Drug delivery device for the inner ear: ultra-sharp fully metallic microneedles

Drug delivery into the inner ear is a significant challenge due to its inaccessibility as a fluid-filled cavity within the temporal bone of the skull. The round window membrane (RWM) is the only delivery portal from the middle ear to the inner ear that does not require perforation of bone. Recent ad...

Full description

Saved in:
Bibliographic Details
Published inDrug delivery and translational research Vol. 11; no. 1; pp. 214 - 226
Main Authors Aksit, Aykut, Rastogi, Shruti, Nadal, Maria L., Parker, Amber M., Lalwani, Anil K., West, Alan C., Kysar, Jeffrey W.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Drug delivery into the inner ear is a significant challenge due to its inaccessibility as a fluid-filled cavity within the temporal bone of the skull. The round window membrane (RWM) is the only delivery portal from the middle ear to the inner ear that does not require perforation of bone. Recent advances in microneedle fabrication enable the RWM to be perforated safely with polymeric microneedles as a means to enhance the rate of drug delivery from the middle ear to the inner ear. However, the polymeric material is not biocompatible and also lacks the strength of other materials. Herein we describe the design and development of gold-coated metallic microneedles suitable for RWM perforation. When developing microneedle technology for drug delivery, we considered three important general attributes: (1) high strength and ductility material, (2) high accuracy and precision of fabrication, and (3) broad design freedom. We developed a hybrid additive manufacturing method using two-photon lithography and electrochemical deposition to fabricate ultra-sharp gold-coated copper microneedles with these attributes. We refer to the microneedle fabrication methodology as two-photon templated electrodeposition (2PTE). We demonstrate the use of these microneedles by inducing a perforation with a minimal degree of trauma in a guinea pig RWM while the microneedle itself remains undamaged. Thus, this microneedle has the potential literally of opening the RWM for enhanced drug delivery into the inner ear. Finally, the 2PTE methodology can be applied to many different classes of microneedles for other drug delivery purposes as well the fabrication of small scale structures and devices for non-medical applications. Graphical Abstract Fully metallic ultra-sharp microneedle mounted at end of a 24-gauge stainless steel blunt syringe needle tip: (left) Size of microneedle shown relative to date stamp on U.S. one-cent coin; (right) Perforation through guinea pig round window membrane introduced with microneedle.
AbstractList Drug delivery into the inner ear is a significant challenge due to its inaccessibility as a fluid-filled cavity within the temporal bone of the skull. The Round Window Membrane (RWM) is the only delivery portal from the middle ear to the inner ear that does not require perforation of bone. Recent advances in microneedle fabrication enable the RWM to be perforated safely with polymeric microneedles as a means to enhance the rate of drug delivery from the middle ear to the inner ear. However the polymeric material is not biocompatible and also lacks the strength of other materials. Herein we describe the design and development of gold-coated metallic microneedles suitable for RWM perforation. When developing microneedle technology for drug delivery, we considered three important general attributes: (1) high strength & ductility material, (2) high accuracy & precision of fabrication, and (3) broad design freedom. We developed a hybrid additive manufacturing method using two-photon lithography and electrochemical deposition to fabricate ultra-sharp gold-coated copper microneedles with these attributes. We refer to the microneedle fabrication methodology as two-photon templated electrodeposition (2PTE). We demonstrate the use of these microneedles by inducing a perforation with a minimal degree of trauma in a guinea pig RWM while the microneedle itself remains undamaged. Thus this microneedle has the potential literally of opening the RWM for enhanced drug delivery into the inner ear. Finally, the 2PTE methodology can be applied to many different classes of microneedles for other drug delivery purposes as well the fabrication of small scale structures and devices for non-medical applications. Fully metallic microneedle mounted at end of 24 gauge stainless steel blunt needle tip: (left) Size of microneedle shown relative to date stamp on U.S. one-cent coin; (right) Perforation through Guinea pig Round Window Membrane introduced with microneedle.
Drug delivery into the inner ear is a significant challenge due to its inaccessibility as a fluid-filled cavity within the temporal bone of the skull. The round window membrane (RWM) is the only delivery portal from the middle ear to the inner ear that does not require perforation of bone. Recent advances in microneedle fabrication enable the RWM to be perforated safely with polymeric microneedles as a means to enhance the rate of drug delivery from the middle ear to the inner ear. However, the polymeric material is not biocompatible and also lacks the strength of other materials. Herein we describe the design and development of gold-coated metallic microneedles suitable for RWM perforation. When developing microneedle technology for drug delivery, we considered three important general attributes: (1) high strength and ductility material, (2) high accuracy and precision of fabrication, and (3) broad design freedom. We developed a hybrid additive manufacturing method using two-photon lithography and electrochemical deposition to fabricate ultra-sharp gold-coated copper microneedles with these attributes. We refer to the microneedle fabrication methodology as two-photon templated electrodeposition (2PTE). We demonstrate the use of these microneedles by inducing a perforation with a minimal degree of trauma in a guinea pig RWM while the microneedle itself remains undamaged. Thus, this microneedle has the potential literally of opening the RWM for enhanced drug delivery into the inner ear. Finally, the 2PTE methodology can be applied to many different classes of microneedles for other drug delivery purposes as well the fabrication of small scale structures and devices for non-medical applications. Graphical Abstract Fully metallic ultra-sharp microneedle mounted at end of a 24-gauge stainless steel blunt syringe needle tip: (left) Size of microneedle shown relative to date stamp on U.S. one-cent coin; (right) Perforation through guinea pig round window membrane introduced with microneedle.
Drug delivery into the inner ear is a significant challenge due to its inaccessibility as a fluid-filled cavity within the temporal bone of the skull. The round window membrane (RWM) is the only delivery portal from the middle ear to the inner ear that does not require perforation of bone. Recent advances in microneedle fabrication enable the RWM to be perforated safely with polymeric microneedles as a means to enhance the rate of drug delivery from the middle ear to the inner ear. However, the polymeric material is not biocompatible and also lacks the strength of other materials. Herein we describe the design and development of gold-coated metallic microneedles suitable for RWM perforation. When developing microneedle technology for drug delivery, we considered three important general attributes: (1) high strength and ductility material, (2) high accuracy and precision of fabrication, and (3) broad design freedom. We developed a hybrid additive manufacturing method using two-photon lithography and electrochemical deposition to fabricate ultra-sharp gold-coated copper microneedles with these attributes. We refer to the microneedle fabrication methodology as two-photon templated electrodeposition (2PTE). We demonstrate the use of these microneedles by inducing a perforation with a minimal degree of trauma in a guinea pig RWM while the microneedle itself remains undamaged. Thus, this microneedle has the potential literally of opening the RWM for enhanced drug delivery into the inner ear. Finally, the 2PTE methodology can be applied to many different classes of microneedles for other drug delivery purposes as well the fabrication of small scale structures and devices for non-medical applications. Graphical Abstract Fully metallic ultra-sharp microneedle mounted at end of a 24-gauge stainless steel blunt syringe needle tip: (left) Size of microneedle shown relative to date stamp on U.S. one-cent coin; (right) Perforation through guinea pig round window membrane introduced with microneedle.
Author Rastogi, Shruti
Nadal, Maria L.
Kysar, Jeffrey W.
West, Alan C.
Parker, Amber M.
Aksit, Aykut
Lalwani, Anil K.
AuthorAffiliation 3 Department of Chemical Engineering, Columbia University, 500 W. 120th St., New York, NY 10027, USA
1 Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
2 Department of Otolaryngology - Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
AuthorAffiliation_xml – name: 2 Department of Otolaryngology - Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
– name: 1 Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
– name: 3 Department of Chemical Engineering, Columbia University, 500 W. 120th St., New York, NY 10027, USA
Author_xml – sequence: 1
  givenname: Aykut
  surname: Aksit
  fullname: Aksit, Aykut
  organization: Department of Mechanical Engineering, Columbia University
– sequence: 2
  givenname: Shruti
  surname: Rastogi
  fullname: Rastogi, Shruti
  organization: Department of Mechanical Engineering, Columbia University
– sequence: 3
  givenname: Maria L.
  surname: Nadal
  fullname: Nadal, Maria L.
  organization: Department of Mechanical Engineering, Columbia University
– sequence: 4
  givenname: Amber M.
  surname: Parker
  fullname: Parker, Amber M.
  organization: Department of Otolaryngology - Head & Neck Surgery, Columbia University College of Physicians and Surgeons
– sequence: 5
  givenname: Anil K.
  surname: Lalwani
  fullname: Lalwani, Anil K.
  organization: Department of Mechanical Engineering, Columbia University, Department of Otolaryngology - Head & Neck Surgery, Columbia University College of Physicians and Surgeons
– sequence: 6
  givenname: Alan C.
  surname: West
  fullname: West, Alan C.
  organization: Department of Chemical Engineering, Columbia University
– sequence: 7
  givenname: Jeffrey W.
  orcidid: 0000-0003-3655-1077
  surname: Kysar
  fullname: Kysar, Jeffrey W.
  email: jk2079@columbia.edu
  organization: Department of Mechanical Engineering, Columbia University, Department of Otolaryngology - Head & Neck Surgery, Columbia University College of Physicians and Surgeons
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32488817$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1OxCAUhYkZ44w_L-DC8AJVKJSCCxMz_iYmbjRxRyi9ncEw7QTaSebtRatGXciGSzjfyb337KNJ27WA0DElp5SQ8ixSxrjISE6y9JR5pnbQLKeKZExxOfmu2csUHcX4StLhgpaq3ENTlnMpJS1n6PEqDAtcg3cbCNtUbJwF3HQB90vArm0hYDDhHA--DyaLSxPWuBm83-IV9MZ7Z_HK2ZCag9pDPES7jfERjj7vA_R8c_00v8seHm_v55cPmeVc9FlprGkKIomlRSVyIVTNWCUlA6J4SdJssuBgCmiUkVZQLvJK5aQWqqKNFYwdoIvRdz1UK6gttKk9r9fBrUzY6s44_fundUu96DZaCq5KWSaDk58G3-TXapJAjoI0XIwBGm1db3rXvfs5rynR70HoMQidgtAfQWiV0PwP-uX-L8RGKCZxu4CgX7shtGmJ_1Fv2zabjQ
CitedBy_id crossref_primary_10_3390_jcm11185474
crossref_primary_10_3390_pharmaceutics13081132
crossref_primary_10_1016_j_jddst_2023_104395
crossref_primary_10_1097_MAO_0000000000004297
crossref_primary_10_1186_s42826_023_00182_3
crossref_primary_10_1002_anbr_202400004
crossref_primary_10_1016_j_jconrel_2022_08_022
crossref_primary_10_3390_bioengineering10010024
crossref_primary_10_1021_acsmaterialslett_3c01317
crossref_primary_10_1080_21695717_2020_1807261
crossref_primary_10_1007_s40291_024_00759_1
crossref_primary_10_3390_mi15121433
crossref_primary_10_1021_acsami_4c09394
crossref_primary_10_1007_s13346_025_01821_z
crossref_primary_10_1016_j_ijpharm_2020_120180
crossref_primary_10_1016_j_ejpb_2024_114583
crossref_primary_10_1186_s43094_020_00176_1
crossref_primary_10_3390_brainsci14060621
crossref_primary_10_3390_mi14030615
crossref_primary_10_1016_j_snb_2024_137087
crossref_primary_10_1097_MAO_0000000000003845
crossref_primary_10_1002_lary_30811
crossref_primary_10_1021_acs_jproteome_1c00322
crossref_primary_10_1016_j_actbio_2021_09_036
crossref_primary_10_3389_fphar_2023_1062379
crossref_primary_10_3389_fphar_2024_1328460
crossref_primary_10_1088_1361_6439_ac0513
crossref_primary_10_1016_j_ijbiomac_2024_129987
crossref_primary_10_1097_MAO_0000000000004366
crossref_primary_10_1134_S2635167625600038
crossref_primary_10_1007_s44258_024_00028_0
crossref_primary_10_1097_ONO_0000000000000013
crossref_primary_10_1038_s41378_021_00298_3
crossref_primary_10_1007_s00170_023_11467_1
crossref_primary_10_1002_adem_202201222
crossref_primary_10_1016_j_acra_2024_10_022
crossref_primary_10_1007_s13346_023_01510_9
crossref_primary_10_2174_1871527320666210903102704
crossref_primary_10_1007_s10544_024_00701_6
crossref_primary_10_3390_life14101323
crossref_primary_10_1016_j_jddst_2022_103639
crossref_primary_10_1016_j_heares_2022_108523
crossref_primary_10_1016_j_ijpx_2022_100141
crossref_primary_10_1016_j_matdes_2024_112994
crossref_primary_10_1016_j_bios_2025_117150
crossref_primary_10_1016_j_eng_2024_10_016
crossref_primary_10_3389_fnins_2022_892777
Cites_doi 10.1097/MAO.0000000000002480
10.1023/B:PHAM.0000029282.44140.2e
10.1016/j.heares.2019.06.004
10.1159/000445736
10.1097/MAO.0000000000000629
10.1016/j.jconrel.2017.02.011
10.1016/j.jconrel.2016.12.009
10.1002/jbm.b.33557
10.1007/s11095-009-9967-2
10.1016/j.actbio.2018.09.007
10.1016/j.colsurfb.2019.06.030
10.1213/00000539-200102000-00041
10.1002/admt.201800274
10.1109/SENSOR.2003.1217045
10.3109/10717541003667798
10.1007/s00542-006-0221-0
10.1097/MAO.0000000000002491
10.1088/0960-1317/14/4/021
10.1016/j.sna.2012.04.019
10.1007/978-3-319-21455-9_3
10.1159/000442514
10.1016/j.addr.2012.04.005
10.1016/j.jbiomech.2003.12.010
10.1007/978-1-4842-0946-2
10.1016/j.jconrel.2015.10.026
10.1371/journal.pone.0172043
10.1109/JMEMS.2003.809951
10.1016/j.promfg.2018.07.014
10.1007/s13346-017-0384-5
10.1039/C4CP03744H
10.1002/adem.201800946
10.4103/0974-7753.114700
10.1002/jps.24182
10.1149/1.1391968
10.1016/j.sna.2012.04.037
10.1007/BF00463495
10.1016/j.addr.2003.10.023
10.1038/micronano.2017.34
10.1088/0370-1301/64/9/303
10.1016/j.jconrel.2005.02.002
10.1016/j.apmt.2019.100472
10.1021/js980042+
10.1016/j.heares.2018.03.002
10.1002/smll.201200441
10.1016/j.jconrel.2011.05.004
10.1007/s11095-014-1335-1
10.1016/j.heares.2007.06.010
10.1109/IROS.2015.7353754
10.1364/OL.28.000301
10.1097/AUD.0b013e3181c351f2
10.1007/s10544-016-0046-2
10.1016/j.sna.2010.02.010
10.1109/JMEMS.2007.907461
10.1016/j.jconrel.2017.11.048
10.1007/s10544-018-0287-3
10.1007/s11095-008-9756-3
10.1007/s13346-019-00692-5
10.1002/lio2.336
10.1109/JMEMS.2003.820293
10.1007/s10544-012-9683-2
ContentType Journal Article
Copyright Controlled Release Society 2020
Copyright_xml – notice: Controlled Release Society 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
5PM
DOI 10.1007/s13346-020-00782-9
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 2190-3948
EndPage 226
ExternalDocumentID PMC8649787
32488817
10_1007_s13346_020_00782_9
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute on Deafness and Other Communication Disorders
  grantid: R01DC014547
  funderid: https://doi.org/10.13039/100000055
– fundername: NHLBI NIH HHS
  grantid: T35 HL007616
– fundername: NIDDK NIH HHS
  grantid: P30 DK026687
– fundername: NIDCD NIH HHS
  grantid: R01 DC014547
GroupedDBID ---
-56
-5G
-BR
-EM
-~C
0R~
0VY
203
29~
2JY
2VQ
30V
4.4
406
408
409
53G
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
AKMHD
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
AUKKA
AVWKF
AXYYD
AZFZN
BGNMA
CSCUP
DNIVK
DPUIP
DX2
EBLON
EBS
EIOEI
EJD
EN4
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ8
HF~
HG6
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
PT4
RLLFE
ROL
RSV
S1Z
S27
SBL
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
T13
TSG
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
WK8
Z7U
Z87
ZMTXR
ZOVNA
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
5PM
ABRTQ
ID FETCH-LOGICAL-c446t-7acaf5080c15b62669d33b883e09470133854ea5ef9a8c61462b920d69b1fc633
IEDL.DBID U2A
ISSN 2190-393X
IngestDate Thu Aug 21 14:05:03 EDT 2025
Thu Jan 02 22:55:01 EST 2025
Tue Jul 01 03:47:23 EDT 2025
Thu Apr 24 23:00:14 EDT 2025
Fri Feb 21 02:34:39 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Round window membrane
Electrochemical deposition
Inner ear drug delivery
Microneedles
Hybrid additive manufacturing
Nanoscribe
2PTE
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-7acaf5080c15b62669d33b883e09470133854ea5ef9a8c61462b920d69b1fc633
Notes Senior authors.
ORCID 0000-0003-3655-1077
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8649787
PMID 32488817
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8649787
pubmed_primary_32488817
crossref_citationtrail_10_1007_s13346_020_00782_9
crossref_primary_10_1007_s13346_020_00782_9
springer_journals_10_1007_s13346_020_00782_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210200
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 2
  year: 2021
  text: 20210200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle An Official Journal of the Controlled Release Society
PublicationTitle Drug delivery and translational research
PublicationTitleAbbrev Drug Deliv. and Transl. Res
PublicationTitleAlternate Drug Deliv Transl Res
PublicationYear 2021
Publisher Springer US
Publisher_xml – name: Springer US
References KaushikSHordAHDensonDDMcAllisterDVSmitraSAllenMGPrausnitzMRLack of pain associated with microfabricated microneedlesAnesthesia & Analgesia20019225025041:STN:280:DC%2BD3M7ktFCqtA%3D%3D10.1213/00000539-200102000-00041
ForviEBedoniMCarabalonaRSonciniMMazzoleniPRizzoFO’MahonyCMorassoCCassaràDGGramaticaFPreliminary technological assessment of microneedles-based dry electrodes for biopotential monitoring in clinical examinationsSensors Actuators A Phys20121801771861:CAS:528:DC%2BC38XnvFCks7k%3D10.1016/j.sna.2012.04.019
HasegawaMYoonSGuillonneauGZhangYFrantzCNiederbergerCWeidenkaffAMichlerJPhilippeLThe electrodeposition of FeCrNi stainless steel: microstructural changes induced by anode reactionsPhys Chem Chem Phys20141626375263841:CAS:528:DC%2BC2cXhslOrsrrO10.1039/C4CP03744H25367332
KelsoCWatanabeHWazenJBucherTMicroperforations significantly enhance diffusion across round window membraneOtology & Neurotology201536469470010.1097/MAO.0000000000000629
DonnellyRFSinghTRRTunneyMMMorrowDIMcCarronPAO’MahonyCWoolfsonADMicroneedle arrays allow lower microbial penetration than hypodermic needles in vitroPharmaceutical Research20092611251325221:CAS:528:DC%2BD1MXhtFartr%2FL10.1007/s11095-009-9967-2
SantimetaneedolAWangZArteagaDAksitAPrevoteauCYuMChiangHFafalisDLalwaniAKysarJSmall molecule delivery across a perforated artificial membrane by thermoreversible hydrogel poloxamer 407Colloids Surf B: Biointerfaces20191821103001:CAS:528:DC%2BC1MXhsVWlu7zN10.1016/j.colsurfb.2019.06.030
YuMArteagaDNAksitAChiangHOlsonESKysarJWLalwaniAKAnatomical and functional consequences of microneedle perforation of round window membraneOtology & Neurotology2020412e280e287
Braybrook JH. 1996. Biocompatiblity: assessment of medical devices and materials. Biocompatiblity: assessment of medical devices and materials, by Julian H Braybrook (Editor), pp 246 ISBN 0-471-96597-9 Wiley-VCH, December 1996 p 246.
García-LópezESillerHRRodríguezCAStudy of the fabrication of AISI 316L microneedle arraysProcedia Manufacturing20182611712410.1016/j.promfg.2018.07.01410.1016/j.promfg.2018.07.014, http://www.sciencedirect.com/science/article/pii/S235197891830684X, 46th SME North American Manufacturing Research Conference NAMRC 46
DaryadelSBehroozfarAMinary-JolandanMToward control of microstructure in microscale additive manufacturing of copper using localized electrodepositionAdvanced Engineering Materials201921118009461:CAS:528:DC%2BC1MXis1anur8%3D10.1002/adem.201800946
HallEOThe deformation and ageing of mild steel: III discussion of resultsProceedings of the Physical Society Section B195164974710.1088/0370-1301/64/9/303
WatanabeHCardosoLLalwaniAKKysarJWA dual wedge microneedle for sampling of perilymph solution via round window membraneBiomed Microdevices2016182241:CAS:528:DC%2BC28Xjt1Ontr4%3D10.1007/s10544-016-0046-2268884405574191
GardeniersHJLuttgeRBerenschotEJDe BoerMJYeshurunSYHefetzMvan’t OeverRvan den BergASilicon micromachined hollow microneedles for transdermal liquid transportJournal of Microelectromechanical Systems200312685586210.1109/JMEMS.2003.820293
Naples JG, Miller LE, Ramsey A, Li D. 2019. Cochlear protein biomarkers as potential sites for targeted inner ear drug delivery. Drug delivery and translational research, pp 1–12.
Bean KE, Runyan W. 1990. Semiconductor integrated circuit processing technology. Addison-Wesley.
RadZFNordonREAnthonyCJBilstonLPrewettPDArnsJYArnsCHZhangLDaviesGJHigh-fidelity replication of thermoplastic microneedles with open microfluidic channelsMicrosystems & Nanoengineering201731703410.1038/micronano.2017.34
HenrySMcAllisterDVAllenMGPrausnitzMRMicrofabricated microneedles: a novel approach to transdermal drug deliveryJournal of Pharmaceutical Sciences19988789229251:CAS:528:DyaK1cXkvVGktrw%3D10.1021/js980042
Watanabe H, Lalwani AK, Kysar JW Tekalur S A, Zavattieri P, Korach C S, (eds). 2016. In situ nano-indentation of round window membrane, Vol. 6. Cham: Springer International Publishing.
JiangJMooreJSEdelhauserHFPrausnitzMRIntrascleral drug delivery to the eye using hollow microneedlesPharmaceutical Research20092623954031:CAS:528:DC%2BD1cXhtlWhtbvK10.1007/s11095-008-9756-3
ChiuWSBelseyNAGarrettNLMogerJPriceGJDelgado-CharroMBGuyRHDrug delivery into microneedle-porated nails from nanoparticle reservoirsJ Control Release2015220981061:CAS:528:DC%2BC2MXhslSqsbnN10.1016/j.jconrel.2015.10.026
KimKLeeJBHigh aspect ratio tapered hollow metallic microneedle arrays with microfluidic interconnectorMicrosystem Technologies20071332312351:CAS:528:DC%2BD28XhtlGktrfP10.1007/s00542-006-0221-0
WangNZhenYJinYWangXLiNJiangSWangTCombining different types of multifunctional liposomes loaded with ammonium bicarbonate to fabricate microneedle arrays as a vaginal mucosal vaccine adjuvant-dual delivery system (vadds)J Control Release201724612291:CAS:528:DC%2BC28XitFentLnM10.1016/j.jconrel.2016.12.009
MaYTaoWKrebsSJSuttonWFHaigwoodNLGillHSVaccine delivery to the oral cavity using coated microneedles induces systemic and mucosal immunityPharmaceutical Research2014319239324031:CAS:528:DC%2BC2cXktFCjtLo%3D10.1007/s11095-014-1335-1
BackerEEhrfeldWMünchmeyerDBetzHHeubergerAPongratzSGlashauserWMichelHRvSiemensProduction of separation-nozzle systems for uranium enrichment by a combination of x-ray lithography and galvanoplasticsNaturwissenschaften1982691152052310.1007/BF00463495
IzumiHSuzukiMAoyagiSKanzakiTRealistic imitation of mosquito’s proboscis: electrochemically etched sharp and jagged needles and their cooperative inserting motionSensors Actuators A Phys201116511151231:CAS:528:DC%2BC3MXitFahsL8%3D10.1016/j.sna.2010.02.010
Davis SP, Prausnitz MR, Allen MG. Fabrication and characterization of laser micromachined hollow microneedles. TRANSDUCERS ’03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664); 2003. p. 1435–1438. https://doi.org/10.1109/SENSOR.2003.1217045.
Suzuki M, Sawa T, Takahashi T, Aoyagi S. 2015. Ultrafine three-dimensional (3D) laser lithographic fabrication of microneedle and its application to painless insertion and blood sampling inspired by mosquito. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 2748–2753. https://doi.org/10.1109/IROS.2015.7353754.
Watanabe H, Lalwani AK, Kysar JW. In situ NANO-indentation of round window membrane. Mechanics of Biological Systems and Materials, vol 6, Springer International Publishing, Cham Heidelberg New York Dordrecht London, chap 3, pp 17–29. In: Tekalur SA, Zavattieri P, and Korach CS, editors; 2016.
MaGWuCMicroneedle, bio-microneedle and bio-inspired microneedle: a reviewJ Control Release201725111231:CAS:528:DC%2BC2sXjsFKgsrc%3D10.1016/j.jconrel.2017.02.011
DhuratRSukeshMAvhadGDandaleAPalAPundPA randomized evaluator blinded study of effect of microneedling in androgenetic alopecia: a pilot studyInternational Journal of Trichology201351610.4103/0974-7753.114700
ChiangHYuMAksitAWangWStern-ShavitSKysarJWLalwaniAK3D-printed microneedles create precise perforations in human round window membrane in situOtology & Neurotology2020412277284
SaltANSirjaniDBHartsockJJGillRMPlontkeSKMarker retention in the cochlea following injections through the round window membraneHearing Research20072321788610.1016/j.heares.2007.06.010176625462040295
DonnellyRFSinghTRRWoolfsonADMicroneedle-based drug delivery systems: microfabrication, drug delivery, and safetyDrug Delivery20101741872071:CAS:528:DC%2BC3cXkvVensrY%3D10.3109/10717541003667798
Schürch P, Ramachandramoorthy R, Pethö L, Michler J, Philippe L. 2019. Additive manufacturing by template-assisted 3D electrodeposition: nanocrystalline nickel microsprings and microspring arrays. Applied Materials Today, p 100472 https://doi.org/10.1016/j.apmt.2019.100472. http://www.sciencedirect.com/science/article/pii/S2352940719305918.
ChandrasekaranSBrazzleJDFrazierABSurface micromachined metallic microneedlesJ Microelectromech Syst200312328128810.1109/JMEMS.2003.809951
LiCGLeeCYLeeKJungHAn optimized hollow microneedle for minimally invasive blood extractionBiomedical Microdevices2013151172510.1007/s10544-012-9683-222833155
McCall AA, Swan EEL, Borenstein JT, Sewell WF, Kujawa SG, McKenna MJ. 2010. Drug delivery for treatment of inner ear disease: current state of knowledge. Ear and Hearing 31(2).
LiJLiuBZhouYChenZJiangLYuanWLiangLFabrication of a Ti porous microneedle array by metal injection molding for transdermal drug deliveryPLOS ONE20171221151:CAS:528:DC%2BC2sXpvFyktbo%3D10.1371/journal.pone.0172043
KratchmanLBSchusterDDeitrichMSLabadieRFForce perception thresholds in cochlear implantation surgeryAudiology and Neurotology201621424424910.1159/000445736
SerbinJEgbertAOstendorfAChichkovBNHoubertzRDomannGSchulzJCronauerCFröhlichLPopallMFemtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonicsOpt Lett20032853013031:CAS:528:DC%2BD3sXit1Ghsrk%3D10.1364/OL.28.00030112659425
MusazziUMFranzéSCilurzoFInnovative pharmaceutical approaches for the management of inner ear disordersDrug Delivery and Translational Research20188243644910.1007/s13346-017-0384-5
PlontkeSKHartsockJJGillRMSaltANIntracochlear drug injections through the round window membrane: measures to improve drug retentionAudiology and Neuro-Otology201621272791:CAS:528:DC%2BC28XntFOlsbw%3D10.1159/00044251426905306
Szeto B, Chiang H, Valentini C, Yu M, Kysar JW, Lalwani AK. 2019, Inner ear delivery: challenges and opportunities. Laryngoscope Investigative Otolaryngology.
KimYCParkJHPrausnitzMRMicroneedles for drug and vaccine deliveryAdvanced Drug Delivery Reviews20126414154715681:CAS:528:DC%2BC38XnsVGjt78%3D10.1016/j.addr.2012.04.005225758583419303emerging micro- and nanotechnologies for the development of novel drug delivery devices and systems
SchürchPPethöLSchwiedrzikJMichlerJPhilippeLAdditive manufacturing through galvanoforming of 3D nickel microarchitectures: simulation-assisted synthesisAdvanced Materials Technologies201831218002741:CAS:528:DC%2BC1MXislert7k%3D10.1002/admt.201800274
S
C Kelso (782_CR10) 2015; 36
HJ Gardeniers (782_CR16) 2003; 12
N Roxhed (782_CR63) 2007; 16
782_CR64
MR Prausnitz (782_CR18) 2004; 56
H Watanabe (782_CR36) 2016; 18
JM Wazen (782_CR59) 2017; 105
RF Donnelly (782_CR15) 2010; 17
782_CR60
E Backer (782_CR51) 1982; 69
G Traverso (782_CR28) 2015; 104
C O’Mahony (782_CR50) 2012; 186
782_CR3
YC Kim (782_CR20) 2012; 64
782_CR4
G Ma (782_CR21) 2017; 251
782_CR1
782_CR2
CK Choi (782_CR25) 2012; 8
AS Rzhevskiy (782_CR22) 2018; 270
782_CR48
R Dhurat (782_CR26) 2013; 5
P Schürch (782_CR54) 2018; 3
ZF Rad (782_CR47) 2017; 3
JH Park (782_CR17) 2005; 104
S Henry (782_CR32) 1998; 87
782_CR55
A Aksit (782_CR9) 2018; 20
NJ Petch (782_CR57) 1953; 174
S Kaushik (782_CR14) 2001; 92
LB Kratchman (782_CR58) 2016; 21
E García-López (782_CR35) 2018; 26
C Baek (782_CR23) 2011; 154
AN Salt (782_CR6) 2007; 232
H Izumi (782_CR61) 2011; 165
J Serbin (782_CR46) 2003; 28
EM Cahill (782_CR38) 2018; 80
J Jiang (782_CR19) 2009; 26
EO Hall (782_CR56) 1951; 64
SK Plontke (782_CR5) 2016; 21
782_CR41
Y Ma (782_CR27) 2014; 31
CG Li (782_CR45) 2013; 15
H Chiang (782_CR13) 2020; 41
M Hasegawa (782_CR53) 2014; 16
E Forvi (782_CR49) 2012; 180
SP Davis (782_CR42) 2004; 37
J Li (782_CR39) 2017; 12
S Daryadel (782_CR52) 2019; 21
K Kim (782_CR44) 2004; 14
M Yu (782_CR12) 2020; 41
N Wang (782_CR29) 2017; 246
K Kim (782_CR43) 2007; 13
S Chandrasekaran (782_CR40) 2003; 12
W Martanto (782_CR37) 2004; 21
782_CR30
A Santimetaneedol (782_CR11) 2019; 182
782_CR34
RF Donnelly (782_CR31) 2009; 26
782_CR33
WS Chiu (782_CR24) 2015; 220
UM Musazzi (782_CR7) 2018; 8
JJ Kelly (782_CR62) 1999; 146
AN Salt (782_CR8) 2018; 368
References_xml – reference: Braybrook JH. 1996. Biocompatiblity: assessment of medical devices and materials. Biocompatiblity: assessment of medical devices and materials, by Julian H Braybrook (Editor), pp 246 ISBN 0-471-96597-9 Wiley-VCH, December 1996 p 246.
– reference: KimKLeeJBHigh aspect ratio tapered hollow metallic microneedle arrays with microfluidic interconnectorMicrosystem Technologies20071332312351:CAS:528:DC%2BD28XhtlGktrfP10.1007/s00542-006-0221-0
– reference: MaGWuCMicroneedle, bio-microneedle and bio-inspired microneedle: a reviewJ Control Release201725111231:CAS:528:DC%2BC2sXjsFKgsrc%3D10.1016/j.jconrel.2017.02.011
– reference: LiJLiuBZhouYChenZJiangLYuanWLiangLFabrication of a Ti porous microneedle array by metal injection molding for transdermal drug deliveryPLOS ONE20171221151:CAS:528:DC%2BC2sXpvFyktbo%3D10.1371/journal.pone.0172043
– reference: KimKParkDSLuHMCheWKimKLeeJBAhnCHA tapered hollow metallic microneedle array using backside exposure of SU-8J Micromech Microeng20041445976031:CAS:528:DC%2BD2cXks1Sitro%3D10.1088/0960-1317/14/4/021
– reference: LiCGLeeCYLeeKJungHAn optimized hollow microneedle for minimally invasive blood extractionBiomedical Microdevices2013151172510.1007/s10544-012-9683-222833155
– reference: ChoiCKKimJBJangEHYounYNRyuWHCurved biodegradable microneedles for vascular drug deliverySmall2012816248324881:CAS:528:DC%2BC38Xns1Wmsb8%3D10.1002/smll.201200441
– reference: Micallef J. 2015. Design strategies for 3D printing, Apress, Berkeley, CA, pp 175–200. https://doi.org/10.1007/978-1-4842-0946-2.
– reference: ChiuWSBelseyNAGarrettNLMogerJPriceGJDelgado-CharroMBGuyRHDrug delivery into microneedle-porated nails from nanoparticle reservoirsJ Control Release2015220981061:CAS:528:DC%2BC2MXhslSqsbnN10.1016/j.jconrel.2015.10.026
– reference: RoxhedNGasserTCGrissPHolzapfelGAStemmeGPenetration-enhanced ultrasharp microneedles and prediction on skin interaction for efficient transdermal drug deliveryJ Microelectromech Syst20071661429144010.1109/JMEMS.2007.907461
– reference: MaYTaoWKrebsSJSuttonWFHaigwoodNLGillHSVaccine delivery to the oral cavity using coated microneedles induces systemic and mucosal immunityPharmaceutical Research2014319239324031:CAS:528:DC%2BC2cXktFCjtLo%3D10.1007/s11095-014-1335-1
– reference: Schürch P, Ramachandramoorthy R, Pethö L, Michler J, Philippe L. 2019. Additive manufacturing by template-assisted 3D electrodeposition: nanocrystalline nickel microsprings and microspring arrays. Applied Materials Today, p 100472 https://doi.org/10.1016/j.apmt.2019.100472. http://www.sciencedirect.com/science/article/pii/S2352940719305918.
– reference: ParkJHAllenMGPrausnitzMRBiodegradable polymer microneedles: fabrication, mechanics and transdermal drug deliveryJournal of Controlled Release2005104151661:CAS:528:DC%2BD2MXjvVClsLg%3D10.1016/j.jconrel.2005.02.002
– reference: KratchmanLBSchusterDDeitrichMSLabadieRFForce perception thresholds in cochlear implantation surgeryAudiology and Neurotology201621424424910.1159/000445736
– reference: HenrySMcAllisterDVAllenMGPrausnitzMRMicrofabricated microneedles: a novel approach to transdermal drug deliveryJournal of Pharmaceutical Sciences19988789229251:CAS:528:DyaK1cXkvVGktrw%3D10.1021/js980042+
– reference: ChandrasekaranSBrazzleJDFrazierABSurface micromachined metallic microneedlesJ Microelectromech Syst200312328128810.1109/JMEMS.2003.809951
– reference: KelsoCWatanabeHWazenJBucherTMicroperforations significantly enhance diffusion across round window membraneOtology & Neurotology201536469470010.1097/MAO.0000000000000629
– reference: JiangJMooreJSEdelhauserHFPrausnitzMRIntrascleral drug delivery to the eye using hollow microneedlesPharmaceutical Research20092623954031:CAS:528:DC%2BD1cXhtlWhtbvK10.1007/s11095-008-9756-3
– reference: Watanabe H, Lalwani AK, Kysar JW Tekalur S A, Zavattieri P, Korach C S, (eds). 2016. In situ nano-indentation of round window membrane, Vol. 6. Cham: Springer International Publishing.
– reference: PrausnitzMRMicroneedles for transdermal drug deliveryAdvanced Drug Delivery Reviews20045655815871:CAS:528:DC%2BD2cXhvFWqsbw%3D10.1016/j.addr.2003.10.02310.1016/j.addr.2003.10.023, breaking the Skin Barrier
– reference: García-LópezESillerHRRodríguezCAStudy of the fabrication of AISI 316L microneedle arraysProcedia Manufacturing20182611712410.1016/j.promfg.2018.07.01410.1016/j.promfg.2018.07.014, http://www.sciencedirect.com/science/article/pii/S235197891830684X, 46th SME North American Manufacturing Research Conference NAMRC 46
– reference: PlontkeSKHartsockJJGillRMSaltANIntracochlear drug injections through the round window membrane: measures to improve drug retentionAudiology and Neuro-Otology201621272791:CAS:528:DC%2BC28XntFOlsbw%3D10.1159/00044251426905306
– reference: CahillEMKeaveneySStuettgenVEbertsPRamos-LunaPZhangNDangolMO’CearbhaillEDMetallic microneedles with interconnected porosity: a scalable platform for biosensing and drug deliveryActa Biomaterialia2018804014111:CAS:528:DC%2BC1cXhslCisr%2FN10.1016/j.actbio.2018.09.00710.1016/j.actbio.2018.09.007, http://www.sciencedirect.com/science/article/pii/S1742706118305245
– reference: WatanabeHCardosoLLalwaniAKKysarJWA dual wedge microneedle for sampling of perilymph solution via round window membraneBiomed Microdevices2016182241:CAS:528:DC%2BC28Xjt1Ontr4%3D10.1007/s10544-016-0046-2268884405574191
– reference: Watanabe H, Lalwani AK, Kysar JW. In situ NANO-indentation of round window membrane. Mechanics of Biological Systems and Materials, vol 6, Springer International Publishing, Cham Heidelberg New York Dordrecht London, chap 3, pp 17–29. In: Tekalur SA, Zavattieri P, and Korach CS, editors; 2016.
– reference: DhuratRSukeshMAvhadGDandaleAPalAPundPA randomized evaluator blinded study of effect of microneedling in androgenetic alopecia: a pilot studyInternational Journal of Trichology201351610.4103/0974-7753.114700
– reference: Suzuki M, Sawa T, Takahashi T, Aoyagi S. 2015. Ultrafine three-dimensional (3D) laser lithographic fabrication of microneedle and its application to painless insertion and blood sampling inspired by mosquito. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 2748–2753. https://doi.org/10.1109/IROS.2015.7353754.
– reference: SerbinJEgbertAOstendorfAChichkovBNHoubertzRDomannGSchulzJCronauerCFröhlichLPopallMFemtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonicsOpt Lett20032853013031:CAS:528:DC%2BD3sXit1Ghsrk%3D10.1364/OL.28.00030112659425
– reference: RzhevskiyASSinghTRRDonnellyRFAnissimovYGMicroneedles as the technique of drug delivery enhancement in diverse organs and tissuesJ Control Release20182701842021:CAS:528:DC%2BC2sXhvFyit7rL10.1016/j.jconrel.2017.11.04829203415
– reference: Bean KE, Runyan W. 1990. Semiconductor integrated circuit processing technology. Addison-Wesley.
– reference: SaltANPlontkeSKPharmacokinetic principles in the inner ear: influence of drug properties on intratympanic applicationsHearing research201836828401:CAS:528:DC%2BC1cXltFWhtbs%3D10.1016/j.heares.2018.03.002
– reference: KaushikSHordAHDensonDDMcAllisterDVSmitraSAllenMGPrausnitzMRLack of pain associated with microfabricated microneedlesAnesthesia & Analgesia20019225025041:STN:280:DC%2BD3M7ktFCqtA%3D%3D10.1213/00000539-200102000-00041
– reference: SantimetaneedolAWangZArteagaDAksitAPrevoteauCYuMChiangHFafalisDLalwaniAKysarJSmall molecule delivery across a perforated artificial membrane by thermoreversible hydrogel poloxamer 407Colloids Surf B: Biointerfaces20191821103001:CAS:528:DC%2BC1MXhsVWlu7zN10.1016/j.colsurfb.2019.06.030
– reference: SaltANSirjaniDBHartsockJJGillRMPlontkeSKMarker retention in the cochlea following injections through the round window membraneHearing Research20072321788610.1016/j.heares.2007.06.010176625462040295
– reference: KimYCParkJHPrausnitzMRMicroneedles for drug and vaccine deliveryAdvanced Drug Delivery Reviews20126414154715681:CAS:528:DC%2BC38XnsVGjt78%3D10.1016/j.addr.2012.04.005225758583419303emerging micro- and nanotechnologies for the development of novel drug delivery devices and systems
– reference: Early S, Moon IS, Bommakanti K, Hunter I, Stankovic KM. 2019. A novel microneedle device for controlled and reliable liquid biopsy of the human inner ear. Hearing Research.
– reference: GardeniersHJLuttgeRBerenschotEJDe BoerMJYeshurunSYHefetzMvan’t OeverRvan den BergASilicon micromachined hollow microneedles for transdermal liquid transportJournal of Microelectromechanical Systems200312685586210.1109/JMEMS.2003.820293
– reference: Szeto B, Chiang H, Valentini C, Yu M, Kysar JW, Lalwani AK. 2019, Inner ear delivery: challenges and opportunities. Laryngoscope Investigative Otolaryngology.
– reference: DaryadelSBehroozfarAMinary-JolandanMToward control of microstructure in microscale additive manufacturing of copper using localized electrodepositionAdvanced Engineering Materials201921118009461:CAS:528:DC%2BC1MXis1anur8%3D10.1002/adem.201800946
– reference: SchürchPPethöLSchwiedrzikJMichlerJPhilippeLAdditive manufacturing through galvanoforming of 3D nickel microarchitectures: simulation-assisted synthesisAdvanced Materials Technologies201831218002741:CAS:528:DC%2BC1MXislert7k%3D10.1002/admt.201800274
– reference: ForviEBedoniMCarabalonaRSonciniMMazzoleniPRizzoFO’MahonyCMorassoCCassaràDGGramaticaFPreliminary technological assessment of microneedles-based dry electrodes for biopotential monitoring in clinical examinationsSensors Actuators A Phys20121801771861:CAS:528:DC%2BC38XnvFCks7k%3D10.1016/j.sna.2012.04.019
– reference: BackerEEhrfeldWMünchmeyerDBetzHHeubergerAPongratzSGlashauserWMichelHRvSiemensProduction of separation-nozzle systems for uranium enrichment by a combination of x-ray lithography and galvanoplasticsNaturwissenschaften1982691152052310.1007/BF00463495
– reference: O’MahonyCPiniFBlakeAWebsterCO’BrienJMcCarthyKGMicroneedle-based electrodes with integrated through-silicon via for biopotential recordingSensors Actuators A Phys201218613013610.1016/j.sna.2012.04.037
– reference: McCall AA, Swan EEL, Borenstein JT, Sewell WF, Kujawa SG, McKenna MJ. 2010. Drug delivery for treatment of inner ear disease: current state of knowledge. Ear and Hearing 31(2).
– reference: Naples JG, Miller LE, Ramsey A, Li D. 2019. Cochlear protein biomarkers as potential sites for targeted inner ear drug delivery. Drug delivery and translational research, pp 1–12.
– reference: ChiangHYuMAksitAWangWStern-ShavitSKysarJWLalwaniAK3D-printed microneedles create precise perforations in human round window membrane in situOtology & Neurotology2020412277284
– reference: KellyJJTianCWestACLeveling and microstructural effects of additives for copper electrodepositionJournal of The Electrochemical Society19991467254025451:CAS:528:DyaK1MXkvFCms7k%3D10.1149/1.1391968
– reference: BaekCHanMMinJPrausnitzMRParkJHParkJHLocal transdermal delivery of phenylephrine to the anal sphincter muscle using microneedlesJournal of Controlled Release201115421381471:CAS:528:DC%2BC3MXhtVyntrfE10.1016/j.jconrel.2011.05.004
– reference: WangNZhenYJinYWangXLiNJiangSWangTCombining different types of multifunctional liposomes loaded with ammonium bicarbonate to fabricate microneedle arrays as a vaginal mucosal vaccine adjuvant-dual delivery system (vadds)J Control Release201724612291:CAS:528:DC%2BC28XitFentLnM10.1016/j.jconrel.2016.12.009
– reference: PetchNJThe cleavage strength of polycrystalsJournal of the Iron and Steel Institute19531741925281:CAS:528:DyaG3sXktFSjtQ%3D%3D
– reference: IzumiHSuzukiMAoyagiSKanzakiTRealistic imitation of mosquito’s proboscis: electrochemically etched sharp and jagged needles and their cooperative inserting motionSensors Actuators A Phys201116511151231:CAS:528:DC%2BC3MXitFahsL8%3D10.1016/j.sna.2010.02.010
– reference: DonnellyRFSinghTRRWoolfsonADMicroneedle-based drug delivery systems: microfabrication, drug delivery, and safetyDrug Delivery20101741872071:CAS:528:DC%2BC3cXkvVensrY%3D10.3109/10717541003667798
– reference: MartantoWDavisSPHolidayNRWangJGillHSPrausnitzMRTransdermal delivery of insulin using microneedles in vivoPharm Res20042169479521:CAS:528:DC%2BD2cXktlykurw%3D10.1023/B:PHAM.0000029282.44140.2e15212158
– reference: MusazziUMFranzéSCilurzoFInnovative pharmaceutical approaches for the management of inner ear disordersDrug Delivery and Translational Research20188243644910.1007/s13346-017-0384-5
– reference: HasegawaMYoonSGuillonneauGZhangYFrantzCNiederbergerCWeidenkaffAMichlerJPhilippeLThe electrodeposition of FeCrNi stainless steel: microstructural changes induced by anode reactionsPhys Chem Chem Phys20141626375263841:CAS:528:DC%2BC2cXhslOrsrrO10.1039/C4CP03744H25367332
– reference: DavisSPLandisBJAdamsZHAllenMGPrausnitzMRInsertion of microneedles into skin: measurement and prediction of insertion force and needle fracture forceJournal of Biomechanics20043781155116310.1016/j.jbiomech.2003.12.01010.1016/j.jbiomech.2003.12.010, http://www.sciencedirect.com/science/article/pii/S0021929003004731
– reference: RadZFNordonREAnthonyCJBilstonLPrewettPDArnsJYArnsCHZhangLDaviesGJHigh-fidelity replication of thermoplastic microneedles with open microfluidic channelsMicrosystems & Nanoengineering201731703410.1038/micronano.2017.34
– reference: DonnellyRFSinghTRRTunneyMMMorrowDIMcCarronPAO’MahonyCWoolfsonADMicroneedle arrays allow lower microbial penetration than hypodermic needles in vitroPharmaceutical Research20092611251325221:CAS:528:DC%2BD1MXhtFartr%2FL10.1007/s11095-009-9967-2
– reference: WazenJMStevensJPWatanabeHKysarJWLalwaniAKSilver/silver chloride microneedles can detect penetration through the round window membraneJournal of Biomedical Materials Research Part B: Applied Biomaterials201710523073111:CAS:528:DC%2BC2MXhslSqtrnP10.1002/jbm.b.33557
– reference: YuMArteagaDNAksitAChiangHOlsonESKysarJWLalwaniAKAnatomical and functional consequences of microneedle perforation of round window membraneOtology & Neurotology2020412e280e287
– reference: HallEOThe deformation and ageing of mild steel: III discussion of resultsProceedings of the Physical Society Section B195164974710.1088/0370-1301/64/9/303
– reference: TraversoGSchoellhammerCMSchroederAMaaRLauwersGYPolatBEAndersonDGBlankschteinDLangerRMicroneedles for drug delivery via the gastrointestinal tractJournal of Pharmaceutical Sciences201510423623671:CAS:528:DC%2BC2MXisVyntL4%3D10.1002/jps.24182
– reference: AksitAArteagaDNArriagaMWangXWatanabeHKaszaKELalwaniAKKysarJWIn-vitro perforation of the round window membrane via direct 3-d printed microneedlesBiomed Microdevices2018202471:CAS:528:DC%2BC1cXhtFSqsb3O10.1007/s10544-018-0287-3298849276091873
– reference: Davis SP, Prausnitz MR, Allen MG. Fabrication and characterization of laser micromachined hollow microneedles. TRANSDUCERS ’03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664); 2003. p. 1435–1438. https://doi.org/10.1109/SENSOR.2003.1217045.
– volume: 41
  start-page: 277
  issue: 2
  year: 2020
  ident: 782_CR13
  publication-title: Otology & Neurotology
  doi: 10.1097/MAO.0000000000002480
– volume: 21
  start-page: 947
  issue: 6
  year: 2004
  ident: 782_CR37
  publication-title: Pharm Res
  doi: 10.1023/B:PHAM.0000029282.44140.2e
– ident: 782_CR4
  doi: 10.1016/j.heares.2019.06.004
– volume: 21
  start-page: 244
  issue: 4
  year: 2016
  ident: 782_CR58
  publication-title: Audiology and Neurotology
  doi: 10.1159/000445736
– volume: 36
  start-page: 694
  issue: 4
  year: 2015
  ident: 782_CR10
  publication-title: Otology & Neurotology
  doi: 10.1097/MAO.0000000000000629
– volume: 251
  start-page: 11
  year: 2017
  ident: 782_CR21
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2017.02.011
– volume: 246
  start-page: 12
  year: 2017
  ident: 782_CR29
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2016.12.009
– volume: 105
  start-page: 307
  issue: 2
  year: 2017
  ident: 782_CR59
  publication-title: Journal of Biomedical Materials Research Part B: Applied Biomaterials
  doi: 10.1002/jbm.b.33557
– volume: 26
  start-page: 2513
  issue: 11
  year: 2009
  ident: 782_CR31
  publication-title: Pharmaceutical Research
  doi: 10.1007/s11095-009-9967-2
– volume: 80
  start-page: 401
  year: 2018
  ident: 782_CR38
  publication-title: Acta Biomaterialia
  doi: 10.1016/j.actbio.2018.09.007
– volume: 182
  start-page: 110300
  year: 2019
  ident: 782_CR11
  publication-title: Colloids Surf B: Biointerfaces
  doi: 10.1016/j.colsurfb.2019.06.030
– volume: 92
  start-page: 502
  issue: 2
  year: 2001
  ident: 782_CR14
  publication-title: Anesthesia & Analgesia
  doi: 10.1213/00000539-200102000-00041
– volume: 3
  start-page: 1800274
  issue: 12
  year: 2018
  ident: 782_CR54
  publication-title: Advanced Materials Technologies
  doi: 10.1002/admt.201800274
– ident: 782_CR41
  doi: 10.1109/SENSOR.2003.1217045
– volume: 17
  start-page: 187
  issue: 4
  year: 2010
  ident: 782_CR15
  publication-title: Drug Delivery
  doi: 10.3109/10717541003667798
– volume: 13
  start-page: 231
  issue: 3
  year: 2007
  ident: 782_CR43
  publication-title: Microsystem Technologies
  doi: 10.1007/s00542-006-0221-0
– volume: 41
  start-page: e280
  issue: 2
  year: 2020
  ident: 782_CR12
  publication-title: Otology & Neurotology
  doi: 10.1097/MAO.0000000000002491
– volume: 14
  start-page: 597
  issue: 4
  year: 2004
  ident: 782_CR44
  publication-title: J Micromech Microeng
  doi: 10.1088/0960-1317/14/4/021
– volume: 180
  start-page: 177
  year: 2012
  ident: 782_CR49
  publication-title: Sensors Actuators A Phys
  doi: 10.1016/j.sna.2012.04.019
– ident: 782_CR64
  doi: 10.1007/978-3-319-21455-9_3
– volume: 21
  start-page: 72
  issue: 2
  year: 2016
  ident: 782_CR5
  publication-title: Audiology and Neuro-Otology
  doi: 10.1159/000442514
– volume: 64
  start-page: 1547
  issue: 14
  year: 2012
  ident: 782_CR20
  publication-title: Advanced Drug Delivery Reviews
  doi: 10.1016/j.addr.2012.04.005
– volume: 37
  start-page: 1155
  issue: 8
  year: 2004
  ident: 782_CR42
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2003.12.010
– ident: 782_CR30
  doi: 10.1007/978-3-319-21455-9_3
– ident: 782_CR60
  doi: 10.1007/978-1-4842-0946-2
– volume: 220
  start-page: 98
  year: 2015
  ident: 782_CR24
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2015.10.026
– volume: 12
  start-page: 1
  issue: 2
  year: 2017
  ident: 782_CR39
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0172043
– volume: 12
  start-page: 281
  issue: 3
  year: 2003
  ident: 782_CR40
  publication-title: J Microelectromech Syst
  doi: 10.1109/JMEMS.2003.809951
– volume: 26
  start-page: 117
  year: 2018
  ident: 782_CR35
  publication-title: Procedia Manufacturing
  doi: 10.1016/j.promfg.2018.07.014
– volume: 8
  start-page: 436
  issue: 2
  year: 2018
  ident: 782_CR7
  publication-title: Drug Delivery and Translational Research
  doi: 10.1007/s13346-017-0384-5
– volume: 174
  start-page: 25
  issue: 19
  year: 1953
  ident: 782_CR57
  publication-title: Journal of the Iron and Steel Institute
– volume: 16
  start-page: 26375
  year: 2014
  ident: 782_CR53
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C4CP03744H
– volume: 21
  start-page: 1800946
  issue: 1
  year: 2019
  ident: 782_CR52
  publication-title: Advanced Engineering Materials
  doi: 10.1002/adem.201800946
– ident: 782_CR34
– volume: 5
  start-page: 6
  issue: 1
  year: 2013
  ident: 782_CR26
  publication-title: International Journal of Trichology
  doi: 10.4103/0974-7753.114700
– volume: 104
  start-page: 362
  issue: 2
  year: 2015
  ident: 782_CR28
  publication-title: Journal of Pharmaceutical Sciences
  doi: 10.1002/jps.24182
– volume: 146
  start-page: 2540
  issue: 7
  year: 1999
  ident: 782_CR62
  publication-title: Journal of The Electrochemical Society
  doi: 10.1149/1.1391968
– volume: 186
  start-page: 130
  year: 2012
  ident: 782_CR50
  publication-title: Sensors Actuators A Phys
  doi: 10.1016/j.sna.2012.04.037
– volume: 69
  start-page: 520
  issue: 11
  year: 1982
  ident: 782_CR51
  publication-title: Naturwissenschaften
  doi: 10.1007/BF00463495
– volume: 56
  start-page: 581
  issue: 5
  year: 2004
  ident: 782_CR18
  publication-title: Advanced Drug Delivery Reviews
  doi: 10.1016/j.addr.2003.10.023
– volume: 3
  start-page: 17034
  year: 2017
  ident: 782_CR47
  publication-title: Microsystems & Nanoengineering
  doi: 10.1038/micronano.2017.34
– volume: 64
  start-page: 747
  issue: 9
  year: 1951
  ident: 782_CR56
  publication-title: Proceedings of the Physical Society Section B
  doi: 10.1088/0370-1301/64/9/303
– volume: 104
  start-page: 51
  issue: 1
  year: 2005
  ident: 782_CR17
  publication-title: Journal of Controlled Release
  doi: 10.1016/j.jconrel.2005.02.002
– ident: 782_CR55
  doi: 10.1016/j.apmt.2019.100472
– volume: 87
  start-page: 922
  issue: 8
  year: 1998
  ident: 782_CR32
  publication-title: Journal of Pharmaceutical Sciences
  doi: 10.1021/js980042+
– volume: 368
  start-page: 28
  year: 2018
  ident: 782_CR8
  publication-title: Hearing research
  doi: 10.1016/j.heares.2018.03.002
– volume: 8
  start-page: 2483
  issue: 16
  year: 2012
  ident: 782_CR25
  publication-title: Small
  doi: 10.1002/smll.201200441
– volume: 154
  start-page: 138
  issue: 2
  year: 2011
  ident: 782_CR23
  publication-title: Journal of Controlled Release
  doi: 10.1016/j.jconrel.2011.05.004
– volume: 31
  start-page: 2393
  issue: 9
  year: 2014
  ident: 782_CR27
  publication-title: Pharmaceutical Research
  doi: 10.1007/s11095-014-1335-1
– volume: 232
  start-page: 78
  issue: 1
  year: 2007
  ident: 782_CR6
  publication-title: Hearing Research
  doi: 10.1016/j.heares.2007.06.010
– ident: 782_CR48
  doi: 10.1109/IROS.2015.7353754
– volume: 28
  start-page: 301
  issue: 5
  year: 2003
  ident: 782_CR46
  publication-title: Opt Lett
  doi: 10.1364/OL.28.000301
– ident: 782_CR1
  doi: 10.1097/AUD.0b013e3181c351f2
– volume: 18
  start-page: 24
  issue: 2
  year: 2016
  ident: 782_CR36
  publication-title: Biomed Microdevices
  doi: 10.1007/s10544-016-0046-2
– ident: 782_CR33
– volume: 165
  start-page: 115
  issue: 1
  year: 2011
  ident: 782_CR61
  publication-title: Sensors Actuators A Phys
  doi: 10.1016/j.sna.2010.02.010
– volume: 16
  start-page: 1429
  issue: 6
  year: 2007
  ident: 782_CR63
  publication-title: J Microelectromech Syst
  doi: 10.1109/JMEMS.2007.907461
– volume: 270
  start-page: 184
  year: 2018
  ident: 782_CR22
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2017.11.048
– volume: 20
  start-page: 47
  issue: 2
  year: 2018
  ident: 782_CR9
  publication-title: Biomed Microdevices
  doi: 10.1007/s10544-018-0287-3
– volume: 26
  start-page: 395
  issue: 2
  year: 2009
  ident: 782_CR19
  publication-title: Pharmaceutical Research
  doi: 10.1007/s11095-008-9756-3
– ident: 782_CR2
  doi: 10.1007/s13346-019-00692-5
– ident: 782_CR3
  doi: 10.1002/lio2.336
– volume: 12
  start-page: 855
  issue: 6
  year: 2003
  ident: 782_CR16
  publication-title: Journal of Microelectromechanical Systems
  doi: 10.1109/JMEMS.2003.820293
– volume: 15
  start-page: 17
  issue: 1
  year: 2013
  ident: 782_CR45
  publication-title: Biomedical Microdevices
  doi: 10.1007/s10544-012-9683-2
SSID ssj0000461797
Score 2.4220064
Snippet Drug delivery into the inner ear is a significant challenge due to its inaccessibility as a fluid-filled cavity within the temporal bone of the skull. The...
SourceID pubmedcentral
pubmed
crossref
springer
SourceType Open Access Repository
Index Database
Enrichment Source
Publisher
StartPage 214
SubjectTerms Animals
Biomedical and Life Sciences
Biomedicine
Drug Delivery Systems
Ear, Inner
Guinea Pigs
Needles
Original Article
Pharmaceutical Preparations
Pharmaceutical Sciences/Technology
Round Window, Ear
Title Drug delivery device for the inner ear: ultra-sharp fully metallic microneedles
URI https://link.springer.com/article/10.1007/s13346-020-00782-9
https://www.ncbi.nlm.nih.gov/pubmed/32488817
https://pubmed.ncbi.nlm.nih.gov/PMC8649787
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4IXLwY3-KD7MFwkSa022673oiiRANygARPTbvdqkltCIUD_96ZUkowhsRL06Sz7WZnu998u_MAuLUJOHiE7MTDix1IbngikkbgKomcmUCGiGJ_IHpj-2XiTIqgsGzt7b4-ksxX6k2wG-c2OcxSJDTimiErUHOIu-MsHludcmeFUoi7eVUVi-KkueSTIlrm79dsIVIJQ79dJH-dk-bw83QIB4XdyDorRR_Bnk6PoTlcJZ5etthoE0eVtViTDTcpqZcn8PY4W3ywSCfkhbHEG1ofGNqrDO0_lpffYjjl79kiwX4YGTaeMtqZX7JvjeZ58qXYN7nupQh2ic5OYfzUHT30jKKUgqGQ780NN1BBjLZYW5lOiBxGyIjz0PO4RnrntomoOrYOHB3LwFMI2cIKpdWOhAzNWAnOz6Ca4jcugMWRHbpuhOMuQ1uK0DNNKQOh7UDxGHl6Hcz1cPqqyDNO5S4Sf5MhmVTgowr8XAW-rMNd2Wa6yrKxU_p8pZxSFq1CZPKmWwd3S22lACXR3n6Sfn3mybQ9QTX2sGVrrWC_-IuzHV24_J_4Fexb5AuTe3tfQ3U-W-gbNGbmYQNqnef3124DKoNhv5HP5B9xI-xm
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb4JAFJ609tBemu616xwaL5VEGBiY3kyX2FatB028ERiG1gSJET3w7_sem9E0Jr0QEmZgwhv4vm_mLYQ8mAgcLAB14sDB9ATTHB4IzbOlAM2MIINCsdfnnZH5MbbGRVBYUnq7l1uS2Z96FezGmIkOsxgJDbimiV2yB2TAQUeukdGuVlYwhbidVVUxME6aCTYuomX-vs0aIlUwtOkiubFPmsHP2xE5LHgjbeeGPiY7Kj4hjUGeeDpt0uEqjipp0gYdrFJSp6fk62W-_KaBitALI4UT_D9Q4KsU-B_Nym9RmPJPdBnBOLQEOs8orsyndKqAnkcTSafouhcD2EUqOSOjt9fhc0crSiloEvTeQrM96YXAxVpSt3zQMFwEjPmOwxTIO7uFQtUylWepUHiOBMjmhi-MVsCFr4eSM3ZOajE845LQMDB92w5AzgrfFNx3dF0IjyvTkywEnV4nevk6XVnkGcdyF5G7ypCMJnDBBG5mAlfUyWPVZ5Zn2dja-iI3TtUWWCEoed2uE3vNbFUDTKK9fiWe_GTJtB2ONfagZ7M0sFt8xcmWIVz9r_k92e8Me123-97_vCYHBvrFZJ7fN6S2mC_VLRCbhX-XzeNfxITsuQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb4JAEN60Nml6afqufe6h8VJJhcWF7c3UGvuyHjTxRmBZWhMkRvTAv-8MIFTTmPRCSNiFDbPwzbc78w0hdyYCB_OBndhwMF3BNJv7QnMtKYAzI8ggUfzo8e7QfB01R7-y-NNo9-WWZJbTgCpN0fxh6gcPZeIbYyYGz2JWNGCcJrbJDvyOdZzXQ6NVrLKgnLiVVlgxMGeaCTbKM2f-vs0KOhWQtB4uubZnmkJR54Ds5z4kbWVGPyRbKjoitX4mQp3U6aDMqYrrtEb7pTx1ckw-27PFF_VViBEZCZzgv4KC70rBF6RpKS4K0_-RLkIYhxZD5ynFVfqEThS46uFY0gmG8UUAfKGKT8iw8zx46mp5WQVNAveba5Yr3QD8sobUmx7wGS58xjzbZgqontVA0to0ldtUgXBtCfDNDU8YDZ8LTw8kZ-yUVCJ4xjmhgW96luUDtRWeKbhn67oQLlemK1kAnL1K9OXrdGSuOY6lL0KnVEtGEzhgAic1gSOq5L7oM80UNza2PsuMU7QFDxFYvW5VibVitqIBCmqvXonG36mwts2x3h70rC8N7ORfdLxhCBf_a35LdvvtjvP-0nu7JHsGhsikQeBXpDKfLdQ1-Dhz7yadxj9t4PD1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drug+Delivery+Device+for+the+Inner+Ear%3A+Ultra-sharp+Fully+Metallic+Microneedles&rft.jtitle=Drug+delivery+and+translational+research&rft.au=Aksit%2C+Aykut&rft.au=Rastogi%2C+Shruti&rft.au=Nadal%2C+Maria+L.&rft.au=Parker%2C+Amber+M.&rft.date=2021-02-01&rft.issn=2190-393X&rft.eissn=2190-3948&rft.volume=11&rft.issue=1&rft.spage=214&rft.epage=226&rft_id=info:doi/10.1007%2Fs13346-020-00782-9&rft_id=info%3Apmid%2F32488817&rft.externalDocID=PMC8649787
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-393X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-393X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-393X&client=summon