Drug delivery device for the inner ear: ultra-sharp fully metallic microneedles
Drug delivery into the inner ear is a significant challenge due to its inaccessibility as a fluid-filled cavity within the temporal bone of the skull. The round window membrane (RWM) is the only delivery portal from the middle ear to the inner ear that does not require perforation of bone. Recent ad...
Saved in:
Published in | Drug delivery and translational research Vol. 11; no. 1; pp. 214 - 226 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Drug delivery into the inner ear is a significant challenge due to its inaccessibility as a fluid-filled cavity within the temporal bone of the skull. The round window membrane (RWM) is the only delivery portal from the middle ear to the inner ear that does not require perforation of bone. Recent advances in microneedle fabrication enable the RWM to be perforated safely with polymeric microneedles as a means to enhance the rate of drug delivery from the middle ear to the inner ear. However, the polymeric material is not biocompatible and also lacks the strength of other materials. Herein we describe the design and development of gold-coated metallic microneedles suitable for RWM perforation. When developing microneedle technology for drug delivery, we considered three important general attributes: (1) high strength and ductility material, (2) high accuracy and precision of fabrication, and (3) broad design freedom. We developed a hybrid additive manufacturing method using two-photon lithography and electrochemical deposition to fabricate ultra-sharp gold-coated copper microneedles with these attributes. We refer to the microneedle fabrication methodology as two-photon templated electrodeposition (2PTE). We demonstrate the use of these microneedles by inducing a perforation with a minimal degree of trauma in a guinea pig RWM while the microneedle itself remains undamaged. Thus, this microneedle has the potential literally of opening the RWM for enhanced drug delivery into the inner ear. Finally, the 2PTE methodology can be applied to many different classes of microneedles for other drug delivery purposes as well the fabrication of small scale structures and devices for non-medical applications.
Graphical Abstract
Fully metallic ultra-sharp microneedle mounted at end of a 24-gauge stainless steel blunt syringe needle tip: (left) Size of microneedle shown relative to date stamp on U.S. one-cent coin; (right) Perforation through guinea pig round window membrane introduced with microneedle. |
---|---|
AbstractList | Drug delivery into the inner ear is a significant challenge due to its inaccessibility as a fluid-filled cavity within the temporal bone of the skull. The Round Window Membrane (RWM) is the only delivery portal from the middle ear to the inner ear that does not require perforation of bone. Recent advances in microneedle fabrication enable the RWM to be perforated safely with polymeric microneedles as a means to enhance the rate of drug delivery from the middle ear to the inner ear. However the polymeric material is not biocompatible and also lacks the strength of other materials. Herein we describe the design and development of gold-coated metallic microneedles suitable for RWM perforation. When developing microneedle technology for drug delivery, we considered three important general attributes: (1) high strength & ductility material, (2) high accuracy & precision of fabrication, and (3) broad design freedom. We developed a hybrid additive manufacturing method using two-photon lithography and electrochemical deposition to fabricate ultra-sharp gold-coated copper microneedles with these attributes. We refer to the microneedle fabrication methodology as two-photon templated electrodeposition (2PTE). We demonstrate the use of these microneedles by inducing a perforation with a minimal degree of trauma in a guinea pig RWM while the microneedle itself remains undamaged. Thus this microneedle has the potential literally of opening the RWM for enhanced drug delivery into the inner ear. Finally, the 2PTE methodology can be applied to many different classes of microneedles for other drug delivery purposes as well the fabrication of small scale structures and devices for non-medical applications.
Fully metallic microneedle mounted at end of 24 gauge stainless steel blunt needle tip: (left) Size of microneedle shown relative to date stamp on U.S. one-cent coin; (right) Perforation through Guinea pig Round Window Membrane introduced with microneedle. Drug delivery into the inner ear is a significant challenge due to its inaccessibility as a fluid-filled cavity within the temporal bone of the skull. The round window membrane (RWM) is the only delivery portal from the middle ear to the inner ear that does not require perforation of bone. Recent advances in microneedle fabrication enable the RWM to be perforated safely with polymeric microneedles as a means to enhance the rate of drug delivery from the middle ear to the inner ear. However, the polymeric material is not biocompatible and also lacks the strength of other materials. Herein we describe the design and development of gold-coated metallic microneedles suitable for RWM perforation. When developing microneedle technology for drug delivery, we considered three important general attributes: (1) high strength and ductility material, (2) high accuracy and precision of fabrication, and (3) broad design freedom. We developed a hybrid additive manufacturing method using two-photon lithography and electrochemical deposition to fabricate ultra-sharp gold-coated copper microneedles with these attributes. We refer to the microneedle fabrication methodology as two-photon templated electrodeposition (2PTE). We demonstrate the use of these microneedles by inducing a perforation with a minimal degree of trauma in a guinea pig RWM while the microneedle itself remains undamaged. Thus, this microneedle has the potential literally of opening the RWM for enhanced drug delivery into the inner ear. Finally, the 2PTE methodology can be applied to many different classes of microneedles for other drug delivery purposes as well the fabrication of small scale structures and devices for non-medical applications. Graphical Abstract Fully metallic ultra-sharp microneedle mounted at end of a 24-gauge stainless steel blunt syringe needle tip: (left) Size of microneedle shown relative to date stamp on U.S. one-cent coin; (right) Perforation through guinea pig round window membrane introduced with microneedle. Drug delivery into the inner ear is a significant challenge due to its inaccessibility as a fluid-filled cavity within the temporal bone of the skull. The round window membrane (RWM) is the only delivery portal from the middle ear to the inner ear that does not require perforation of bone. Recent advances in microneedle fabrication enable the RWM to be perforated safely with polymeric microneedles as a means to enhance the rate of drug delivery from the middle ear to the inner ear. However, the polymeric material is not biocompatible and also lacks the strength of other materials. Herein we describe the design and development of gold-coated metallic microneedles suitable for RWM perforation. When developing microneedle technology for drug delivery, we considered three important general attributes: (1) high strength and ductility material, (2) high accuracy and precision of fabrication, and (3) broad design freedom. We developed a hybrid additive manufacturing method using two-photon lithography and electrochemical deposition to fabricate ultra-sharp gold-coated copper microneedles with these attributes. We refer to the microneedle fabrication methodology as two-photon templated electrodeposition (2PTE). We demonstrate the use of these microneedles by inducing a perforation with a minimal degree of trauma in a guinea pig RWM while the microneedle itself remains undamaged. Thus, this microneedle has the potential literally of opening the RWM for enhanced drug delivery into the inner ear. Finally, the 2PTE methodology can be applied to many different classes of microneedles for other drug delivery purposes as well the fabrication of small scale structures and devices for non-medical applications. Graphical Abstract Fully metallic ultra-sharp microneedle mounted at end of a 24-gauge stainless steel blunt syringe needle tip: (left) Size of microneedle shown relative to date stamp on U.S. one-cent coin; (right) Perforation through guinea pig round window membrane introduced with microneedle. |
Author | Rastogi, Shruti Nadal, Maria L. Kysar, Jeffrey W. West, Alan C. Parker, Amber M. Aksit, Aykut Lalwani, Anil K. |
AuthorAffiliation | 3 Department of Chemical Engineering, Columbia University, 500 W. 120th St., New York, NY 10027, USA 1 Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA 2 Department of Otolaryngology - Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA |
AuthorAffiliation_xml | – name: 2 Department of Otolaryngology - Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA – name: 1 Department of Mechanical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA – name: 3 Department of Chemical Engineering, Columbia University, 500 W. 120th St., New York, NY 10027, USA |
Author_xml | – sequence: 1 givenname: Aykut surname: Aksit fullname: Aksit, Aykut organization: Department of Mechanical Engineering, Columbia University – sequence: 2 givenname: Shruti surname: Rastogi fullname: Rastogi, Shruti organization: Department of Mechanical Engineering, Columbia University – sequence: 3 givenname: Maria L. surname: Nadal fullname: Nadal, Maria L. organization: Department of Mechanical Engineering, Columbia University – sequence: 4 givenname: Amber M. surname: Parker fullname: Parker, Amber M. organization: Department of Otolaryngology - Head & Neck Surgery, Columbia University College of Physicians and Surgeons – sequence: 5 givenname: Anil K. surname: Lalwani fullname: Lalwani, Anil K. organization: Department of Mechanical Engineering, Columbia University, Department of Otolaryngology - Head & Neck Surgery, Columbia University College of Physicians and Surgeons – sequence: 6 givenname: Alan C. surname: West fullname: West, Alan C. organization: Department of Chemical Engineering, Columbia University – sequence: 7 givenname: Jeffrey W. orcidid: 0000-0003-3655-1077 surname: Kysar fullname: Kysar, Jeffrey W. email: jk2079@columbia.edu organization: Department of Mechanical Engineering, Columbia University, Department of Otolaryngology - Head & Neck Surgery, Columbia University College of Physicians and Surgeons |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32488817$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1OxCAUhYkZ44w_L-DC8AJVKJSCCxMz_iYmbjRxRyi9ncEw7QTaSebtRatGXciGSzjfyb337KNJ27WA0DElp5SQ8ixSxrjISE6y9JR5pnbQLKeKZExxOfmu2csUHcX4StLhgpaq3ENTlnMpJS1n6PEqDAtcg3cbCNtUbJwF3HQB90vArm0hYDDhHA--DyaLSxPWuBm83-IV9MZ7Z_HK2ZCag9pDPES7jfERjj7vA_R8c_00v8seHm_v55cPmeVc9FlprGkKIomlRSVyIVTNWCUlA6J4SdJssuBgCmiUkVZQLvJK5aQWqqKNFYwdoIvRdz1UK6gttKk9r9fBrUzY6s44_fundUu96DZaCq5KWSaDk58G3-TXapJAjoI0XIwBGm1db3rXvfs5rynR70HoMQidgtAfQWiV0PwP-uX-L8RGKCZxu4CgX7shtGmJ_1Fv2zabjQ |
CitedBy_id | crossref_primary_10_3390_jcm11185474 crossref_primary_10_3390_pharmaceutics13081132 crossref_primary_10_1016_j_jddst_2023_104395 crossref_primary_10_1097_MAO_0000000000004297 crossref_primary_10_1186_s42826_023_00182_3 crossref_primary_10_1002_anbr_202400004 crossref_primary_10_1016_j_jconrel_2022_08_022 crossref_primary_10_3390_bioengineering10010024 crossref_primary_10_1021_acsmaterialslett_3c01317 crossref_primary_10_1080_21695717_2020_1807261 crossref_primary_10_1007_s40291_024_00759_1 crossref_primary_10_3390_mi15121433 crossref_primary_10_1021_acsami_4c09394 crossref_primary_10_1007_s13346_025_01821_z crossref_primary_10_1016_j_ijpharm_2020_120180 crossref_primary_10_1016_j_ejpb_2024_114583 crossref_primary_10_1186_s43094_020_00176_1 crossref_primary_10_3390_brainsci14060621 crossref_primary_10_3390_mi14030615 crossref_primary_10_1016_j_snb_2024_137087 crossref_primary_10_1097_MAO_0000000000003845 crossref_primary_10_1002_lary_30811 crossref_primary_10_1021_acs_jproteome_1c00322 crossref_primary_10_1016_j_actbio_2021_09_036 crossref_primary_10_3389_fphar_2023_1062379 crossref_primary_10_3389_fphar_2024_1328460 crossref_primary_10_1088_1361_6439_ac0513 crossref_primary_10_1016_j_ijbiomac_2024_129987 crossref_primary_10_1097_MAO_0000000000004366 crossref_primary_10_1134_S2635167625600038 crossref_primary_10_1007_s44258_024_00028_0 crossref_primary_10_1097_ONO_0000000000000013 crossref_primary_10_1038_s41378_021_00298_3 crossref_primary_10_1007_s00170_023_11467_1 crossref_primary_10_1002_adem_202201222 crossref_primary_10_1016_j_acra_2024_10_022 crossref_primary_10_1007_s13346_023_01510_9 crossref_primary_10_2174_1871527320666210903102704 crossref_primary_10_1007_s10544_024_00701_6 crossref_primary_10_3390_life14101323 crossref_primary_10_1016_j_jddst_2022_103639 crossref_primary_10_1016_j_heares_2022_108523 crossref_primary_10_1016_j_ijpx_2022_100141 crossref_primary_10_1016_j_matdes_2024_112994 crossref_primary_10_1016_j_bios_2025_117150 crossref_primary_10_1016_j_eng_2024_10_016 crossref_primary_10_3389_fnins_2022_892777 |
Cites_doi | 10.1097/MAO.0000000000002480 10.1023/B:PHAM.0000029282.44140.2e 10.1016/j.heares.2019.06.004 10.1159/000445736 10.1097/MAO.0000000000000629 10.1016/j.jconrel.2017.02.011 10.1016/j.jconrel.2016.12.009 10.1002/jbm.b.33557 10.1007/s11095-009-9967-2 10.1016/j.actbio.2018.09.007 10.1016/j.colsurfb.2019.06.030 10.1213/00000539-200102000-00041 10.1002/admt.201800274 10.1109/SENSOR.2003.1217045 10.3109/10717541003667798 10.1007/s00542-006-0221-0 10.1097/MAO.0000000000002491 10.1088/0960-1317/14/4/021 10.1016/j.sna.2012.04.019 10.1007/978-3-319-21455-9_3 10.1159/000442514 10.1016/j.addr.2012.04.005 10.1016/j.jbiomech.2003.12.010 10.1007/978-1-4842-0946-2 10.1016/j.jconrel.2015.10.026 10.1371/journal.pone.0172043 10.1109/JMEMS.2003.809951 10.1016/j.promfg.2018.07.014 10.1007/s13346-017-0384-5 10.1039/C4CP03744H 10.1002/adem.201800946 10.4103/0974-7753.114700 10.1002/jps.24182 10.1149/1.1391968 10.1016/j.sna.2012.04.037 10.1007/BF00463495 10.1016/j.addr.2003.10.023 10.1038/micronano.2017.34 10.1088/0370-1301/64/9/303 10.1016/j.jconrel.2005.02.002 10.1016/j.apmt.2019.100472 10.1021/js980042+ 10.1016/j.heares.2018.03.002 10.1002/smll.201200441 10.1016/j.jconrel.2011.05.004 10.1007/s11095-014-1335-1 10.1016/j.heares.2007.06.010 10.1109/IROS.2015.7353754 10.1364/OL.28.000301 10.1097/AUD.0b013e3181c351f2 10.1007/s10544-016-0046-2 10.1016/j.sna.2010.02.010 10.1109/JMEMS.2007.907461 10.1016/j.jconrel.2017.11.048 10.1007/s10544-018-0287-3 10.1007/s11095-008-9756-3 10.1007/s13346-019-00692-5 10.1002/lio2.336 10.1109/JMEMS.2003.820293 10.1007/s10544-012-9683-2 |
ContentType | Journal Article |
Copyright | Controlled Release Society 2020 |
Copyright_xml | – notice: Controlled Release Society 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 5PM |
DOI | 10.1007/s13346-020-00782-9 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 2190-3948 |
EndPage | 226 |
ExternalDocumentID | PMC8649787 32488817 10_1007_s13346_020_00782_9 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institute on Deafness and Other Communication Disorders grantid: R01DC014547 funderid: https://doi.org/10.13039/100000055 – fundername: NHLBI NIH HHS grantid: T35 HL007616 – fundername: NIDDK NIH HHS grantid: P30 DK026687 – fundername: NIDCD NIH HHS grantid: R01 DC014547 |
GroupedDBID | --- -56 -5G -BR -EM -~C 0R~ 0VY 203 29~ 2JY 2VQ 30V 4.4 406 408 409 53G 96X AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO AKMHD ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG AUKKA AVWKF AXYYD AZFZN BGNMA CSCUP DNIVK DPUIP DX2 EBLON EBS EIOEI EJD EN4 ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ8 HF~ HG6 HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9I O9J PT4 RLLFE ROL RSV S1Z S27 SBL SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE T13 TSG U2A U9L UG4 UOJIU UTJUX UZXMN VFIZW W48 WK8 Z7U Z87 ZMTXR ZOVNA ~A9 AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION CGR CUY CVF ECM EIF NPM 5PM ABRTQ |
ID | FETCH-LOGICAL-c446t-7acaf5080c15b62669d33b883e09470133854ea5ef9a8c61462b920d69b1fc633 |
IEDL.DBID | U2A |
ISSN | 2190-393X |
IngestDate | Thu Aug 21 14:05:03 EDT 2025 Thu Jan 02 22:55:01 EST 2025 Tue Jul 01 03:47:23 EDT 2025 Thu Apr 24 23:00:14 EDT 2025 Fri Feb 21 02:34:39 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Round window membrane Electrochemical deposition Inner ear drug delivery Microneedles Hybrid additive manufacturing Nanoscribe 2PTE |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-7acaf5080c15b62669d33b883e09470133854ea5ef9a8c61462b920d69b1fc633 |
Notes | Senior authors. |
ORCID | 0000-0003-3655-1077 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8649787 |
PMID | 32488817 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8649787 pubmed_primary_32488817 crossref_citationtrail_10_1007_s13346_020_00782_9 crossref_primary_10_1007_s13346_020_00782_9 springer_journals_10_1007_s13346_020_00782_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210200 2021-02-00 20210201 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 2 year: 2021 text: 20210200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | An Official Journal of the Controlled Release Society |
PublicationTitle | Drug delivery and translational research |
PublicationTitleAbbrev | Drug Deliv. and Transl. Res |
PublicationTitleAlternate | Drug Deliv Transl Res |
PublicationYear | 2021 |
Publisher | Springer US |
Publisher_xml | – name: Springer US |
References | KaushikSHordAHDensonDDMcAllisterDVSmitraSAllenMGPrausnitzMRLack of pain associated with microfabricated microneedlesAnesthesia & Analgesia20019225025041:STN:280:DC%2BD3M7ktFCqtA%3D%3D10.1213/00000539-200102000-00041 ForviEBedoniMCarabalonaRSonciniMMazzoleniPRizzoFO’MahonyCMorassoCCassaràDGGramaticaFPreliminary technological assessment of microneedles-based dry electrodes for biopotential monitoring in clinical examinationsSensors Actuators A Phys20121801771861:CAS:528:DC%2BC38XnvFCks7k%3D10.1016/j.sna.2012.04.019 HasegawaMYoonSGuillonneauGZhangYFrantzCNiederbergerCWeidenkaffAMichlerJPhilippeLThe electrodeposition of FeCrNi stainless steel: microstructural changes induced by anode reactionsPhys Chem Chem Phys20141626375263841:CAS:528:DC%2BC2cXhslOrsrrO10.1039/C4CP03744H25367332 KelsoCWatanabeHWazenJBucherTMicroperforations significantly enhance diffusion across round window membraneOtology & Neurotology201536469470010.1097/MAO.0000000000000629 DonnellyRFSinghTRRTunneyMMMorrowDIMcCarronPAO’MahonyCWoolfsonADMicroneedle arrays allow lower microbial penetration than hypodermic needles in vitroPharmaceutical Research20092611251325221:CAS:528:DC%2BD1MXhtFartr%2FL10.1007/s11095-009-9967-2 SantimetaneedolAWangZArteagaDAksitAPrevoteauCYuMChiangHFafalisDLalwaniAKysarJSmall molecule delivery across a perforated artificial membrane by thermoreversible hydrogel poloxamer 407Colloids Surf B: Biointerfaces20191821103001:CAS:528:DC%2BC1MXhsVWlu7zN10.1016/j.colsurfb.2019.06.030 YuMArteagaDNAksitAChiangHOlsonESKysarJWLalwaniAKAnatomical and functional consequences of microneedle perforation of round window membraneOtology & Neurotology2020412e280e287 Braybrook JH. 1996. Biocompatiblity: assessment of medical devices and materials. Biocompatiblity: assessment of medical devices and materials, by Julian H Braybrook (Editor), pp 246 ISBN 0-471-96597-9 Wiley-VCH, December 1996 p 246. García-LópezESillerHRRodríguezCAStudy of the fabrication of AISI 316L microneedle arraysProcedia Manufacturing20182611712410.1016/j.promfg.2018.07.01410.1016/j.promfg.2018.07.014, http://www.sciencedirect.com/science/article/pii/S235197891830684X, 46th SME North American Manufacturing Research Conference NAMRC 46 DaryadelSBehroozfarAMinary-JolandanMToward control of microstructure in microscale additive manufacturing of copper using localized electrodepositionAdvanced Engineering Materials201921118009461:CAS:528:DC%2BC1MXis1anur8%3D10.1002/adem.201800946 HallEOThe deformation and ageing of mild steel: III discussion of resultsProceedings of the Physical Society Section B195164974710.1088/0370-1301/64/9/303 WatanabeHCardosoLLalwaniAKKysarJWA dual wedge microneedle for sampling of perilymph solution via round window membraneBiomed Microdevices2016182241:CAS:528:DC%2BC28Xjt1Ontr4%3D10.1007/s10544-016-0046-2268884405574191 GardeniersHJLuttgeRBerenschotEJDe BoerMJYeshurunSYHefetzMvan’t OeverRvan den BergASilicon micromachined hollow microneedles for transdermal liquid transportJournal of Microelectromechanical Systems200312685586210.1109/JMEMS.2003.820293 Naples JG, Miller LE, Ramsey A, Li D. 2019. Cochlear protein biomarkers as potential sites for targeted inner ear drug delivery. Drug delivery and translational research, pp 1–12. Bean KE, Runyan W. 1990. Semiconductor integrated circuit processing technology. Addison-Wesley. RadZFNordonREAnthonyCJBilstonLPrewettPDArnsJYArnsCHZhangLDaviesGJHigh-fidelity replication of thermoplastic microneedles with open microfluidic channelsMicrosystems & Nanoengineering201731703410.1038/micronano.2017.34 HenrySMcAllisterDVAllenMGPrausnitzMRMicrofabricated microneedles: a novel approach to transdermal drug deliveryJournal of Pharmaceutical Sciences19988789229251:CAS:528:DyaK1cXkvVGktrw%3D10.1021/js980042 Watanabe H, Lalwani AK, Kysar JW Tekalur S A, Zavattieri P, Korach C S, (eds). 2016. In situ nano-indentation of round window membrane, Vol. 6. Cham: Springer International Publishing. JiangJMooreJSEdelhauserHFPrausnitzMRIntrascleral drug delivery to the eye using hollow microneedlesPharmaceutical Research20092623954031:CAS:528:DC%2BD1cXhtlWhtbvK10.1007/s11095-008-9756-3 ChiuWSBelseyNAGarrettNLMogerJPriceGJDelgado-CharroMBGuyRHDrug delivery into microneedle-porated nails from nanoparticle reservoirsJ Control Release2015220981061:CAS:528:DC%2BC2MXhslSqsbnN10.1016/j.jconrel.2015.10.026 KimKLeeJBHigh aspect ratio tapered hollow metallic microneedle arrays with microfluidic interconnectorMicrosystem Technologies20071332312351:CAS:528:DC%2BD28XhtlGktrfP10.1007/s00542-006-0221-0 WangNZhenYJinYWangXLiNJiangSWangTCombining different types of multifunctional liposomes loaded with ammonium bicarbonate to fabricate microneedle arrays as a vaginal mucosal vaccine adjuvant-dual delivery system (vadds)J Control Release201724612291:CAS:528:DC%2BC28XitFentLnM10.1016/j.jconrel.2016.12.009 MaYTaoWKrebsSJSuttonWFHaigwoodNLGillHSVaccine delivery to the oral cavity using coated microneedles induces systemic and mucosal immunityPharmaceutical Research2014319239324031:CAS:528:DC%2BC2cXktFCjtLo%3D10.1007/s11095-014-1335-1 BackerEEhrfeldWMünchmeyerDBetzHHeubergerAPongratzSGlashauserWMichelHRvSiemensProduction of separation-nozzle systems for uranium enrichment by a combination of x-ray lithography and galvanoplasticsNaturwissenschaften1982691152052310.1007/BF00463495 IzumiHSuzukiMAoyagiSKanzakiTRealistic imitation of mosquito’s proboscis: electrochemically etched sharp and jagged needles and their cooperative inserting motionSensors Actuators A Phys201116511151231:CAS:528:DC%2BC3MXitFahsL8%3D10.1016/j.sna.2010.02.010 Davis SP, Prausnitz MR, Allen MG. Fabrication and characterization of laser micromachined hollow microneedles. TRANSDUCERS ’03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664); 2003. p. 1435–1438. https://doi.org/10.1109/SENSOR.2003.1217045. Suzuki M, Sawa T, Takahashi T, Aoyagi S. 2015. Ultrafine three-dimensional (3D) laser lithographic fabrication of microneedle and its application to painless insertion and blood sampling inspired by mosquito. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 2748–2753. https://doi.org/10.1109/IROS.2015.7353754. Watanabe H, Lalwani AK, Kysar JW. In situ NANO-indentation of round window membrane. Mechanics of Biological Systems and Materials, vol 6, Springer International Publishing, Cham Heidelberg New York Dordrecht London, chap 3, pp 17–29. In: Tekalur SA, Zavattieri P, and Korach CS, editors; 2016. MaGWuCMicroneedle, bio-microneedle and bio-inspired microneedle: a reviewJ Control Release201725111231:CAS:528:DC%2BC2sXjsFKgsrc%3D10.1016/j.jconrel.2017.02.011 DhuratRSukeshMAvhadGDandaleAPalAPundPA randomized evaluator blinded study of effect of microneedling in androgenetic alopecia: a pilot studyInternational Journal of Trichology201351610.4103/0974-7753.114700 ChiangHYuMAksitAWangWStern-ShavitSKysarJWLalwaniAK3D-printed microneedles create precise perforations in human round window membrane in situOtology & Neurotology2020412277284 SaltANSirjaniDBHartsockJJGillRMPlontkeSKMarker retention in the cochlea following injections through the round window membraneHearing Research20072321788610.1016/j.heares.2007.06.010176625462040295 DonnellyRFSinghTRRWoolfsonADMicroneedle-based drug delivery systems: microfabrication, drug delivery, and safetyDrug Delivery20101741872071:CAS:528:DC%2BC3cXkvVensrY%3D10.3109/10717541003667798 Schürch P, Ramachandramoorthy R, Pethö L, Michler J, Philippe L. 2019. Additive manufacturing by template-assisted 3D electrodeposition: nanocrystalline nickel microsprings and microspring arrays. Applied Materials Today, p 100472 https://doi.org/10.1016/j.apmt.2019.100472. http://www.sciencedirect.com/science/article/pii/S2352940719305918. ChandrasekaranSBrazzleJDFrazierABSurface micromachined metallic microneedlesJ Microelectromech Syst200312328128810.1109/JMEMS.2003.809951 LiCGLeeCYLeeKJungHAn optimized hollow microneedle for minimally invasive blood extractionBiomedical Microdevices2013151172510.1007/s10544-012-9683-222833155 McCall AA, Swan EEL, Borenstein JT, Sewell WF, Kujawa SG, McKenna MJ. 2010. Drug delivery for treatment of inner ear disease: current state of knowledge. Ear and Hearing 31(2). LiJLiuBZhouYChenZJiangLYuanWLiangLFabrication of a Ti porous microneedle array by metal injection molding for transdermal drug deliveryPLOS ONE20171221151:CAS:528:DC%2BC2sXpvFyktbo%3D10.1371/journal.pone.0172043 KratchmanLBSchusterDDeitrichMSLabadieRFForce perception thresholds in cochlear implantation surgeryAudiology and Neurotology201621424424910.1159/000445736 SerbinJEgbertAOstendorfAChichkovBNHoubertzRDomannGSchulzJCronauerCFröhlichLPopallMFemtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonicsOpt Lett20032853013031:CAS:528:DC%2BD3sXit1Ghsrk%3D10.1364/OL.28.00030112659425 MusazziUMFranzéSCilurzoFInnovative pharmaceutical approaches for the management of inner ear disordersDrug Delivery and Translational Research20188243644910.1007/s13346-017-0384-5 PlontkeSKHartsockJJGillRMSaltANIntracochlear drug injections through the round window membrane: measures to improve drug retentionAudiology and Neuro-Otology201621272791:CAS:528:DC%2BC28XntFOlsbw%3D10.1159/00044251426905306 Szeto B, Chiang H, Valentini C, Yu M, Kysar JW, Lalwani AK. 2019, Inner ear delivery: challenges and opportunities. Laryngoscope Investigative Otolaryngology. KimYCParkJHPrausnitzMRMicroneedles for drug and vaccine deliveryAdvanced Drug Delivery Reviews20126414154715681:CAS:528:DC%2BC38XnsVGjt78%3D10.1016/j.addr.2012.04.005225758583419303emerging micro- and nanotechnologies for the development of novel drug delivery devices and systems SchürchPPethöLSchwiedrzikJMichlerJPhilippeLAdditive manufacturing through galvanoforming of 3D nickel microarchitectures: simulation-assisted synthesisAdvanced Materials Technologies201831218002741:CAS:528:DC%2BC1MXislert7k%3D10.1002/admt.201800274 S C Kelso (782_CR10) 2015; 36 HJ Gardeniers (782_CR16) 2003; 12 N Roxhed (782_CR63) 2007; 16 782_CR64 MR Prausnitz (782_CR18) 2004; 56 H Watanabe (782_CR36) 2016; 18 JM Wazen (782_CR59) 2017; 105 RF Donnelly (782_CR15) 2010; 17 782_CR60 E Backer (782_CR51) 1982; 69 G Traverso (782_CR28) 2015; 104 C O’Mahony (782_CR50) 2012; 186 782_CR3 YC Kim (782_CR20) 2012; 64 782_CR4 G Ma (782_CR21) 2017; 251 782_CR1 782_CR2 CK Choi (782_CR25) 2012; 8 AS Rzhevskiy (782_CR22) 2018; 270 782_CR48 R Dhurat (782_CR26) 2013; 5 P Schürch (782_CR54) 2018; 3 ZF Rad (782_CR47) 2017; 3 JH Park (782_CR17) 2005; 104 S Henry (782_CR32) 1998; 87 782_CR55 A Aksit (782_CR9) 2018; 20 NJ Petch (782_CR57) 1953; 174 S Kaushik (782_CR14) 2001; 92 LB Kratchman (782_CR58) 2016; 21 E García-López (782_CR35) 2018; 26 C Baek (782_CR23) 2011; 154 AN Salt (782_CR6) 2007; 232 H Izumi (782_CR61) 2011; 165 J Serbin (782_CR46) 2003; 28 EM Cahill (782_CR38) 2018; 80 J Jiang (782_CR19) 2009; 26 EO Hall (782_CR56) 1951; 64 SK Plontke (782_CR5) 2016; 21 782_CR41 Y Ma (782_CR27) 2014; 31 CG Li (782_CR45) 2013; 15 H Chiang (782_CR13) 2020; 41 M Hasegawa (782_CR53) 2014; 16 E Forvi (782_CR49) 2012; 180 SP Davis (782_CR42) 2004; 37 J Li (782_CR39) 2017; 12 S Daryadel (782_CR52) 2019; 21 K Kim (782_CR44) 2004; 14 M Yu (782_CR12) 2020; 41 N Wang (782_CR29) 2017; 246 K Kim (782_CR43) 2007; 13 S Chandrasekaran (782_CR40) 2003; 12 W Martanto (782_CR37) 2004; 21 782_CR30 A Santimetaneedol (782_CR11) 2019; 182 782_CR34 RF Donnelly (782_CR31) 2009; 26 782_CR33 WS Chiu (782_CR24) 2015; 220 UM Musazzi (782_CR7) 2018; 8 JJ Kelly (782_CR62) 1999; 146 AN Salt (782_CR8) 2018; 368 |
References_xml | – reference: Braybrook JH. 1996. Biocompatiblity: assessment of medical devices and materials. Biocompatiblity: assessment of medical devices and materials, by Julian H Braybrook (Editor), pp 246 ISBN 0-471-96597-9 Wiley-VCH, December 1996 p 246. – reference: KimKLeeJBHigh aspect ratio tapered hollow metallic microneedle arrays with microfluidic interconnectorMicrosystem Technologies20071332312351:CAS:528:DC%2BD28XhtlGktrfP10.1007/s00542-006-0221-0 – reference: MaGWuCMicroneedle, bio-microneedle and bio-inspired microneedle: a reviewJ Control Release201725111231:CAS:528:DC%2BC2sXjsFKgsrc%3D10.1016/j.jconrel.2017.02.011 – reference: LiJLiuBZhouYChenZJiangLYuanWLiangLFabrication of a Ti porous microneedle array by metal injection molding for transdermal drug deliveryPLOS ONE20171221151:CAS:528:DC%2BC2sXpvFyktbo%3D10.1371/journal.pone.0172043 – reference: KimKParkDSLuHMCheWKimKLeeJBAhnCHA tapered hollow metallic microneedle array using backside exposure of SU-8J Micromech Microeng20041445976031:CAS:528:DC%2BD2cXks1Sitro%3D10.1088/0960-1317/14/4/021 – reference: LiCGLeeCYLeeKJungHAn optimized hollow microneedle for minimally invasive blood extractionBiomedical Microdevices2013151172510.1007/s10544-012-9683-222833155 – reference: ChoiCKKimJBJangEHYounYNRyuWHCurved biodegradable microneedles for vascular drug deliverySmall2012816248324881:CAS:528:DC%2BC38Xns1Wmsb8%3D10.1002/smll.201200441 – reference: Micallef J. 2015. Design strategies for 3D printing, Apress, Berkeley, CA, pp 175–200. https://doi.org/10.1007/978-1-4842-0946-2. – reference: ChiuWSBelseyNAGarrettNLMogerJPriceGJDelgado-CharroMBGuyRHDrug delivery into microneedle-porated nails from nanoparticle reservoirsJ Control Release2015220981061:CAS:528:DC%2BC2MXhslSqsbnN10.1016/j.jconrel.2015.10.026 – reference: RoxhedNGasserTCGrissPHolzapfelGAStemmeGPenetration-enhanced ultrasharp microneedles and prediction on skin interaction for efficient transdermal drug deliveryJ Microelectromech Syst20071661429144010.1109/JMEMS.2007.907461 – reference: MaYTaoWKrebsSJSuttonWFHaigwoodNLGillHSVaccine delivery to the oral cavity using coated microneedles induces systemic and mucosal immunityPharmaceutical Research2014319239324031:CAS:528:DC%2BC2cXktFCjtLo%3D10.1007/s11095-014-1335-1 – reference: Schürch P, Ramachandramoorthy R, Pethö L, Michler J, Philippe L. 2019. Additive manufacturing by template-assisted 3D electrodeposition: nanocrystalline nickel microsprings and microspring arrays. Applied Materials Today, p 100472 https://doi.org/10.1016/j.apmt.2019.100472. http://www.sciencedirect.com/science/article/pii/S2352940719305918. – reference: ParkJHAllenMGPrausnitzMRBiodegradable polymer microneedles: fabrication, mechanics and transdermal drug deliveryJournal of Controlled Release2005104151661:CAS:528:DC%2BD2MXjvVClsLg%3D10.1016/j.jconrel.2005.02.002 – reference: KratchmanLBSchusterDDeitrichMSLabadieRFForce perception thresholds in cochlear implantation surgeryAudiology and Neurotology201621424424910.1159/000445736 – reference: HenrySMcAllisterDVAllenMGPrausnitzMRMicrofabricated microneedles: a novel approach to transdermal drug deliveryJournal of Pharmaceutical Sciences19988789229251:CAS:528:DyaK1cXkvVGktrw%3D10.1021/js980042+ – reference: ChandrasekaranSBrazzleJDFrazierABSurface micromachined metallic microneedlesJ Microelectromech Syst200312328128810.1109/JMEMS.2003.809951 – reference: KelsoCWatanabeHWazenJBucherTMicroperforations significantly enhance diffusion across round window membraneOtology & Neurotology201536469470010.1097/MAO.0000000000000629 – reference: JiangJMooreJSEdelhauserHFPrausnitzMRIntrascleral drug delivery to the eye using hollow microneedlesPharmaceutical Research20092623954031:CAS:528:DC%2BD1cXhtlWhtbvK10.1007/s11095-008-9756-3 – reference: Watanabe H, Lalwani AK, Kysar JW Tekalur S A, Zavattieri P, Korach C S, (eds). 2016. In situ nano-indentation of round window membrane, Vol. 6. Cham: Springer International Publishing. – reference: PrausnitzMRMicroneedles for transdermal drug deliveryAdvanced Drug Delivery Reviews20045655815871:CAS:528:DC%2BD2cXhvFWqsbw%3D10.1016/j.addr.2003.10.02310.1016/j.addr.2003.10.023, breaking the Skin Barrier – reference: García-LópezESillerHRRodríguezCAStudy of the fabrication of AISI 316L microneedle arraysProcedia Manufacturing20182611712410.1016/j.promfg.2018.07.01410.1016/j.promfg.2018.07.014, http://www.sciencedirect.com/science/article/pii/S235197891830684X, 46th SME North American Manufacturing Research Conference NAMRC 46 – reference: PlontkeSKHartsockJJGillRMSaltANIntracochlear drug injections through the round window membrane: measures to improve drug retentionAudiology and Neuro-Otology201621272791:CAS:528:DC%2BC28XntFOlsbw%3D10.1159/00044251426905306 – reference: CahillEMKeaveneySStuettgenVEbertsPRamos-LunaPZhangNDangolMO’CearbhaillEDMetallic microneedles with interconnected porosity: a scalable platform for biosensing and drug deliveryActa Biomaterialia2018804014111:CAS:528:DC%2BC1cXhslCisr%2FN10.1016/j.actbio.2018.09.00710.1016/j.actbio.2018.09.007, http://www.sciencedirect.com/science/article/pii/S1742706118305245 – reference: WatanabeHCardosoLLalwaniAKKysarJWA dual wedge microneedle for sampling of perilymph solution via round window membraneBiomed Microdevices2016182241:CAS:528:DC%2BC28Xjt1Ontr4%3D10.1007/s10544-016-0046-2268884405574191 – reference: Watanabe H, Lalwani AK, Kysar JW. In situ NANO-indentation of round window membrane. Mechanics of Biological Systems and Materials, vol 6, Springer International Publishing, Cham Heidelberg New York Dordrecht London, chap 3, pp 17–29. In: Tekalur SA, Zavattieri P, and Korach CS, editors; 2016. – reference: DhuratRSukeshMAvhadGDandaleAPalAPundPA randomized evaluator blinded study of effect of microneedling in androgenetic alopecia: a pilot studyInternational Journal of Trichology201351610.4103/0974-7753.114700 – reference: Suzuki M, Sawa T, Takahashi T, Aoyagi S. 2015. Ultrafine three-dimensional (3D) laser lithographic fabrication of microneedle and its application to painless insertion and blood sampling inspired by mosquito. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp 2748–2753. https://doi.org/10.1109/IROS.2015.7353754. – reference: SerbinJEgbertAOstendorfAChichkovBNHoubertzRDomannGSchulzJCronauerCFröhlichLPopallMFemtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonicsOpt Lett20032853013031:CAS:528:DC%2BD3sXit1Ghsrk%3D10.1364/OL.28.00030112659425 – reference: RzhevskiyASSinghTRRDonnellyRFAnissimovYGMicroneedles as the technique of drug delivery enhancement in diverse organs and tissuesJ Control Release20182701842021:CAS:528:DC%2BC2sXhvFyit7rL10.1016/j.jconrel.2017.11.04829203415 – reference: Bean KE, Runyan W. 1990. Semiconductor integrated circuit processing technology. Addison-Wesley. – reference: SaltANPlontkeSKPharmacokinetic principles in the inner ear: influence of drug properties on intratympanic applicationsHearing research201836828401:CAS:528:DC%2BC1cXltFWhtbs%3D10.1016/j.heares.2018.03.002 – reference: KaushikSHordAHDensonDDMcAllisterDVSmitraSAllenMGPrausnitzMRLack of pain associated with microfabricated microneedlesAnesthesia & Analgesia20019225025041:STN:280:DC%2BD3M7ktFCqtA%3D%3D10.1213/00000539-200102000-00041 – reference: SantimetaneedolAWangZArteagaDAksitAPrevoteauCYuMChiangHFafalisDLalwaniAKysarJSmall molecule delivery across a perforated artificial membrane by thermoreversible hydrogel poloxamer 407Colloids Surf B: Biointerfaces20191821103001:CAS:528:DC%2BC1MXhsVWlu7zN10.1016/j.colsurfb.2019.06.030 – reference: SaltANSirjaniDBHartsockJJGillRMPlontkeSKMarker retention in the cochlea following injections through the round window membraneHearing Research20072321788610.1016/j.heares.2007.06.010176625462040295 – reference: KimYCParkJHPrausnitzMRMicroneedles for drug and vaccine deliveryAdvanced Drug Delivery Reviews20126414154715681:CAS:528:DC%2BC38XnsVGjt78%3D10.1016/j.addr.2012.04.005225758583419303emerging micro- and nanotechnologies for the development of novel drug delivery devices and systems – reference: Early S, Moon IS, Bommakanti K, Hunter I, Stankovic KM. 2019. A novel microneedle device for controlled and reliable liquid biopsy of the human inner ear. Hearing Research. – reference: GardeniersHJLuttgeRBerenschotEJDe BoerMJYeshurunSYHefetzMvan’t OeverRvan den BergASilicon micromachined hollow microneedles for transdermal liquid transportJournal of Microelectromechanical Systems200312685586210.1109/JMEMS.2003.820293 – reference: Szeto B, Chiang H, Valentini C, Yu M, Kysar JW, Lalwani AK. 2019, Inner ear delivery: challenges and opportunities. Laryngoscope Investigative Otolaryngology. – reference: DaryadelSBehroozfarAMinary-JolandanMToward control of microstructure in microscale additive manufacturing of copper using localized electrodepositionAdvanced Engineering Materials201921118009461:CAS:528:DC%2BC1MXis1anur8%3D10.1002/adem.201800946 – reference: SchürchPPethöLSchwiedrzikJMichlerJPhilippeLAdditive manufacturing through galvanoforming of 3D nickel microarchitectures: simulation-assisted synthesisAdvanced Materials Technologies201831218002741:CAS:528:DC%2BC1MXislert7k%3D10.1002/admt.201800274 – reference: ForviEBedoniMCarabalonaRSonciniMMazzoleniPRizzoFO’MahonyCMorassoCCassaràDGGramaticaFPreliminary technological assessment of microneedles-based dry electrodes for biopotential monitoring in clinical examinationsSensors Actuators A Phys20121801771861:CAS:528:DC%2BC38XnvFCks7k%3D10.1016/j.sna.2012.04.019 – reference: BackerEEhrfeldWMünchmeyerDBetzHHeubergerAPongratzSGlashauserWMichelHRvSiemensProduction of separation-nozzle systems for uranium enrichment by a combination of x-ray lithography and galvanoplasticsNaturwissenschaften1982691152052310.1007/BF00463495 – reference: O’MahonyCPiniFBlakeAWebsterCO’BrienJMcCarthyKGMicroneedle-based electrodes with integrated through-silicon via for biopotential recordingSensors Actuators A Phys201218613013610.1016/j.sna.2012.04.037 – reference: McCall AA, Swan EEL, Borenstein JT, Sewell WF, Kujawa SG, McKenna MJ. 2010. Drug delivery for treatment of inner ear disease: current state of knowledge. Ear and Hearing 31(2). – reference: Naples JG, Miller LE, Ramsey A, Li D. 2019. Cochlear protein biomarkers as potential sites for targeted inner ear drug delivery. Drug delivery and translational research, pp 1–12. – reference: ChiangHYuMAksitAWangWStern-ShavitSKysarJWLalwaniAK3D-printed microneedles create precise perforations in human round window membrane in situOtology & Neurotology2020412277284 – reference: KellyJJTianCWestACLeveling and microstructural effects of additives for copper electrodepositionJournal of The Electrochemical Society19991467254025451:CAS:528:DyaK1MXkvFCms7k%3D10.1149/1.1391968 – reference: BaekCHanMMinJPrausnitzMRParkJHParkJHLocal transdermal delivery of phenylephrine to the anal sphincter muscle using microneedlesJournal of Controlled Release201115421381471:CAS:528:DC%2BC3MXhtVyntrfE10.1016/j.jconrel.2011.05.004 – reference: WangNZhenYJinYWangXLiNJiangSWangTCombining different types of multifunctional liposomes loaded with ammonium bicarbonate to fabricate microneedle arrays as a vaginal mucosal vaccine adjuvant-dual delivery system (vadds)J Control Release201724612291:CAS:528:DC%2BC28XitFentLnM10.1016/j.jconrel.2016.12.009 – reference: PetchNJThe cleavage strength of polycrystalsJournal of the Iron and Steel Institute19531741925281:CAS:528:DyaG3sXktFSjtQ%3D%3D – reference: IzumiHSuzukiMAoyagiSKanzakiTRealistic imitation of mosquito’s proboscis: electrochemically etched sharp and jagged needles and their cooperative inserting motionSensors Actuators A Phys201116511151231:CAS:528:DC%2BC3MXitFahsL8%3D10.1016/j.sna.2010.02.010 – reference: DonnellyRFSinghTRRWoolfsonADMicroneedle-based drug delivery systems: microfabrication, drug delivery, and safetyDrug Delivery20101741872071:CAS:528:DC%2BC3cXkvVensrY%3D10.3109/10717541003667798 – reference: MartantoWDavisSPHolidayNRWangJGillHSPrausnitzMRTransdermal delivery of insulin using microneedles in vivoPharm Res20042169479521:CAS:528:DC%2BD2cXktlykurw%3D10.1023/B:PHAM.0000029282.44140.2e15212158 – reference: MusazziUMFranzéSCilurzoFInnovative pharmaceutical approaches for the management of inner ear disordersDrug Delivery and Translational Research20188243644910.1007/s13346-017-0384-5 – reference: HasegawaMYoonSGuillonneauGZhangYFrantzCNiederbergerCWeidenkaffAMichlerJPhilippeLThe electrodeposition of FeCrNi stainless steel: microstructural changes induced by anode reactionsPhys Chem Chem Phys20141626375263841:CAS:528:DC%2BC2cXhslOrsrrO10.1039/C4CP03744H25367332 – reference: DavisSPLandisBJAdamsZHAllenMGPrausnitzMRInsertion of microneedles into skin: measurement and prediction of insertion force and needle fracture forceJournal of Biomechanics20043781155116310.1016/j.jbiomech.2003.12.01010.1016/j.jbiomech.2003.12.010, http://www.sciencedirect.com/science/article/pii/S0021929003004731 – reference: RadZFNordonREAnthonyCJBilstonLPrewettPDArnsJYArnsCHZhangLDaviesGJHigh-fidelity replication of thermoplastic microneedles with open microfluidic channelsMicrosystems & Nanoengineering201731703410.1038/micronano.2017.34 – reference: DonnellyRFSinghTRRTunneyMMMorrowDIMcCarronPAO’MahonyCWoolfsonADMicroneedle arrays allow lower microbial penetration than hypodermic needles in vitroPharmaceutical Research20092611251325221:CAS:528:DC%2BD1MXhtFartr%2FL10.1007/s11095-009-9967-2 – reference: WazenJMStevensJPWatanabeHKysarJWLalwaniAKSilver/silver chloride microneedles can detect penetration through the round window membraneJournal of Biomedical Materials Research Part B: Applied Biomaterials201710523073111:CAS:528:DC%2BC2MXhslSqtrnP10.1002/jbm.b.33557 – reference: YuMArteagaDNAksitAChiangHOlsonESKysarJWLalwaniAKAnatomical and functional consequences of microneedle perforation of round window membraneOtology & Neurotology2020412e280e287 – reference: HallEOThe deformation and ageing of mild steel: III discussion of resultsProceedings of the Physical Society Section B195164974710.1088/0370-1301/64/9/303 – reference: TraversoGSchoellhammerCMSchroederAMaaRLauwersGYPolatBEAndersonDGBlankschteinDLangerRMicroneedles for drug delivery via the gastrointestinal tractJournal of Pharmaceutical Sciences201510423623671:CAS:528:DC%2BC2MXisVyntL4%3D10.1002/jps.24182 – reference: AksitAArteagaDNArriagaMWangXWatanabeHKaszaKELalwaniAKKysarJWIn-vitro perforation of the round window membrane via direct 3-d printed microneedlesBiomed Microdevices2018202471:CAS:528:DC%2BC1cXhtFSqsb3O10.1007/s10544-018-0287-3298849276091873 – reference: Davis SP, Prausnitz MR, Allen MG. Fabrication and characterization of laser micromachined hollow microneedles. TRANSDUCERS ’03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664); 2003. p. 1435–1438. https://doi.org/10.1109/SENSOR.2003.1217045. – volume: 41 start-page: 277 issue: 2 year: 2020 ident: 782_CR13 publication-title: Otology & Neurotology doi: 10.1097/MAO.0000000000002480 – volume: 21 start-page: 947 issue: 6 year: 2004 ident: 782_CR37 publication-title: Pharm Res doi: 10.1023/B:PHAM.0000029282.44140.2e – ident: 782_CR4 doi: 10.1016/j.heares.2019.06.004 – volume: 21 start-page: 244 issue: 4 year: 2016 ident: 782_CR58 publication-title: Audiology and Neurotology doi: 10.1159/000445736 – volume: 36 start-page: 694 issue: 4 year: 2015 ident: 782_CR10 publication-title: Otology & Neurotology doi: 10.1097/MAO.0000000000000629 – volume: 251 start-page: 11 year: 2017 ident: 782_CR21 publication-title: J Control Release doi: 10.1016/j.jconrel.2017.02.011 – volume: 246 start-page: 12 year: 2017 ident: 782_CR29 publication-title: J Control Release doi: 10.1016/j.jconrel.2016.12.009 – volume: 105 start-page: 307 issue: 2 year: 2017 ident: 782_CR59 publication-title: Journal of Biomedical Materials Research Part B: Applied Biomaterials doi: 10.1002/jbm.b.33557 – volume: 26 start-page: 2513 issue: 11 year: 2009 ident: 782_CR31 publication-title: Pharmaceutical Research doi: 10.1007/s11095-009-9967-2 – volume: 80 start-page: 401 year: 2018 ident: 782_CR38 publication-title: Acta Biomaterialia doi: 10.1016/j.actbio.2018.09.007 – volume: 182 start-page: 110300 year: 2019 ident: 782_CR11 publication-title: Colloids Surf B: Biointerfaces doi: 10.1016/j.colsurfb.2019.06.030 – volume: 92 start-page: 502 issue: 2 year: 2001 ident: 782_CR14 publication-title: Anesthesia & Analgesia doi: 10.1213/00000539-200102000-00041 – volume: 3 start-page: 1800274 issue: 12 year: 2018 ident: 782_CR54 publication-title: Advanced Materials Technologies doi: 10.1002/admt.201800274 – ident: 782_CR41 doi: 10.1109/SENSOR.2003.1217045 – volume: 17 start-page: 187 issue: 4 year: 2010 ident: 782_CR15 publication-title: Drug Delivery doi: 10.3109/10717541003667798 – volume: 13 start-page: 231 issue: 3 year: 2007 ident: 782_CR43 publication-title: Microsystem Technologies doi: 10.1007/s00542-006-0221-0 – volume: 41 start-page: e280 issue: 2 year: 2020 ident: 782_CR12 publication-title: Otology & Neurotology doi: 10.1097/MAO.0000000000002491 – volume: 14 start-page: 597 issue: 4 year: 2004 ident: 782_CR44 publication-title: J Micromech Microeng doi: 10.1088/0960-1317/14/4/021 – volume: 180 start-page: 177 year: 2012 ident: 782_CR49 publication-title: Sensors Actuators A Phys doi: 10.1016/j.sna.2012.04.019 – ident: 782_CR64 doi: 10.1007/978-3-319-21455-9_3 – volume: 21 start-page: 72 issue: 2 year: 2016 ident: 782_CR5 publication-title: Audiology and Neuro-Otology doi: 10.1159/000442514 – volume: 64 start-page: 1547 issue: 14 year: 2012 ident: 782_CR20 publication-title: Advanced Drug Delivery Reviews doi: 10.1016/j.addr.2012.04.005 – volume: 37 start-page: 1155 issue: 8 year: 2004 ident: 782_CR42 publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2003.12.010 – ident: 782_CR30 doi: 10.1007/978-3-319-21455-9_3 – ident: 782_CR60 doi: 10.1007/978-1-4842-0946-2 – volume: 220 start-page: 98 year: 2015 ident: 782_CR24 publication-title: J Control Release doi: 10.1016/j.jconrel.2015.10.026 – volume: 12 start-page: 1 issue: 2 year: 2017 ident: 782_CR39 publication-title: PLOS ONE doi: 10.1371/journal.pone.0172043 – volume: 12 start-page: 281 issue: 3 year: 2003 ident: 782_CR40 publication-title: J Microelectromech Syst doi: 10.1109/JMEMS.2003.809951 – volume: 26 start-page: 117 year: 2018 ident: 782_CR35 publication-title: Procedia Manufacturing doi: 10.1016/j.promfg.2018.07.014 – volume: 8 start-page: 436 issue: 2 year: 2018 ident: 782_CR7 publication-title: Drug Delivery and Translational Research doi: 10.1007/s13346-017-0384-5 – volume: 174 start-page: 25 issue: 19 year: 1953 ident: 782_CR57 publication-title: Journal of the Iron and Steel Institute – volume: 16 start-page: 26375 year: 2014 ident: 782_CR53 publication-title: Phys Chem Chem Phys doi: 10.1039/C4CP03744H – volume: 21 start-page: 1800946 issue: 1 year: 2019 ident: 782_CR52 publication-title: Advanced Engineering Materials doi: 10.1002/adem.201800946 – ident: 782_CR34 – volume: 5 start-page: 6 issue: 1 year: 2013 ident: 782_CR26 publication-title: International Journal of Trichology doi: 10.4103/0974-7753.114700 – volume: 104 start-page: 362 issue: 2 year: 2015 ident: 782_CR28 publication-title: Journal of Pharmaceutical Sciences doi: 10.1002/jps.24182 – volume: 146 start-page: 2540 issue: 7 year: 1999 ident: 782_CR62 publication-title: Journal of The Electrochemical Society doi: 10.1149/1.1391968 – volume: 186 start-page: 130 year: 2012 ident: 782_CR50 publication-title: Sensors Actuators A Phys doi: 10.1016/j.sna.2012.04.037 – volume: 69 start-page: 520 issue: 11 year: 1982 ident: 782_CR51 publication-title: Naturwissenschaften doi: 10.1007/BF00463495 – volume: 56 start-page: 581 issue: 5 year: 2004 ident: 782_CR18 publication-title: Advanced Drug Delivery Reviews doi: 10.1016/j.addr.2003.10.023 – volume: 3 start-page: 17034 year: 2017 ident: 782_CR47 publication-title: Microsystems & Nanoengineering doi: 10.1038/micronano.2017.34 – volume: 64 start-page: 747 issue: 9 year: 1951 ident: 782_CR56 publication-title: Proceedings of the Physical Society Section B doi: 10.1088/0370-1301/64/9/303 – volume: 104 start-page: 51 issue: 1 year: 2005 ident: 782_CR17 publication-title: Journal of Controlled Release doi: 10.1016/j.jconrel.2005.02.002 – ident: 782_CR55 doi: 10.1016/j.apmt.2019.100472 – volume: 87 start-page: 922 issue: 8 year: 1998 ident: 782_CR32 publication-title: Journal of Pharmaceutical Sciences doi: 10.1021/js980042+ – volume: 368 start-page: 28 year: 2018 ident: 782_CR8 publication-title: Hearing research doi: 10.1016/j.heares.2018.03.002 – volume: 8 start-page: 2483 issue: 16 year: 2012 ident: 782_CR25 publication-title: Small doi: 10.1002/smll.201200441 – volume: 154 start-page: 138 issue: 2 year: 2011 ident: 782_CR23 publication-title: Journal of Controlled Release doi: 10.1016/j.jconrel.2011.05.004 – volume: 31 start-page: 2393 issue: 9 year: 2014 ident: 782_CR27 publication-title: Pharmaceutical Research doi: 10.1007/s11095-014-1335-1 – volume: 232 start-page: 78 issue: 1 year: 2007 ident: 782_CR6 publication-title: Hearing Research doi: 10.1016/j.heares.2007.06.010 – ident: 782_CR48 doi: 10.1109/IROS.2015.7353754 – volume: 28 start-page: 301 issue: 5 year: 2003 ident: 782_CR46 publication-title: Opt Lett doi: 10.1364/OL.28.000301 – ident: 782_CR1 doi: 10.1097/AUD.0b013e3181c351f2 – volume: 18 start-page: 24 issue: 2 year: 2016 ident: 782_CR36 publication-title: Biomed Microdevices doi: 10.1007/s10544-016-0046-2 – ident: 782_CR33 – volume: 165 start-page: 115 issue: 1 year: 2011 ident: 782_CR61 publication-title: Sensors Actuators A Phys doi: 10.1016/j.sna.2010.02.010 – volume: 16 start-page: 1429 issue: 6 year: 2007 ident: 782_CR63 publication-title: J Microelectromech Syst doi: 10.1109/JMEMS.2007.907461 – volume: 270 start-page: 184 year: 2018 ident: 782_CR22 publication-title: J Control Release doi: 10.1016/j.jconrel.2017.11.048 – volume: 20 start-page: 47 issue: 2 year: 2018 ident: 782_CR9 publication-title: Biomed Microdevices doi: 10.1007/s10544-018-0287-3 – volume: 26 start-page: 395 issue: 2 year: 2009 ident: 782_CR19 publication-title: Pharmaceutical Research doi: 10.1007/s11095-008-9756-3 – ident: 782_CR2 doi: 10.1007/s13346-019-00692-5 – ident: 782_CR3 doi: 10.1002/lio2.336 – volume: 12 start-page: 855 issue: 6 year: 2003 ident: 782_CR16 publication-title: Journal of Microelectromechanical Systems doi: 10.1109/JMEMS.2003.820293 – volume: 15 start-page: 17 issue: 1 year: 2013 ident: 782_CR45 publication-title: Biomedical Microdevices doi: 10.1007/s10544-012-9683-2 |
SSID | ssj0000461797 |
Score | 2.4220064 |
Snippet | Drug delivery into the inner ear is a significant challenge due to its inaccessibility as a fluid-filled cavity within the temporal bone of the skull. The... |
SourceID | pubmedcentral pubmed crossref springer |
SourceType | Open Access Repository Index Database Enrichment Source Publisher |
StartPage | 214 |
SubjectTerms | Animals Biomedical and Life Sciences Biomedicine Drug Delivery Systems Ear, Inner Guinea Pigs Needles Original Article Pharmaceutical Preparations Pharmaceutical Sciences/Technology Round Window, Ear |
Title | Drug delivery device for the inner ear: ultra-sharp fully metallic microneedles |
URI | https://link.springer.com/article/10.1007/s13346-020-00782-9 https://www.ncbi.nlm.nih.gov/pubmed/32488817 https://pubmed.ncbi.nlm.nih.gov/PMC8649787 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4IXLwY3-KD7MFwkSa022673oiiRANygARPTbvdqkltCIUD_96ZUkowhsRL06Sz7WZnu998u_MAuLUJOHiE7MTDix1IbngikkbgKomcmUCGiGJ_IHpj-2XiTIqgsGzt7b4-ksxX6k2wG-c2OcxSJDTimiErUHOIu-MsHludcmeFUoi7eVUVi-KkueSTIlrm79dsIVIJQ79dJH-dk-bw83QIB4XdyDorRR_Bnk6PoTlcJZ5etthoE0eVtViTDTcpqZcn8PY4W3ywSCfkhbHEG1ofGNqrDO0_lpffYjjl79kiwX4YGTaeMtqZX7JvjeZ58qXYN7nupQh2ic5OYfzUHT30jKKUgqGQ780NN1BBjLZYW5lOiBxGyIjz0PO4RnrntomoOrYOHB3LwFMI2cIKpdWOhAzNWAnOz6Ca4jcugMWRHbpuhOMuQ1uK0DNNKQOh7UDxGHl6Hcz1cPqqyDNO5S4Sf5MhmVTgowr8XAW-rMNd2Wa6yrKxU_p8pZxSFq1CZPKmWwd3S22lACXR3n6Sfn3mybQ9QTX2sGVrrWC_-IuzHV24_J_4Fexb5AuTe3tfQ3U-W-gbNGbmYQNqnef3124DKoNhv5HP5B9xI-xm |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Jb4JAFJ609tBemu616xwaL5VEGBiY3kyX2FatB028ERiG1gSJET3w7_sem9E0Jr0QEmZgwhv4vm_mLYQ8mAgcLAB14sDB9ATTHB4IzbOlAM2MIINCsdfnnZH5MbbGRVBYUnq7l1uS2Z96FezGmIkOsxgJDbimiV2yB2TAQUeukdGuVlYwhbidVVUxME6aCTYuomX-vs0aIlUwtOkiubFPmsHP2xE5LHgjbeeGPiY7Kj4hjUGeeDpt0uEqjipp0gYdrFJSp6fk62W-_KaBitALI4UT_D9Q4KsU-B_Nym9RmPJPdBnBOLQEOs8orsyndKqAnkcTSafouhcD2EUqOSOjt9fhc0crSiloEvTeQrM96YXAxVpSt3zQMFwEjPmOwxTIO7uFQtUylWepUHiOBMjmhi-MVsCFr4eSM3ZOajE845LQMDB92w5AzgrfFNx3dF0IjyvTkywEnV4nevk6XVnkGcdyF5G7ypCMJnDBBG5mAlfUyWPVZ5Zn2dja-iI3TtUWWCEoed2uE3vNbFUDTKK9fiWe_GTJtB2ONfagZ7M0sFt8xcmWIVz9r_k92e8Me123-97_vCYHBvrFZJ7fN6S2mC_VLRCbhX-XzeNfxITsuQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb4JAEN60Nml6afqufe6h8VJJhcWF7c3UGvuyHjTxRmBZWhMkRvTAv-8MIFTTmPRCSNiFDbPwzbc78w0hdyYCB_OBndhwMF3BNJv7QnMtKYAzI8ggUfzo8e7QfB01R7-y-NNo9-WWZJbTgCpN0fxh6gcPZeIbYyYGz2JWNGCcJrbJDvyOdZzXQ6NVrLKgnLiVVlgxMGeaCTbKM2f-vs0KOhWQtB4uubZnmkJR54Ds5z4kbWVGPyRbKjoitX4mQp3U6aDMqYrrtEb7pTx1ckw-27PFF_VViBEZCZzgv4KC70rBF6RpKS4K0_-RLkIYhxZD5ynFVfqEThS46uFY0gmG8UUAfKGKT8iw8zx46mp5WQVNAveba5Yr3QD8sobUmx7wGS58xjzbZgqontVA0to0ldtUgXBtCfDNDU8YDZ8LTw8kZ-yUVCJ4xjmhgW96luUDtRWeKbhn67oQLlemK1kAnL1K9OXrdGSuOY6lL0KnVEtGEzhgAic1gSOq5L7oM80UNza2PsuMU7QFDxFYvW5VibVitqIBCmqvXonG36mwts2x3h70rC8N7ORfdLxhCBf_a35LdvvtjvP-0nu7JHsGhsikQeBXpDKfLdQ1-Dhz7yadxj9t4PD1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drug+Delivery+Device+for+the+Inner+Ear%3A+Ultra-sharp+Fully+Metallic+Microneedles&rft.jtitle=Drug+delivery+and+translational+research&rft.au=Aksit%2C+Aykut&rft.au=Rastogi%2C+Shruti&rft.au=Nadal%2C+Maria+L.&rft.au=Parker%2C+Amber+M.&rft.date=2021-02-01&rft.issn=2190-393X&rft.eissn=2190-3948&rft.volume=11&rft.issue=1&rft.spage=214&rft.epage=226&rft_id=info:doi/10.1007%2Fs13346-020-00782-9&rft_id=info%3Apmid%2F32488817&rft.externalDocID=PMC8649787 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-393X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-393X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-393X&client=summon |