuGAijQPIBu4weKDhkWr-y-uBiwRZb5w____NX8Od8cl0UkwOjg5fwF3qanPc6_FsB7aby5V5ieCqUa-8RxP4cdMh9Bf8AD4v |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkBA8IK4iMMAgkHiJWt9i5wGhslFtbJ0qxKS-BduxoRIk3ZoK9a_x6zh2km6VEG97THJykX3O8fclJ99B6E0E6RDQqaTATXgphqnRJks5tQAWPLMkKjFNTrPDM_55JmY76E__L0woq-xzYkzUZW3DO_IBwHTA2kpQMfBdWcT0YPxhcZ6GDlLhS2vfTqN1kWO3_g30bfn-6ADm-i2l409f9w_TrsNAaoEGNSnQIyONdVp5q5khpSdCZ0DtM-qGxGiuvSbW8NJSZcGMutwHdRRBfV56Txhc9wa6KZkgIcbk7JLsMeB-rZIRY_lwsIQlAsB_1w-uX_9im4AtbLtdmXllqRvfQ3c7jIpHrVPdRzuueoDuXFEufIjORxUelXoRkiWOP_Gmk7qEk_bb0nfcqd6ucVPjUQPAfAWbGNAmPpn_Mnja1YrhVj0Zzys8WddtT565xdOo-lnhL315U109QmfXMraP0W5VV-4JwkK5nGWMWKU4B1sjNOdD7TJ4RCodS9C7fkwL20mbhw4bPwugOGH4i83wJ-j1xnTR6nn8y-hjmJiNQZDgjjvqi-9FF9GFFXluMuUpM55bmilpg6RqTqkuJWTtBO3101p0eWFZXHpxgl5tDkNEh880unL1KtpIrpjKSILkljtsPdD2kWr-I2qDKwEMmORP_3_zl-gWBE9xcnR6_AzdpqFMJ7wpl3tot7lYueeAsxrzIjo0Rt-uO4L-AlD-QmU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Adaptive+Multi-Modal+Control+Strategy+to+Attenuate+the+Limb+Position+Effect+in+Myoelectric+Pattern+Recognition&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Spieker%2C+Veronika&rft.au=Ganguly%2C+Amartya&rft.au=Haddadin%2C+Sami&rft.au=Piazza%2C+Cristina&rft.date=2021-11-07&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=21&rft.issue=21&rft_id=info:doi/10.3390%2Fs21217404&rft_id=info%3Apmid%2F34770709&rft.externalDocID=PMC8587119 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |