Fluorinated interphase enables reversible aqueous zinc battery chemistries
Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g −1 ), low redox potential (−0.762 V versus the standard hydrogen electrode), high abundance and low toxicity. When used in aqueous electrolyte, it also brings intrinsic safety, but suffers from severe irreversibility. Th...
Saved in:
Published in | Nature nanotechnology Vol. 16; no. 8; pp. 902 - 910 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.08.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g
−1
), low redox potential (−0.762 V versus the standard hydrogen electrode), high abundance and low toxicity. When used in aqueous electrolyte, it also brings intrinsic safety, but suffers from severe irreversibility. This is best exemplified by low coulombic efficiency, dendrite growth and water consumption. This is thought to be due to severe hydrogen evolution during zinc plating and stripping, hitherto making the in-situ formation of a solid–electrolyte interphase (SEI) impossible. Here, we report an aqueous zinc battery in which a dilute and acidic aqueous electrolyte with an alkylammonium salt additive assists the formation of a robust, Zn
2+
-conducting and waterproof SEI. The presence of this SEI enables excellent performance: dendrite-free zinc plating/stripping at 99.9% coulombic efficiency in a Ti||Zn asymmetric cell for 1,000 cycles; steady charge–discharge in a Zn||Zn symmetric cell for 6,000 cycles (6,000 h); and high energy densities (136 Wh kg
−1
in a Zn||VOPO
4
full battery with 88.7% retention for >6,000 cycles, 325 Wh kg
−1
in a Zn||O
2
full battery for >300 cycles and 218 Wh kg
−1
in a Zn||MnO
2
full battery with 88.5% retention for 1,000 cycles) using limited zinc. The SEI-forming electrolyte also allows the reversible operation of an anode-free pouch cell of Ti||Zn
x
VOPO
4
at 100% depth of discharge for 100 cycles, thus establishing aqueous zinc batteries as viable cell systems for practical applications.
A solid–electrolyte interphase that is permeable to Zn(
ii
) ions but waterproof is formed using an aqueous electrolyte composition. Cycling performances in an anode-free aqueous pouch cell show promise for intrinsically safe energy storage applications. |
---|---|
AbstractList | Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g-1), low redox potential (-0.762 V versus the standard hydrogen electrode), high abundance and low toxicity. When used in aqueous electrolyte, it also brings intrinsic safety, but suffers from severe irreversibility. This is best exemplified by low coulombic efficiency, dendrite growth and water consumption. This is thought to be due to severe hydrogen evolution during zinc plating and stripping, hitherto making the in-situ formation of a solid-electrolyte interphase (SEI) impossible. Here, we report an aqueous zinc battery in which a dilute and acidic aqueous electrolyte with an alkylammonium salt additive assists the formation of a robust, Zn2+-conducting and waterproof SEI. The presence of this SEI enables excellent performance: dendrite-free zinc plating/stripping at 99.9% coulombic efficiency in a Ti||Zn asymmetric cell for 1,000 cycles; steady charge-discharge in a Zn||Zn symmetric cell for 6,000 cycles (6,000 h); and high energy densities (136 Wh kg-1 in a Zn||VOPO4 full battery with 88.7% retention for >6,000 cycles, 325 Wh kg-1 in a Zn||O2 full battery for >300 cycles and 218 Wh kg-1 in a Zn||MnO2 full battery with 88.5% retention for 1,000 cycles) using limited zinc. The SEI-forming electrolyte also allows the reversible operation of an anode-free pouch cell of Ti||ZnxVOPO4 at 100% depth of discharge for 100 cycles, thus establishing aqueous zinc batteries as viable cell systems for practical applications.Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g-1), low redox potential (-0.762 V versus the standard hydrogen electrode), high abundance and low toxicity. When used in aqueous electrolyte, it also brings intrinsic safety, but suffers from severe irreversibility. This is best exemplified by low coulombic efficiency, dendrite growth and water consumption. This is thought to be due to severe hydrogen evolution during zinc plating and stripping, hitherto making the in-situ formation of a solid-electrolyte interphase (SEI) impossible. Here, we report an aqueous zinc battery in which a dilute and acidic aqueous electrolyte with an alkylammonium salt additive assists the formation of a robust, Zn2+-conducting and waterproof SEI. The presence of this SEI enables excellent performance: dendrite-free zinc plating/stripping at 99.9% coulombic efficiency in a Ti||Zn asymmetric cell for 1,000 cycles; steady charge-discharge in a Zn||Zn symmetric cell for 6,000 cycles (6,000 h); and high energy densities (136 Wh kg-1 in a Zn||VOPO4 full battery with 88.7% retention for >6,000 cycles, 325 Wh kg-1 in a Zn||O2 full battery for >300 cycles and 218 Wh kg-1 in a Zn||MnO2 full battery with 88.5% retention for 1,000 cycles) using limited zinc. The SEI-forming electrolyte also allows the reversible operation of an anode-free pouch cell of Ti||ZnxVOPO4 at 100% depth of discharge for 100 cycles, thus establishing aqueous zinc batteries as viable cell systems for practical applications. Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g ), low redox potential (-0.762 V versus the standard hydrogen electrode), high abundance and low toxicity. When used in aqueous electrolyte, it also brings intrinsic safety, but suffers from severe irreversibility. This is best exemplified by low coulombic efficiency, dendrite growth and water consumption. This is thought to be due to severe hydrogen evolution during zinc plating and stripping, hitherto making the in-situ formation of a solid-electrolyte interphase (SEI) impossible. Here, we report an aqueous zinc battery in which a dilute and acidic aqueous electrolyte with an alkylammonium salt additive assists the formation of a robust, Zn -conducting and waterproof SEI. The presence of this SEI enables excellent performance: dendrite-free zinc plating/stripping at 99.9% coulombic efficiency in a Ti||Zn asymmetric cell for 1,000 cycles; steady charge-discharge in a Zn||Zn symmetric cell for 6,000 cycles (6,000 h); and high energy densities (136 Wh kg in a Zn||VOPO full battery with 88.7% retention for >6,000 cycles, 325 Wh kg in a Zn||O full battery for >300 cycles and 218 Wh kg in a Zn||MnO full battery with 88.5% retention for 1,000 cycles) using limited zinc. The SEI-forming electrolyte also allows the reversible operation of an anode-free pouch cell of Ti||Zn VOPO at 100% depth of discharge for 100 cycles, thus establishing aqueous zinc batteries as viable cell systems for practical applications. Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g −1 ), low redox potential (−0.762 V versus the standard hydrogen electrode), high abundance and low toxicity. When used in aqueous electrolyte, it also brings intrinsic safety, but suffers from severe irreversibility. This is best exemplified by low coulombic efficiency, dendrite growth and water consumption. This is thought to be due to severe hydrogen evolution during zinc plating and stripping, hitherto making the in-situ formation of a solid–electrolyte interphase (SEI) impossible. Here, we report an aqueous zinc battery in which a dilute and acidic aqueous electrolyte with an alkylammonium salt additive assists the formation of a robust, Zn 2+ -conducting and waterproof SEI. The presence of this SEI enables excellent performance: dendrite-free zinc plating/stripping at 99.9% coulombic efficiency in a Ti||Zn asymmetric cell for 1,000 cycles; steady charge–discharge in a Zn||Zn symmetric cell for 6,000 cycles (6,000 h); and high energy densities (136 Wh kg −1 in a Zn||VOPO 4 full battery with 88.7% retention for >6,000 cycles, 325 Wh kg −1 in a Zn||O 2 full battery for >300 cycles and 218 Wh kg −1 in a Zn||MnO 2 full battery with 88.5% retention for 1,000 cycles) using limited zinc. The SEI-forming electrolyte also allows the reversible operation of an anode-free pouch cell of Ti||Zn x VOPO 4 at 100% depth of discharge for 100 cycles, thus establishing aqueous zinc batteries as viable cell systems for practical applications. A solid–electrolyte interphase that is permeable to Zn( ii ) ions but waterproof is formed using an aqueous electrolyte composition. Cycling performances in an anode-free aqueous pouch cell show promise for intrinsically safe energy storage applications. Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g−1), low redox potential (−0.762 V versus the standard hydrogen electrode), high abundance and low toxicity. When used in aqueous electrolyte, it also brings intrinsic safety, but suffers from severe irreversibility. This is best exemplified by low coulombic efficiency, dendrite growth and water consumption. This is thought to be due to severe hydrogen evolution during zinc plating and stripping, hitherto making the in-situ formation of a solid–electrolyte interphase (SEI) impossible. Here, we report an aqueous zinc battery in which a dilute and acidic aqueous electrolyte with an alkylammonium salt additive assists the formation of a robust, Zn2+-conducting and waterproof SEI. The presence of this SEI enables excellent performance: dendrite-free zinc plating/stripping at 99.9% coulombic efficiency in a Ti||Zn asymmetric cell for 1,000 cycles; steady charge–discharge in a Zn||Zn symmetric cell for 6,000 cycles (6,000 h); and high energy densities (136 Wh kg−1 in a Zn||VOPO4 full battery with 88.7% retention for >6,000 cycles, 325 Wh kg−1 in a Zn||O2 full battery for >300 cycles and 218 Wh kg−1 in a Zn||MnO2 full battery with 88.5% retention for 1,000 cycles) using limited zinc. The SEI-forming electrolyte also allows the reversible operation of an anode-free pouch cell of Ti||ZnxVOPO4 at 100% depth of discharge for 100 cycles, thus establishing aqueous zinc batteries as viable cell systems for practical applications.A solid–electrolyte interphase that is permeable to Zn(ii) ions but waterproof is formed using an aqueous electrolyte composition. Cycling performances in an anode-free aqueous pouch cell show promise for intrinsically safe energy storage applications. Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g-1), low redox potential (-0.762 V versus the standard hydrogen electrode), high abundance and low toxicity. When used in aqueous electrolyte, it also brings intrinsic safety, but suffers from severe irreversibility. This is best exemplified by low coulombic efficiency, dendrite growth and water consumption. This is thought to be due to severe hydrogen evolution during zinc plating and stripping, hitherto making the in-situ formation of a solid-electrolyte interphase (SEI) impossible. Here, we report an aqueous zinc battery in which a dilute and acidic aqueous electrolyte with an alkylammonium salt additive assists the formation of a robust, Zn2+-conducting and waterproof SEI. The presence of this SEI enables excellent performance: dendrite-free zinc plating/stripping at 99.9% coulombic efficiency in a Ti||Zn asymmetric cell for 1,000 cycles; steady charge-discharge in a Zn||Zn symmetric cell for 6,000 cycles (6,000 h); and high energy densities (136 Wh kg-1 in a Zn||VOPO4 full battery with 88.7% retention for >6,000 cycles, 325 Wh kg-1 in a Zn||O2 full battery for >300 cycles and 218 Wh kg-1 in a Zn||MnO2 full battery with 88.5% retention for 1,000 cycles) using limited zinc. The SEI-forming electrolyte also allows the reversible operation of an anode-free pouch cell of Ti||ZnxVOPO4 at 100% depth of discharge for 100 cycles, thus establishing aqueous zinc batteries as viable cell systems for practical applications. |
Author | Ding, Michael Wang, Chunsheng Gaskell, Karen Li, Dan Deng, Tao Li, Qin Ma, Lin Fourkas, John T. Zhang, Bao Borodin, Oleg Vatamanu, Jenel Hou, Singyuk Cao, Longsheng Yang, Chongyin Pollard, Travis Yang, Xiao-Qing Chen, Long Xu, Kang Hu, Enyuan Hourwitz, Matt J. |
Author_xml | – sequence: 1 givenname: Longsheng orcidid: 0000-0002-2917-6523 surname: Cao fullname: Cao, Longsheng organization: Department of Chemical and Biomolecular Engineering, University of Maryland – sequence: 2 givenname: Dan surname: Li fullname: Li, Dan organization: Department of Chemical and Biomolecular Engineering, University of Maryland – sequence: 3 givenname: Travis orcidid: 0000-0001-6240-5423 surname: Pollard fullname: Pollard, Travis organization: Battery Science Branch, Energy Science Division, Sensor and Electron Devices Directorate, US Army Research Laboratory – sequence: 4 givenname: Tao surname: Deng fullname: Deng, Tao organization: Department of Chemical and Biomolecular Engineering, University of Maryland – sequence: 5 givenname: Bao surname: Zhang fullname: Zhang, Bao organization: Department of Chemical and Biomolecular Engineering, University of Maryland – sequence: 6 givenname: Chongyin orcidid: 0000-0002-7127-3087 surname: Yang fullname: Yang, Chongyin organization: Department of Chemical and Biomolecular Engineering, University of Maryland – sequence: 7 givenname: Long surname: Chen fullname: Chen, Long organization: Department of Chemical and Biomolecular Engineering, University of Maryland – sequence: 8 givenname: Jenel surname: Vatamanu fullname: Vatamanu, Jenel organization: Battery Science Branch, Energy Science Division, Sensor and Electron Devices Directorate, US Army Research Laboratory – sequence: 9 givenname: Enyuan orcidid: 0000-0002-1881-4534 surname: Hu fullname: Hu, Enyuan organization: Chemistry Division, Brookhaven National Laboratory – sequence: 10 givenname: Matt J. surname: Hourwitz fullname: Hourwitz, Matt J. organization: Department of Chemistry and Biochemistry, University of Maryland – sequence: 11 givenname: Lin surname: Ma fullname: Ma, Lin organization: Department of Chemical and Biomolecular Engineering, University of Maryland, Battery Science Branch, Energy Science Division, Sensor and Electron Devices Directorate, US Army Research Laboratory – sequence: 12 givenname: Michael surname: Ding fullname: Ding, Michael organization: Battery Science Branch, Energy Science Division, Sensor and Electron Devices Directorate, US Army Research Laboratory – sequence: 13 givenname: Qin surname: Li fullname: Li, Qin organization: Department of Chemical and Biomolecular Engineering, University of Maryland – sequence: 14 givenname: Singyuk surname: Hou fullname: Hou, Singyuk organization: Department of Chemical and Biomolecular Engineering, University of Maryland – sequence: 15 givenname: Karen surname: Gaskell fullname: Gaskell, Karen organization: Department of Chemical and Biomolecular Engineering, University of Maryland – sequence: 16 givenname: John T. surname: Fourkas fullname: Fourkas, John T. organization: Department of Chemistry and Biochemistry, University of Maryland, Institute for Physical Science and Technology, University of Maryland – sequence: 17 givenname: Xiao-Qing orcidid: 0000-0002-3625-3478 surname: Yang fullname: Yang, Xiao-Qing organization: Chemistry Division, Brookhaven National Laboratory – sequence: 18 givenname: Kang orcidid: 0000-0002-6946-8635 surname: Xu fullname: Xu, Kang email: conrad.k.xu.civ@mail.mil organization: Battery Science Branch, Energy Science Division, Sensor and Electron Devices Directorate, US Army Research Laboratory – sequence: 19 givenname: Oleg orcidid: 0000-0002-9428-5291 surname: Borodin fullname: Borodin, Oleg email: oleg.a.borodin.civ@mail.mil organization: Battery Science Branch, Energy Science Division, Sensor and Electron Devices Directorate, US Army Research Laboratory – sequence: 20 givenname: Chunsheng orcidid: 0000-0002-8626-6381 surname: Wang fullname: Wang, Chunsheng email: cswang@umd.edu organization: Department of Chemical and Biomolecular Engineering, University of Maryland, Department of Chemistry and Biochemistry, University of Maryland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33972758$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1787833$$D View this record in Osti.gov |
BookMark | eNp9kUtvFTEMhSNURB_wB1igEWzYTOu8JpklqihQVWJT1lGS8eWmmptckkyl8utJmRakLrqyJX_HOvY5JgcxRSTkLYVTClyfFUHlIHtgtAcYQfbiBTmiSuie81Ee_Ou1OiTHpdwASDYy8YoctrliSuojcnkxLymHaCtOXYgV835rC3YYrZuxdBlvMZfQ-s7-WjAtpfsdou-crY296_wWd6HUHLC8Ji83di745qGekB8Xn6_Pv_ZX3798O_901Xshhtpr4Cgt1xvGB5B2w9U4Mgfccw_KaT4o1IN0CFYNMLpJCnA4DcKNXkyUT_yEvF_3plKDKT5U9FufYkRfDVVaac4b9HGF9jk136WaZtPjPNt4f4RhkrXfMSZpQz88QW_SkmM7oVEDCA1yUI1690AtboeT2eews_nOPL6yAXoFfE6lZNyY5szWkGLNNsyGgrlPzaypmZaa-ZuaEU3Knkgftz8r4quoNDj-xPzf9jOqP2hFqEA |
CitedBy_id | crossref_primary_10_1002_adma_202306508 crossref_primary_10_1002_ange_202212839 crossref_primary_10_1021_acssuschemeng_2c06910 crossref_primary_10_1002_ange_202308182 crossref_primary_10_1002_aenm_202202419 crossref_primary_10_1039_D4EE04847D crossref_primary_10_1126_sciadv_abp8960 crossref_primary_10_1016_j_jechem_2024_11_048 crossref_primary_10_1039_D3EE01580G crossref_primary_10_1002_adfm_202203019 crossref_primary_10_1038_s41467_025_58063_3 crossref_primary_10_1002_smll_202205462 crossref_primary_10_1007_s11426_023_1908_9 crossref_primary_10_1021_jacs_4c02150 crossref_primary_10_1016_j_ensm_2022_06_052 crossref_primary_10_1016_j_nanoen_2024_109524 crossref_primary_10_1038_s41467_024_55657_1 crossref_primary_10_1016_j_electacta_2021_139776 crossref_primary_10_1016_j_ensm_2022_06_056 crossref_primary_10_1002_adfm_202424423 crossref_primary_10_1002_smtd_202300268 crossref_primary_10_1016_j_xcrp_2022_100824 crossref_primary_10_1039_D3TA07523K crossref_primary_10_1002_aenm_202200255 crossref_primary_10_1021_acsnano_3c11115 crossref_primary_10_1038_s41467_022_32955_0 crossref_primary_10_1021_acsnano_3c08197 crossref_primary_10_26599_NRE_2023_9120064 crossref_primary_10_1002_smll_202206338 crossref_primary_10_1002_aenm_202203729 crossref_primary_10_1002_advs_202408869 crossref_primary_10_1002_slct_202200926 crossref_primary_10_1039_D4CS00779D crossref_primary_10_1016_j_cej_2023_141328 crossref_primary_10_1002_aenm_202405169 crossref_primary_10_1002_ange_202314883 crossref_primary_10_1021_acssuschemeng_3c07874 crossref_primary_10_1021_acsnano_4c10901 crossref_primary_10_1002_ange_202310290 crossref_primary_10_1002_eem2_12632 crossref_primary_10_1002_ange_202210871 crossref_primary_10_1002_anie_202302302 crossref_primary_10_1002_smll_202401589 crossref_primary_10_1002_anie_202302539 crossref_primary_10_1038_s41467_024_48444_5 crossref_primary_10_1016_j_ensm_2023_102820 crossref_primary_10_1039_D4TA02133A crossref_primary_10_1002_cnma_202400631 crossref_primary_10_1016_j_esci_2024_100331 crossref_primary_10_1016_j_esci_2024_100330 crossref_primary_10_1016_j_cclet_2024_110025 crossref_primary_10_1021_acsnano_3c10081 crossref_primary_10_1016_j_ensm_2022_05_048 crossref_primary_10_1016_j_jcis_2024_08_179 crossref_primary_10_1016_j_nanoen_2025_110835 crossref_primary_10_1016_j_electacta_2024_145628 crossref_primary_10_1016_j_jcis_2024_08_178 crossref_primary_10_1016_j_ceramint_2021_10_203 crossref_primary_10_1039_D4EE00881B crossref_primary_10_1002_anie_202209169 crossref_primary_10_1002_aenm_202203790 crossref_primary_10_1016_j_ensm_2022_04_006 crossref_primary_10_1021_acsami_1c20995 crossref_primary_10_1016_j_jpowsour_2024_234972 crossref_primary_10_1002_adfm_202412865 crossref_primary_10_1002_anie_202415221 crossref_primary_10_1016_j_mattod_2021_11_021 crossref_primary_10_1021_acsapm_3c02124 crossref_primary_10_1002_anie_202404784 crossref_primary_10_1039_D2TA00326K crossref_primary_10_1039_D4EE02867H crossref_primary_10_1038_s41467_023_38460_2 crossref_primary_10_1002_anie_202303845 crossref_primary_10_1021_jacs_2c01815 crossref_primary_10_1002_anie_202421905 crossref_primary_10_1002_smll_202300895 crossref_primary_10_1021_acsami_4c00437 crossref_primary_10_1007_s40843_023_2912_5 crossref_primary_10_1002_ange_202500731 crossref_primary_10_1039_D4CC01903B crossref_primary_10_1038_s41565_023_01367_6 crossref_primary_10_1002_aenm_202203766 crossref_primary_10_1002_anie_202315464 crossref_primary_10_1016_j_ensm_2022_05_022 crossref_primary_10_1016_j_jmst_2024_10_003 crossref_primary_10_1002_ange_202107697 crossref_primary_10_1002_anie_202214966 crossref_primary_10_1021_acsami_4c07076 crossref_primary_10_1021_acs_jpcc_4c05865 crossref_primary_10_1002_anie_202212780 crossref_primary_10_1002_sstr_202200194 crossref_primary_10_1007_s40820_024_01361_0 crossref_primary_10_1002_anie_202412173 crossref_primary_10_1360_SSC_2022_0103 crossref_primary_10_1007_s40820_023_01304_1 crossref_primary_10_1016_j_apsusc_2022_156209 crossref_primary_10_1002_anie_202414117 crossref_primary_10_1002_nano_202200221 crossref_primary_10_1016_j_ensm_2024_103180 crossref_primary_10_1021_acsnano_2c06362 crossref_primary_10_1016_j_cej_2025_159628 crossref_primary_10_1016_j_cej_2025_160615 crossref_primary_10_1021_acsaem_2c01340 crossref_primary_10_3389_fchem_2022_1037995 crossref_primary_10_1002_adfm_202211917 crossref_primary_10_1002_batt_202300619 crossref_primary_10_1016_j_jechem_2024_03_032 crossref_primary_10_1088_2752_5724_ad50f1 crossref_primary_10_1002_adma_202108206 crossref_primary_10_1002_aenm_202303998 crossref_primary_10_1002_anie_202411056 crossref_primary_10_1007_s11426_023_1698_6 crossref_primary_10_1016_j_ensm_2024_103333 crossref_primary_10_1016_j_nanoen_2024_110114 crossref_primary_10_1016_j_ensm_2021_09_021 crossref_primary_10_1016_j_ensm_2023_103059 crossref_primary_10_1016_j_nxmate_2024_100124 crossref_primary_10_1002_adfm_202210197 crossref_primary_10_1021_acs_chemrev_3c00826 crossref_primary_10_1093_nsr_nwac183 crossref_primary_10_1002_anie_202301631 crossref_primary_10_1002_adfm_202422081 crossref_primary_10_1039_D3SC04545E crossref_primary_10_1002_adfm_202403305 crossref_primary_10_1016_j_nanoen_2023_109099 crossref_primary_10_1063_5_0140107 crossref_primary_10_1002_aenm_202200401 crossref_primary_10_1016_j_ensm_2021_09_012 crossref_primary_10_1002_ange_202314456 crossref_primary_10_1002_smll_202305902 crossref_primary_10_1002_anie_202402327 crossref_primary_10_1088_2752_5724_ac4263 crossref_primary_10_1002_ange_202212666 crossref_primary_10_1002_ange_202400916 crossref_primary_10_1039_D1SC07212A crossref_primary_10_1002_adfm_202214538 crossref_primary_10_1016_j_electacta_2022_141081 crossref_primary_10_3390_batteries9060328 crossref_primary_10_1007_s40820_022_00825_5 crossref_primary_10_1016_j_ensm_2024_103554 crossref_primary_10_1021_acsenergylett_2c02520 crossref_primary_10_1016_j_ensm_2024_103797 crossref_primary_10_1002_anie_202112304 crossref_primary_10_1016_j_cej_2023_146619 crossref_primary_10_1021_acsenergylett_4c01011 crossref_primary_10_1021_acsnano_3c07257 crossref_primary_10_1021_acs_nanolett_2c03277 crossref_primary_10_1007_s42823_024_00719_z crossref_primary_10_1002_adma_202405889 crossref_primary_10_1073_pnas_2317796121 crossref_primary_10_1007_s40820_025_01649_9 crossref_primary_10_2139_ssrn_4171682 crossref_primary_10_1016_j_electacta_2023_142462 crossref_primary_10_1016_j_nanoen_2024_109331 crossref_primary_10_1073_pnas_2309981121 crossref_primary_10_1002_ange_202406683 crossref_primary_10_1016_j_jcis_2024_06_166 crossref_primary_10_1021_acsami_3c12369 crossref_primary_10_1002_adma_202310623 crossref_primary_10_1016_j_cej_2022_141015 crossref_primary_10_1016_j_jechem_2023_07_038 crossref_primary_10_1021_acsami_2c14159 crossref_primary_10_1016_j_ensm_2022_04_031 crossref_primary_10_1002_anie_202414562 crossref_primary_10_1016_j_cej_2022_135818 crossref_primary_10_1021_acs_jpclett_4c00834 crossref_primary_10_1039_D3CC03147K crossref_primary_10_1016_j_esci_2022_04_003 crossref_primary_10_1016_j_est_2024_111822 crossref_primary_10_1016_j_jpowsour_2024_234340 crossref_primary_10_1002_anie_202401441 crossref_primary_10_1021_acsnano_2c11516 crossref_primary_10_1016_j_cej_2024_152324 crossref_primary_10_1002_adfm_202111635 crossref_primary_10_1002_adma_202306145 crossref_primary_10_1016_j_joule_2024_02_002 crossref_primary_10_1021_acsaelm_2c01355 crossref_primary_10_1016_j_jpowsour_2022_231903 crossref_primary_10_1002_ange_202116560 crossref_primary_10_1016_j_ensm_2024_103364 crossref_primary_10_1016_j_cej_2023_143312 crossref_primary_10_1016_j_nanoen_2023_109053 crossref_primary_10_1021_jacs_4c07015 crossref_primary_10_1002_adma_202202188 crossref_primary_10_1016_j_ensm_2024_103361 crossref_primary_10_1016_j_esci_2023_100093 crossref_primary_10_1016_j_scib_2023_08_063 crossref_primary_10_1016_j_jpowsour_2024_235658 crossref_primary_10_1002_adma_202418700 crossref_primary_10_1016_j_nanoen_2022_107814 crossref_primary_10_1002_adma_202310645 crossref_primary_10_3390_molecules29204929 crossref_primary_10_1002_ange_202501664 crossref_primary_10_1002_anie_202307208 crossref_primary_10_1016_j_est_2024_111606 crossref_primary_10_1016_j_jpowsour_2024_234313 crossref_primary_10_1021_acsenergylett_3c00154 crossref_primary_10_1021_acsenergylett_3c02337 crossref_primary_10_1016_j_nanoen_2023_109076 crossref_primary_10_1016_j_jcis_2025_137338 crossref_primary_10_1007_s11581_024_05481_w crossref_primary_10_1002_eom2_12167 crossref_primary_10_1016_j_ensm_2022_03_045 crossref_primary_10_1002_adma_202206754 crossref_primary_10_1002_ange_202409986 crossref_primary_10_1002_aenm_202401820 crossref_primary_10_1016_j_jechem_2021_11_033 crossref_primary_10_1002_adma_202310667 crossref_primary_10_1021_acsami_4c02476 crossref_primary_10_1002_advs_202301785 crossref_primary_10_3390_batteries9010062 crossref_primary_10_1002_smll_202302650 crossref_primary_10_1002_adma_202305087 crossref_primary_10_1002_ange_202417125 crossref_primary_10_1016_j_electacta_2024_144177 crossref_primary_10_1016_j_ensm_2024_103731 crossref_primary_10_1039_D3TA05725A crossref_primary_10_1039_D2EE00134A crossref_primary_10_1016_j_ensm_2022_09_027 crossref_primary_10_1039_D3EE04360F crossref_primary_10_1038_s41565_021_00908_1 crossref_primary_10_1039_D4EE00942H crossref_primary_10_1002_adma_202405949 crossref_primary_10_1039_D2EE03777G crossref_primary_10_1002_ange_202112304 crossref_primary_10_1016_j_ensm_2023_03_002 crossref_primary_10_1039_D3TA00254C crossref_primary_10_1039_D1TA10517E crossref_primary_10_1002_anie_202300823 crossref_primary_10_1016_j_ensm_2023_03_005 crossref_primary_10_1002_adma_202309212 crossref_primary_10_1021_acsenergylett_2c02359 crossref_primary_10_1016_j_jechem_2023_12_012 crossref_primary_10_1038_s41893_022_01028_x crossref_primary_10_1002_adfm_202301118 crossref_primary_10_1016_j_enchem_2022_100076 crossref_primary_10_1016_j_ensm_2022_09_036 crossref_primary_10_1002_anie_202318496 crossref_primary_10_1016_j_mattod_2023_09_008 crossref_primary_10_1002_smll_202410946 crossref_primary_10_1016_j_mtener_2024_101791 crossref_primary_10_3390_batteries10030102 crossref_primary_10_1021_jacs_4c10337 crossref_primary_10_1002_cptc_202300156 crossref_primary_10_1016_j_cej_2023_148511 crossref_primary_10_1002_adma_202501049 crossref_primary_10_1016_j_jpowsour_2022_232380 crossref_primary_10_1039_D2TA06975J crossref_primary_10_1002_aenm_202400033 crossref_primary_10_1002_aenm_202204388 crossref_primary_10_1016_j_cclet_2023_108337 crossref_primary_10_1002_adfm_202305700 crossref_primary_10_1021_acs_nanolett_4c03749 crossref_primary_10_1016_j_mtener_2023_101284 crossref_primary_10_1021_acsnano_4c13735 crossref_primary_10_1002_aenm_202300733 crossref_primary_10_1039_D2EE02687B crossref_primary_10_1002_smll_202500503 crossref_primary_10_1039_D2TA06095G crossref_primary_10_1021_acsaem_3c02618 crossref_primary_10_1038_s41467_023_41276_9 crossref_primary_10_1002_adma_202420079 crossref_primary_10_1016_j_cej_2024_157743 crossref_primary_10_1021_acsami_4c01180 crossref_primary_10_1039_D4EE01260G crossref_primary_10_1002_anie_202319125 crossref_primary_10_1039_D3TA07262B crossref_primary_10_1016_j_ensm_2025_104091 crossref_primary_10_1016_j_jallcom_2023_171655 crossref_primary_10_1002_adfm_202312469 crossref_primary_10_1039_D4EE00062E crossref_primary_10_1021_acsami_3c10101 crossref_primary_10_1039_D3EE01678A crossref_primary_10_1002_adfm_202405656 crossref_primary_10_1039_D4NR02385D crossref_primary_10_1021_acs_jpcc_4c04080 crossref_primary_10_1002_adfm_202107652 crossref_primary_10_1002_anie_202412989 crossref_primary_10_1016_j_jechem_2025_01_072 crossref_primary_10_1002_tcr_202200114 crossref_primary_10_1016_j_jechem_2023_12_054 crossref_primary_10_1002_ange_202315464 crossref_primary_10_1002_adma_202207344 crossref_primary_10_1016_j_chempr_2024_07_028 crossref_primary_10_1016_j_jpowsour_2023_232688 crossref_primary_10_2139_ssrn_4167849 crossref_primary_10_1039_D2MA00733A crossref_primary_10_1016_j_joule_2021_10_011 crossref_primary_10_1016_j_jpowsour_2023_232685 crossref_primary_10_1039_D3SC06935D crossref_primary_10_1016_j_joule_2025_101827 crossref_primary_10_1016_j_electacta_2024_145287 crossref_primary_10_1016_j_jechem_2025_01_058 crossref_primary_10_1016_j_synthmet_2024_117600 crossref_primary_10_1016_j_ensm_2022_09_002 crossref_primary_10_1021_acs_chemrev_4c00380 crossref_primary_10_1002_ange_202412989 crossref_primary_10_1002_ange_202212695 crossref_primary_10_1039_D3EE00018D crossref_primary_10_1002_cey2_694 crossref_primary_10_1002_aenm_202103557 crossref_primary_10_1002_anie_202318063 crossref_primary_10_1002_anie_202309594 crossref_primary_10_1002_ange_202215968 crossref_primary_10_1039_D2TA03550B crossref_primary_10_1002_adfm_202213416 crossref_primary_10_1039_D3EE02164E crossref_primary_10_1002_adma_202412667 crossref_primary_10_1016_j_ensm_2024_103984 crossref_primary_10_1002_adfm_202108533 crossref_primary_10_1016_j_enchem_2022_100097 crossref_primary_10_1002_adma_202303509 crossref_primary_10_1021_jacs_4c16932 crossref_primary_10_1016_j_est_2024_115258 crossref_primary_10_1021_jacs_2c06927 crossref_primary_10_1016_j_jpowsour_2025_236744 crossref_primary_10_1149_1945_7111_ac9a03 crossref_primary_10_1021_acsmaterialslett_1c00325 crossref_primary_10_1002_aenm_202302543 crossref_primary_10_1016_j_ensm_2021_10_033 crossref_primary_10_1039_D4TA07230H crossref_primary_10_1016_j_ccr_2021_214299 crossref_primary_10_1002_smm2_1194 crossref_primary_10_1002_ange_202215385 crossref_primary_10_1016_j_nanoen_2024_109806 crossref_primary_10_1039_D4NH00305E crossref_primary_10_1149_1945_7111_ac9649 crossref_primary_10_1016_j_ensm_2023_102997 crossref_primary_10_1016_j_est_2023_108851 crossref_primary_10_1021_acsenergylett_3c00650 crossref_primary_10_1021_acsami_2c12744 crossref_primary_10_1002_smtd_202402213 crossref_primary_10_1038_s41578_023_00623_4 crossref_primary_10_1002_smll_202304130 crossref_primary_10_1016_j_ensm_2023_102774 crossref_primary_10_1002_ange_202401441 crossref_primary_10_1002_adma_202208237 crossref_primary_10_1016_j_ensm_2022_07_002 crossref_primary_10_1002_anie_202210871 crossref_primary_10_1002_smll_202106441 crossref_primary_10_1039_D4EE03750B crossref_primary_10_1002_ange_202502279 crossref_primary_10_1002_adfm_202209301 crossref_primary_10_1007_s40820_024_01372_x crossref_primary_10_1002_smll_202201163 crossref_primary_10_1002_smll_202203583 crossref_primary_10_1149_1945_7111_ad281a crossref_primary_10_1021_acsami_4c18447 crossref_primary_10_1021_acs_nanolett_4c00873 crossref_primary_10_1002_aenm_202405326 crossref_primary_10_1016_j_chempr_2024_07_039 crossref_primary_10_1002_adma_202210789 crossref_primary_10_1021_acsami_4c06463 crossref_primary_10_1016_j_jcis_2024_09_127 crossref_primary_10_1039_D3NR01178J crossref_primary_10_1007_s12613_022_2454_z crossref_primary_10_1039_D4TA03165B crossref_primary_10_1002_aenm_202402041 crossref_primary_10_1002_batt_202300420 crossref_primary_10_1039_D2TA08498H crossref_primary_10_1002_adfm_202420446 crossref_primary_10_1002_anie_202315834 crossref_primary_10_1016_j_jiec_2024_06_015 crossref_primary_10_1016_j_ensm_2023_01_027 crossref_primary_10_1016_j_joule_2025_101844 crossref_primary_10_1063_5_0160729 crossref_primary_10_1016_j_cclet_2024_110308 crossref_primary_10_1016_j_ensm_2023_01_026 crossref_primary_10_1021_acsnano_4c07907 crossref_primary_10_1039_D3EE03584K crossref_primary_10_1016_j_jpowsour_2022_232529 crossref_primary_10_1016_j_nanoms_2023_11_004 crossref_primary_10_1038_s41467_023_37524_7 crossref_primary_10_1002_ange_202402327 crossref_primary_10_1002_adfm_202207140 crossref_primary_10_1016_j_ensm_2023_01_030 crossref_primary_10_1038_s41467_024_52611_z crossref_primary_10_1002_adfm_202303590 crossref_primary_10_1002_aenm_202304094 crossref_primary_10_1039_D3SE00117B crossref_primary_10_1016_j_joule_2022_04_017 crossref_primary_10_1002_aenm_202401139 crossref_primary_10_1016_j_joule_2022_04_019 crossref_primary_10_1002_adma_202303550 crossref_primary_10_1002_ange_202307208 crossref_primary_10_1002_anie_202417125 crossref_primary_10_1002_anie_202400916 crossref_primary_10_1002_eem2_12658 crossref_primary_10_1016_j_jpowsour_2024_236072 crossref_primary_10_1016_j_electacta_2024_145453 crossref_primary_10_1039_D3DT00898C crossref_primary_10_1021_acs_jpcc_2c02323 crossref_primary_10_1002_adma_202203835 crossref_primary_10_1002_eem2_12410 crossref_primary_10_1038_s41893_023_01172_y crossref_primary_10_1038_s41467_023_36386_3 crossref_primary_10_1016_j_ensm_2023_01_040 crossref_primary_10_1002_aenm_202103705 crossref_primary_10_1016_j_ensm_2022_08_033 crossref_primary_10_1016_j_ensm_2022_06_005 crossref_primary_10_1002_ange_202300823 crossref_primary_10_1002_celc_202300517 crossref_primary_10_1021_acsami_4c09325 crossref_primary_10_1016_j_ensm_2024_103910 crossref_primary_10_1021_acsaem_2c02259 crossref_primary_10_1016_j_cej_2023_145056 crossref_primary_10_1039_D3CS00295K crossref_primary_10_1002_adma_202304426 crossref_primary_10_1021_jacs_3c06523 crossref_primary_10_1002_smll_202202214 crossref_primary_10_1002_adfm_202213803 crossref_primary_10_1002_adma_202304667 crossref_primary_10_1002_ange_202318369 crossref_primary_10_1002_smll_202400565 crossref_primary_10_1021_acselectrochem_4c00100 crossref_primary_10_3389_fchem_2022_899810 crossref_primary_10_1016_j_jechem_2024_05_035 crossref_primary_10_1002_smll_202411463 crossref_primary_10_1016_j_scib_2024_10_025 crossref_primary_10_1021_jacs_2c06757 crossref_primary_10_1002_anie_202302583 crossref_primary_10_1016_j_ensm_2022_08_046 crossref_primary_10_1039_D4EE01225A crossref_primary_10_1021_acsnano_4c14244 crossref_primary_10_1016_j_ensm_2021_11_003 crossref_primary_10_1002_cssc_202200313 crossref_primary_10_1002_anie_202212839 crossref_primary_10_1002_anie_202409986 crossref_primary_10_1002_adfm_202300046 crossref_primary_10_1002_anie_202311032 crossref_primary_10_1016_j_ensm_2025_104056 crossref_primary_10_1002_adfm_202315539 crossref_primary_10_1039_D2TA04779A crossref_primary_10_1021_acsami_3c00747 crossref_primary_10_1007_s40843_023_2598_0 crossref_primary_10_3390_batteries9050284 crossref_primary_10_1149_1945_7111_acaf42 crossref_primary_10_1002_ange_202412173 crossref_primary_10_1002_ange_202315834 crossref_primary_10_1002_adfm_202213187 crossref_primary_10_1039_D3EE00925D crossref_primary_10_1002_ange_202303845 crossref_primary_10_1002_ange_202404784 crossref_primary_10_1002_aenm_202202784 crossref_primary_10_1002_eem2_12734 crossref_primary_10_1002_aenm_202405253 crossref_primary_10_1016_j_jpowsour_2023_233066 crossref_primary_10_20517_energymater_2024_169 crossref_primary_10_1021_acsnano_3c10394 crossref_primary_10_1039_D1EE03749H crossref_primary_10_1002_smtd_202300392 crossref_primary_10_1016_j_ensm_2023_102921 crossref_primary_10_1002_adfm_202316083 crossref_primary_10_1002_ange_202414117 crossref_primary_10_1007_s40820_021_00782_5 crossref_primary_10_1016_j_cej_2022_136607 crossref_primary_10_1002_smll_202501293 crossref_primary_10_1002_sstr_202400325 crossref_primary_10_1039_D3TA01943H crossref_primary_10_1002_anie_202406683 crossref_primary_10_1002_anie_202314456 crossref_primary_10_1002_adma_202411802 crossref_primary_10_1016_j_ensm_2023_102934 crossref_primary_10_1016_j_cej_2025_161858 crossref_primary_10_1002_ange_202302539 crossref_primary_10_1002_ange_202411056 crossref_primary_10_1016_j_apsusc_2022_156129 crossref_primary_10_1002_aenm_202102707 crossref_primary_10_1002_ange_202414562 crossref_primary_10_1038_s41467_023_38890_y crossref_primary_10_1021_acs_nanolett_1c03792 crossref_primary_10_1002_ange_202218466 crossref_primary_10_1021_acssuschemeng_3c04018 crossref_primary_10_1021_acsenergylett_2c02817 crossref_primary_10_1149_1945_7111_ad69c7 crossref_primary_10_1002_ange_202302302 crossref_primary_10_1038_s41467_024_44893_0 crossref_primary_10_1039_D3TA07315G crossref_primary_10_1002_ange_202210979 crossref_primary_10_1002_smll_202206634 crossref_primary_10_1002_ange_202309594 crossref_primary_10_1002_smll_202404743 crossref_primary_10_1021_acsnano_3c05845 crossref_primary_10_1038_s41467_024_50890_0 crossref_primary_10_1002_ange_202218454 crossref_primary_10_1039_D2TA01886A crossref_primary_10_1002_adfm_202406077 crossref_primary_10_1039_D4EE02192D crossref_primary_10_1002_smll_202401249 crossref_primary_10_1021_jacs_4c14053 crossref_primary_10_1039_D4TA00629A crossref_primary_10_1002_aenm_202404367 crossref_primary_10_1002_adfm_202112693 crossref_primary_10_1002_ange_202318063 crossref_primary_10_1002_anie_202215968 crossref_primary_10_1002_anie_202212695 crossref_primary_10_1002_aenm_202304144 crossref_primary_10_1002_adma_202207908 crossref_primary_10_1002_ange_202206471 crossref_primary_10_3390_sci6030050 crossref_primary_10_1002_ange_202301631 crossref_primary_10_1039_D4NR03635B crossref_primary_10_1002_smll_202301620 crossref_primary_10_1016_j_cej_2024_153927 crossref_primary_10_1038_s41570_024_00670_7 crossref_primary_10_1002_smtd_202300554 crossref_primary_10_1002_smll_202401258 crossref_primary_10_1016_j_est_2024_112898 crossref_primary_10_1002_admi_202202494 crossref_primary_10_1007_s12274_022_5020_0 crossref_primary_10_1002_advs_202304549 crossref_primary_10_1002_ange_202421905 crossref_primary_10_1016_j_esci_2023_100120 crossref_primary_10_1016_j_joule_2022_06_002 crossref_primary_10_1038_s42004_024_01405_x crossref_primary_10_1002_anie_202212666 crossref_primary_10_1002_anie_202500731 crossref_primary_10_1039_D4EE05153J crossref_primary_10_1002_adma_202210051 crossref_primary_10_1002_adma_202305128 crossref_primary_10_1039_D3EE04515C crossref_primary_10_1039_D3IM00111C crossref_primary_10_1002_smtd_202300561 crossref_primary_10_1021_acsnano_3c03638 crossref_primary_10_1002_aenm_202500430 crossref_primary_10_1039_D2EE03077B crossref_primary_10_1021_acsnano_4c03074 crossref_primary_10_1002_adma_202210055 crossref_primary_10_1002_ange_202415221 crossref_primary_10_1016_j_ensm_2024_103451 crossref_primary_10_1073_pnas_2121138119 crossref_primary_10_1002_aenm_202202937 crossref_primary_10_1002_batt_202300099 crossref_primary_10_1002_bte2_20220029 crossref_primary_10_1039_D4TA05214E crossref_primary_10_26599_NRE_2022_9120023 crossref_primary_10_1021_jacs_1c12764 crossref_primary_10_1002_adfm_202300795 crossref_primary_10_1016_j_est_2024_112834 crossref_primary_10_1016_j_cej_2022_139264 crossref_primary_10_1016_j_cej_2025_159397 crossref_primary_10_1016_j_ensm_2024_103691 crossref_primary_10_1002_anie_202317302 crossref_primary_10_1038_s41467_023_38492_8 crossref_primary_10_1002_adfm_202414563 crossref_primary_10_1002_ange_202409838 crossref_primary_10_1016_j_cej_2024_157933 crossref_primary_10_1002_anie_202407909 crossref_primary_10_1016_j_fmre_2023_02_018 crossref_primary_10_1021_jacs_3c10638 crossref_primary_10_1016_j_cej_2023_145658 crossref_primary_10_1002_smll_202412161 crossref_primary_10_1016_j_jcis_2024_03_168 crossref_primary_10_1016_j_jpowsour_2022_232072 crossref_primary_10_1016_j_jcis_2023_10_057 crossref_primary_10_1002_ange_202212780 crossref_primary_10_1016_j_jpowsour_2021_230861 crossref_primary_10_1016_j_ensm_2024_103437 crossref_primary_10_1016_j_apsusc_2023_158219 crossref_primary_10_26599_NRE_2023_9120100 crossref_primary_10_1002_ange_202214966 crossref_primary_10_1126_sciadv_abl3752 crossref_primary_10_1016_j_ensm_2024_103676 crossref_primary_10_1038_s41467_024_46464_9 crossref_primary_10_1016_j_jechem_2022_08_040 crossref_primary_10_1021_jacs_4c09524 crossref_primary_10_1016_j_matt_2024_08_002 crossref_primary_10_1039_D3EE02535G crossref_primary_10_1016_j_mattod_2024_06_016 crossref_primary_10_1007_s40820_023_01136_z crossref_primary_10_1039_D4GC03426K crossref_primary_10_1007_s12274_022_5325_z crossref_primary_10_1016_j_nanoen_2022_107520 crossref_primary_10_1002_adma_202110047 crossref_primary_10_1021_acsnano_1c05934 crossref_primary_10_1002_advs_202403224 crossref_primary_10_1002_anie_202309957 crossref_primary_10_1002_anie_202502279 crossref_primary_10_1002_adma_202417757 crossref_primary_10_1002_smll_202200742 crossref_primary_10_1021_acsaem_3c01928 crossref_primary_10_1038_s41893_023_01092_x crossref_primary_10_1039_D3EE04292H crossref_primary_10_1007_s42823_023_00597_x crossref_primary_10_1039_D3EE01747H crossref_primary_10_1007_s12598_024_02641_9 crossref_primary_10_1016_j_jechem_2024_09_047 crossref_primary_10_1016_j_cej_2023_141272 crossref_primary_10_1016_j_jechem_2022_06_050 crossref_primary_10_1016_j_jechem_2022_12_045 crossref_primary_10_1016_j_cej_2023_145864 crossref_primary_10_1126_sciadv_adn2265 crossref_primary_10_1002_adfm_202112609 crossref_primary_10_1016_j_enrev_2022_100005 crossref_primary_10_1002_ange_202311032 crossref_primary_10_1063_5_0116388 crossref_primary_10_1039_D2TA04015H crossref_primary_10_1039_D3CS00771E crossref_primary_10_1016_j_jechem_2024_09_030 crossref_primary_10_1039_D4RE00366G crossref_primary_10_1002_slct_202405068 crossref_primary_10_1021_acsami_2c17714 crossref_primary_10_1016_j_ensm_2024_103245 crossref_primary_10_1002_anie_202422036 crossref_primary_10_1002_anie_202109682 crossref_primary_10_1039_D3NR06143D crossref_primary_10_1038_s41467_022_34303_8 crossref_primary_10_1039_D2EE00004K crossref_primary_10_1002_adma_202203153 crossref_primary_10_1002_smll_202306919 crossref_primary_10_1002_batt_202200468 crossref_primary_10_1002_er_7669 crossref_primary_10_1016_j_cej_2023_143670 crossref_primary_10_1021_acs_chemmater_2c02029 crossref_primary_10_1039_D2CC03276G crossref_primary_10_1002_adfm_202308463 crossref_primary_10_1002_cplu_202300341 crossref_primary_10_1016_j_jpowsour_2024_235764 crossref_primary_10_1002_smm2_1216 crossref_primary_10_1007_s40820_024_01551_w crossref_primary_10_1002_smm2_1212 crossref_primary_10_1002_adfm_202205771 crossref_primary_10_1039_D2NR04549D crossref_primary_10_1002_aenm_202304557 crossref_primary_10_1002_aenm_202302137 crossref_primary_10_1016_j_jcis_2024_05_176 crossref_primary_10_1039_D4EE01615G crossref_primary_10_1016_j_ensm_2024_103465 crossref_primary_10_1021_acsenergylett_5c00369 crossref_primary_10_2139_ssrn_4138323 crossref_primary_10_1002_smll_202105970 crossref_primary_10_1016_j_cej_2022_134646 crossref_primary_10_1021_acsnano_2c09111 crossref_primary_10_1002_aenm_202400613 crossref_primary_10_1002_smtd_202200999 crossref_primary_10_1002_ange_202302583 crossref_primary_10_1021_acsami_2c18836 crossref_primary_10_1007_s40843_024_3009_4 crossref_primary_10_1021_jacs_3c06668 crossref_primary_10_1021_jacs_2c13540 crossref_primary_10_1002_adma_202400370 crossref_primary_10_1039_D3EE00205E crossref_primary_10_1002_anie_202424642 crossref_primary_10_1002_ange_202410422 crossref_primary_10_1007_s40820_024_01327_2 crossref_primary_10_1021_jacs_4c12409 crossref_primary_10_1039_D2TA09153D crossref_primary_10_1007_s12274_022_4688_5 crossref_primary_10_1021_acsenergylett_2c02236 crossref_primary_10_1002_aenm_202303928 crossref_primary_10_1021_acsnano_3c08749 crossref_primary_10_1002_anie_202407067 crossref_primary_10_1002_anie_202318369 crossref_primary_10_1039_D4TA07311H crossref_primary_10_1002_cey2_365 crossref_primary_10_1016_j_cej_2022_138589 crossref_primary_10_1016_j_scib_2023_08_024 crossref_primary_10_1002_ange_202309957 crossref_primary_10_1039_D2NH00354F crossref_primary_10_1073_pnas_2322944121 crossref_primary_10_1016_j_nanoen_2022_107331 crossref_primary_10_1002_aenm_202301997 crossref_primary_10_1016_j_nanoen_2022_107120 crossref_primary_10_1002_aenm_202301517 crossref_primary_10_1021_acsenergylett_2c01152 crossref_primary_10_1002_aenm_202400398 crossref_primary_10_1016_j_ensm_2022_11_057 crossref_primary_10_1021_acsanm_4c03283 crossref_primary_10_1002_anie_202423531 crossref_primary_10_1002_smll_202204713 crossref_primary_10_1021_acs_nanolett_4c02778 crossref_primary_10_1002_adma_202313621 crossref_primary_10_1016_j_jcis_2022_09_047 crossref_primary_10_1039_D1EE02021H crossref_primary_10_1039_D2SC01818G crossref_primary_10_1016_j_ensm_2022_10_016 crossref_primary_10_1021_acsami_4c05897 crossref_primary_10_1016_j_jechem_2022_11_028 crossref_primary_10_1007_s40820_024_01380_x crossref_primary_10_1002_anie_202411563 crossref_primary_10_1016_j_oneear_2022_03_012 crossref_primary_10_1021_acsaelm_4c02261 crossref_primary_10_1039_D2CS00684G crossref_primary_10_1002_anie_202423302 crossref_primary_10_1039_D4CP02383H crossref_primary_10_1002_smll_202107033 crossref_primary_10_1021_acsnano_4c02740 crossref_primary_10_1021_acs_nanolett_2c00398 crossref_primary_10_1039_D4NR02905D crossref_primary_10_1002_adfm_202409950 crossref_primary_10_1002_anie_202403712 crossref_primary_10_1002_aenm_202300606 crossref_primary_10_1002_adma_202106867 crossref_primary_10_1002_cnl2_37 crossref_primary_10_1002_adma_202301410 crossref_primary_10_1002_ange_202301192 crossref_primary_10_1021_acsaem_4c02175 crossref_primary_10_1002_ange_202423302 crossref_primary_10_1002_ange_202407067 crossref_primary_10_1002_anie_202413959 crossref_primary_10_1002_aenm_202400572 crossref_primary_10_1002_smll_202407226 crossref_primary_10_1039_D4CS00474D crossref_primary_10_1016_j_jcis_2022_10_141 crossref_primary_10_1016_j_jpowsour_2023_233887 crossref_primary_10_1021_acsami_2c19616 crossref_primary_10_1039_D3EE01447A crossref_primary_10_1007_s40820_022_00939_w crossref_primary_10_1002_adfm_202402014 crossref_primary_10_1002_ange_202423531 crossref_primary_10_1039_D4EE04870A crossref_primary_10_1021_acssuschemeng_1c07721 crossref_primary_10_1021_acsnano_2c12587 crossref_primary_10_1039_D4SC06630H crossref_primary_10_1016_j_cclet_2024_109815 crossref_primary_10_1039_D4RA02200A crossref_primary_10_1002_ange_202411563 crossref_primary_10_1016_j_ensm_2022_10_004 crossref_primary_10_1002_adma_202211961 crossref_primary_10_1002_cssc_202400552 crossref_primary_10_1002_adfm_202312564 crossref_primary_10_1039_D1TA08515H crossref_primary_10_1021_acs_inorgchem_4c00622 crossref_primary_10_1002_anie_202410422 crossref_primary_10_1002_ange_202401974 crossref_primary_10_1002_anie_202215385 crossref_primary_10_1039_D4EE04566A crossref_primary_10_1002_adfm_202412092 crossref_primary_10_1002_ange_202209169 crossref_primary_10_1016_j_ensm_2022_11_013 crossref_primary_10_1002_ange_202413959 crossref_primary_10_1016_j_ensm_2022_01_059 crossref_primary_10_1016_j_ensm_2024_103869 crossref_primary_10_1016_j_ensm_2024_103628 crossref_primary_10_1039_D4CS00343H crossref_primary_10_1021_acssuschemeng_3c01867 crossref_primary_10_1002_advs_202305061 crossref_primary_10_1002_aenm_202402521 crossref_primary_10_1002_ange_202317302 crossref_primary_10_1038_s41929_024_01169_6 crossref_primary_10_2139_ssrn_4117001 crossref_primary_10_1002_adma_202207682 crossref_primary_10_1002_smtd_202401865 crossref_primary_10_1021_acsami_1c15980 crossref_primary_10_1002_smll_202303108 crossref_primary_10_1002_anie_202401974 crossref_primary_10_1016_j_esci_2025_100397 crossref_primary_10_1039_D3SC04853E crossref_primary_10_1016_j_ensm_2024_103616 crossref_primary_10_1007_s41918_023_00194_6 crossref_primary_10_1002_adfm_202209642 crossref_primary_10_1016_j_jcis_2024_05_202 crossref_primary_10_1002_adfm_202112091 crossref_primary_10_1021_acssuschemeng_3c06291 crossref_primary_10_1016_j_ensm_2023_102882 crossref_primary_10_1039_D3YA00319A crossref_primary_10_1002_adfm_202501537 crossref_primary_10_1002_smm2_1076 crossref_primary_10_5796_electrochemistry_25_00030 crossref_primary_10_1002_anie_202218466 crossref_primary_10_1002_batt_202300526 crossref_primary_10_1016_j_jpowsour_2024_234814 crossref_primary_10_1021_acs_chemrev_2c00289 crossref_primary_10_1002_smll_202203674 crossref_primary_10_1016_j_ensm_2025_104159 crossref_primary_10_1021_acs_nanolett_1c04709 crossref_primary_10_1002_aenm_202401293 crossref_primary_10_1021_acsnano_4c16521 crossref_primary_10_1016_j_isci_2025_111751 crossref_primary_10_1002_anie_202301192 crossref_primary_10_1016_j_ensm_2022_12_030 crossref_primary_10_1021_acsami_2c19022 crossref_primary_10_1002_smtd_202300660 crossref_primary_10_1002_chem_202304149 crossref_primary_10_1021_acsnano_3c05640 crossref_primary_10_1016_j_jechem_2023_03_036 crossref_primary_10_1002_cnma_202100294 crossref_primary_10_1002_anie_202116560 crossref_primary_10_1016_j_actamat_2023_119500 crossref_primary_10_1039_D1NR06058A crossref_primary_10_1002_aenm_202404591 crossref_primary_10_1039_D4TA02704C crossref_primary_10_1002_anie_202218454 crossref_primary_10_1016_j_mtphys_2024_101356 crossref_primary_10_1002_ange_202109682 crossref_primary_10_1021_acsenergylett_4c00967 crossref_primary_10_1002_anie_202206471 crossref_primary_10_1002_anie_202308182 crossref_primary_10_1002_aenm_202404108 crossref_primary_10_1002_ange_202403712 crossref_primary_10_1002_smtd_202401021 crossref_primary_10_1002_adma_202201957 crossref_primary_10_1002_adma_202304997 crossref_primary_10_1002_ange_202424642 crossref_primary_10_1016_j_ensm_2022_12_010 crossref_primary_10_1002_ange_202319125 crossref_primary_10_1002_adma_202401858 crossref_primary_10_1016_j_joule_2024_12_003 crossref_primary_10_1016_j_scib_2022_01_010 crossref_primary_10_3390_batteries8110244 crossref_primary_10_1002_anie_202210979 crossref_primary_10_1016_j_cclet_2024_110422 crossref_primary_10_1002_adfm_202211765 crossref_primary_10_1002_smll_202501089 crossref_primary_10_1016_j_matt_2022_08_025 crossref_primary_10_1021_acsnano_3c08716 crossref_primary_10_1002_adma_202400976 crossref_primary_10_1002_adma_202106897 crossref_primary_10_1021_acsenergylett_3c01821 crossref_primary_10_1016_j_nanoen_2022_107145 crossref_primary_10_1002_adfm_202210206 crossref_primary_10_1016_j_electacta_2025_145639 crossref_primary_10_1002_aenm_202102982 crossref_primary_10_1002_aenm_202402586 crossref_primary_10_23919_CHAIN_2024_000010 crossref_primary_10_1002_anie_202314883 crossref_primary_10_1002_adma_202106409 crossref_primary_10_1002_anie_202409838 crossref_primary_10_1002_anie_202310290 crossref_primary_10_1002_adfm_202314347 crossref_primary_10_1002_adma_202302353 crossref_primary_10_1002_cssc_202201739 crossref_primary_10_1021_acs_nanolett_2c02514 crossref_primary_10_1002_ange_202407909 crossref_primary_10_1007_s12598_024_02705_w crossref_primary_10_1016_j_jmst_2021_12_017 crossref_primary_10_1002_aenm_202301712 crossref_primary_10_1002_adma_202201744 crossref_primary_10_1002_smtd_202400127 crossref_primary_10_1021_acsnano_4c04795 crossref_primary_10_1002_ange_202422036 crossref_primary_10_1016_j_jpowsour_2022_232460 crossref_primary_10_1002_adfm_202306952 crossref_primary_10_1039_D4TA05590J crossref_primary_10_1016_j_ensm_2023_102858 crossref_primary_10_1002_adfm_202409520 crossref_primary_10_1002_ange_202318496 crossref_primary_10_1557_s43578_023_01197_1 crossref_primary_10_1002_aenm_202500962 crossref_primary_10_6023_A24010006 crossref_primary_10_1002_adma_202211555 crossref_primary_10_1002_anie_202501664 crossref_primary_10_1016_j_est_2023_108708 crossref_primary_10_1016_j_ensm_2023_102873 crossref_primary_10_1039_D4EE04525D crossref_primary_10_1016_j_cej_2022_137471 crossref_primary_10_1002_adma_202200662 crossref_primary_10_1016_j_est_2024_113354 crossref_primary_10_1038_s41467_022_32031_7 crossref_primary_10_1039_D4EE02784A crossref_primary_10_1039_D3EE03661H crossref_primary_10_1007_s11426_024_2098_6 crossref_primary_10_1038_s41467_023_39877_5 |
Cites_doi | 10.1016/0013-4686(90)90077-D 10.1063/1.2464084 10.1038/s41467-020-18284-0 10.1007/s00214-007-0310-x 10.1021/jp409765w 10.1039/b810189b 10.1021/jp908444x 10.1103/PhysRevA.31.1695 10.1126/science.abb9554 10.1063/1.447079 10.1002/aenm.201701189 10.1016/S0010-938X(00)00177-3 10.1126/sciadv.abe0219 10.1126/science.aak9991 10.1080/00268979600100761 10.1039/C9EE00596J 10.1002/anie.201806748 10.1038/s41586-019-1603-7 10.1038/s41560-019-0464-5 10.1039/B512724F 10.1039/b100040n 10.1016/j.electacta.2009.12.030 10.1021/ie400825u 10.1021/ie300247v 10.1063/1.469429 10.1021/ct0502763 10.1038/s41467-019-13436-3 10.1021/acs.chemmater.7b03404 10.1038/s41563-018-0063-z 10.1002/adma.201604685 10.1149/1.2127450 10.1039/C8CC07730D 10.1039/C8EE00378E 10.1021/acsenergylett.9b00857 10.1039/B917592J 10.1063/1.3359469 10.1002/anie.202008634 10.1149/2.0151605jes 10.1063/1.477924 10.1016/0301-0104(81)85176-2 10.1126/science.aab1595 10.1038/d41586-018-05752-3 10.1002/adfm.201902653 10.1039/D0EE01538E 10.1039/C9EE03545A 10.1021/jp905220k 10.1021/cr500003w 10.1149/2.0121906jes 10.1039/C8EE02456A 10.1155/2018/2079278 10.1038/ncomms11801 10.1016/j.joule.2018.11.007 10.1021/acs.chemmater.9b04827 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2021 2021. The Author(s), under exclusive licence to Springer Nature Limited. The Author(s), under exclusive licence to Springer Nature Limited 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021 – notice: 2021. The Author(s), under exclusive licence to Springer Nature Limited. – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021. |
CorporateAuthor | Brookhaven National Lab. (BNL), Upton, NY (United States) |
CorporateAuthor_xml | – name: Brookhaven National Lab. (BNL), Upton, NY (United States) |
DBID | AAYXX CITATION NPM 3V. 7QO 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V L7M LK8 M0S M1P M7P M7S P5Z P62 P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 OIOZB OTOTI |
DOI | 10.1038/s41565-021-00905-4 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-3395 |
EndPage | 910 |
ExternalDocumentID | 1787833 33972758 10_1038_s41565_021_00905_4 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GrantInformation_xml | – fundername: X.-Q. Yang at Brookhaven National Laboratory (BNL) is supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Vehicle Technology Office of the U.S. Department of Energy through the Advanced Battery Materials Research (BMR) Program under contract DE-SC0012704. This research used beamlines 7-BM of the National Synchrotron Light Source II, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DESC0012704. – fundername: Modeling and experimental work at Army Research Laboratory were supported by the Joint Center for Energy Storage Research (JCESR), a Department of Energy, Energy Innovation Hub under cooperative agreement number W911NF-19-2-0046. – fundername: The principal investigator (C.W) gratefully acknowledge funding support from the US Department of Energy (DOE) through ARPA-E grant DEAR0000389 and the Center of Research on Extreme Batteries. – fundername: E. Hu at Brookhaven National Laboratory (BNL) is supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Vehicle Technology Office of the U.S. Department of Energy through the Advanced Battery Materials Research (BMR) Program under contract DE-SC0012704. This research used beamlines 7-BM of the National Synchrotron Light Source II, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DESC0012704. |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 5M7 5S5 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ I-F KB. L6V LK8 M1P M7P M7S MM. NNMJJ O9- ODYON P2P P62 PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT NPM 7QO 7U5 7XB 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ K9. L7M P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PUEGO 7X8 AADEA AADWK AAEXX AAJMP AAPBV AAYJO ABEEJ ABGIJ ABPTK ABVXF ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADMDM ADQMX ADZGE AEDAW AEFTE AGEZK AGGBP AHGBK AJDOV NYICJ OIOZB OTOTI |
ID | FETCH-LOGICAL-c446t-803e5a38f23605af37992b03c3c07b8367e865be0a7609bd540bed64b9c4d13d3 |
IEDL.DBID | 7X7 |
ISSN | 1748-3387 1748-3395 |
IngestDate | Thu May 18 22:40:20 EDT 2023 Fri Jul 11 03:03:48 EDT 2025 Sat Aug 23 12:27:18 EDT 2025 Wed Feb 19 02:25:45 EST 2025 Thu Apr 24 22:55:24 EDT 2025 Tue Jul 01 01:56:31 EDT 2025 Fri Feb 21 02:40:37 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | 2021. The Author(s), under exclusive licence to Springer Nature Limited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-803e5a38f23605af37992b03c3c07b8367e865be0a7609bd540bed64b9c4d13d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 BNL-221586-2021-JAAM USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division USDOE Advanced Research Projects Agency - Energy (ARPA-E) SC0012704 USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office |
ORCID | 0000-0002-3625-3478 0000-0001-6240-5423 0000-0002-7127-3087 0000-0002-8626-6381 0000-0002-1881-4534 0000-0002-6946-8635 0000-0002-2917-6523 0000-0002-9428-5291 0000000294285291 0000000286266381 0000000269468635 0000000236253478 0000000271273087 0000000162405423 0000000218814534 0000000229176523 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1787833 |
PMID | 33972758 |
PQID | 2560480567 |
PQPubID | 546299 |
PageCount | 9 |
ParticipantIDs | osti_scitechconnect_1787833 proquest_miscellaneous_2525652251 proquest_journals_2560480567 pubmed_primary_33972758 crossref_citationtrail_10_1038_s41565_021_00905_4 crossref_primary_10_1038_s41565_021_00905_4 springer_journals_10_1038_s41565_021_00905_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationTitle | Nature nanotechnology |
PublicationTitleAbbrev | Nat. Nanotechnol |
PublicationTitleAlternate | Nat Nanotechnol |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Zhao (CR9) 2019; 12 McKubre, Macdonald (CR36) 1981; 128 Kroon, Buijs, Peters, Witkamp (CR27) 2006; 8 Zhao, Schultz, Truhlar (CR44) 2006; 2 Horng, Brindza, Walker, Fourkas (CR41) 2010; 114 Kortunov, Siskin, Paccagnini, Thomann (CR31) 2016; 30 Parker, Ko, Rolison, Long (CR37) 2018; 2 Liu (CR38) 2019; 4 Scalmani, Frisch (CR48) 2010; 132 Borodin (CR51) 2009; 113 Higashi, Lee, Lee, Takechi, Cui (CR8) 2016; 7 Chowdhury, Yamada, Higashii, Goto, Onoda (CR30) 2013; 52 Cao (CR23) 2019; 4 Cao (CR34) 1990; 35 Chen, Cao, Shi, Xue, Mu (CR26) 2012; 51 Zhang (CR15) 2020; 11 Zhang (CR14) 2018; 54 Sun (CR20) 2021; 371 Qiu (CR17) 2019; 10 Zhao, Truhlar (CR45) 2008; 120 Hoover (CR50) 1985; 31 Markevich (CR28) 2010; 55 Suo (CR25) 2017; 7 Thole (CR52) 1981; 59 Martyna, Tuckerman, Tobias, Klein (CR49) 1996; 87 Nicolas (CR33) 2018; 11 Xie (CR16) 2020; 13 Zhang (CR10) 2019; 29 CR42 Yamamoto, Okuhara, Nakato (CR39) 2001; 11 Vatamanu, Borodin, Smith (CR55) 2010; 12 Wang (CR3) 2018; 17 Cao, Li, Deng, Li, Wang (CR18) 2020; 59 Siepmann, Sprik (CR53) 1995; 102 Yi (CR32) 2017; 29 Zhang, Li, Cao, Yang, Huang (CR35) 2001; 43 Nie (CR22) 2013; 117 Bayer (CR7) 2019; 166 Montgomer, Frisch, Ochterski, Petersson (CR47) 1999; 110 Winiarski, Tylus, Winiarska, Szczygieł, Szczygieł (CR24) 2018; 2018 Xu (CR2) 2014; 114 Reed, Lanning, Madden (CR54) 2007; 126 Wang (CR40) 2018; 57 Suo (CR19) 2015; 350 CR29 Kundu (CR6) 2018; 11 Chai, Head-Gordon (CR46) 2008; 10 Turcheniuk, Bondarev, Singhal, Yushin (CR1) 2018; 559 Frisch, Pople, Binkley (CR43) 1984; 80 Luo (CR11) 2019; 574 Zheng, Archer (CR5) 2021; 7 Chang (CR13) 2020; 13 Parker (CR4) 2017; 356 Liu (CR21) 2016; 163 Fu (CR12) 2017; 29 PV Kortunov (905_CR31) 2016; 30 Z Zhao (905_CR9) 2019; 12 Y Yi (905_CR32) 2017; 29 H Qiu (905_CR17) 2019; 10 X Xie (905_CR16) 2020; 13 905_CR29 N Yamamoto (905_CR39) 2001; 11 L Suo (905_CR19) 2015; 350 Y Zhao (905_CR45) 2008; 120 MC Kroon (905_CR27) 2006; 8 L Liu (905_CR38) 2019; 4 SK Reed (905_CR54) 2007; 126 J-D Chai (905_CR46) 2008; 10 Y Zhao (905_CR44) 2006; 2 Q Zhang (905_CR15) 2020; 11 K Xu (905_CR2) 2014; 114 C-N Cao (905_CR34) 1990; 35 J Zheng (905_CR5) 2021; 7 M Bayer (905_CR7) 2019; 166 F Wang (905_CR3) 2018; 17 FA Chowdhury (905_CR30) 2013; 52 K Turcheniuk (905_CR1) 2018; 559 GJ Martyna (905_CR49) 1996; 87 L Cao (905_CR18) 2020; 59 JF Parker (905_CR4) 2017; 356 D Kundu (905_CR6) 2018; 11 M Nie (905_CR22) 2013; 117 N Chang (905_CR13) 2020; 13 J Vatamanu (905_CR55) 2010; 12 J Fu (905_CR12) 2017; 29 X Cao (905_CR23) 2019; 4 L Zhang (905_CR10) 2019; 29 MJ Frisch (905_CR43) 1984; 80 W Sun (905_CR20) 2021; 371 D Nicolas (905_CR33) 2018; 11 905_CR42 E Markevich (905_CR28) 2010; 55 C Zhang (905_CR14) 2018; 54 J Winiarski (905_CR24) 2018; 2018 Y Chen (905_CR26) 2012; 51 D Zhang (905_CR35) 2001; 43 P Horng (905_CR41) 2010; 114 O Borodin (905_CR51) 2009; 113 WG Hoover (905_CR50) 1985; 31 BT Thole (905_CR52) 1981; 59 F Wang (905_CR40) 2018; 57 G Scalmani (905_CR48) 2010; 132 S Higashi (905_CR8) 2016; 7 Z Liu (905_CR21) 2016; 163 L Suo (905_CR25) 2017; 7 JI Siepmann (905_CR53) 1995; 102 MCH McKubre (905_CR36) 1981; 128 JA Montgomer Jr. (905_CR47) 1999; 110 M Luo (905_CR11) 2019; 574 JF Parker (905_CR37) 2018; 2 33972759 - Nat Nanotechnol. 2021 Aug;16(8):854-855 |
References_xml | – volume: 35 start-page: 831 year: 1990 end-page: 836 ident: CR34 article-title: On the impedance plane displays for irreversible electrode reactions based on the stability conditions of the steady-state. I. One state variable besides electrode potential publication-title: Electrochim. Acta doi: 10.1016/0013-4686(90)90077-D – volume: 126 start-page: 084704 year: 2007 ident: CR54 article-title: Electrochemical interface between an ionic liquid and a model metallic electrode publication-title: J. Chem. Phys. doi: 10.1063/1.2464084 – volume: 11 year: 2020 ident: CR15 article-title: Modulating electrolyte structure for ultralow temperature aqueous zinc batteries publication-title: Nat. Commun. doi: 10.1038/s41467-020-18284-0 – volume: 120 start-page: 215 year: 2008 end-page: 241 ident: CR45 article-title: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-007-0310-x – volume: 117 start-page: 25381 year: 2013 end-page: 25389 ident: CR22 article-title: Role of solution structure in solid electrolyte interphase formation on graphite with LiPF in propylene carbonate publication-title: J. Phys. Chem. C doi: 10.1021/jp409765w – volume: 10 start-page: 6615 year: 2008 end-page: 6620 ident: CR46 article-title: Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b810189b – volume: 114 start-page: 394 year: 2010 end-page: 402 ident: CR41 article-title: Behavior of organic liquids at bare and modified silica interfaces publication-title: J. Phys. Chem. C doi: 10.1021/jp908444x – volume: 31 start-page: 1695 year: 1985 end-page: 1697 ident: CR50 article-title: Canonical dynamics: equilibrium phase-space distributions publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.31.1695 – volume: 371 start-page: 46 year: 2021 end-page: 51 ident: CR20 article-title: A rechargeable zinc–air battery based on zinc peroxide chemistry publication-title: Science doi: 10.1126/science.abb9554 – ident: CR29 – volume: 80 start-page: 3265 year: 1984 end-page: 3269 ident: CR43 article-title: Self-consistent molecular orbital methods. 25. Supplementary functions for Gaussian basis sets publication-title: J. Chem. Phys. doi: 10.1063/1.447079 – volume: 7 start-page: 1701189 year: 2017 ident: CR25 article-title: Water-in-salt’ electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701189 – volume: 43 start-page: 1627 year: 2001 end-page: 1636 ident: CR35 article-title: Studies of corrosion inhibitors for zinc–manganese batteries: quinoline quaternary ammonium phenolates publication-title: Corros. Sci. doi: 10.1016/S0010-938X(00)00177-3 – ident: CR42 – volume: 7 start-page: eabe0219 year: 2021 ident: CR5 article-title: Controlling electrochemical growth of metallic zinc electrodes: toward affordable rechargeable energy storage systems publication-title: Sci. Adv. doi: 10.1126/sciadv.abe0219 – volume: 356 start-page: 415 year: 2017 end-page: 418 ident: CR4 article-title: Rechargeable nickel-3D zinc batteries: an energy-dense, safer alternative to lithium-ion publication-title: Science doi: 10.1126/science.aak9991 – volume: 87 start-page: 1117 year: 1996 end-page: 1157 ident: CR49 article-title: Explicit reversible integrators for extended systems dynamics publication-title: Mol. Phys. doi: 10.1080/00268979600100761 – volume: 12 start-page: 1938 year: 2019 end-page: 1949 ident: CR9 article-title: Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00596J – volume: 57 start-page: 11978 year: 2018 end-page: 11981 ident: CR40 article-title: How water accelerates bivalent ion diffusion at the electrolyte/electrode interface publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201806748 – volume: 574 start-page: 81 year: 2019 end-page: 85 ident: CR11 article-title: PdMo bimetallene for oxygen reduction catalysis publication-title: Nature doi: 10.1038/s41586-019-1603-7 – volume: 4 start-page: 796 year: 2019 end-page: 805 ident: CR23 article-title: Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization publication-title: Nat. Energy doi: 10.1038/s41560-019-0464-5 – volume: 8 start-page: 241 year: 2006 end-page: 245 ident: CR27 article-title: Decomposition of ionic liquids in electrochemical processing publication-title: Green Chem. doi: 10.1039/B512724F – volume: 11 start-page: 1858 year: 2001 end-page: 1863 ident: CR39 article-title: Intercalation compound of VOPO ·2H O with acrylamide: preparation and exfoliation publication-title: J. Mater. Chem. doi: 10.1039/b100040n – volume: 55 start-page: 2687 year: 2010 end-page: 2696 ident: CR28 article-title: In situ FTIR study of the decomposition of -butyl- -methylpyrrolidinium bis(trifluoromethanesulfonyl)amide ionic liquid during cathodic polarization of lithium and graphite electrodes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2009.12.030 – volume: 52 start-page: 8323 year: 2013 end-page: 8331 ident: CR30 article-title: CO capture by tertiary amine absorbents: a performance comparison study publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie400825u – volume: 51 start-page: 7418 year: 2012 end-page: 7427 ident: CR26 article-title: Quantitative research on the vaporization and decomposition of [EMIM][Tf N] by thermogravimetric analysis–mass spectrometry publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie300247v – volume: 102 start-page: 511 year: 1995 end-page: 524 ident: CR53 article-title: Influence of surface topology and electrostatic potential on water/electrode systems publication-title: J. Chem. Phys. doi: 10.1063/1.469429 – volume: 2 start-page: 364 year: 2006 end-page: 382 ident: CR44 article-title: Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions publication-title: J. Chem. Theory Comput. doi: 10.1021/ct0502763 – volume: 10 year: 2019 ident: CR17 article-title: Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation publication-title: Nat. Commun. doi: 10.1038/s41467-019-13436-3 – volume: 29 start-page: 8504 year: 2017 end-page: 8512 ident: CR32 article-title: Instability at the electrode/electrolyte interface induced by hard cation chelation and nucleophilic attack publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b03404 – volume: 17 start-page: 543 year: 2018 end-page: 549 ident: CR3 article-title: Highly reversible zinc metal anode for aqueous batteries publication-title: Nat. Mater. doi: 10.1038/s41563-018-0063-z – volume: 29 start-page: 1604685 year: 2017 ident: CR12 article-title: Electrically rechargeable zinc–air batteries: progress, challenges, and perspectives publication-title: Adv. Mater. doi: 10.1002/adma.201604685 – volume: 128 start-page: 524 year: 1981 end-page: 530 ident: CR36 article-title: The dissolution and passivation of zinc in concentrated aqueous hydroxide publication-title: J. Electrochem. Soc. doi: 10.1149/1.2127450 – volume: 30 start-page: 1223 year: 2016 end-page: 1236 ident: CR31 article-title: CO reaction mechanisms with hindered alkanolamines: control and promotion of reaction pathways publication-title: Energy Fuels – volume: 54 start-page: 14097 year: 2018 end-page: 14099 ident: CR14 article-title: A ZnCl water-in-salt electrolyte for a reversible Zn metal anode publication-title: Chem. Commun. doi: 10.1039/C8CC07730D – volume: 11 start-page: 881 year: 2018 end-page: 892 ident: CR6 article-title: Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface publication-title: Ener. Env. Sci. doi: 10.1039/C8EE00378E – volume: 4 start-page: 1650 year: 2019 end-page: 1657 ident: CR38 article-title: In situ formation of a stable interface in solid-state batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00857 – volume: 12 start-page: 170 year: 2010 end-page: 182 ident: CR55 article-title: Molecular dynamics simulations of atomically flat and nanoporous electrodes with a molten salt electrolyte publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/B917592J – volume: 132 start-page: 114110 year: 2010 ident: CR48 article-title: Continuous surface charge polarizable continuum models of solvation. I. General formalism publication-title: J. Chem. Phys. doi: 10.1063/1.3359469 – volume: 59 start-page: 19292 year: 2020 end-page: 19296 ident: CR18 article-title: Hydrophobic organic-electrolyte-protected zinc anodes for aqueous zinc batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202008634 – volume: 163 start-page: A592 year: 2016 end-page: A598 ident: CR21 article-title: Interfacial study on solid electrolyte interphase at Li metal anode: implication for Li dendrite growth publication-title: J. Electrochem. Soc. doi: 10.1149/2.0151605jes – volume: 110 start-page: 2822 year: 1999 end-page: 2827 ident: CR47 article-title: A complete basis set model chemistry. VI. Use of density functional geometries and frequencies publication-title: J. Chem. Phys. doi: 10.1063/1.477924 – volume: 59 start-page: 341 year: 1981 end-page: 350 ident: CR52 article-title: Molecular polarizabilities calculated with a modified dipole interaction publication-title: Chem. Phys. doi: 10.1016/0301-0104(81)85176-2 – volume: 350 start-page: 938 year: 2015 end-page: 943 ident: CR19 article-title: ‘Water-in-salt’ electrolyte enables high-voltage aqueous lithium-ion chemistries publication-title: Science doi: 10.1126/science.aab1595 – volume: 559 start-page: 467 year: 2018 end-page: 470 ident: CR1 article-title: Ten years left to redesign lithium-ion batteries publication-title: Nature doi: 10.1038/d41586-018-05752-3 – volume: 29 start-page: 1902653 year: 2019 ident: CR10 article-title: ZnCl ‘water-in-salt’ electrolyte transforms the performance of vanadium oxide as a Zn battery cathode publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201902653 – volume: 13 start-page: 3527 year: 2020 end-page: 3535 ident: CR13 article-title: An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01538E – volume: 13 start-page: 503 year: 2020 end-page: 510 ident: CR16 article-title: Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes publication-title: Energy Environ. Sci. doi: 10.1039/C9EE03545A – volume: 113 start-page: 11463 year: 2009 end-page: 11478 ident: CR51 article-title: Polarizable force field development and molecular dynamics simulations of ionic liquids publication-title: J. Phys. Chem. B doi: 10.1021/jp905220k – volume: 114 start-page: 11503 year: 2014 end-page: 11618 ident: CR2 article-title: Electrolytes and interphases in Li-ion batteries and beyond publication-title: Chem. Rev. doi: 10.1021/cr500003w – volume: 166 start-page: A909 year: 2019 end-page: A914 ident: CR7 article-title: Influence of water content on the surface morphology of zinc deposited from EMImOTf/water mixtures publication-title: J. Electrochem. Soc. doi: 10.1149/2.0121906jes – volume: 11 start-page: 3491 year: 2018 end-page: 3499 ident: CR33 article-title: The role of the hydrogen evolution reaction in the solid-electrolyte interphase formation mechanism for ‘water-in-salt’ electrolytes publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02456A – volume: 2018 start-page: 1 year: 2018 end-page: 14 ident: CR24 article-title: XPS and FT-IR characterization of selected synthetic corrosion products of zinc expected in neutral environment containing chloride ions publication-title: J. Spectrosc. doi: 10.1155/2018/2079278 – volume: 7 year: 2016 ident: CR8 article-title: Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration publication-title: Nat. Commun. doi: 10.1038/ncomms11801 – volume: 2 start-page: 2519 year: 2018 end-page: 2527 ident: CR37 article-title: Translating materials-level performance into device-relevant metrics for zinc-based batteries publication-title: Joule doi: 10.1016/j.joule.2018.11.007 – volume: 163 start-page: A592 year: 2016 ident: 905_CR21 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0151605jes – volume: 80 start-page: 3265 year: 1984 ident: 905_CR43 publication-title: J. Chem. Phys. doi: 10.1063/1.447079 – volume: 31 start-page: 1695 year: 1985 ident: 905_CR50 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.31.1695 – volume: 126 start-page: 084704 year: 2007 ident: 905_CR54 publication-title: J. Chem. Phys. doi: 10.1063/1.2464084 – volume: 559 start-page: 467 year: 2018 ident: 905_CR1 publication-title: Nature doi: 10.1038/d41586-018-05752-3 – ident: 905_CR29 doi: 10.1021/acs.chemmater.9b04827 – volume: 35 start-page: 831 year: 1990 ident: 905_CR34 publication-title: Electrochim. Acta doi: 10.1016/0013-4686(90)90077-D – volume: 8 start-page: 241 year: 2006 ident: 905_CR27 publication-title: Green Chem. doi: 10.1039/B512724F – volume: 117 start-page: 25381 year: 2013 ident: 905_CR22 publication-title: J. Phys. Chem. C doi: 10.1021/jp409765w – volume: 128 start-page: 524 year: 1981 ident: 905_CR36 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2127450 – volume: 7 start-page: 1701189 year: 2017 ident: 905_CR25 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701189 – volume: 10 start-page: 6615 year: 2008 ident: 905_CR46 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b810189b – volume: 29 start-page: 1902653 year: 2019 ident: 905_CR10 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201902653 – volume: 350 start-page: 938 year: 2015 ident: 905_CR19 publication-title: Science doi: 10.1126/science.aab1595 – volume: 2 start-page: 2519 year: 2018 ident: 905_CR37 publication-title: Joule doi: 10.1016/j.joule.2018.11.007 – volume: 11 year: 2020 ident: 905_CR15 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18284-0 – volume: 57 start-page: 11978 year: 2018 ident: 905_CR40 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201806748 – volume: 13 start-page: 503 year: 2020 ident: 905_CR16 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE03545A – volume: 12 start-page: 1938 year: 2019 ident: 905_CR9 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE00596J – volume: 10 year: 2019 ident: 905_CR17 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13436-3 – volume: 59 start-page: 341 year: 1981 ident: 905_CR52 publication-title: Chem. Phys. doi: 10.1016/0301-0104(81)85176-2 – volume: 12 start-page: 170 year: 2010 ident: 905_CR55 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/B917592J – volume: 4 start-page: 796 year: 2019 ident: 905_CR23 publication-title: Nat. Energy doi: 10.1038/s41560-019-0464-5 – volume: 87 start-page: 1117 year: 1996 ident: 905_CR49 publication-title: Mol. Phys. doi: 10.1080/00268979600100761 – volume: 371 start-page: 46 year: 2021 ident: 905_CR20 publication-title: Science doi: 10.1126/science.abb9554 – volume: 54 start-page: 14097 year: 2018 ident: 905_CR14 publication-title: Chem. Commun. doi: 10.1039/C8CC07730D – volume: 113 start-page: 11463 year: 2009 ident: 905_CR51 publication-title: J. Phys. Chem. B doi: 10.1021/jp905220k – ident: 905_CR42 – volume: 114 start-page: 11503 year: 2014 ident: 905_CR2 publication-title: Chem. Rev. doi: 10.1021/cr500003w – volume: 574 start-page: 81 year: 2019 ident: 905_CR11 publication-title: Nature doi: 10.1038/s41586-019-1603-7 – volume: 29 start-page: 8504 year: 2017 ident: 905_CR32 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b03404 – volume: 110 start-page: 2822 year: 1999 ident: 905_CR47 publication-title: J. Chem. Phys. doi: 10.1063/1.477924 – volume: 52 start-page: 8323 year: 2013 ident: 905_CR30 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie400825u – volume: 51 start-page: 7418 year: 2012 ident: 905_CR26 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie300247v – volume: 11 start-page: 881 year: 2018 ident: 905_CR6 publication-title: Ener. Env. Sci. doi: 10.1039/C8EE00378E – volume: 11 start-page: 1858 year: 2001 ident: 905_CR39 publication-title: J. Mater. Chem. doi: 10.1039/b100040n – volume: 4 start-page: 1650 year: 2019 ident: 905_CR38 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b00857 – volume: 132 start-page: 114110 year: 2010 ident: 905_CR48 publication-title: J. Chem. Phys. doi: 10.1063/1.3359469 – volume: 7 start-page: eabe0219 year: 2021 ident: 905_CR5 publication-title: Sci. Adv. doi: 10.1126/sciadv.abe0219 – volume: 2 start-page: 364 year: 2006 ident: 905_CR44 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct0502763 – volume: 166 start-page: A909 year: 2019 ident: 905_CR7 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0121906jes – volume: 356 start-page: 415 year: 2017 ident: 905_CR4 publication-title: Science doi: 10.1126/science.aak9991 – volume: 13 start-page: 3527 year: 2020 ident: 905_CR13 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01538E – volume: 59 start-page: 19292 year: 2020 ident: 905_CR18 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202008634 – volume: 29 start-page: 1604685 year: 2017 ident: 905_CR12 publication-title: Adv. Mater. doi: 10.1002/adma.201604685 – volume: 55 start-page: 2687 year: 2010 ident: 905_CR28 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2009.12.030 – volume: 120 start-page: 215 year: 2008 ident: 905_CR45 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-007-0310-x – volume: 43 start-page: 1627 year: 2001 ident: 905_CR35 publication-title: Corros. Sci. doi: 10.1016/S0010-938X(00)00177-3 – volume: 11 start-page: 3491 year: 2018 ident: 905_CR33 publication-title: Energy Environ. Sci. doi: 10.1039/C8EE02456A – volume: 17 start-page: 543 year: 2018 ident: 905_CR3 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0063-z – volume: 7 year: 2016 ident: 905_CR8 publication-title: Nat. Commun. doi: 10.1038/ncomms11801 – volume: 2018 start-page: 1 year: 2018 ident: 905_CR24 publication-title: J. Spectrosc. doi: 10.1155/2018/2079278 – volume: 30 start-page: 1223 year: 2016 ident: 905_CR31 publication-title: Energy Fuels – volume: 102 start-page: 511 year: 1995 ident: 905_CR53 publication-title: J. Chem. Phys. doi: 10.1063/1.469429 – volume: 114 start-page: 394 year: 2010 ident: 905_CR41 publication-title: J. Phys. Chem. C doi: 10.1021/jp908444x – reference: 33972759 - Nat Nanotechnol. 2021 Aug;16(8):854-855 |
SSID | ssj0052924 |
Score | 2.7338715 |
Snippet | Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g
−1
), low redox potential (−0.762 V versus the standard hydrogen electrode),... Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g ), low redox potential (-0.762 V versus the standard hydrogen electrode), high... Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g−1), low redox potential (−0.762 V versus the standard hydrogen electrode), high... Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g-1), low redox potential (-0.762 V versus the standard hydrogen electrode), high... Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g-1), low redox potential (-0.762 V versus the standard hydrogen electrode), high... |
SourceID | osti proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 902 |
SubjectTerms | 140/131 140/133 140/146 639/4077/4079 639/4077/4079/891 639/638/161/891 Anodes Aqueous electrolytes Batteries Battery cycles Chemistry and Materials Science Dendrites Dendritic structure Discharge Electrolytes ENERGY STORAGE Hydrogen evolution Interphase Intrinsically safe Manganese dioxide Materials Science Nanotechnology Nanotechnology and Microengineering Redox potential Retention Titanium Toxicity Water consumption Zinc Zinc plating |
Title | Fluorinated interphase enables reversible aqueous zinc battery chemistries |
URI | https://link.springer.com/article/10.1038/s41565-021-00905-4 https://www.ncbi.nlm.nih.gov/pubmed/33972758 https://www.proquest.com/docview/2560480567 https://www.proquest.com/docview/2525652251 https://www.osti.gov/servlets/purl/1787833 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3B9gIHxDdpS2UkbhDVydixfUKAulSVqBCi0t4s2_GKSqts6W4P9NczdrxbENBLLrETa8bjec8ezwC89mQz6JWrPWJfi3lLJqWiqmUfXCcxOozpcvLn0-74TJzM5KxsuK1KWOVmTcwLdb8MaY_8MLlmocldq3cXP-pUNSqdrpYSGndhJ6UuSyFdarYlXLI1Y1FbJXRNVEyVSzMc9eEqEZd0N5nINDdc1uIPxzRZkoH9C3T-dWCa_dD0ITwoAJK9HzX-CO7E4THc_y2t4BM4mS6uUlwdwcieneeowu_krFjM96RWLGVtuiRTWETm6L_E_dn1-RCYz7k2f7JQisARiX4KZ9Ojbx-P61IzoQ5E7NbkcDBKh3reIhEVN0dlTOs5BgxceY2dirqTPnKnOm58T4DNx74T3gTRN9jjM5gMyyG-AGZaR725b3hAYbzWkrCtJwakhWmE1xU0G4HZUBKKp7oWC5sPtlHbUciWhGyzkK2o4M22z8WYTuPW1ntJD5bAQMpoG1LoT1jbhhYZjVjB_kY9thjeyt5MkwpebV-T0NI5iBuSSKkNtSLcKZsKno9q3Q4GCZ-1xKEqeLvR883H_z_S3dvHsgf32jzVUuDgPkzWl1fxJYGZtT_IM5aeevrpAHY-HJ1--foLQlTvyA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V5QAcEG_SFjASnCBqkrFj-4AQApbt89RKvZnY8YpKq2zb7AqVH8VvZOwkWxDQW89xEmee38TzAHhlSWfQyiq1iHXKpwWplPQyFbWrSoG-Qh-Kk_cPyskR3zkWx2vwc6iFCWmVg02Mhrqeu_CPfCu4Zq7IXcv3p2dpmBoVTleHERqdWOz6i-8UsrXvtj8Rf18Xxfjz4cdJ2k8VSB2FPgsyyehFhWpaIEH5aopS68Jm6NBl0iospVelsD6rZJlpWxOksb4uudWO1znWSM-9ATc5og4apcZfBssvCt0N0ZVcpRT6yb5IJ0O11YZAKdRCU_Ce6Uyk_A9HOJqTQv8L5P51QBv93vge3O0BK_vQSdh9WPPNA7jzWxvDh7Azni1DHh_B1pqdxCzGb-QcmY91WS0LXaLOSfVmnlX03vmyZT9OGsds7O15wVw_dI6C9kdwdC3UfAyjZt74p8B0UdHdmc0zh1xbpQRhaUsRl-I651YlkA8EM65vYB7maMxMPEhHZToiGyKyiUQ2PIE3q3tOu_YdV67eCHwwBD5CB10XUo3cwuRk1BRiApsDe0yv6K25FMsEXq4uE9HCuUvVBJLSGlpFOFfkCTzp2LraDEkRIUhBH_d24PPlw_-_0_Wr9_ICbk0O9_fM3vbB7gbcLqLYhaTFTRgtzpf-GQGphX0epZfB1-tWl1_lKSk_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VRUJwQLxJW8BIcIJonYwd2weEEGXVB1QcqLQ3EzteUWmVbZtdofLT-HWM89iCgN56Xiex5uH5vvU8AF448hl0qkwdYpWKWU4upYJKZeXLQmIoMcTi5E-Hxe6R2J_K6Qb8HGphYlrlcCa2B3W18PE_8nEMzUJTuFbjWZ8W8Xln8vbkNI0TpOJN6zBOozORg3D-nehb82Zvh3T9Ms8nH7683037CQOpJxq0pOMZgyxRz3IkWF_OUBmTO44ePVdOY6GCLqQLvFQFN64ieONCVQhnvKgyrJDeew2uK5RZ9DE1XZM9mZtuoK4SOiUaqPqCHY563ETSFOuiichzw2Uq_giKowU5978A71-XtW0MnNyB2z14Ze86a7sLG6G-B7d-a2l4H_Yn81XM6SMIW7HjNqPxGwVKFtoarYbFjlFn5IbzwEr67mLVsB_HtWeu7fN5znw_gI4I_AM4uhJpPoRRvajDY2AmL-lp7jLuURintSRc7Yh9aWEy4XQC2SAw6_tm5nGmxty2l-qobSdkS0K2rZCtSODV-pmTrpXHpau3oh4sAZHYTdfHtCO_tBkdcBoxge1BPbZ3-sZemGgCz9c_k9DiHUxZR5HSGlpFmFdmCTzq1LreDBI2zIm_JfB60PPFy_-_083L9_IMbpCj2I97hwdbcDNvrS7mL27DaHm2Ck8IUy3d09Z4GXy9am_5BeO_LWw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluorinated+interphase+enables+reversible+aqueous+zinc+battery+chemistries&rft.jtitle=Nature+nanotechnology&rft.au=Cao%2C+Longsheng&rft.au=Li%2C+Dan&rft.au=Pollard%2C+Travis&rft.au=Deng%2C+Tao&rft.date=2021-08-01&rft.eissn=1748-3395&rft.volume=16&rft.issue=8&rft.spage=902&rft_id=info:doi/10.1038%2Fs41565-021-00905-4&rft_id=info%3Apmid%2F33972758&rft.externalDocID=33972758 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |