Fluorinated interphase enables reversible aqueous zinc battery chemistries

Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g −1 ), low redox potential (−0.762 V versus the standard hydrogen electrode), high abundance and low toxicity. When used in aqueous electrolyte, it also brings intrinsic safety, but suffers from severe irreversibility. Th...

Full description

Saved in:
Bibliographic Details
Published inNature nanotechnology Vol. 16; no. 8; pp. 902 - 910
Main Authors Cao, Longsheng, Li, Dan, Pollard, Travis, Deng, Tao, Zhang, Bao, Yang, Chongyin, Chen, Long, Vatamanu, Jenel, Hu, Enyuan, Hourwitz, Matt J., Ma, Lin, Ding, Michael, Li, Qin, Hou, Singyuk, Gaskell, Karen, Fourkas, John T., Yang, Xiao-Qing, Xu, Kang, Borodin, Oleg, Wang, Chunsheng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.08.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g −1 ), low redox potential (−0.762 V versus the standard hydrogen electrode), high abundance and low toxicity. When used in aqueous electrolyte, it also brings intrinsic safety, but suffers from severe irreversibility. This is best exemplified by low coulombic efficiency, dendrite growth and water consumption. This is thought to be due to severe hydrogen evolution during zinc plating and stripping, hitherto making the in-situ formation of a solid–electrolyte interphase (SEI) impossible. Here, we report an aqueous zinc battery in which a dilute and acidic aqueous electrolyte with an alkylammonium salt additive assists the formation of a robust, Zn 2+ -conducting and waterproof SEI. The presence of this SEI enables excellent performance: dendrite-free zinc plating/stripping at 99.9% coulombic efficiency in a Ti||Zn asymmetric cell for 1,000 cycles; steady charge–discharge in a Zn||Zn symmetric cell for 6,000 cycles (6,000 h); and high energy densities (136 Wh kg −1 in a Zn||VOPO 4 full battery with 88.7% retention for >6,000 cycles, 325 Wh kg −1 in a Zn||O 2 full battery for >300 cycles and 218 Wh kg −1 in a Zn||MnO 2 full battery with 88.5% retention for 1,000 cycles) using limited zinc. The SEI-forming electrolyte also allows the reversible operation of an anode-free pouch cell of Ti||Zn x VOPO 4 at 100% depth of discharge for 100 cycles, thus establishing aqueous zinc batteries as viable cell systems for practical applications. A solid–electrolyte interphase that is permeable to Zn( ii ) ions but waterproof is formed using an aqueous electrolyte composition. Cycling performances in an anode-free aqueous pouch cell show promise for intrinsically safe energy storage applications.
AbstractList Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g-1), low redox potential (-0.762 V versus the standard hydrogen electrode), high abundance and low toxicity. When used in aqueous electrolyte, it also brings intrinsic safety, but suffers from severe irreversibility. This is best exemplified by low coulombic efficiency, dendrite growth and water consumption. This is thought to be due to severe hydrogen evolution during zinc plating and stripping, hitherto making the in-situ formation of a solid-electrolyte interphase (SEI) impossible. Here, we report an aqueous zinc battery in which a dilute and acidic aqueous electrolyte with an alkylammonium salt additive assists the formation of a robust, Zn2+-conducting and waterproof SEI. The presence of this SEI enables excellent performance: dendrite-free zinc plating/stripping at 99.9% coulombic efficiency in a Ti||Zn asymmetric cell for 1,000 cycles; steady charge-discharge in a Zn||Zn symmetric cell for 6,000 cycles (6,000 h); and high energy densities (136 Wh kg-1 in a Zn||VOPO4 full battery with 88.7% retention for >6,000 cycles, 325 Wh kg-1 in a Zn||O2 full battery for >300 cycles and 218 Wh kg-1 in a Zn||MnO2 full battery with 88.5% retention for 1,000 cycles) using limited zinc. The SEI-forming electrolyte also allows the reversible operation of an anode-free pouch cell of Ti||ZnxVOPO4 at 100% depth of discharge for 100 cycles, thus establishing aqueous zinc batteries as viable cell systems for practical applications.Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g-1), low redox potential (-0.762 V versus the standard hydrogen electrode), high abundance and low toxicity. When used in aqueous electrolyte, it also brings intrinsic safety, but suffers from severe irreversibility. This is best exemplified by low coulombic efficiency, dendrite growth and water consumption. This is thought to be due to severe hydrogen evolution during zinc plating and stripping, hitherto making the in-situ formation of a solid-electrolyte interphase (SEI) impossible. Here, we report an aqueous zinc battery in which a dilute and acidic aqueous electrolyte with an alkylammonium salt additive assists the formation of a robust, Zn2+-conducting and waterproof SEI. The presence of this SEI enables excellent performance: dendrite-free zinc plating/stripping at 99.9% coulombic efficiency in a Ti||Zn asymmetric cell for 1,000 cycles; steady charge-discharge in a Zn||Zn symmetric cell for 6,000 cycles (6,000 h); and high energy densities (136 Wh kg-1 in a Zn||VOPO4 full battery with 88.7% retention for >6,000 cycles, 325 Wh kg-1 in a Zn||O2 full battery for >300 cycles and 218 Wh kg-1 in a Zn||MnO2 full battery with 88.5% retention for 1,000 cycles) using limited zinc. The SEI-forming electrolyte also allows the reversible operation of an anode-free pouch cell of Ti||ZnxVOPO4 at 100% depth of discharge for 100 cycles, thus establishing aqueous zinc batteries as viable cell systems for practical applications.
Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g ), low redox potential (-0.762 V versus the standard hydrogen electrode), high abundance and low toxicity. When used in aqueous electrolyte, it also brings intrinsic safety, but suffers from severe irreversibility. This is best exemplified by low coulombic efficiency, dendrite growth and water consumption. This is thought to be due to severe hydrogen evolution during zinc plating and stripping, hitherto making the in-situ formation of a solid-electrolyte interphase (SEI) impossible. Here, we report an aqueous zinc battery in which a dilute and acidic aqueous electrolyte with an alkylammonium salt additive assists the formation of a robust, Zn -conducting and waterproof SEI. The presence of this SEI enables excellent performance: dendrite-free zinc plating/stripping at 99.9% coulombic efficiency in a Ti||Zn asymmetric cell for 1,000 cycles; steady charge-discharge in a Zn||Zn symmetric cell for 6,000 cycles (6,000 h); and high energy densities (136 Wh kg in a Zn||VOPO full battery with 88.7% retention for >6,000 cycles, 325 Wh kg in a Zn||O full battery for >300 cycles and 218 Wh kg in a Zn||MnO full battery with 88.5% retention for 1,000 cycles) using limited zinc. The SEI-forming electrolyte also allows the reversible operation of an anode-free pouch cell of Ti||Zn VOPO at 100% depth of discharge for 100 cycles, thus establishing aqueous zinc batteries as viable cell systems for practical applications.
Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g −1 ), low redox potential (−0.762 V versus the standard hydrogen electrode), high abundance and low toxicity. When used in aqueous electrolyte, it also brings intrinsic safety, but suffers from severe irreversibility. This is best exemplified by low coulombic efficiency, dendrite growth and water consumption. This is thought to be due to severe hydrogen evolution during zinc plating and stripping, hitherto making the in-situ formation of a solid–electrolyte interphase (SEI) impossible. Here, we report an aqueous zinc battery in which a dilute and acidic aqueous electrolyte with an alkylammonium salt additive assists the formation of a robust, Zn 2+ -conducting and waterproof SEI. The presence of this SEI enables excellent performance: dendrite-free zinc plating/stripping at 99.9% coulombic efficiency in a Ti||Zn asymmetric cell for 1,000 cycles; steady charge–discharge in a Zn||Zn symmetric cell for 6,000 cycles (6,000 h); and high energy densities (136 Wh kg −1 in a Zn||VOPO 4 full battery with 88.7% retention for >6,000 cycles, 325 Wh kg −1 in a Zn||O 2 full battery for >300 cycles and 218 Wh kg −1 in a Zn||MnO 2 full battery with 88.5% retention for 1,000 cycles) using limited zinc. The SEI-forming electrolyte also allows the reversible operation of an anode-free pouch cell of Ti||Zn x VOPO 4 at 100% depth of discharge for 100 cycles, thus establishing aqueous zinc batteries as viable cell systems for practical applications. A solid–electrolyte interphase that is permeable to Zn( ii ) ions but waterproof is formed using an aqueous electrolyte composition. Cycling performances in an anode-free aqueous pouch cell show promise for intrinsically safe energy storage applications.
Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g−1), low redox potential (−0.762 V versus the standard hydrogen electrode), high abundance and low toxicity. When used in aqueous electrolyte, it also brings intrinsic safety, but suffers from severe irreversibility. This is best exemplified by low coulombic efficiency, dendrite growth and water consumption. This is thought to be due to severe hydrogen evolution during zinc plating and stripping, hitherto making the in-situ formation of a solid–electrolyte interphase (SEI) impossible. Here, we report an aqueous zinc battery in which a dilute and acidic aqueous electrolyte with an alkylammonium salt additive assists the formation of a robust, Zn2+-conducting and waterproof SEI. The presence of this SEI enables excellent performance: dendrite-free zinc plating/stripping at 99.9% coulombic efficiency in a Ti||Zn asymmetric cell for 1,000 cycles; steady charge–discharge in a Zn||Zn symmetric cell for 6,000 cycles (6,000 h); and high energy densities (136 Wh kg−1 in a Zn||VOPO4 full battery with 88.7% retention for >6,000 cycles, 325 Wh kg−1 in a Zn||O2 full battery for >300 cycles and 218 Wh kg−1 in a Zn||MnO2 full battery with 88.5% retention for 1,000 cycles) using limited zinc. The SEI-forming electrolyte also allows the reversible operation of an anode-free pouch cell of Ti||ZnxVOPO4 at 100% depth of discharge for 100 cycles, thus establishing aqueous zinc batteries as viable cell systems for practical applications.A solid–electrolyte interphase that is permeable to Zn(ii) ions but waterproof is formed using an aqueous electrolyte composition. Cycling performances in an anode-free aqueous pouch cell show promise for intrinsically safe energy storage applications.
Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g-1), low redox potential (-0.762 V versus the standard hydrogen electrode), high abundance and low toxicity. When used in aqueous electrolyte, it also brings intrinsic safety, but suffers from severe irreversibility. This is best exemplified by low coulombic efficiency, dendrite growth and water consumption. This is thought to be due to severe hydrogen evolution during zinc plating and stripping, hitherto making the in-situ formation of a solid-electrolyte interphase (SEI) impossible. Here, we report an aqueous zinc battery in which a dilute and acidic aqueous electrolyte with an alkylammonium salt additive assists the formation of a robust, Zn2+-conducting and waterproof SEI. The presence of this SEI enables excellent performance: dendrite-free zinc plating/stripping at 99.9% coulombic efficiency in a Ti||Zn asymmetric cell for 1,000 cycles; steady charge-discharge in a Zn||Zn symmetric cell for 6,000 cycles (6,000 h); and high energy densities (136 Wh kg-1 in a Zn||VOPO4 full battery with 88.7% retention for >6,000 cycles, 325 Wh kg-1 in a Zn||O2 full battery for >300 cycles and 218 Wh kg-1 in a Zn||MnO2 full battery with 88.5% retention for 1,000 cycles) using limited zinc. The SEI-forming electrolyte also allows the reversible operation of an anode-free pouch cell of Ti||ZnxVOPO4 at 100% depth of discharge for 100 cycles, thus establishing aqueous zinc batteries as viable cell systems for practical applications.
Author Ding, Michael
Wang, Chunsheng
Gaskell, Karen
Li, Dan
Deng, Tao
Li, Qin
Ma, Lin
Fourkas, John T.
Zhang, Bao
Borodin, Oleg
Vatamanu, Jenel
Hou, Singyuk
Cao, Longsheng
Yang, Chongyin
Pollard, Travis
Yang, Xiao-Qing
Chen, Long
Xu, Kang
Hu, Enyuan
Hourwitz, Matt J.
Author_xml – sequence: 1
  givenname: Longsheng
  orcidid: 0000-0002-2917-6523
  surname: Cao
  fullname: Cao, Longsheng
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland
– sequence: 2
  givenname: Dan
  surname: Li
  fullname: Li, Dan
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland
– sequence: 3
  givenname: Travis
  orcidid: 0000-0001-6240-5423
  surname: Pollard
  fullname: Pollard, Travis
  organization: Battery Science Branch, Energy Science Division, Sensor and Electron Devices Directorate, US Army Research Laboratory
– sequence: 4
  givenname: Tao
  surname: Deng
  fullname: Deng, Tao
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland
– sequence: 5
  givenname: Bao
  surname: Zhang
  fullname: Zhang, Bao
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland
– sequence: 6
  givenname: Chongyin
  orcidid: 0000-0002-7127-3087
  surname: Yang
  fullname: Yang, Chongyin
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland
– sequence: 7
  givenname: Long
  surname: Chen
  fullname: Chen, Long
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland
– sequence: 8
  givenname: Jenel
  surname: Vatamanu
  fullname: Vatamanu, Jenel
  organization: Battery Science Branch, Energy Science Division, Sensor and Electron Devices Directorate, US Army Research Laboratory
– sequence: 9
  givenname: Enyuan
  orcidid: 0000-0002-1881-4534
  surname: Hu
  fullname: Hu, Enyuan
  organization: Chemistry Division, Brookhaven National Laboratory
– sequence: 10
  givenname: Matt J.
  surname: Hourwitz
  fullname: Hourwitz, Matt J.
  organization: Department of Chemistry and Biochemistry, University of Maryland
– sequence: 11
  givenname: Lin
  surname: Ma
  fullname: Ma, Lin
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland, Battery Science Branch, Energy Science Division, Sensor and Electron Devices Directorate, US Army Research Laboratory
– sequence: 12
  givenname: Michael
  surname: Ding
  fullname: Ding, Michael
  organization: Battery Science Branch, Energy Science Division, Sensor and Electron Devices Directorate, US Army Research Laboratory
– sequence: 13
  givenname: Qin
  surname: Li
  fullname: Li, Qin
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland
– sequence: 14
  givenname: Singyuk
  surname: Hou
  fullname: Hou, Singyuk
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland
– sequence: 15
  givenname: Karen
  surname: Gaskell
  fullname: Gaskell, Karen
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland
– sequence: 16
  givenname: John T.
  surname: Fourkas
  fullname: Fourkas, John T.
  organization: Department of Chemistry and Biochemistry, University of Maryland, Institute for Physical Science and Technology, University of Maryland
– sequence: 17
  givenname: Xiao-Qing
  orcidid: 0000-0002-3625-3478
  surname: Yang
  fullname: Yang, Xiao-Qing
  organization: Chemistry Division, Brookhaven National Laboratory
– sequence: 18
  givenname: Kang
  orcidid: 0000-0002-6946-8635
  surname: Xu
  fullname: Xu, Kang
  email: conrad.k.xu.civ@mail.mil
  organization: Battery Science Branch, Energy Science Division, Sensor and Electron Devices Directorate, US Army Research Laboratory
– sequence: 19
  givenname: Oleg
  orcidid: 0000-0002-9428-5291
  surname: Borodin
  fullname: Borodin, Oleg
  email: oleg.a.borodin.civ@mail.mil
  organization: Battery Science Branch, Energy Science Division, Sensor and Electron Devices Directorate, US Army Research Laboratory
– sequence: 20
  givenname: Chunsheng
  orcidid: 0000-0002-8626-6381
  surname: Wang
  fullname: Wang, Chunsheng
  email: cswang@umd.edu
  organization: Department of Chemical and Biomolecular Engineering, University of Maryland, Department of Chemistry and Biochemistry, University of Maryland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33972758$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1787833$$D View this record in Osti.gov
BookMark eNp9kUtvFTEMhSNURB_wB1igEWzYTOu8JpklqihQVWJT1lGS8eWmmptckkyl8utJmRakLrqyJX_HOvY5JgcxRSTkLYVTClyfFUHlIHtgtAcYQfbiBTmiSuie81Ee_Ou1OiTHpdwASDYy8YoctrliSuojcnkxLymHaCtOXYgV835rC3YYrZuxdBlvMZfQ-s7-WjAtpfsdou-crY296_wWd6HUHLC8Ji83di745qGekB8Xn6_Pv_ZX3798O_901Xshhtpr4Cgt1xvGB5B2w9U4Mgfccw_KaT4o1IN0CFYNMLpJCnA4DcKNXkyUT_yEvF_3plKDKT5U9FufYkRfDVVaac4b9HGF9jk136WaZtPjPNt4f4RhkrXfMSZpQz88QW_SkmM7oVEDCA1yUI1690AtboeT2eews_nOPL6yAXoFfE6lZNyY5szWkGLNNsyGgrlPzaypmZaa-ZuaEU3Knkgftz8r4quoNDj-xPzf9jOqP2hFqEA
CitedBy_id crossref_primary_10_1002_adma_202306508
crossref_primary_10_1002_ange_202212839
crossref_primary_10_1021_acssuschemeng_2c06910
crossref_primary_10_1002_ange_202308182
crossref_primary_10_1002_aenm_202202419
crossref_primary_10_1039_D4EE04847D
crossref_primary_10_1126_sciadv_abp8960
crossref_primary_10_1016_j_jechem_2024_11_048
crossref_primary_10_1039_D3EE01580G
crossref_primary_10_1002_adfm_202203019
crossref_primary_10_1038_s41467_025_58063_3
crossref_primary_10_1002_smll_202205462
crossref_primary_10_1007_s11426_023_1908_9
crossref_primary_10_1021_jacs_4c02150
crossref_primary_10_1016_j_ensm_2022_06_052
crossref_primary_10_1016_j_nanoen_2024_109524
crossref_primary_10_1038_s41467_024_55657_1
crossref_primary_10_1016_j_electacta_2021_139776
crossref_primary_10_1016_j_ensm_2022_06_056
crossref_primary_10_1002_adfm_202424423
crossref_primary_10_1002_smtd_202300268
crossref_primary_10_1016_j_xcrp_2022_100824
crossref_primary_10_1039_D3TA07523K
crossref_primary_10_1002_aenm_202200255
crossref_primary_10_1021_acsnano_3c11115
crossref_primary_10_1038_s41467_022_32955_0
crossref_primary_10_1021_acsnano_3c08197
crossref_primary_10_26599_NRE_2023_9120064
crossref_primary_10_1002_smll_202206338
crossref_primary_10_1002_aenm_202203729
crossref_primary_10_1002_advs_202408869
crossref_primary_10_1002_slct_202200926
crossref_primary_10_1039_D4CS00779D
crossref_primary_10_1016_j_cej_2023_141328
crossref_primary_10_1002_aenm_202405169
crossref_primary_10_1002_ange_202314883
crossref_primary_10_1021_acssuschemeng_3c07874
crossref_primary_10_1021_acsnano_4c10901
crossref_primary_10_1002_ange_202310290
crossref_primary_10_1002_eem2_12632
crossref_primary_10_1002_ange_202210871
crossref_primary_10_1002_anie_202302302
crossref_primary_10_1002_smll_202401589
crossref_primary_10_1002_anie_202302539
crossref_primary_10_1038_s41467_024_48444_5
crossref_primary_10_1016_j_ensm_2023_102820
crossref_primary_10_1039_D4TA02133A
crossref_primary_10_1002_cnma_202400631
crossref_primary_10_1016_j_esci_2024_100331
crossref_primary_10_1016_j_esci_2024_100330
crossref_primary_10_1016_j_cclet_2024_110025
crossref_primary_10_1021_acsnano_3c10081
crossref_primary_10_1016_j_ensm_2022_05_048
crossref_primary_10_1016_j_jcis_2024_08_179
crossref_primary_10_1016_j_nanoen_2025_110835
crossref_primary_10_1016_j_electacta_2024_145628
crossref_primary_10_1016_j_jcis_2024_08_178
crossref_primary_10_1016_j_ceramint_2021_10_203
crossref_primary_10_1039_D4EE00881B
crossref_primary_10_1002_anie_202209169
crossref_primary_10_1002_aenm_202203790
crossref_primary_10_1016_j_ensm_2022_04_006
crossref_primary_10_1021_acsami_1c20995
crossref_primary_10_1016_j_jpowsour_2024_234972
crossref_primary_10_1002_adfm_202412865
crossref_primary_10_1002_anie_202415221
crossref_primary_10_1016_j_mattod_2021_11_021
crossref_primary_10_1021_acsapm_3c02124
crossref_primary_10_1002_anie_202404784
crossref_primary_10_1039_D2TA00326K
crossref_primary_10_1039_D4EE02867H
crossref_primary_10_1038_s41467_023_38460_2
crossref_primary_10_1002_anie_202303845
crossref_primary_10_1021_jacs_2c01815
crossref_primary_10_1002_anie_202421905
crossref_primary_10_1002_smll_202300895
crossref_primary_10_1021_acsami_4c00437
crossref_primary_10_1007_s40843_023_2912_5
crossref_primary_10_1002_ange_202500731
crossref_primary_10_1039_D4CC01903B
crossref_primary_10_1038_s41565_023_01367_6
crossref_primary_10_1002_aenm_202203766
crossref_primary_10_1002_anie_202315464
crossref_primary_10_1016_j_ensm_2022_05_022
crossref_primary_10_1016_j_jmst_2024_10_003
crossref_primary_10_1002_ange_202107697
crossref_primary_10_1002_anie_202214966
crossref_primary_10_1021_acsami_4c07076
crossref_primary_10_1021_acs_jpcc_4c05865
crossref_primary_10_1002_anie_202212780
crossref_primary_10_1002_sstr_202200194
crossref_primary_10_1007_s40820_024_01361_0
crossref_primary_10_1002_anie_202412173
crossref_primary_10_1360_SSC_2022_0103
crossref_primary_10_1007_s40820_023_01304_1
crossref_primary_10_1016_j_apsusc_2022_156209
crossref_primary_10_1002_anie_202414117
crossref_primary_10_1002_nano_202200221
crossref_primary_10_1016_j_ensm_2024_103180
crossref_primary_10_1021_acsnano_2c06362
crossref_primary_10_1016_j_cej_2025_159628
crossref_primary_10_1016_j_cej_2025_160615
crossref_primary_10_1021_acsaem_2c01340
crossref_primary_10_3389_fchem_2022_1037995
crossref_primary_10_1002_adfm_202211917
crossref_primary_10_1002_batt_202300619
crossref_primary_10_1016_j_jechem_2024_03_032
crossref_primary_10_1088_2752_5724_ad50f1
crossref_primary_10_1002_adma_202108206
crossref_primary_10_1002_aenm_202303998
crossref_primary_10_1002_anie_202411056
crossref_primary_10_1007_s11426_023_1698_6
crossref_primary_10_1016_j_ensm_2024_103333
crossref_primary_10_1016_j_nanoen_2024_110114
crossref_primary_10_1016_j_ensm_2021_09_021
crossref_primary_10_1016_j_ensm_2023_103059
crossref_primary_10_1016_j_nxmate_2024_100124
crossref_primary_10_1002_adfm_202210197
crossref_primary_10_1021_acs_chemrev_3c00826
crossref_primary_10_1093_nsr_nwac183
crossref_primary_10_1002_anie_202301631
crossref_primary_10_1002_adfm_202422081
crossref_primary_10_1039_D3SC04545E
crossref_primary_10_1002_adfm_202403305
crossref_primary_10_1016_j_nanoen_2023_109099
crossref_primary_10_1063_5_0140107
crossref_primary_10_1002_aenm_202200401
crossref_primary_10_1016_j_ensm_2021_09_012
crossref_primary_10_1002_ange_202314456
crossref_primary_10_1002_smll_202305902
crossref_primary_10_1002_anie_202402327
crossref_primary_10_1088_2752_5724_ac4263
crossref_primary_10_1002_ange_202212666
crossref_primary_10_1002_ange_202400916
crossref_primary_10_1039_D1SC07212A
crossref_primary_10_1002_adfm_202214538
crossref_primary_10_1016_j_electacta_2022_141081
crossref_primary_10_3390_batteries9060328
crossref_primary_10_1007_s40820_022_00825_5
crossref_primary_10_1016_j_ensm_2024_103554
crossref_primary_10_1021_acsenergylett_2c02520
crossref_primary_10_1016_j_ensm_2024_103797
crossref_primary_10_1002_anie_202112304
crossref_primary_10_1016_j_cej_2023_146619
crossref_primary_10_1021_acsenergylett_4c01011
crossref_primary_10_1021_acsnano_3c07257
crossref_primary_10_1021_acs_nanolett_2c03277
crossref_primary_10_1007_s42823_024_00719_z
crossref_primary_10_1002_adma_202405889
crossref_primary_10_1073_pnas_2317796121
crossref_primary_10_1007_s40820_025_01649_9
crossref_primary_10_2139_ssrn_4171682
crossref_primary_10_1016_j_electacta_2023_142462
crossref_primary_10_1016_j_nanoen_2024_109331
crossref_primary_10_1073_pnas_2309981121
crossref_primary_10_1002_ange_202406683
crossref_primary_10_1016_j_jcis_2024_06_166
crossref_primary_10_1021_acsami_3c12369
crossref_primary_10_1002_adma_202310623
crossref_primary_10_1016_j_cej_2022_141015
crossref_primary_10_1016_j_jechem_2023_07_038
crossref_primary_10_1021_acsami_2c14159
crossref_primary_10_1016_j_ensm_2022_04_031
crossref_primary_10_1002_anie_202414562
crossref_primary_10_1016_j_cej_2022_135818
crossref_primary_10_1021_acs_jpclett_4c00834
crossref_primary_10_1039_D3CC03147K
crossref_primary_10_1016_j_esci_2022_04_003
crossref_primary_10_1016_j_est_2024_111822
crossref_primary_10_1016_j_jpowsour_2024_234340
crossref_primary_10_1002_anie_202401441
crossref_primary_10_1021_acsnano_2c11516
crossref_primary_10_1016_j_cej_2024_152324
crossref_primary_10_1002_adfm_202111635
crossref_primary_10_1002_adma_202306145
crossref_primary_10_1016_j_joule_2024_02_002
crossref_primary_10_1021_acsaelm_2c01355
crossref_primary_10_1016_j_jpowsour_2022_231903
crossref_primary_10_1002_ange_202116560
crossref_primary_10_1016_j_ensm_2024_103364
crossref_primary_10_1016_j_cej_2023_143312
crossref_primary_10_1016_j_nanoen_2023_109053
crossref_primary_10_1021_jacs_4c07015
crossref_primary_10_1002_adma_202202188
crossref_primary_10_1016_j_ensm_2024_103361
crossref_primary_10_1016_j_esci_2023_100093
crossref_primary_10_1016_j_scib_2023_08_063
crossref_primary_10_1016_j_jpowsour_2024_235658
crossref_primary_10_1002_adma_202418700
crossref_primary_10_1016_j_nanoen_2022_107814
crossref_primary_10_1002_adma_202310645
crossref_primary_10_3390_molecules29204929
crossref_primary_10_1002_ange_202501664
crossref_primary_10_1002_anie_202307208
crossref_primary_10_1016_j_est_2024_111606
crossref_primary_10_1016_j_jpowsour_2024_234313
crossref_primary_10_1021_acsenergylett_3c00154
crossref_primary_10_1021_acsenergylett_3c02337
crossref_primary_10_1016_j_nanoen_2023_109076
crossref_primary_10_1016_j_jcis_2025_137338
crossref_primary_10_1007_s11581_024_05481_w
crossref_primary_10_1002_eom2_12167
crossref_primary_10_1016_j_ensm_2022_03_045
crossref_primary_10_1002_adma_202206754
crossref_primary_10_1002_ange_202409986
crossref_primary_10_1002_aenm_202401820
crossref_primary_10_1016_j_jechem_2021_11_033
crossref_primary_10_1002_adma_202310667
crossref_primary_10_1021_acsami_4c02476
crossref_primary_10_1002_advs_202301785
crossref_primary_10_3390_batteries9010062
crossref_primary_10_1002_smll_202302650
crossref_primary_10_1002_adma_202305087
crossref_primary_10_1002_ange_202417125
crossref_primary_10_1016_j_electacta_2024_144177
crossref_primary_10_1016_j_ensm_2024_103731
crossref_primary_10_1039_D3TA05725A
crossref_primary_10_1039_D2EE00134A
crossref_primary_10_1016_j_ensm_2022_09_027
crossref_primary_10_1039_D3EE04360F
crossref_primary_10_1038_s41565_021_00908_1
crossref_primary_10_1039_D4EE00942H
crossref_primary_10_1002_adma_202405949
crossref_primary_10_1039_D2EE03777G
crossref_primary_10_1002_ange_202112304
crossref_primary_10_1016_j_ensm_2023_03_002
crossref_primary_10_1039_D3TA00254C
crossref_primary_10_1039_D1TA10517E
crossref_primary_10_1002_anie_202300823
crossref_primary_10_1016_j_ensm_2023_03_005
crossref_primary_10_1002_adma_202309212
crossref_primary_10_1021_acsenergylett_2c02359
crossref_primary_10_1016_j_jechem_2023_12_012
crossref_primary_10_1038_s41893_022_01028_x
crossref_primary_10_1002_adfm_202301118
crossref_primary_10_1016_j_enchem_2022_100076
crossref_primary_10_1016_j_ensm_2022_09_036
crossref_primary_10_1002_anie_202318496
crossref_primary_10_1016_j_mattod_2023_09_008
crossref_primary_10_1002_smll_202410946
crossref_primary_10_1016_j_mtener_2024_101791
crossref_primary_10_3390_batteries10030102
crossref_primary_10_1021_jacs_4c10337
crossref_primary_10_1002_cptc_202300156
crossref_primary_10_1016_j_cej_2023_148511
crossref_primary_10_1002_adma_202501049
crossref_primary_10_1016_j_jpowsour_2022_232380
crossref_primary_10_1039_D2TA06975J
crossref_primary_10_1002_aenm_202400033
crossref_primary_10_1002_aenm_202204388
crossref_primary_10_1016_j_cclet_2023_108337
crossref_primary_10_1002_adfm_202305700
crossref_primary_10_1021_acs_nanolett_4c03749
crossref_primary_10_1016_j_mtener_2023_101284
crossref_primary_10_1021_acsnano_4c13735
crossref_primary_10_1002_aenm_202300733
crossref_primary_10_1039_D2EE02687B
crossref_primary_10_1002_smll_202500503
crossref_primary_10_1039_D2TA06095G
crossref_primary_10_1021_acsaem_3c02618
crossref_primary_10_1038_s41467_023_41276_9
crossref_primary_10_1002_adma_202420079
crossref_primary_10_1016_j_cej_2024_157743
crossref_primary_10_1021_acsami_4c01180
crossref_primary_10_1039_D4EE01260G
crossref_primary_10_1002_anie_202319125
crossref_primary_10_1039_D3TA07262B
crossref_primary_10_1016_j_ensm_2025_104091
crossref_primary_10_1016_j_jallcom_2023_171655
crossref_primary_10_1002_adfm_202312469
crossref_primary_10_1039_D4EE00062E
crossref_primary_10_1021_acsami_3c10101
crossref_primary_10_1039_D3EE01678A
crossref_primary_10_1002_adfm_202405656
crossref_primary_10_1039_D4NR02385D
crossref_primary_10_1021_acs_jpcc_4c04080
crossref_primary_10_1002_adfm_202107652
crossref_primary_10_1002_anie_202412989
crossref_primary_10_1016_j_jechem_2025_01_072
crossref_primary_10_1002_tcr_202200114
crossref_primary_10_1016_j_jechem_2023_12_054
crossref_primary_10_1002_ange_202315464
crossref_primary_10_1002_adma_202207344
crossref_primary_10_1016_j_chempr_2024_07_028
crossref_primary_10_1016_j_jpowsour_2023_232688
crossref_primary_10_2139_ssrn_4167849
crossref_primary_10_1039_D2MA00733A
crossref_primary_10_1016_j_joule_2021_10_011
crossref_primary_10_1016_j_jpowsour_2023_232685
crossref_primary_10_1039_D3SC06935D
crossref_primary_10_1016_j_joule_2025_101827
crossref_primary_10_1016_j_electacta_2024_145287
crossref_primary_10_1016_j_jechem_2025_01_058
crossref_primary_10_1016_j_synthmet_2024_117600
crossref_primary_10_1016_j_ensm_2022_09_002
crossref_primary_10_1021_acs_chemrev_4c00380
crossref_primary_10_1002_ange_202412989
crossref_primary_10_1002_ange_202212695
crossref_primary_10_1039_D3EE00018D
crossref_primary_10_1002_cey2_694
crossref_primary_10_1002_aenm_202103557
crossref_primary_10_1002_anie_202318063
crossref_primary_10_1002_anie_202309594
crossref_primary_10_1002_ange_202215968
crossref_primary_10_1039_D2TA03550B
crossref_primary_10_1002_adfm_202213416
crossref_primary_10_1039_D3EE02164E
crossref_primary_10_1002_adma_202412667
crossref_primary_10_1016_j_ensm_2024_103984
crossref_primary_10_1002_adfm_202108533
crossref_primary_10_1016_j_enchem_2022_100097
crossref_primary_10_1002_adma_202303509
crossref_primary_10_1021_jacs_4c16932
crossref_primary_10_1016_j_est_2024_115258
crossref_primary_10_1021_jacs_2c06927
crossref_primary_10_1016_j_jpowsour_2025_236744
crossref_primary_10_1149_1945_7111_ac9a03
crossref_primary_10_1021_acsmaterialslett_1c00325
crossref_primary_10_1002_aenm_202302543
crossref_primary_10_1016_j_ensm_2021_10_033
crossref_primary_10_1039_D4TA07230H
crossref_primary_10_1016_j_ccr_2021_214299
crossref_primary_10_1002_smm2_1194
crossref_primary_10_1002_ange_202215385
crossref_primary_10_1016_j_nanoen_2024_109806
crossref_primary_10_1039_D4NH00305E
crossref_primary_10_1149_1945_7111_ac9649
crossref_primary_10_1016_j_ensm_2023_102997
crossref_primary_10_1016_j_est_2023_108851
crossref_primary_10_1021_acsenergylett_3c00650
crossref_primary_10_1021_acsami_2c12744
crossref_primary_10_1002_smtd_202402213
crossref_primary_10_1038_s41578_023_00623_4
crossref_primary_10_1002_smll_202304130
crossref_primary_10_1016_j_ensm_2023_102774
crossref_primary_10_1002_ange_202401441
crossref_primary_10_1002_adma_202208237
crossref_primary_10_1016_j_ensm_2022_07_002
crossref_primary_10_1002_anie_202210871
crossref_primary_10_1002_smll_202106441
crossref_primary_10_1039_D4EE03750B
crossref_primary_10_1002_ange_202502279
crossref_primary_10_1002_adfm_202209301
crossref_primary_10_1007_s40820_024_01372_x
crossref_primary_10_1002_smll_202201163
crossref_primary_10_1002_smll_202203583
crossref_primary_10_1149_1945_7111_ad281a
crossref_primary_10_1021_acsami_4c18447
crossref_primary_10_1021_acs_nanolett_4c00873
crossref_primary_10_1002_aenm_202405326
crossref_primary_10_1016_j_chempr_2024_07_039
crossref_primary_10_1002_adma_202210789
crossref_primary_10_1021_acsami_4c06463
crossref_primary_10_1016_j_jcis_2024_09_127
crossref_primary_10_1039_D3NR01178J
crossref_primary_10_1007_s12613_022_2454_z
crossref_primary_10_1039_D4TA03165B
crossref_primary_10_1002_aenm_202402041
crossref_primary_10_1002_batt_202300420
crossref_primary_10_1039_D2TA08498H
crossref_primary_10_1002_adfm_202420446
crossref_primary_10_1002_anie_202315834
crossref_primary_10_1016_j_jiec_2024_06_015
crossref_primary_10_1016_j_ensm_2023_01_027
crossref_primary_10_1016_j_joule_2025_101844
crossref_primary_10_1063_5_0160729
crossref_primary_10_1016_j_cclet_2024_110308
crossref_primary_10_1016_j_ensm_2023_01_026
crossref_primary_10_1021_acsnano_4c07907
crossref_primary_10_1039_D3EE03584K
crossref_primary_10_1016_j_jpowsour_2022_232529
crossref_primary_10_1016_j_nanoms_2023_11_004
crossref_primary_10_1038_s41467_023_37524_7
crossref_primary_10_1002_ange_202402327
crossref_primary_10_1002_adfm_202207140
crossref_primary_10_1016_j_ensm_2023_01_030
crossref_primary_10_1038_s41467_024_52611_z
crossref_primary_10_1002_adfm_202303590
crossref_primary_10_1002_aenm_202304094
crossref_primary_10_1039_D3SE00117B
crossref_primary_10_1016_j_joule_2022_04_017
crossref_primary_10_1002_aenm_202401139
crossref_primary_10_1016_j_joule_2022_04_019
crossref_primary_10_1002_adma_202303550
crossref_primary_10_1002_ange_202307208
crossref_primary_10_1002_anie_202417125
crossref_primary_10_1002_anie_202400916
crossref_primary_10_1002_eem2_12658
crossref_primary_10_1016_j_jpowsour_2024_236072
crossref_primary_10_1016_j_electacta_2024_145453
crossref_primary_10_1039_D3DT00898C
crossref_primary_10_1021_acs_jpcc_2c02323
crossref_primary_10_1002_adma_202203835
crossref_primary_10_1002_eem2_12410
crossref_primary_10_1038_s41893_023_01172_y
crossref_primary_10_1038_s41467_023_36386_3
crossref_primary_10_1016_j_ensm_2023_01_040
crossref_primary_10_1002_aenm_202103705
crossref_primary_10_1016_j_ensm_2022_08_033
crossref_primary_10_1016_j_ensm_2022_06_005
crossref_primary_10_1002_ange_202300823
crossref_primary_10_1002_celc_202300517
crossref_primary_10_1021_acsami_4c09325
crossref_primary_10_1016_j_ensm_2024_103910
crossref_primary_10_1021_acsaem_2c02259
crossref_primary_10_1016_j_cej_2023_145056
crossref_primary_10_1039_D3CS00295K
crossref_primary_10_1002_adma_202304426
crossref_primary_10_1021_jacs_3c06523
crossref_primary_10_1002_smll_202202214
crossref_primary_10_1002_adfm_202213803
crossref_primary_10_1002_adma_202304667
crossref_primary_10_1002_ange_202318369
crossref_primary_10_1002_smll_202400565
crossref_primary_10_1021_acselectrochem_4c00100
crossref_primary_10_3389_fchem_2022_899810
crossref_primary_10_1016_j_jechem_2024_05_035
crossref_primary_10_1002_smll_202411463
crossref_primary_10_1016_j_scib_2024_10_025
crossref_primary_10_1021_jacs_2c06757
crossref_primary_10_1002_anie_202302583
crossref_primary_10_1016_j_ensm_2022_08_046
crossref_primary_10_1039_D4EE01225A
crossref_primary_10_1021_acsnano_4c14244
crossref_primary_10_1016_j_ensm_2021_11_003
crossref_primary_10_1002_cssc_202200313
crossref_primary_10_1002_anie_202212839
crossref_primary_10_1002_anie_202409986
crossref_primary_10_1002_adfm_202300046
crossref_primary_10_1002_anie_202311032
crossref_primary_10_1016_j_ensm_2025_104056
crossref_primary_10_1002_adfm_202315539
crossref_primary_10_1039_D2TA04779A
crossref_primary_10_1021_acsami_3c00747
crossref_primary_10_1007_s40843_023_2598_0
crossref_primary_10_3390_batteries9050284
crossref_primary_10_1149_1945_7111_acaf42
crossref_primary_10_1002_ange_202412173
crossref_primary_10_1002_ange_202315834
crossref_primary_10_1002_adfm_202213187
crossref_primary_10_1039_D3EE00925D
crossref_primary_10_1002_ange_202303845
crossref_primary_10_1002_ange_202404784
crossref_primary_10_1002_aenm_202202784
crossref_primary_10_1002_eem2_12734
crossref_primary_10_1002_aenm_202405253
crossref_primary_10_1016_j_jpowsour_2023_233066
crossref_primary_10_20517_energymater_2024_169
crossref_primary_10_1021_acsnano_3c10394
crossref_primary_10_1039_D1EE03749H
crossref_primary_10_1002_smtd_202300392
crossref_primary_10_1016_j_ensm_2023_102921
crossref_primary_10_1002_adfm_202316083
crossref_primary_10_1002_ange_202414117
crossref_primary_10_1007_s40820_021_00782_5
crossref_primary_10_1016_j_cej_2022_136607
crossref_primary_10_1002_smll_202501293
crossref_primary_10_1002_sstr_202400325
crossref_primary_10_1039_D3TA01943H
crossref_primary_10_1002_anie_202406683
crossref_primary_10_1002_anie_202314456
crossref_primary_10_1002_adma_202411802
crossref_primary_10_1016_j_ensm_2023_102934
crossref_primary_10_1016_j_cej_2025_161858
crossref_primary_10_1002_ange_202302539
crossref_primary_10_1002_ange_202411056
crossref_primary_10_1016_j_apsusc_2022_156129
crossref_primary_10_1002_aenm_202102707
crossref_primary_10_1002_ange_202414562
crossref_primary_10_1038_s41467_023_38890_y
crossref_primary_10_1021_acs_nanolett_1c03792
crossref_primary_10_1002_ange_202218466
crossref_primary_10_1021_acssuschemeng_3c04018
crossref_primary_10_1021_acsenergylett_2c02817
crossref_primary_10_1149_1945_7111_ad69c7
crossref_primary_10_1002_ange_202302302
crossref_primary_10_1038_s41467_024_44893_0
crossref_primary_10_1039_D3TA07315G
crossref_primary_10_1002_ange_202210979
crossref_primary_10_1002_smll_202206634
crossref_primary_10_1002_ange_202309594
crossref_primary_10_1002_smll_202404743
crossref_primary_10_1021_acsnano_3c05845
crossref_primary_10_1038_s41467_024_50890_0
crossref_primary_10_1002_ange_202218454
crossref_primary_10_1039_D2TA01886A
crossref_primary_10_1002_adfm_202406077
crossref_primary_10_1039_D4EE02192D
crossref_primary_10_1002_smll_202401249
crossref_primary_10_1021_jacs_4c14053
crossref_primary_10_1039_D4TA00629A
crossref_primary_10_1002_aenm_202404367
crossref_primary_10_1002_adfm_202112693
crossref_primary_10_1002_ange_202318063
crossref_primary_10_1002_anie_202215968
crossref_primary_10_1002_anie_202212695
crossref_primary_10_1002_aenm_202304144
crossref_primary_10_1002_adma_202207908
crossref_primary_10_1002_ange_202206471
crossref_primary_10_3390_sci6030050
crossref_primary_10_1002_ange_202301631
crossref_primary_10_1039_D4NR03635B
crossref_primary_10_1002_smll_202301620
crossref_primary_10_1016_j_cej_2024_153927
crossref_primary_10_1038_s41570_024_00670_7
crossref_primary_10_1002_smtd_202300554
crossref_primary_10_1002_smll_202401258
crossref_primary_10_1016_j_est_2024_112898
crossref_primary_10_1002_admi_202202494
crossref_primary_10_1007_s12274_022_5020_0
crossref_primary_10_1002_advs_202304549
crossref_primary_10_1002_ange_202421905
crossref_primary_10_1016_j_esci_2023_100120
crossref_primary_10_1016_j_joule_2022_06_002
crossref_primary_10_1038_s42004_024_01405_x
crossref_primary_10_1002_anie_202212666
crossref_primary_10_1002_anie_202500731
crossref_primary_10_1039_D4EE05153J
crossref_primary_10_1002_adma_202210051
crossref_primary_10_1002_adma_202305128
crossref_primary_10_1039_D3EE04515C
crossref_primary_10_1039_D3IM00111C
crossref_primary_10_1002_smtd_202300561
crossref_primary_10_1021_acsnano_3c03638
crossref_primary_10_1002_aenm_202500430
crossref_primary_10_1039_D2EE03077B
crossref_primary_10_1021_acsnano_4c03074
crossref_primary_10_1002_adma_202210055
crossref_primary_10_1002_ange_202415221
crossref_primary_10_1016_j_ensm_2024_103451
crossref_primary_10_1073_pnas_2121138119
crossref_primary_10_1002_aenm_202202937
crossref_primary_10_1002_batt_202300099
crossref_primary_10_1002_bte2_20220029
crossref_primary_10_1039_D4TA05214E
crossref_primary_10_26599_NRE_2022_9120023
crossref_primary_10_1021_jacs_1c12764
crossref_primary_10_1002_adfm_202300795
crossref_primary_10_1016_j_est_2024_112834
crossref_primary_10_1016_j_cej_2022_139264
crossref_primary_10_1016_j_cej_2025_159397
crossref_primary_10_1016_j_ensm_2024_103691
crossref_primary_10_1002_anie_202317302
crossref_primary_10_1038_s41467_023_38492_8
crossref_primary_10_1002_adfm_202414563
crossref_primary_10_1002_ange_202409838
crossref_primary_10_1016_j_cej_2024_157933
crossref_primary_10_1002_anie_202407909
crossref_primary_10_1016_j_fmre_2023_02_018
crossref_primary_10_1021_jacs_3c10638
crossref_primary_10_1016_j_cej_2023_145658
crossref_primary_10_1002_smll_202412161
crossref_primary_10_1016_j_jcis_2024_03_168
crossref_primary_10_1016_j_jpowsour_2022_232072
crossref_primary_10_1016_j_jcis_2023_10_057
crossref_primary_10_1002_ange_202212780
crossref_primary_10_1016_j_jpowsour_2021_230861
crossref_primary_10_1016_j_ensm_2024_103437
crossref_primary_10_1016_j_apsusc_2023_158219
crossref_primary_10_26599_NRE_2023_9120100
crossref_primary_10_1002_ange_202214966
crossref_primary_10_1126_sciadv_abl3752
crossref_primary_10_1016_j_ensm_2024_103676
crossref_primary_10_1038_s41467_024_46464_9
crossref_primary_10_1016_j_jechem_2022_08_040
crossref_primary_10_1021_jacs_4c09524
crossref_primary_10_1016_j_matt_2024_08_002
crossref_primary_10_1039_D3EE02535G
crossref_primary_10_1016_j_mattod_2024_06_016
crossref_primary_10_1007_s40820_023_01136_z
crossref_primary_10_1039_D4GC03426K
crossref_primary_10_1007_s12274_022_5325_z
crossref_primary_10_1016_j_nanoen_2022_107520
crossref_primary_10_1002_adma_202110047
crossref_primary_10_1021_acsnano_1c05934
crossref_primary_10_1002_advs_202403224
crossref_primary_10_1002_anie_202309957
crossref_primary_10_1002_anie_202502279
crossref_primary_10_1002_adma_202417757
crossref_primary_10_1002_smll_202200742
crossref_primary_10_1021_acsaem_3c01928
crossref_primary_10_1038_s41893_023_01092_x
crossref_primary_10_1039_D3EE04292H
crossref_primary_10_1007_s42823_023_00597_x
crossref_primary_10_1039_D3EE01747H
crossref_primary_10_1007_s12598_024_02641_9
crossref_primary_10_1016_j_jechem_2024_09_047
crossref_primary_10_1016_j_cej_2023_141272
crossref_primary_10_1016_j_jechem_2022_06_050
crossref_primary_10_1016_j_jechem_2022_12_045
crossref_primary_10_1016_j_cej_2023_145864
crossref_primary_10_1126_sciadv_adn2265
crossref_primary_10_1002_adfm_202112609
crossref_primary_10_1016_j_enrev_2022_100005
crossref_primary_10_1002_ange_202311032
crossref_primary_10_1063_5_0116388
crossref_primary_10_1039_D2TA04015H
crossref_primary_10_1039_D3CS00771E
crossref_primary_10_1016_j_jechem_2024_09_030
crossref_primary_10_1039_D4RE00366G
crossref_primary_10_1002_slct_202405068
crossref_primary_10_1021_acsami_2c17714
crossref_primary_10_1016_j_ensm_2024_103245
crossref_primary_10_1002_anie_202422036
crossref_primary_10_1002_anie_202109682
crossref_primary_10_1039_D3NR06143D
crossref_primary_10_1038_s41467_022_34303_8
crossref_primary_10_1039_D2EE00004K
crossref_primary_10_1002_adma_202203153
crossref_primary_10_1002_smll_202306919
crossref_primary_10_1002_batt_202200468
crossref_primary_10_1002_er_7669
crossref_primary_10_1016_j_cej_2023_143670
crossref_primary_10_1021_acs_chemmater_2c02029
crossref_primary_10_1039_D2CC03276G
crossref_primary_10_1002_adfm_202308463
crossref_primary_10_1002_cplu_202300341
crossref_primary_10_1016_j_jpowsour_2024_235764
crossref_primary_10_1002_smm2_1216
crossref_primary_10_1007_s40820_024_01551_w
crossref_primary_10_1002_smm2_1212
crossref_primary_10_1002_adfm_202205771
crossref_primary_10_1039_D2NR04549D
crossref_primary_10_1002_aenm_202304557
crossref_primary_10_1002_aenm_202302137
crossref_primary_10_1016_j_jcis_2024_05_176
crossref_primary_10_1039_D4EE01615G
crossref_primary_10_1016_j_ensm_2024_103465
crossref_primary_10_1021_acsenergylett_5c00369
crossref_primary_10_2139_ssrn_4138323
crossref_primary_10_1002_smll_202105970
crossref_primary_10_1016_j_cej_2022_134646
crossref_primary_10_1021_acsnano_2c09111
crossref_primary_10_1002_aenm_202400613
crossref_primary_10_1002_smtd_202200999
crossref_primary_10_1002_ange_202302583
crossref_primary_10_1021_acsami_2c18836
crossref_primary_10_1007_s40843_024_3009_4
crossref_primary_10_1021_jacs_3c06668
crossref_primary_10_1021_jacs_2c13540
crossref_primary_10_1002_adma_202400370
crossref_primary_10_1039_D3EE00205E
crossref_primary_10_1002_anie_202424642
crossref_primary_10_1002_ange_202410422
crossref_primary_10_1007_s40820_024_01327_2
crossref_primary_10_1021_jacs_4c12409
crossref_primary_10_1039_D2TA09153D
crossref_primary_10_1007_s12274_022_4688_5
crossref_primary_10_1021_acsenergylett_2c02236
crossref_primary_10_1002_aenm_202303928
crossref_primary_10_1021_acsnano_3c08749
crossref_primary_10_1002_anie_202407067
crossref_primary_10_1002_anie_202318369
crossref_primary_10_1039_D4TA07311H
crossref_primary_10_1002_cey2_365
crossref_primary_10_1016_j_cej_2022_138589
crossref_primary_10_1016_j_scib_2023_08_024
crossref_primary_10_1002_ange_202309957
crossref_primary_10_1039_D2NH00354F
crossref_primary_10_1073_pnas_2322944121
crossref_primary_10_1016_j_nanoen_2022_107331
crossref_primary_10_1002_aenm_202301997
crossref_primary_10_1016_j_nanoen_2022_107120
crossref_primary_10_1002_aenm_202301517
crossref_primary_10_1021_acsenergylett_2c01152
crossref_primary_10_1002_aenm_202400398
crossref_primary_10_1016_j_ensm_2022_11_057
crossref_primary_10_1021_acsanm_4c03283
crossref_primary_10_1002_anie_202423531
crossref_primary_10_1002_smll_202204713
crossref_primary_10_1021_acs_nanolett_4c02778
crossref_primary_10_1002_adma_202313621
crossref_primary_10_1016_j_jcis_2022_09_047
crossref_primary_10_1039_D1EE02021H
crossref_primary_10_1039_D2SC01818G
crossref_primary_10_1016_j_ensm_2022_10_016
crossref_primary_10_1021_acsami_4c05897
crossref_primary_10_1016_j_jechem_2022_11_028
crossref_primary_10_1007_s40820_024_01380_x
crossref_primary_10_1002_anie_202411563
crossref_primary_10_1016_j_oneear_2022_03_012
crossref_primary_10_1021_acsaelm_4c02261
crossref_primary_10_1039_D2CS00684G
crossref_primary_10_1002_anie_202423302
crossref_primary_10_1039_D4CP02383H
crossref_primary_10_1002_smll_202107033
crossref_primary_10_1021_acsnano_4c02740
crossref_primary_10_1021_acs_nanolett_2c00398
crossref_primary_10_1039_D4NR02905D
crossref_primary_10_1002_adfm_202409950
crossref_primary_10_1002_anie_202403712
crossref_primary_10_1002_aenm_202300606
crossref_primary_10_1002_adma_202106867
crossref_primary_10_1002_cnl2_37
crossref_primary_10_1002_adma_202301410
crossref_primary_10_1002_ange_202301192
crossref_primary_10_1021_acsaem_4c02175
crossref_primary_10_1002_ange_202423302
crossref_primary_10_1002_ange_202407067
crossref_primary_10_1002_anie_202413959
crossref_primary_10_1002_aenm_202400572
crossref_primary_10_1002_smll_202407226
crossref_primary_10_1039_D4CS00474D
crossref_primary_10_1016_j_jcis_2022_10_141
crossref_primary_10_1016_j_jpowsour_2023_233887
crossref_primary_10_1021_acsami_2c19616
crossref_primary_10_1039_D3EE01447A
crossref_primary_10_1007_s40820_022_00939_w
crossref_primary_10_1002_adfm_202402014
crossref_primary_10_1002_ange_202423531
crossref_primary_10_1039_D4EE04870A
crossref_primary_10_1021_acssuschemeng_1c07721
crossref_primary_10_1021_acsnano_2c12587
crossref_primary_10_1039_D4SC06630H
crossref_primary_10_1016_j_cclet_2024_109815
crossref_primary_10_1039_D4RA02200A
crossref_primary_10_1002_ange_202411563
crossref_primary_10_1016_j_ensm_2022_10_004
crossref_primary_10_1002_adma_202211961
crossref_primary_10_1002_cssc_202400552
crossref_primary_10_1002_adfm_202312564
crossref_primary_10_1039_D1TA08515H
crossref_primary_10_1021_acs_inorgchem_4c00622
crossref_primary_10_1002_anie_202410422
crossref_primary_10_1002_ange_202401974
crossref_primary_10_1002_anie_202215385
crossref_primary_10_1039_D4EE04566A
crossref_primary_10_1002_adfm_202412092
crossref_primary_10_1002_ange_202209169
crossref_primary_10_1016_j_ensm_2022_11_013
crossref_primary_10_1002_ange_202413959
crossref_primary_10_1016_j_ensm_2022_01_059
crossref_primary_10_1016_j_ensm_2024_103869
crossref_primary_10_1016_j_ensm_2024_103628
crossref_primary_10_1039_D4CS00343H
crossref_primary_10_1021_acssuschemeng_3c01867
crossref_primary_10_1002_advs_202305061
crossref_primary_10_1002_aenm_202402521
crossref_primary_10_1002_ange_202317302
crossref_primary_10_1038_s41929_024_01169_6
crossref_primary_10_2139_ssrn_4117001
crossref_primary_10_1002_adma_202207682
crossref_primary_10_1002_smtd_202401865
crossref_primary_10_1021_acsami_1c15980
crossref_primary_10_1002_smll_202303108
crossref_primary_10_1002_anie_202401974
crossref_primary_10_1016_j_esci_2025_100397
crossref_primary_10_1039_D3SC04853E
crossref_primary_10_1016_j_ensm_2024_103616
crossref_primary_10_1007_s41918_023_00194_6
crossref_primary_10_1002_adfm_202209642
crossref_primary_10_1016_j_jcis_2024_05_202
crossref_primary_10_1002_adfm_202112091
crossref_primary_10_1021_acssuschemeng_3c06291
crossref_primary_10_1016_j_ensm_2023_102882
crossref_primary_10_1039_D3YA00319A
crossref_primary_10_1002_adfm_202501537
crossref_primary_10_1002_smm2_1076
crossref_primary_10_5796_electrochemistry_25_00030
crossref_primary_10_1002_anie_202218466
crossref_primary_10_1002_batt_202300526
crossref_primary_10_1016_j_jpowsour_2024_234814
crossref_primary_10_1021_acs_chemrev_2c00289
crossref_primary_10_1002_smll_202203674
crossref_primary_10_1016_j_ensm_2025_104159
crossref_primary_10_1021_acs_nanolett_1c04709
crossref_primary_10_1002_aenm_202401293
crossref_primary_10_1021_acsnano_4c16521
crossref_primary_10_1016_j_isci_2025_111751
crossref_primary_10_1002_anie_202301192
crossref_primary_10_1016_j_ensm_2022_12_030
crossref_primary_10_1021_acsami_2c19022
crossref_primary_10_1002_smtd_202300660
crossref_primary_10_1002_chem_202304149
crossref_primary_10_1021_acsnano_3c05640
crossref_primary_10_1016_j_jechem_2023_03_036
crossref_primary_10_1002_cnma_202100294
crossref_primary_10_1002_anie_202116560
crossref_primary_10_1016_j_actamat_2023_119500
crossref_primary_10_1039_D1NR06058A
crossref_primary_10_1002_aenm_202404591
crossref_primary_10_1039_D4TA02704C
crossref_primary_10_1002_anie_202218454
crossref_primary_10_1016_j_mtphys_2024_101356
crossref_primary_10_1002_ange_202109682
crossref_primary_10_1021_acsenergylett_4c00967
crossref_primary_10_1002_anie_202206471
crossref_primary_10_1002_anie_202308182
crossref_primary_10_1002_aenm_202404108
crossref_primary_10_1002_ange_202403712
crossref_primary_10_1002_smtd_202401021
crossref_primary_10_1002_adma_202201957
crossref_primary_10_1002_adma_202304997
crossref_primary_10_1002_ange_202424642
crossref_primary_10_1016_j_ensm_2022_12_010
crossref_primary_10_1002_ange_202319125
crossref_primary_10_1002_adma_202401858
crossref_primary_10_1016_j_joule_2024_12_003
crossref_primary_10_1016_j_scib_2022_01_010
crossref_primary_10_3390_batteries8110244
crossref_primary_10_1002_anie_202210979
crossref_primary_10_1016_j_cclet_2024_110422
crossref_primary_10_1002_adfm_202211765
crossref_primary_10_1002_smll_202501089
crossref_primary_10_1016_j_matt_2022_08_025
crossref_primary_10_1021_acsnano_3c08716
crossref_primary_10_1002_adma_202400976
crossref_primary_10_1002_adma_202106897
crossref_primary_10_1021_acsenergylett_3c01821
crossref_primary_10_1016_j_nanoen_2022_107145
crossref_primary_10_1002_adfm_202210206
crossref_primary_10_1016_j_electacta_2025_145639
crossref_primary_10_1002_aenm_202102982
crossref_primary_10_1002_aenm_202402586
crossref_primary_10_23919_CHAIN_2024_000010
crossref_primary_10_1002_anie_202314883
crossref_primary_10_1002_adma_202106409
crossref_primary_10_1002_anie_202409838
crossref_primary_10_1002_anie_202310290
crossref_primary_10_1002_adfm_202314347
crossref_primary_10_1002_adma_202302353
crossref_primary_10_1002_cssc_202201739
crossref_primary_10_1021_acs_nanolett_2c02514
crossref_primary_10_1002_ange_202407909
crossref_primary_10_1007_s12598_024_02705_w
crossref_primary_10_1016_j_jmst_2021_12_017
crossref_primary_10_1002_aenm_202301712
crossref_primary_10_1002_adma_202201744
crossref_primary_10_1002_smtd_202400127
crossref_primary_10_1021_acsnano_4c04795
crossref_primary_10_1002_ange_202422036
crossref_primary_10_1016_j_jpowsour_2022_232460
crossref_primary_10_1002_adfm_202306952
crossref_primary_10_1039_D4TA05590J
crossref_primary_10_1016_j_ensm_2023_102858
crossref_primary_10_1002_adfm_202409520
crossref_primary_10_1002_ange_202318496
crossref_primary_10_1557_s43578_023_01197_1
crossref_primary_10_1002_aenm_202500962
crossref_primary_10_6023_A24010006
crossref_primary_10_1002_adma_202211555
crossref_primary_10_1002_anie_202501664
crossref_primary_10_1016_j_est_2023_108708
crossref_primary_10_1016_j_ensm_2023_102873
crossref_primary_10_1039_D4EE04525D
crossref_primary_10_1016_j_cej_2022_137471
crossref_primary_10_1002_adma_202200662
crossref_primary_10_1016_j_est_2024_113354
crossref_primary_10_1038_s41467_022_32031_7
crossref_primary_10_1039_D4EE02784A
crossref_primary_10_1039_D3EE03661H
crossref_primary_10_1007_s11426_024_2098_6
crossref_primary_10_1038_s41467_023_39877_5
Cites_doi 10.1016/0013-4686(90)90077-D
10.1063/1.2464084
10.1038/s41467-020-18284-0
10.1007/s00214-007-0310-x
10.1021/jp409765w
10.1039/b810189b
10.1021/jp908444x
10.1103/PhysRevA.31.1695
10.1126/science.abb9554
10.1063/1.447079
10.1002/aenm.201701189
10.1016/S0010-938X(00)00177-3
10.1126/sciadv.abe0219
10.1126/science.aak9991
10.1080/00268979600100761
10.1039/C9EE00596J
10.1002/anie.201806748
10.1038/s41586-019-1603-7
10.1038/s41560-019-0464-5
10.1039/B512724F
10.1039/b100040n
10.1016/j.electacta.2009.12.030
10.1021/ie400825u
10.1021/ie300247v
10.1063/1.469429
10.1021/ct0502763
10.1038/s41467-019-13436-3
10.1021/acs.chemmater.7b03404
10.1038/s41563-018-0063-z
10.1002/adma.201604685
10.1149/1.2127450
10.1039/C8CC07730D
10.1039/C8EE00378E
10.1021/acsenergylett.9b00857
10.1039/B917592J
10.1063/1.3359469
10.1002/anie.202008634
10.1149/2.0151605jes
10.1063/1.477924
10.1016/0301-0104(81)85176-2
10.1126/science.aab1595
10.1038/d41586-018-05752-3
10.1002/adfm.201902653
10.1039/D0EE01538E
10.1039/C9EE03545A
10.1021/jp905220k
10.1021/cr500003w
10.1149/2.0121906jes
10.1039/C8EE02456A
10.1155/2018/2079278
10.1038/ncomms11801
10.1016/j.joule.2018.11.007
10.1021/acs.chemmater.9b04827
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2021
2021. The Author(s), under exclusive licence to Springer Nature Limited.
The Author(s), under exclusive licence to Springer Nature Limited 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021
– notice: 2021. The Author(s), under exclusive licence to Springer Nature Limited.
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2021.
CorporateAuthor Brookhaven National Lab. (BNL), Upton, NY (United States)
CorporateAuthor_xml – name: Brookhaven National Lab. (BNL), Upton, NY (United States)
DBID AAYXX
CITATION
NPM
3V.
7QO
7U5
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
L6V
L7M
LK8
M0S
M1P
M7P
M7S
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
OIOZB
OTOTI
DOI 10.1038/s41565-021-00905-4
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
ProQuest Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

ProQuest Central Student

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-3395
EndPage 910
ExternalDocumentID 1787833
33972758
10_1038_s41565_021_00905_4
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: X.-Q. Yang at Brookhaven National Laboratory (BNL) is supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Vehicle Technology Office of the U.S. Department of Energy through the Advanced Battery Materials Research (BMR) Program under contract DE-SC0012704. This research used beamlines 7-BM of the National Synchrotron Light Source II, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DESC0012704.
– fundername: Modeling and experimental work at Army Research Laboratory were supported by the Joint Center for Energy Storage Research (JCESR), a Department of Energy, Energy Innovation Hub under cooperative agreement number W911NF-19-2-0046.
– fundername: The principal investigator (C.W) gratefully acknowledge funding support from the US Department of Energy (DOE) through ARPA-E grant DEAR0000389 and the Center of Research on Extreme Batteries.
– fundername: E. Hu at Brookhaven National Laboratory (BNL) is supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Vehicle Technology Office of the U.S. Department of Energy through the Advanced Battery Materials Research (BMR) Program under contract DE-SC0012704. This research used beamlines 7-BM of the National Synchrotron Light Source II, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DESC0012704.
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
5M7
5S5
6OB
70F
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
L6V
LK8
M1P
M7P
M7S
MM.
NNMJJ
O9-
ODYON
P2P
P62
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
NPM
7QO
7U5
7XB
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
K9.
L7M
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PUEGO
7X8
AADEA
AADWK
AAEXX
AAJMP
AAPBV
AAYJO
ABEEJ
ABGIJ
ABPTK
ABVXF
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADMDM
ADQMX
ADZGE
AEDAW
AEFTE
AGEZK
AGGBP
AHGBK
AJDOV
NYICJ
OIOZB
OTOTI
ID FETCH-LOGICAL-c446t-803e5a38f23605af37992b03c3c07b8367e865be0a7609bd540bed64b9c4d13d3
IEDL.DBID 7X7
ISSN 1748-3387
1748-3395
IngestDate Thu May 18 22:40:20 EDT 2023
Fri Jul 11 03:03:48 EDT 2025
Sat Aug 23 12:27:18 EDT 2025
Wed Feb 19 02:25:45 EST 2025
Thu Apr 24 22:55:24 EDT 2025
Tue Jul 01 01:56:31 EDT 2025
Fri Feb 21 02:40:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License 2021. The Author(s), under exclusive licence to Springer Nature Limited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-803e5a38f23605af37992b03c3c07b8367e865be0a7609bd540bed64b9c4d13d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
BNL-221586-2021-JAAM
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
SC0012704
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Vehicle Technologies Office
ORCID 0000-0002-3625-3478
0000-0001-6240-5423
0000-0002-7127-3087
0000-0002-8626-6381
0000-0002-1881-4534
0000-0002-6946-8635
0000-0002-2917-6523
0000-0002-9428-5291
0000000294285291
0000000286266381
0000000269468635
0000000236253478
0000000271273087
0000000162405423
0000000218814534
0000000229176523
OpenAccessLink https://www.osti.gov/servlets/purl/1787833
PMID 33972758
PQID 2560480567
PQPubID 546299
PageCount 9
ParticipantIDs osti_scitechconnect_1787833
proquest_miscellaneous_2525652251
proquest_journals_2560480567
pubmed_primary_33972758
crossref_citationtrail_10_1038_s41565_021_00905_4
crossref_primary_10_1038_s41565_021_00905_4
springer_journals_10_1038_s41565_021_00905_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature nanotechnology
PublicationTitleAbbrev Nat. Nanotechnol
PublicationTitleAlternate Nat Nanotechnol
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Zhao (CR9) 2019; 12
McKubre, Macdonald (CR36) 1981; 128
Kroon, Buijs, Peters, Witkamp (CR27) 2006; 8
Zhao, Schultz, Truhlar (CR44) 2006; 2
Horng, Brindza, Walker, Fourkas (CR41) 2010; 114
Kortunov, Siskin, Paccagnini, Thomann (CR31) 2016; 30
Parker, Ko, Rolison, Long (CR37) 2018; 2
Liu (CR38) 2019; 4
Scalmani, Frisch (CR48) 2010; 132
Borodin (CR51) 2009; 113
Higashi, Lee, Lee, Takechi, Cui (CR8) 2016; 7
Chowdhury, Yamada, Higashii, Goto, Onoda (CR30) 2013; 52
Cao (CR23) 2019; 4
Cao (CR34) 1990; 35
Chen, Cao, Shi, Xue, Mu (CR26) 2012; 51
Zhang (CR15) 2020; 11
Zhang (CR14) 2018; 54
Sun (CR20) 2021; 371
Qiu (CR17) 2019; 10
Zhao, Truhlar (CR45) 2008; 120
Hoover (CR50) 1985; 31
Markevich (CR28) 2010; 55
Suo (CR25) 2017; 7
Thole (CR52) 1981; 59
Martyna, Tuckerman, Tobias, Klein (CR49) 1996; 87
Nicolas (CR33) 2018; 11
Xie (CR16) 2020; 13
Zhang (CR10) 2019; 29
CR42
Yamamoto, Okuhara, Nakato (CR39) 2001; 11
Vatamanu, Borodin, Smith (CR55) 2010; 12
Wang (CR3) 2018; 17
Cao, Li, Deng, Li, Wang (CR18) 2020; 59
Siepmann, Sprik (CR53) 1995; 102
Yi (CR32) 2017; 29
Zhang, Li, Cao, Yang, Huang (CR35) 2001; 43
Nie (CR22) 2013; 117
Bayer (CR7) 2019; 166
Montgomer, Frisch, Ochterski, Petersson (CR47) 1999; 110
Winiarski, Tylus, Winiarska, Szczygieł, Szczygieł (CR24) 2018; 2018
Xu (CR2) 2014; 114
Reed, Lanning, Madden (CR54) 2007; 126
Wang (CR40) 2018; 57
Suo (CR19) 2015; 350
CR29
Kundu (CR6) 2018; 11
Chai, Head-Gordon (CR46) 2008; 10
Turcheniuk, Bondarev, Singhal, Yushin (CR1) 2018; 559
Frisch, Pople, Binkley (CR43) 1984; 80
Luo (CR11) 2019; 574
Zheng, Archer (CR5) 2021; 7
Chang (CR13) 2020; 13
Parker (CR4) 2017; 356
Liu (CR21) 2016; 163
Fu (CR12) 2017; 29
PV Kortunov (905_CR31) 2016; 30
Z Zhao (905_CR9) 2019; 12
Y Yi (905_CR32) 2017; 29
H Qiu (905_CR17) 2019; 10
X Xie (905_CR16) 2020; 13
905_CR29
N Yamamoto (905_CR39) 2001; 11
L Suo (905_CR19) 2015; 350
Y Zhao (905_CR45) 2008; 120
MC Kroon (905_CR27) 2006; 8
L Liu (905_CR38) 2019; 4
SK Reed (905_CR54) 2007; 126
J-D Chai (905_CR46) 2008; 10
Y Zhao (905_CR44) 2006; 2
Q Zhang (905_CR15) 2020; 11
K Xu (905_CR2) 2014; 114
C-N Cao (905_CR34) 1990; 35
J Zheng (905_CR5) 2021; 7
M Bayer (905_CR7) 2019; 166
F Wang (905_CR3) 2018; 17
FA Chowdhury (905_CR30) 2013; 52
K Turcheniuk (905_CR1) 2018; 559
GJ Martyna (905_CR49) 1996; 87
L Cao (905_CR18) 2020; 59
JF Parker (905_CR4) 2017; 356
D Kundu (905_CR6) 2018; 11
M Nie (905_CR22) 2013; 117
N Chang (905_CR13) 2020; 13
J Vatamanu (905_CR55) 2010; 12
J Fu (905_CR12) 2017; 29
X Cao (905_CR23) 2019; 4
L Zhang (905_CR10) 2019; 29
MJ Frisch (905_CR43) 1984; 80
W Sun (905_CR20) 2021; 371
D Nicolas (905_CR33) 2018; 11
905_CR42
E Markevich (905_CR28) 2010; 55
C Zhang (905_CR14) 2018; 54
J Winiarski (905_CR24) 2018; 2018
Y Chen (905_CR26) 2012; 51
D Zhang (905_CR35) 2001; 43
P Horng (905_CR41) 2010; 114
O Borodin (905_CR51) 2009; 113
WG Hoover (905_CR50) 1985; 31
BT Thole (905_CR52) 1981; 59
F Wang (905_CR40) 2018; 57
G Scalmani (905_CR48) 2010; 132
S Higashi (905_CR8) 2016; 7
Z Liu (905_CR21) 2016; 163
L Suo (905_CR25) 2017; 7
JI Siepmann (905_CR53) 1995; 102
MCH McKubre (905_CR36) 1981; 128
JA Montgomer Jr. (905_CR47) 1999; 110
M Luo (905_CR11) 2019; 574
JF Parker (905_CR37) 2018; 2
33972759 - Nat Nanotechnol. 2021 Aug;16(8):854-855
References_xml – volume: 35
  start-page: 831
  year: 1990
  end-page: 836
  ident: CR34
  article-title: On the impedance plane displays for irreversible electrode reactions based on the stability conditions of the steady-state. I. One state variable besides electrode potential
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(90)90077-D
– volume: 126
  start-page: 084704
  year: 2007
  ident: CR54
  article-title: Electrochemical interface between an ionic liquid and a model metallic electrode
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2464084
– volume: 11
  year: 2020
  ident: CR15
  article-title: Modulating electrolyte structure for ultralow temperature aqueous zinc batteries
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18284-0
– volume: 120
  start-page: 215
  year: 2008
  end-page: 241
  ident: CR45
  article-title: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-007-0310-x
– volume: 117
  start-page: 25381
  year: 2013
  end-page: 25389
  ident: CR22
  article-title: Role of solution structure in solid electrolyte interphase formation on graphite with LiPF in propylene carbonate
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp409765w
– volume: 10
  start-page: 6615
  year: 2008
  end-page: 6620
  ident: CR46
  article-title: Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b810189b
– volume: 114
  start-page: 394
  year: 2010
  end-page: 402
  ident: CR41
  article-title: Behavior of organic liquids at bare and modified silica interfaces
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp908444x
– volume: 31
  start-page: 1695
  year: 1985
  end-page: 1697
  ident: CR50
  article-title: Canonical dynamics: equilibrium phase-space distributions
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.31.1695
– volume: 371
  start-page: 46
  year: 2021
  end-page: 51
  ident: CR20
  article-title: A rechargeable zinc–air battery based on zinc peroxide chemistry
  publication-title: Science
  doi: 10.1126/science.abb9554
– ident: CR29
– volume: 80
  start-page: 3265
  year: 1984
  end-page: 3269
  ident: CR43
  article-title: Self-consistent molecular orbital methods. 25. Supplementary functions for Gaussian basis sets
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447079
– volume: 7
  start-page: 1701189
  year: 2017
  ident: CR25
  article-title: Water-in-salt’ electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701189
– volume: 43
  start-page: 1627
  year: 2001
  end-page: 1636
  ident: CR35
  article-title: Studies of corrosion inhibitors for zinc–manganese batteries: quinoline quaternary ammonium phenolates
  publication-title: Corros. Sci.
  doi: 10.1016/S0010-938X(00)00177-3
– ident: CR42
– volume: 7
  start-page: eabe0219
  year: 2021
  ident: CR5
  article-title: Controlling electrochemical growth of metallic zinc electrodes: toward affordable rechargeable energy storage systems
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abe0219
– volume: 356
  start-page: 415
  year: 2017
  end-page: 418
  ident: CR4
  article-title: Rechargeable nickel-3D zinc batteries: an energy-dense, safer alternative to lithium-ion
  publication-title: Science
  doi: 10.1126/science.aak9991
– volume: 87
  start-page: 1117
  year: 1996
  end-page: 1157
  ident: CR49
  article-title: Explicit reversible integrators for extended systems dynamics
  publication-title: Mol. Phys.
  doi: 10.1080/00268979600100761
– volume: 12
  start-page: 1938
  year: 2019
  end-page: 1949
  ident: CR9
  article-title: Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00596J
– volume: 57
  start-page: 11978
  year: 2018
  end-page: 11981
  ident: CR40
  article-title: How water accelerates bivalent ion diffusion at the electrolyte/electrode interface
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201806748
– volume: 574
  start-page: 81
  year: 2019
  end-page: 85
  ident: CR11
  article-title: PdMo bimetallene for oxygen reduction catalysis
  publication-title: Nature
  doi: 10.1038/s41586-019-1603-7
– volume: 4
  start-page: 796
  year: 2019
  end-page: 805
  ident: CR23
  article-title: Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0464-5
– volume: 8
  start-page: 241
  year: 2006
  end-page: 245
  ident: CR27
  article-title: Decomposition of ionic liquids in electrochemical processing
  publication-title: Green Chem.
  doi: 10.1039/B512724F
– volume: 11
  start-page: 1858
  year: 2001
  end-page: 1863
  ident: CR39
  article-title: Intercalation compound of VOPO ·2H O with acrylamide: preparation and exfoliation
  publication-title: J. Mater. Chem.
  doi: 10.1039/b100040n
– volume: 55
  start-page: 2687
  year: 2010
  end-page: 2696
  ident: CR28
  article-title: In situ FTIR study of the decomposition of -butyl- -methylpyrrolidinium bis(trifluoromethanesulfonyl)amide ionic liquid during cathodic polarization of lithium and graphite electrodes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2009.12.030
– volume: 52
  start-page: 8323
  year: 2013
  end-page: 8331
  ident: CR30
  article-title: CO capture by tertiary amine absorbents: a performance comparison study
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie400825u
– volume: 51
  start-page: 7418
  year: 2012
  end-page: 7427
  ident: CR26
  article-title: Quantitative research on the vaporization and decomposition of [EMIM][Tf N] by thermogravimetric analysis–mass spectrometry
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie300247v
– volume: 102
  start-page: 511
  year: 1995
  end-page: 524
  ident: CR53
  article-title: Influence of surface topology and electrostatic potential on water/electrode systems
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.469429
– volume: 2
  start-page: 364
  year: 2006
  end-page: 382
  ident: CR44
  article-title: Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct0502763
– volume: 10
  year: 2019
  ident: CR17
  article-title: Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13436-3
– volume: 29
  start-page: 8504
  year: 2017
  end-page: 8512
  ident: CR32
  article-title: Instability at the electrode/electrolyte interface induced by hard cation chelation and nucleophilic attack
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b03404
– volume: 17
  start-page: 543
  year: 2018
  end-page: 549
  ident: CR3
  article-title: Highly reversible zinc metal anode for aqueous batteries
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0063-z
– volume: 29
  start-page: 1604685
  year: 2017
  ident: CR12
  article-title: Electrically rechargeable zinc–air batteries: progress, challenges, and perspectives
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604685
– volume: 128
  start-page: 524
  year: 1981
  end-page: 530
  ident: CR36
  article-title: The dissolution and passivation of zinc in concentrated aqueous hydroxide
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2127450
– volume: 30
  start-page: 1223
  year: 2016
  end-page: 1236
  ident: CR31
  article-title: CO reaction mechanisms with hindered alkanolamines: control and promotion of reaction pathways
  publication-title: Energy Fuels
– volume: 54
  start-page: 14097
  year: 2018
  end-page: 14099
  ident: CR14
  article-title: A ZnCl water-in-salt electrolyte for a reversible Zn metal anode
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC07730D
– volume: 11
  start-page: 881
  year: 2018
  end-page: 892
  ident: CR6
  article-title: Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface
  publication-title: Ener. Env. Sci.
  doi: 10.1039/C8EE00378E
– volume: 4
  start-page: 1650
  year: 2019
  end-page: 1657
  ident: CR38
  article-title: In situ formation of a stable interface in solid-state batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00857
– volume: 12
  start-page: 170
  year: 2010
  end-page: 182
  ident: CR55
  article-title: Molecular dynamics simulations of atomically flat and nanoporous electrodes with a molten salt electrolyte
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B917592J
– volume: 132
  start-page: 114110
  year: 2010
  ident: CR48
  article-title: Continuous surface charge polarizable continuum models of solvation. I. General formalism
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3359469
– volume: 59
  start-page: 19292
  year: 2020
  end-page: 19296
  ident: CR18
  article-title: Hydrophobic organic-electrolyte-protected zinc anodes for aqueous zinc batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202008634
– volume: 163
  start-page: A592
  year: 2016
  end-page: A598
  ident: CR21
  article-title: Interfacial study on solid electrolyte interphase at Li metal anode: implication for Li dendrite growth
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0151605jes
– volume: 110
  start-page: 2822
  year: 1999
  end-page: 2827
  ident: CR47
  article-title: A complete basis set model chemistry. VI. Use of density functional geometries and frequencies
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.477924
– volume: 59
  start-page: 341
  year: 1981
  end-page: 350
  ident: CR52
  article-title: Molecular polarizabilities calculated with a modified dipole interaction
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(81)85176-2
– volume: 350
  start-page: 938
  year: 2015
  end-page: 943
  ident: CR19
  article-title: ‘Water-in-salt’ electrolyte enables high-voltage aqueous lithium-ion chemistries
  publication-title: Science
  doi: 10.1126/science.aab1595
– volume: 559
  start-page: 467
  year: 2018
  end-page: 470
  ident: CR1
  article-title: Ten years left to redesign lithium-ion batteries
  publication-title: Nature
  doi: 10.1038/d41586-018-05752-3
– volume: 29
  start-page: 1902653
  year: 2019
  ident: CR10
  article-title: ZnCl ‘water-in-salt’ electrolyte transforms the performance of vanadium oxide as a Zn battery cathode
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201902653
– volume: 13
  start-page: 3527
  year: 2020
  end-page: 3535
  ident: CR13
  article-title: An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE01538E
– volume: 13
  start-page: 503
  year: 2020
  end-page: 510
  ident: CR16
  article-title: Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE03545A
– volume: 113
  start-page: 11463
  year: 2009
  end-page: 11478
  ident: CR51
  article-title: Polarizable force field development and molecular dynamics simulations of ionic liquids
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp905220k
– volume: 114
  start-page: 11503
  year: 2014
  end-page: 11618
  ident: CR2
  article-title: Electrolytes and interphases in Li-ion batteries and beyond
  publication-title: Chem. Rev.
  doi: 10.1021/cr500003w
– volume: 166
  start-page: A909
  year: 2019
  end-page: A914
  ident: CR7
  article-title: Influence of water content on the surface morphology of zinc deposited from EMImOTf/water mixtures
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0121906jes
– volume: 11
  start-page: 3491
  year: 2018
  end-page: 3499
  ident: CR33
  article-title: The role of the hydrogen evolution reaction in the solid-electrolyte interphase formation mechanism for ‘water-in-salt’ electrolytes
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02456A
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 14
  ident: CR24
  article-title: XPS and FT-IR characterization of selected synthetic corrosion products of zinc expected in neutral environment containing chloride ions
  publication-title: J. Spectrosc.
  doi: 10.1155/2018/2079278
– volume: 7
  year: 2016
  ident: CR8
  article-title: Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11801
– volume: 2
  start-page: 2519
  year: 2018
  end-page: 2527
  ident: CR37
  article-title: Translating materials-level performance into device-relevant metrics for zinc-based batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2018.11.007
– volume: 163
  start-page: A592
  year: 2016
  ident: 905_CR21
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0151605jes
– volume: 80
  start-page: 3265
  year: 1984
  ident: 905_CR43
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447079
– volume: 31
  start-page: 1695
  year: 1985
  ident: 905_CR50
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.31.1695
– volume: 126
  start-page: 084704
  year: 2007
  ident: 905_CR54
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2464084
– volume: 559
  start-page: 467
  year: 2018
  ident: 905_CR1
  publication-title: Nature
  doi: 10.1038/d41586-018-05752-3
– ident: 905_CR29
  doi: 10.1021/acs.chemmater.9b04827
– volume: 35
  start-page: 831
  year: 1990
  ident: 905_CR34
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(90)90077-D
– volume: 8
  start-page: 241
  year: 2006
  ident: 905_CR27
  publication-title: Green Chem.
  doi: 10.1039/B512724F
– volume: 117
  start-page: 25381
  year: 2013
  ident: 905_CR22
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp409765w
– volume: 128
  start-page: 524
  year: 1981
  ident: 905_CR36
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2127450
– volume: 7
  start-page: 1701189
  year: 2017
  ident: 905_CR25
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701189
– volume: 10
  start-page: 6615
  year: 2008
  ident: 905_CR46
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b810189b
– volume: 29
  start-page: 1902653
  year: 2019
  ident: 905_CR10
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201902653
– volume: 350
  start-page: 938
  year: 2015
  ident: 905_CR19
  publication-title: Science
  doi: 10.1126/science.aab1595
– volume: 2
  start-page: 2519
  year: 2018
  ident: 905_CR37
  publication-title: Joule
  doi: 10.1016/j.joule.2018.11.007
– volume: 11
  year: 2020
  ident: 905_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18284-0
– volume: 57
  start-page: 11978
  year: 2018
  ident: 905_CR40
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201806748
– volume: 13
  start-page: 503
  year: 2020
  ident: 905_CR16
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE03545A
– volume: 12
  start-page: 1938
  year: 2019
  ident: 905_CR9
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE00596J
– volume: 10
  year: 2019
  ident: 905_CR17
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13436-3
– volume: 59
  start-page: 341
  year: 1981
  ident: 905_CR52
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(81)85176-2
– volume: 12
  start-page: 170
  year: 2010
  ident: 905_CR55
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B917592J
– volume: 4
  start-page: 796
  year: 2019
  ident: 905_CR23
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0464-5
– volume: 87
  start-page: 1117
  year: 1996
  ident: 905_CR49
  publication-title: Mol. Phys.
  doi: 10.1080/00268979600100761
– volume: 371
  start-page: 46
  year: 2021
  ident: 905_CR20
  publication-title: Science
  doi: 10.1126/science.abb9554
– volume: 54
  start-page: 14097
  year: 2018
  ident: 905_CR14
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC07730D
– volume: 113
  start-page: 11463
  year: 2009
  ident: 905_CR51
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp905220k
– ident: 905_CR42
– volume: 114
  start-page: 11503
  year: 2014
  ident: 905_CR2
  publication-title: Chem. Rev.
  doi: 10.1021/cr500003w
– volume: 574
  start-page: 81
  year: 2019
  ident: 905_CR11
  publication-title: Nature
  doi: 10.1038/s41586-019-1603-7
– volume: 29
  start-page: 8504
  year: 2017
  ident: 905_CR32
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b03404
– volume: 110
  start-page: 2822
  year: 1999
  ident: 905_CR47
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.477924
– volume: 52
  start-page: 8323
  year: 2013
  ident: 905_CR30
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie400825u
– volume: 51
  start-page: 7418
  year: 2012
  ident: 905_CR26
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie300247v
– volume: 11
  start-page: 881
  year: 2018
  ident: 905_CR6
  publication-title: Ener. Env. Sci.
  doi: 10.1039/C8EE00378E
– volume: 11
  start-page: 1858
  year: 2001
  ident: 905_CR39
  publication-title: J. Mater. Chem.
  doi: 10.1039/b100040n
– volume: 4
  start-page: 1650
  year: 2019
  ident: 905_CR38
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b00857
– volume: 132
  start-page: 114110
  year: 2010
  ident: 905_CR48
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3359469
– volume: 7
  start-page: eabe0219
  year: 2021
  ident: 905_CR5
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abe0219
– volume: 2
  start-page: 364
  year: 2006
  ident: 905_CR44
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct0502763
– volume: 166
  start-page: A909
  year: 2019
  ident: 905_CR7
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0121906jes
– volume: 356
  start-page: 415
  year: 2017
  ident: 905_CR4
  publication-title: Science
  doi: 10.1126/science.aak9991
– volume: 13
  start-page: 3527
  year: 2020
  ident: 905_CR13
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE01538E
– volume: 59
  start-page: 19292
  year: 2020
  ident: 905_CR18
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202008634
– volume: 29
  start-page: 1604685
  year: 2017
  ident: 905_CR12
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604685
– volume: 55
  start-page: 2687
  year: 2010
  ident: 905_CR28
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2009.12.030
– volume: 120
  start-page: 215
  year: 2008
  ident: 905_CR45
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-007-0310-x
– volume: 43
  start-page: 1627
  year: 2001
  ident: 905_CR35
  publication-title: Corros. Sci.
  doi: 10.1016/S0010-938X(00)00177-3
– volume: 11
  start-page: 3491
  year: 2018
  ident: 905_CR33
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE02456A
– volume: 17
  start-page: 543
  year: 2018
  ident: 905_CR3
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0063-z
– volume: 7
  year: 2016
  ident: 905_CR8
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11801
– volume: 2018
  start-page: 1
  year: 2018
  ident: 905_CR24
  publication-title: J. Spectrosc.
  doi: 10.1155/2018/2079278
– volume: 30
  start-page: 1223
  year: 2016
  ident: 905_CR31
  publication-title: Energy Fuels
– volume: 102
  start-page: 511
  year: 1995
  ident: 905_CR53
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.469429
– volume: 114
  start-page: 394
  year: 2010
  ident: 905_CR41
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp908444x
– reference: 33972759 - Nat Nanotechnol. 2021 Aug;16(8):854-855
SSID ssj0052924
Score 2.7338715
Snippet Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g −1 ), low redox potential (−0.762 V versus the standard hydrogen electrode),...
Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g ), low redox potential (-0.762 V versus the standard hydrogen electrode), high...
Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g−1), low redox potential (−0.762 V versus the standard hydrogen electrode), high...
Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g-1), low redox potential (-0.762 V versus the standard hydrogen electrode), high...
Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g-1), low redox potential (-0.762 V versus the standard hydrogen electrode), high...
SourceID osti
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 902
SubjectTerms 140/131
140/133
140/146
639/4077/4079
639/4077/4079/891
639/638/161/891
Anodes
Aqueous electrolytes
Batteries
Battery cycles
Chemistry and Materials Science
Dendrites
Dendritic structure
Discharge
Electrolytes
ENERGY STORAGE
Hydrogen evolution
Interphase
Intrinsically safe
Manganese dioxide
Materials Science
Nanotechnology
Nanotechnology and Microengineering
Redox potential
Retention
Titanium
Toxicity
Water consumption
Zinc
Zinc plating
Title Fluorinated interphase enables reversible aqueous zinc battery chemistries
URI https://link.springer.com/article/10.1038/s41565-021-00905-4
https://www.ncbi.nlm.nih.gov/pubmed/33972758
https://www.proquest.com/docview/2560480567
https://www.proquest.com/docview/2525652251
https://www.osti.gov/servlets/purl/1787833
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3B9gIHxDdpS2UkbhDVydixfUKAulSVqBCi0t4s2_GKSqts6W4P9NczdrxbENBLLrETa8bjec8ezwC89mQz6JWrPWJfi3lLJqWiqmUfXCcxOozpcvLn0-74TJzM5KxsuK1KWOVmTcwLdb8MaY_8MLlmocldq3cXP-pUNSqdrpYSGndhJ6UuSyFdarYlXLI1Y1FbJXRNVEyVSzMc9eEqEZd0N5nINDdc1uIPxzRZkoH9C3T-dWCa_dD0ITwoAJK9HzX-CO7E4THc_y2t4BM4mS6uUlwdwcieneeowu_krFjM96RWLGVtuiRTWETm6L_E_dn1-RCYz7k2f7JQisARiX4KZ9Ojbx-P61IzoQ5E7NbkcDBKh3reIhEVN0dlTOs5BgxceY2dirqTPnKnOm58T4DNx74T3gTRN9jjM5gMyyG-AGZaR725b3hAYbzWkrCtJwakhWmE1xU0G4HZUBKKp7oWC5sPtlHbUciWhGyzkK2o4M22z8WYTuPW1ntJD5bAQMpoG1LoT1jbhhYZjVjB_kY9thjeyt5MkwpebV-T0NI5iBuSSKkNtSLcKZsKno9q3Q4GCZ-1xKEqeLvR883H_z_S3dvHsgf32jzVUuDgPkzWl1fxJYGZtT_IM5aeevrpAHY-HJ1--foLQlTvyA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V5QAcEG_SFjASnCBqkrFj-4AQApbt89RKvZnY8YpKq2zb7AqVH8VvZOwkWxDQW89xEmee38TzAHhlSWfQyiq1iHXKpwWplPQyFbWrSoG-Qh-Kk_cPyskR3zkWx2vwc6iFCWmVg02Mhrqeu_CPfCu4Zq7IXcv3p2dpmBoVTleHERqdWOz6i-8UsrXvtj8Rf18Xxfjz4cdJ2k8VSB2FPgsyyehFhWpaIEH5aopS68Jm6NBl0iospVelsD6rZJlpWxOksb4uudWO1znWSM-9ATc5og4apcZfBssvCt0N0ZVcpRT6yb5IJ0O11YZAKdRCU_Ce6Uyk_A9HOJqTQv8L5P51QBv93vge3O0BK_vQSdh9WPPNA7jzWxvDh7Azni1DHh_B1pqdxCzGb-QcmY91WS0LXaLOSfVmnlX03vmyZT9OGsds7O15wVw_dI6C9kdwdC3UfAyjZt74p8B0UdHdmc0zh1xbpQRhaUsRl-I651YlkA8EM65vYB7maMxMPEhHZToiGyKyiUQ2PIE3q3tOu_YdV67eCHwwBD5CB10XUo3cwuRk1BRiApsDe0yv6K25FMsEXq4uE9HCuUvVBJLSGlpFOFfkCTzp2LraDEkRIUhBH_d24PPlw_-_0_Wr9_ICbk0O9_fM3vbB7gbcLqLYhaTFTRgtzpf-GQGphX0epZfB1-tWl1_lKSk_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VRUJwQLxJW8BIcIJonYwd2weEEGXVB1QcqLQ3EzteUWmVbZtdofLT-HWM89iCgN56Xiex5uH5vvU8AF448hl0qkwdYpWKWU4upYJKZeXLQmIoMcTi5E-Hxe6R2J_K6Qb8HGphYlrlcCa2B3W18PE_8nEMzUJTuFbjWZ8W8Xln8vbkNI0TpOJN6zBOozORg3D-nehb82Zvh3T9Ms8nH7683037CQOpJxq0pOMZgyxRz3IkWF_OUBmTO44ePVdOY6GCLqQLvFQFN64ieONCVQhnvKgyrJDeew2uK5RZ9DE1XZM9mZtuoK4SOiUaqPqCHY563ETSFOuiichzw2Uq_giKowU5978A71-XtW0MnNyB2z14Ze86a7sLG6G-B7d-a2l4H_Yn81XM6SMIW7HjNqPxGwVKFtoarYbFjlFn5IbzwEr67mLVsB_HtWeu7fN5znw_gI4I_AM4uhJpPoRRvajDY2AmL-lp7jLuURintSRc7Yh9aWEy4XQC2SAw6_tm5nGmxty2l-qobSdkS0K2rZCtSODV-pmTrpXHpau3oh4sAZHYTdfHtCO_tBkdcBoxge1BPbZ3-sZemGgCz9c_k9DiHUxZR5HSGlpFmFdmCTzq1LreDBI2zIm_JfB60PPFy_-_083L9_IMbpCj2I97hwdbcDNvrS7mL27DaHm2Ck8IUy3d09Z4GXy9am_5BeO_LWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluorinated+interphase+enables+reversible+aqueous+zinc+battery+chemistries&rft.jtitle=Nature+nanotechnology&rft.au=Cao%2C+Longsheng&rft.au=Li%2C+Dan&rft.au=Pollard%2C+Travis&rft.au=Deng%2C+Tao&rft.date=2021-08-01&rft.eissn=1748-3395&rft.volume=16&rft.issue=8&rft.spage=902&rft_id=info:doi/10.1038%2Fs41565-021-00905-4&rft_id=info%3Apmid%2F33972758&rft.externalDocID=33972758
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon