Transcriptional and Epigenetic Regulation of Autophagy in Plants
Autophagy, a highly conserved quality control mechanism, is essential for maintaining cellular homeostasis and healthy growth of plants. Compared with extensive research in the cytoplasmic control of autophagy, studies regarding the nuclear events involved in the regulation of plant autophagy are ju...
Saved in:
Published in | Trends in genetics Vol. 36; no. 9; pp. 676 - 688 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Autophagy, a highly conserved quality control mechanism, is essential for maintaining cellular homeostasis and healthy growth of plants. Compared with extensive research in the cytoplasmic control of autophagy, studies regarding the nuclear events involved in the regulation of plant autophagy are just beginning to emerge. Accumulating evidence reveals a coordinated expression of plant autophagy genes in response to diverse developmental states and growth conditions. Here, we summarize recent progress in the identification of tightly controlled transcription factors and histone marks associated with the autophagic process in plants, and propose several modules, consisting of transcription regulators and epigenetic modifiers, as important nuclear players that could contribute to both short-term and long-term controls of plant autophagy at the transcriptional and post-transcriptional levels.
Coordinated transcriptional upregulation of ATG genes emerges as a general mechanism of autophagy activation in plants.Recent studies unveil several key transcription factors involved in the transcriptional control of plant autophagy.HDA9 functions as an important epigenetic modifier to modulate plant autophagy in response to developmental or stress cues.Genome-wide studies illustrate the enrichment of specific epigenetic marks or nucleobase modifications on ATG loci in plants. |
---|---|
AbstractList | Autophagy, a highly conserved quality control mechanism, is essential for maintaining cellular homeostasis and healthy growth of plants. Compared with extensive research in the cytoplasmic control of autophagy, studies regarding the nuclear events involved in the regulation of plant autophagy are just beginning to emerge. Accumulating evidence reveals a coordinated expression of plant autophagy genes in response to diverse developmental states and growth conditions. Here, we summarize recent progress in the identification of tightly controlled transcription factors and histone marks associated with the autophagic process in plants, and propose several modules, consisting of transcription regulators and epigenetic modifiers, as important nuclear players that could contribute to both short-term and long-term controls of plant autophagy at the transcriptional and post-transcriptional levels.
Coordinated transcriptional upregulation of ATG genes emerges as a general mechanism of autophagy activation in plants.Recent studies unveil several key transcription factors involved in the transcriptional control of plant autophagy.HDA9 functions as an important epigenetic modifier to modulate plant autophagy in response to developmental or stress cues.Genome-wide studies illustrate the enrichment of specific epigenetic marks or nucleobase modifications on ATG loci in plants. Autophagy, a highly conserved quality control mechanism, is essential for maintaining cellular homeostasis and healthy growth of plants. Compared with extensive research in the cytoplasmic control of autophagy, studies regarding the nuclear events involved in the regulation of plant autophagy are just beginning to emerge. Accumulating evidence reveals a coordinated expression of plant autophagy genes in response to diverse developmental states and growth conditions. Here, we summarize recent progress in the identification of tightly controlled transcription factors and histone marks associated with the autophagic process in plants, and propose several modules, consisting of transcription regulators and epigenetic modifiers, as important nuclear players that could contribute to both short-term and long-term controls of plant autophagy at the transcriptional and post-transcriptional levels.Autophagy, a highly conserved quality control mechanism, is essential for maintaining cellular homeostasis and healthy growth of plants. Compared with extensive research in the cytoplasmic control of autophagy, studies regarding the nuclear events involved in the regulation of plant autophagy are just beginning to emerge. Accumulating evidence reveals a coordinated expression of plant autophagy genes in response to diverse developmental states and growth conditions. Here, we summarize recent progress in the identification of tightly controlled transcription factors and histone marks associated with the autophagic process in plants, and propose several modules, consisting of transcription regulators and epigenetic modifiers, as important nuclear players that could contribute to both short-term and long-term controls of plant autophagy at the transcriptional and post-transcriptional levels. |
Author | Gao, Caiji Yang, Chao Zhuang, Xiaohong Luo, Ming Li, Faqiang |
Author_xml | – sequence: 1 givenname: Chao surname: Yang fullname: Yang, Chao organization: Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China – sequence: 2 givenname: Ming surname: Luo fullname: Luo, Ming organization: Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China – sequence: 3 givenname: Xiaohong surname: Zhuang fullname: Zhuang, Xiaohong organization: School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China – sequence: 4 givenname: Faqiang surname: Li fullname: Li, Faqiang organization: Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China – sequence: 5 givenname: Caiji surname: Gao fullname: Gao, Caiji email: gaocaiji@m.scnu.edu.cn organization: Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China |
BookMark | eNqFkD1PwzAQhj0UiRb4AWwZWRrOiWMnYqGqyodUCYTKbLnOubikTrBdpP57UsrUoUwn3b3P6e4ZkYFrHRJyTSGlQPntOo12lWaQQQo8BZoPyLDvl-OqyIpzMgphDQCFyIshuV945YL2tou2dapJlKuTWWdX6DBanbzhatuo_SxpTTLZxrb7UKtdYl3y2igXwyU5M6oJePVXL8j7w2wxfRrPXx6fp5P5WDPG45gbKDiwJasUQw60FqYoDFcGdQmQ0yrXpebIRF4bXDItlBBQmlLkWqklV_kFuTns7Xz7tcUQ5cYGjU1_BLbbIDOWsaoStMj6qDhEtW9D8GiktvH3h-iVbSQFufck17L3JPeeJHDZe-pJekR23m6U351k7g4M9t9_W_QyaItOY2096ijr1p6kqyNaN9ZZrZpP3P3D_gAZjpf8 |
CitedBy_id | crossref_primary_10_1016_j_xplc_2024_100815 crossref_primary_10_1038_s41598_024_65555_7 crossref_primary_10_1093_jxb_erac298 crossref_primary_10_3389_fpls_2020_618944 crossref_primary_10_1007_s44281_023_00021_4 crossref_primary_10_1111_nph_18557 crossref_primary_10_1111_jpi_12990 crossref_primary_10_1038_s41467_023_39482_6 crossref_primary_10_1007_s11033_021_06298_w crossref_primary_10_1016_j_biortech_2024_131466 crossref_primary_10_1111_tpj_15481 crossref_primary_10_3390_ijms23137301 crossref_primary_10_1007_s00425_021_03668_3 crossref_primary_10_1016_j_molp_2023_07_001 crossref_primary_10_3389_fpls_2023_1123436 crossref_primary_10_3390_ijms22168779 crossref_primary_10_1016_j_foodchem_2024_139987 crossref_primary_10_1271_kagakutoseibutsu_60_352 crossref_primary_10_1007_s44307_024_00027_7 crossref_primary_10_1007_s44307_023_00002_8 crossref_primary_10_1080_15592324_2021_1977527 crossref_primary_10_1111_jipb_13005 crossref_primary_10_1016_j_plantsci_2024_112371 crossref_primary_10_1111_jipb_13343 crossref_primary_10_1007_s00299_025_03476_z |
Cites_doi | 10.1105/tpc.17.00934 10.1105/tpc.113.118307 10.1038/ncomms8215 10.1073/pnas.1200313109 10.1105/tpc.114.135939 10.1016/j.tplants.2019.02.001 10.1016/j.bbrc.2017.10.091 10.1016/j.celrep.2018.10.020 10.1016/j.devcel.2016.06.008 10.1038/s41477-018-0299-2 10.1105/tpc.19.00335 10.1111/j.1365-313X.2005.02397.x 10.1126/science.1216990 10.3389/fpls.2014.00174 10.1093/nar/gku502 10.3389/fpls.2019.00584 10.1080/15548627.2015.1112483 10.1111/nph.15913 10.1093/mp/sst012 10.1016/j.cub.2016.05.005 10.1016/j.tplants.2018.05.002 10.1038/nature12313 10.1105/tpc.111.083345 10.1186/1471-2407-10-98 10.3390/cells9020332 10.3390/pathogens8040264 10.1038/s41422-018-0069-8 10.1104/pp.19.01522 10.3389/fpls.2017.01204 10.1080/15548627.2015.1098798 10.3390/cells9041021 10.1111/pce.13404 10.1104/pp.18.01379 10.1093/jxb/erq452 10.1105/tpc.114.134205 10.1111/pce.13426 10.1093/nar/gkf660 10.3389/fpls.2016.00131 10.1186/s12864-016-3113-4 10.1038/nrm3716 10.1111/pbi.12939 10.3390/cells8111426 10.1073/pnas.1421271112 10.1105/tpc.19.00066 10.1080/15592294.2016.1144007 10.1186/gb-2010-11-8-r81 10.3389/fpls.2020.00588 10.1093/jxb/ers059 10.1093/dnares/dsr024 10.1016/j.plaphy.2019.12.008 10.1093/jxb/ery012 10.1007/s00299-017-2149-5 10.4161/auto.5.7.9290 10.1146/annurev-arplant-050718-095859 10.15252/embj.2019103315 10.1016/j.tig.2017.04.003 10.1016/j.molp.2019.12.011 10.1016/j.cell.2016.04.038 10.1016/j.jplph.2018.06.012 10.1080/00380768.2017.1360750 10.1146/annurev.cellbio.23.090506.123406 10.1371/journal.pone.0182591 10.1371/journal.pgen.1005705 10.4161/auto.23908 10.3389/fgene.2019.00306 10.1111/pbi.12794 10.3390/ijms20194956 10.3390/ijms21020562 10.1126/science.1166386 10.1038/ng1929 10.1007/s00425-018-2864-3 10.1016/j.bbamcr.2020.118662 10.1105/tpc.17.00626 10.1016/j.devcel.2017.03.013 10.1016/j.molp.2020.02.011 10.1038/s41598-017-08577-8 10.1105/tpc.15.00158 10.1111/j.1365-313X.2011.04553.x 10.7554/eLife.17214 10.1093/jxb/erz466 10.1104/pp.106.079293 10.1074/jbc.M114.567032 10.1104/pp.15.00917 10.1093/jxb/ery010 10.1104/pp.18.01028 10.1111/j.1365-313X.2010.04426.x 10.1105/tpc.16.00912 10.1093/dnares/dsv012 10.1080/15548627.2020.1719722 10.1038/cr.2011.22 10.1104/pp.011024 10.1111/tpj.14526 10.1146/annurev-arplant-042817-040606 10.1111/j.1469-8137.2012.04084.x 10.1080/15548627.2019.1598753 10.1016/j.molcel.2014.12.013 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1016/j.tig.2020.06.013 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EndPage | 688 |
ExternalDocumentID | 10_1016_j_tig_2020_06_013 S0168952520301591 |
GroupedDBID | --- --K --M -DZ -RU -~X .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1~. 1~5 29Q 3O- 4.4 457 4G. 53G 5VS 7-5 71M 85S 8P~ 9JM 9M8 AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAMRU AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABDPE ABFNM ABFRF ABGSF ABLJU ABMAC ABUDA ABXDB ACDAQ ACGFO ACGFS ACRLP ACVFH ADBBV ADCNI ADEZE ADUVX ADVLN ADXHL AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 D0L DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FA8 FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HZ~ IH2 IHE J1W K-O KOM LX3 M41 MO0 MVM N9A O-L O9- O9. OAUVE OK~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SSU SSZ T5K TN5 UQL WH7 WUQ Y6R Z5R ZCA ZCG ZGI ~G- ~KM 1RT AACTN AAIAV ABYKQ AFCTW AFKWA AFMIJ AJBFU AJOXV AMFUW DOVZS EFLBG G8K RIG XFK ZA5 AAYXX AGRNS BNPGV CITATION SSH 7X8 |
ID | FETCH-LOGICAL-c446t-6f05604b49a4e601d7f55f6afec8003193c8c6e473dfeb4c7a7708f873caab6a3 |
IEDL.DBID | .~1 |
ISSN | 0168-9525 |
IngestDate | Fri Jul 11 15:18:55 EDT 2025 Thu Apr 24 23:06:41 EDT 2025 Tue Jul 01 01:43:36 EDT 2025 Fri Feb 23 02:46:45 EST 2024 Tue Aug 26 19:13:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | ATG genes autophagy histone modification epigenetic regulation transcriptional regulation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-6f05604b49a4e601d7f55f6afec8003193c8c6e473dfeb4c7a7708f873caab6a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PQID | 2424997152 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2424997152 crossref_citationtrail_10_1016_j_tig_2020_06_013 crossref_primary_10_1016_j_tig_2020_06_013 elsevier_sciencedirect_doi_10_1016_j_tig_2020_06_013 elsevier_clinicalkey_doi_10_1016_j_tig_2020_06_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2020 2020-09-00 20200901 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationTitle | Trends in genetics |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Ran (bb0330) 2020; 101 Pu (bb0035) 2017; 8 Avin-Wittenberg (bb0070) 2015; 27 Signorelli (bb0135) 2019; 24 Liu (bb0265) 2019; 8 Gao (bb0055) 2015; 112 Guiboileau (bb0295) 2012; 194 Anderson (bb0390) 2018; 25 Hanaoka (bb0010) 2002; 129 Duan (bb0380) 2017; 29 Liu (bb0245) 2009; 5 Wang (bb0365) 2019 Bushati, Cohen (bb0475) 2007; 23 Li (bb0395) 2010; 10 Matallana-Ramirez (bb0310) 2013; 6 Fan (bb0430) 2020; 11 Jin (bb0370) 2018; 28 Akkoc, Gozuacik (bb0480) 2020; 1867 Kim (bb0495) 2009; 323 Zhai (bb0185) 2016; 7 Luo (bb0465) 2012; 63 Pandey (bb0460) 2002; 30 Yang (bb0125) 2020; 13 Lai (bb0270) 2011; 66 Chen (bb0335) 2016; 5 Breeze (bb0145) 2011; 23 O’Malley (bb0350) 2016; 165 Chen (bb0170) 2015; 11 Zheng (bb0340) 2020; 13 Marshall, Vierstra (bb0005) 2018; 69 Spitzer (bb0060) 2015; 27 Wang (bb0100) 2015; 11 Garapati (bb0290) 2015; 169 Chen (bb0470) 2018; 30 Zhou (bb0275) 2014; 5 Lindemose (bb0305) 2014; 42 Bedu (bb0225) 2020; 9 Have (bb0085) 2019; 223 Ye (bb0155) 2020; 147 Füllgrabe (bb0325) 2013; 500 Borges (bb0490) 2011; 62 Sun (bb0415) 2018; 16 Zhuang (bb0050) 2013; 25 Minina (bb0075) 2018; 69 Yue (bb0205) 2018; 229 Chen (bb0235) 2019; 8 Han (bb0165) 2020; 21 Yi (bb0440) 2012; 336 Di Berardino (bb0150) 2018; 69 Xia (bb0015) 2011; 18 Shinozaki (bb0285) 2020; 182 Rodriguez (bb0090) 2020; 39 Yan (bb0220) 2019; 10 Woo (bb0300) 2019; 70 Yan (bb0190) 2017; 494 Zilberman (bb0410) 2007; 39 Williams (bb0175) 2015; 11 Huang (bb0045) 2019; 31 Nolan (bb0250) 2020; 32 Nolan (bb0260) 2017; 41 Zhang (bb0255) 2016; 26 Wei (bb0385) 2018; 30 Zhen (bb0425) 2019; 20 Naumann (bb0280) 2018; 179 Zhou (bb0025) 2015; 22 Roignant, Soller (bb0360) 2017; 33 van der Graaff (bb0140) 2006; 141 Wang (bb0110) 2019; 179 Shukla (bb0400) 2014; 289 McLoughlin (bb0080) 2018; 4 Bartholomew (bb0445) 2012; 109 Sun (bb0450) 2015; 6 Bannister, Kouzarides (bb0315) 2011; 21 Yu (bb0420) 2019; 10 Wang (bb0120) 2020; 16 Zhang (bb0485) 2010; 11 Soto-Burgos, Bassham (bb0040) 2017; 12 Lornac (bb0095) 2020; 9 Shangguan (bb0210) 2018; 247 Khalil (bb0405) 2016; 11 Zhu (bb0105) 2018; 16 Sedaghatmehr (bb0215) 2019; 42 Chi (bb0115) 2019; 71 Bánréti (bb0435) 2013; 9 Zhuang (bb0130) 2018; 23 Wei (bb0195) 2017; 36 Li (bb0180) 2016; 17 Liu, Bassham (bb0030) 2010; 5 Zhao (bb0160) 2020 Schellmann (bb0065) 2017; 7 Zentgraf, Doll (bb0355) 2019; 8 Xiong (bb0240) 2005; 42 Shen (bb0375) 2016; 38 Eguchi (bb0200) 2017; 63 Huang (bb0455) 2015; 57 Avin-Wittenberg (bb0230) 2019; 42 Li (bb0020) 2015; 27 Füllgrabe (bb0320) 2014; 15 Zhang (bb0345) 2011; 65 Yan (10.1016/j.tig.2020.06.013_bb0220) 2019; 10 Li (10.1016/j.tig.2020.06.013_bb0180) 2016; 17 Signorelli (10.1016/j.tig.2020.06.013_bb0135) 2019; 24 Yi (10.1016/j.tig.2020.06.013_bb0440) 2012; 336 Zilberman (10.1016/j.tig.2020.06.013_bb0410) 2007; 39 Rodriguez (10.1016/j.tig.2020.06.013_bb0090) 2020; 39 Minina (10.1016/j.tig.2020.06.013_bb0075) 2018; 69 Lai (10.1016/j.tig.2020.06.013_bb0270) 2011; 66 Huang (10.1016/j.tig.2020.06.013_bb0455) 2015; 57 Guiboileau (10.1016/j.tig.2020.06.013_bb0295) 2012; 194 Anderson (10.1016/j.tig.2020.06.013_bb0390) 2018; 25 McLoughlin (10.1016/j.tig.2020.06.013_bb0080) 2018; 4 Wang (10.1016/j.tig.2020.06.013_bb0120) 2020; 16 Zhang (10.1016/j.tig.2020.06.013_bb0345) 2011; 65 Lornac (10.1016/j.tig.2020.06.013_bb0095) 2020; 9 Chi (10.1016/j.tig.2020.06.013_bb0115) 2019; 71 Nolan (10.1016/j.tig.2020.06.013_bb0250) 2020; 32 Wang (10.1016/j.tig.2020.06.013_bb0100) 2015; 11 Roignant (10.1016/j.tig.2020.06.013_bb0360) 2017; 33 Xia (10.1016/j.tig.2020.06.013_bb0015) 2011; 18 Zhen (10.1016/j.tig.2020.06.013_bb0425) 2019; 20 Gao (10.1016/j.tig.2020.06.013_bb0055) 2015; 112 Spitzer (10.1016/j.tig.2020.06.013_bb0060) 2015; 27 Yan (10.1016/j.tig.2020.06.013_bb0190) 2017; 494 Zhao (10.1016/j.tig.2020.06.013_bb0160) 2020 Have (10.1016/j.tig.2020.06.013_bb0085) 2019; 223 Sun (10.1016/j.tig.2020.06.013_bb0450) 2015; 6 Yue (10.1016/j.tig.2020.06.013_bb0205) 2018; 229 Bannister (10.1016/j.tig.2020.06.013_bb0315) 2011; 21 Yu (10.1016/j.tig.2020.06.013_bb0420) 2019; 10 Bánréti (10.1016/j.tig.2020.06.013_bb0435) 2013; 9 Li (10.1016/j.tig.2020.06.013_bb0395) 2010; 10 Füllgrabe (10.1016/j.tig.2020.06.013_bb0325) 2013; 500 Bedu (10.1016/j.tig.2020.06.013_bb0225) 2020; 9 Pandey (10.1016/j.tig.2020.06.013_bb0460) 2002; 30 Borges (10.1016/j.tig.2020.06.013_bb0490) 2011; 62 Eguchi (10.1016/j.tig.2020.06.013_bb0200) 2017; 63 Füllgrabe (10.1016/j.tig.2020.06.013_bb0320) 2014; 15 Garapati (10.1016/j.tig.2020.06.013_bb0290) 2015; 169 Huang (10.1016/j.tig.2020.06.013_bb0045) 2019; 31 Sun (10.1016/j.tig.2020.06.013_bb0415) 2018; 16 Ye (10.1016/j.tig.2020.06.013_bb0155) 2020; 147 Wei (10.1016/j.tig.2020.06.013_bb0195) 2017; 36 Nolan (10.1016/j.tig.2020.06.013_bb0260) 2017; 41 Zheng (10.1016/j.tig.2020.06.013_bb0340) 2020; 13 Breeze (10.1016/j.tig.2020.06.013_bb0145) 2011; 23 Khalil (10.1016/j.tig.2020.06.013_bb0405) 2016; 11 Ran (10.1016/j.tig.2020.06.013_bb0330) 2020; 101 Shinozaki (10.1016/j.tig.2020.06.013_bb0285) 2020; 182 Hanaoka (10.1016/j.tig.2020.06.013_bb0010) 2002; 129 Bartholomew (10.1016/j.tig.2020.06.013_bb0445) 2012; 109 Shukla (10.1016/j.tig.2020.06.013_bb0400) 2014; 289 Zhai (10.1016/j.tig.2020.06.013_bb0185) 2016; 7 Duan (10.1016/j.tig.2020.06.013_bb0380) 2017; 29 Zhu (10.1016/j.tig.2020.06.013_bb0105) 2018; 16 Zhuang (10.1016/j.tig.2020.06.013_bb0130) 2018; 23 Akkoc (10.1016/j.tig.2020.06.013_bb0480) 2020; 1867 Liu (10.1016/j.tig.2020.06.013_bb0245) 2009; 5 Avin-Wittenberg (10.1016/j.tig.2020.06.013_bb0070) 2015; 27 Wang (10.1016/j.tig.2020.06.013_bb0110) 2019; 179 Zentgraf (10.1016/j.tig.2020.06.013_bb0355) 2019; 8 Shen (10.1016/j.tig.2020.06.013_bb0375) 2016; 38 Naumann (10.1016/j.tig.2020.06.013_bb0280) 2018; 179 Pu (10.1016/j.tig.2020.06.013_bb0035) 2017; 8 Li (10.1016/j.tig.2020.06.013_bb0020) 2015; 27 Xiong (10.1016/j.tig.2020.06.013_bb0240) 2005; 42 Matallana-Ramirez (10.1016/j.tig.2020.06.013_bb0310) 2013; 6 Wang (10.1016/j.tig.2020.06.013_bb0365) 2019 Zhang (10.1016/j.tig.2020.06.013_bb0485) 2010; 11 Liu (10.1016/j.tig.2020.06.013_bb0030) 2010; 5 Zhuang (10.1016/j.tig.2020.06.013_bb0050) 2013; 25 O’Malley (10.1016/j.tig.2020.06.013_bb0350) 2016; 165 Zhou (10.1016/j.tig.2020.06.013_bb0025) 2015; 22 Kim (10.1016/j.tig.2020.06.013_bb0495) 2009; 323 Schellmann (10.1016/j.tig.2020.06.013_bb0065) 2017; 7 Liu (10.1016/j.tig.2020.06.013_bb0265) 2019; 8 Han (10.1016/j.tig.2020.06.013_bb0165) 2020; 21 Lindemose (10.1016/j.tig.2020.06.013_bb0305) 2014; 42 Marshall (10.1016/j.tig.2020.06.013_bb0005) 2018; 69 Chen (10.1016/j.tig.2020.06.013_bb0170) 2015; 11 Avin-Wittenberg (10.1016/j.tig.2020.06.013_bb0230) 2019; 42 Woo (10.1016/j.tig.2020.06.013_bb0300) 2019; 70 Fan (10.1016/j.tig.2020.06.013_bb0430) 2020; 11 Shangguan (10.1016/j.tig.2020.06.013_bb0210) 2018; 247 Chen (10.1016/j.tig.2020.06.013_bb0470) 2018; 30 Chen (10.1016/j.tig.2020.06.013_bb0235) 2019; 8 Soto-Burgos (10.1016/j.tig.2020.06.013_bb0040) 2017; 12 van der Graaff (10.1016/j.tig.2020.06.013_bb0140) 2006; 141 Jin (10.1016/j.tig.2020.06.013_bb0370) 2018; 28 Wei (10.1016/j.tig.2020.06.013_bb0385) 2018; 30 Williams (10.1016/j.tig.2020.06.013_bb0175) 2015; 11 Di Berardino (10.1016/j.tig.2020.06.013_bb0150) 2018; 69 Yang (10.1016/j.tig.2020.06.013_bb0125) 2020; 13 Chen (10.1016/j.tig.2020.06.013_bb0335) 2016; 5 Bushati (10.1016/j.tig.2020.06.013_bb0475) 2007; 23 Sedaghatmehr (10.1016/j.tig.2020.06.013_bb0215) 2019; 42 Zhang (10.1016/j.tig.2020.06.013_bb0255) 2016; 26 Zhou (10.1016/j.tig.2020.06.013_bb0275) 2014; 5 Luo (10.1016/j.tig.2020.06.013_bb0465) 2012; 63 |
References_xml | – volume: 5 year: 2010 ident: bb0030 article-title: TOR is a negative regulator of autophagy in publication-title: PLoS One – volume: 4 start-page: 1056 year: 2018 end-page: 1070 ident: bb0080 article-title: Maize multi-omics reveal roles for autophagic recycling in proteome remodelling and lipid turnover publication-title: Nat. Plants – volume: 30 start-page: 134 year: 2018 end-page: 152 ident: bb0470 article-title: Canonical and noncanonical actions of publication-title: Plant Cell – volume: 41 start-page: 33 year: 2017 end-page: 46 ident: bb0260 article-title: Selective autophagy of BES1 mediated by DSK2 balances plant growth and survival publication-title: Dev. Cell – volume: 112 start-page: 1886 year: 2015 end-page: 1891 ident: bb0055 article-title: Dual roles of an publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 147 start-page: 1 year: 2020 end-page: 9 ident: bb0155 article-title: Identification of key genes and transcription factors in ageing publication-title: Plant Physiol. Biochem. – volume: 13 start-page: 598 year: 2020 end-page: 611 ident: bb0340 article-title: Histone deacetylase HDA9 and WRKY53 transcription factor are mutual antagonists in regulation of plant stress response publication-title: Mol. Plant – volume: 500 start-page: 468 year: 2013 end-page: 471 ident: bb0325 article-title: The histone H4 lysine 16 acetyltransferase hMOF regulates the outcome of autophagy publication-title: Nature – volume: 11 start-page: 2233 year: 2015 end-page: 2246 ident: bb0170 article-title: Autophagy contributes to regulation of the hypoxia response during submergence in publication-title: Autophagy – volume: 9 start-page: 819 year: 2013 end-page: 829 ident: bb0435 article-title: The emerging role of acetylation in the regulation of autophagy publication-title: Autophagy – volume: 42 start-page: 1045 year: 2019 end-page: 1053 ident: bb0230 article-title: Autophagy and its role in plant abiotic stress management publication-title: Plant Cell Environ. – volume: 15 start-page: 65 year: 2014 end-page: 74 ident: bb0320 article-title: The return of the nucleus: transcriptional and epigenetic control of autophagy publication-title: Nat. Rev. Mol. Cell Biol. – volume: 323 start-page: 1053 year: 2009 end-page: 1057 ident: bb0495 article-title: Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in publication-title: Science – volume: 30 start-page: 968 year: 2018 end-page: 985 ident: bb0385 article-title: The m publication-title: Plant Cell – volume: 179 start-page: 671 year: 2019 end-page: 685 ident: bb0110 article-title: BZR1 mediates brassinosteroid-induced autophagy and nitrogen starvation in tomato publication-title: Plant Physiol. – volume: 21 year: 2020 ident: bb0165 article-title: Genomic characterization and expressional profiles of autophagy-related genes (ATGs) in oilseed crop castor bean ( publication-title: Int. J. Mol. Sci. – volume: 10 start-page: 306 year: 2019 ident: bb0220 article-title: Chromatin state-based analysis of epigenetic H3K4me3 marks of publication-title: Front. Genet. – volume: 63 start-page: 3297 year: 2012 end-page: 3306 ident: bb0465 article-title: HD2C interacts with HDA6 and is involved in ABA and salt stress response in publication-title: J. Exp. Bot. – volume: 69 start-page: 173 year: 2018 end-page: 208 ident: bb0005 article-title: Autophagy: the master of bulk and selective recycling publication-title: Annu. Rev. Plant Biol. – volume: 141 start-page: 776 year: 2006 end-page: 792 ident: bb0140 article-title: Transcription analysis of publication-title: Plant Physiol. – volume: 8 start-page: 1426 year: 2019 ident: bb0235 article-title: Autophagy and nutrients management in plants publication-title: Cells – volume: 63 start-page: 342 year: 2017 end-page: 350 ident: bb0200 article-title: Autophagy is induced under Zn limitation and contributes to Zn-limited stress tolerance in publication-title: Soil Sci. Plant Nutr. – volume: 13 start-page: 515 year: 2020 end-page: 531 ident: bb0125 article-title: HY5-HDA9 module transcriptionally regulates plant autophagy in response to light-to-dark conversion and nitrogen starvation publication-title: Mol. Plant – volume: 22 start-page: 245 year: 2015 end-page: 257 ident: bb0025 article-title: A comprehensive, genome-wide analysis of autophagy-related genes identified in tobacco suggests a central role of autophagy in plant response to various environmental cues publication-title: DNA Res. – volume: 71 start-page: 1092 year: 2019 end-page: 1106 ident: bb0115 article-title: Brassinosteroids act as a positive regulator of NBR1-dependent selective autophagy in response to chilling stress in tomato publication-title: J. Exp. Bot. – year: 2020 ident: bb0160 article-title: Autophagy-mediated compartmental cytoplasmic deletion is essential for tobacco pollen germination and male fertility publication-title: Autophagy – volume: 16 start-page: 123 year: 2020 end-page: 139 ident: bb0120 article-title: Identification of transcription factors that regulate ATG8 expression and autophagy in publication-title: Autophagy – volume: 17 start-page: 797 year: 2016 ident: bb0180 article-title: Genome-wide analysis of autophagy-associated genes in foxtail millet ( publication-title: BMC Genomics – volume: 30 start-page: 5036 year: 2002 end-page: 5055 ident: bb0460 article-title: Analysis of histone acetyltransferase and histone deacetylase families of publication-title: Nucleic Acids Res. – volume: 101 start-page: 237 year: 2020 end-page: 248 ident: bb0330 article-title: Plant Regulomics: a data-driven interface for retrieving upstream regulators from plant multi-omics data publication-title: Plant J. – volume: 7 start-page: 8677 year: 2017 ident: bb0065 article-title: Disruption of the plant-specific CFS1 gene impairs autophagosome turnover and triggers EDS1-dependent cell death publication-title: Sci. Rep. – volume: 8 year: 2019 ident: bb0265 article-title: Functional analysis of MaWRKY24 in transcriptional activation of autophagy-related gene 8f/g and plant disease susceptibility to soil-borne publication-title: Pathogens – volume: 38 start-page: 186 year: 2016 end-page: 200 ident: bb0375 article-title: 6-Methyladenosine RNA modification regulates shoot stem cell fate in publication-title: Dev. Cell – volume: 23 start-page: 175 year: 2007 end-page: 205 ident: bb0475 article-title: microRNA functions publication-title: Annu. Rev. Cell Dev. Biol. – volume: 165 start-page: 1280 year: 2016 end-page: 1292 ident: bb0350 article-title: Cistrome and epicistrome features shape the regulatory DNA landscape publication-title: Cell – volume: 6 start-page: 1438 year: 2013 end-page: 1452 ident: bb0310 article-title: NAC transcription factor ORE1 and senescence-induced BIFUNCTIONAL NUCLEASE1 (BFN1) constitute a regulatory cascade in publication-title: Mol. Plant – volume: 289 start-page: 22306 year: 2014 end-page: 22318 ident: bb0400 article-title: Methylation silencing of ULK2, an autophagy gene, is essential for astrocyte transformation and tumor growth publication-title: J. Biol. Chem. – volume: 129 start-page: 1181 year: 2002 end-page: 1193 ident: bb0010 article-title: Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an publication-title: Plant Physiol. – volume: 42 start-page: 535 year: 2005 end-page: 546 ident: bb0240 article-title: AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in publication-title: Plant J. – volume: 16 start-page: 2063 year: 2018 end-page: 2076 ident: bb0105 article-title: Mitochondrial alternative oxidase-dependent autophagy involved in ethylene-mediated drought tolerance in publication-title: Plant Biotechnol. J. – volume: 229 start-page: 7 year: 2018 end-page: 21 ident: bb0205 article-title: Genome-wide sequence and expressional analysis of autophagy gene family in bread wheat ( publication-title: J. Plant Physiol. – volume: 25 start-page: 1146 year: 2018 end-page: 1157 ident: bb0390 article-title: 6-Methyladenosine inhibits local ribonucleolytic cleavage to stabilize mRNAs in publication-title: Cell Rep. – volume: 12 year: 2017 ident: bb0040 article-title: SnRK1 activates autophagy via the TOR signaling pathway in publication-title: PLoS One – volume: 8 year: 2019 ident: bb0355 article-title: WRKY53, a node of multi-layer regulation in the network of senescence publication-title: Plants (Basel) – volume: 65 start-page: 346 year: 2011 end-page: 358 ident: bb0345 article-title: Genome-wide mapping of the HY5-mediated gene networks in publication-title: Plant J. – volume: 1867 start-page: 118662 year: 2020 ident: bb0480 article-title: MicroRNAs as major regulators of the autophagy pathway publication-title: Biochim. Biophys. Acta – volume: 69 start-page: 1415 year: 2018 end-page: 1432 ident: bb0075 article-title: Transcriptional stimulation of rate-limiting components of the autophagic pathway improves plant fitness publication-title: J. Exp. Bot. – volume: 10 start-page: 584 year: 2019 ident: bb0420 article-title: Increased autophagy of rice can increase yield and nitrogen use efficiency (NUE) publication-title: Front. Plant Sci. – volume: 66 start-page: 953 year: 2011 end-page: 968 ident: bb0270 article-title: A critical role of autophagy in plant resistance to necrotrophic fungal pathogens publication-title: Plant J. – volume: 69 start-page: 1403 year: 2018 end-page: 1414 ident: bb0150 article-title: Autophagy controls resource allocation and protein storage accumulation in publication-title: J. Exp. Bot. – volume: 169 start-page: 379 year: 2015 end-page: 390 ident: bb0290 article-title: Transcription factor publication-title: Plant Physiol. – volume: 32 start-page: 295 year: 2020 end-page: 318 ident: bb0250 article-title: Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses publication-title: Plant Cell – volume: 20 start-page: 4956 year: 2019 ident: bb0425 article-title: OsATG8c-mediated increased autophagy regulates the yield and nitrogen use efficiency in rice publication-title: Int. J. Mol. Sci. – volume: 25 start-page: 4596 year: 2013 end-page: 4615 ident: bb0050 article-title: A BAR-domain protein SH3P2, which binds to phosphatidylinositol 3-phosphate and ATG8, regulates autophagosome formation in publication-title: Plant Cell – volume: 7 year: 2016 ident: bb0185 article-title: Autophagy, a conserved mechanism for protein degradation, responds to heat, and other abiotic stresses in publication-title: Front. Plant Sci. – volume: 182 start-page: 1284 year: 2020 end-page: 1296 ident: bb0285 article-title: Autophagy increases zinc bioavailability to avoid light-mediated reactive oxygen species production under zinc deficiency publication-title: Plant Physiol. – volume: 57 start-page: 456 year: 2015 end-page: 466 ident: bb0455 article-title: Deacetylation of nuclear LC3 drives autophagy initiation under starvation publication-title: Mol. Cell – volume: 27 start-page: 1389 year: 2015 end-page: 1408 ident: bb0020 article-title: Autophagic recycling plays a central role in maize nitrogen remobilization publication-title: Plant Cell – volume: 62 start-page: 1611 year: 2011 end-page: 1620 ident: bb0490 article-title: MicroRNA activity in the publication-title: J. Exp. Bot. – volume: 11 year: 2015 ident: bb0175 article-title: Trehalose accumulation triggers autophagy during plant desiccation publication-title: PLoS Genet. – volume: 5 start-page: 954 year: 2009 end-page: 963 ident: bb0245 article-title: Autophagy is required for tolerance of drought and salt stress in plants publication-title: Autophagy – volume: 194 start-page: 732 year: 2012 end-page: 740 ident: bb0295 article-title: Autophagy machinery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in publication-title: New Phytol. – volume: 26 start-page: 1854 year: 2016 end-page: 1860 ident: bb0255 article-title: TOR signaling promotes accumulation of BZR1 to balance growth with carbon availability in publication-title: Curr. Biol. – volume: 18 start-page: 363 year: 2011 end-page: 377 ident: bb0015 article-title: Genome-wide identification, classification, and expression analysis of autophagy-associated gene homologues in rice ( publication-title: DNA Res. – volume: 9 start-page: 332 year: 2020 ident: bb0095 article-title: Autophagy controls sulphur metabolism in the rosette leaves of publication-title: Cells – volume: 179 start-page: 460 year: 2018 end-page: 476 ident: bb0280 article-title: The local phosphate deficiency response activates ER stress-dependent autophagy publication-title: Plant Physiol. – volume: 11 start-page: 588 year: 2020 ident: bb0430 article-title: A rice autophagy gene OsATG8b is involved in nitrogen remobilization and control of grain quality publication-title: Front. Plant Sci. – volume: 39 start-page: 61 year: 2007 end-page: 69 ident: bb0410 article-title: Genome-wide analysis of publication-title: Nat. Genet. – volume: 10 start-page: 98 year: 2010 ident: bb0395 article-title: Genetic and epigenetic silencing of the Beclin 1 gene in sporadic breast tumors publication-title: BMC Cancer – volume: 31 start-page: 2973 year: 2019 end-page: 2995 ident: bb0045 article-title: Genetic analyses of the publication-title: Plant Cell – volume: 11 start-page: 2033 year: 2015 end-page: 2047 ident: bb0100 article-title: Tomato HsfA1a plays a critical role in plant drought tolerance by activating ATG genes and inducing autophagy publication-title: Autophagy – volume: 223 start-page: 1461 year: 2019 end-page: 1477 ident: bb0085 article-title: Proteomic and lipidomic analyses of the publication-title: New Phytol. – year: 2019 ident: bb0365 article-title: m publication-title: Autophagy – volume: 27 start-page: 391 year: 2015 end-page: 402 ident: bb0060 article-title: The endosomal protein CHARGED MULTIVESICULAR BODY PROTEIN1 regulates the autophagic turnover of plastids in publication-title: Plant Cell – volume: 9 start-page: 1021 year: 2020 ident: bb0225 article-title: Transcriptional plasticity of autophagy-related genes correlates with the genetic response to nitrate starvation in publication-title: Cells – volume: 16 start-page: 545 year: 2018 end-page: 557 ident: bb0415 article-title: Improvement of drought tolerance by overexpressing MdATG18a is mediated by modified antioxidant system and activated autophagy in transgenic apple publication-title: Plant Biotechnol. J. – volume: 6 year: 2015 ident: bb0450 article-title: Acetylation of Beclin 1 inhibits autophagosome maturation and promotes tumour growth publication-title: Nat. Commun. – volume: 5 start-page: 174 year: 2014 ident: bb0275 article-title: Role and regulation of autophagy in heat stress responses of tomato plants publication-title: Front. Plant Sci. – volume: 109 start-page: 11206 year: 2012 end-page: 11210 ident: bb0445 article-title: Ume6 transcription factor is part of a signaling cascade that regulates autophagy publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 11 start-page: R81 year: 2010 ident: bb0485 article-title: Multiple distinct small RNAs originate from the same microRNA precursors publication-title: Genome Biol. – volume: 28 start-page: 955 year: 2018 end-page: 957 ident: bb0370 article-title: m publication-title: Cell Res. – volume: 336 start-page: 474 year: 2012 ident: bb0440 article-title: Function and molecular mechanism of acetylation in autophagy regulation publication-title: Science – volume: 29 start-page: 2995 year: 2017 end-page: 3011 ident: bb0380 article-title: ALKBH10B is an RNA publication-title: Plant Cell – volume: 23 start-page: 677 year: 2018 end-page: 692 ident: bb0130 article-title: Autophagosome biogenesis and the endoplasmic reticulum: a plant perspective publication-title: Trends Plant Sci. – volume: 23 start-page: 873 year: 2011 end-page: 894 ident: bb0145 article-title: High-resolution temporal profiling of transcripts during publication-title: Plant Cell – volume: 8 start-page: 1204 year: 2017 ident: bb0035 article-title: TOR-dependent and-independent pathways regulate autophagy in publication-title: Front. Plant Sci. – volume: 27 start-page: 306 year: 2015 end-page: 322 ident: bb0070 article-title: Global analysis of the role of autophagy in cellular metabolism and energy homeostasis in publication-title: Plant Cell – volume: 36 start-page: 1237 year: 2017 end-page: 1250 ident: bb0195 article-title: Genome-wide analysis of autophagy-related genes in banana highlights MaATG8s in cell death and autophagy in immune response to publication-title: Plant Cell Rep. – volume: 247 start-page: 1449 year: 2018 end-page: 1463 ident: bb0210 article-title: Genome-wide analysis of autophagy-related genes (ARGs) in grapevine and plant tolerance to copper stress publication-title: Planta – volume: 39 year: 2020 ident: bb0090 article-title: Autophagy mediates temporary reprogramming and dedifferentiation in plant somatic cells publication-title: EMBO J. – volume: 42 start-page: 1054 year: 2019 end-page: 1064 ident: bb0215 article-title: A regulatory role of autophagy for resetting the memory of heat stress in plants publication-title: Plant Cell Environ. – volume: 42 start-page: 7681 year: 2014 end-page: 7693 ident: bb0305 article-title: A DNA-binding-site landscape and regulatory network analysis for NAC transcription factors in publication-title: Nucleic Acids Res. – volume: 21 start-page: 381 year: 2011 end-page: 395 ident: bb0315 article-title: Regulation of chromatin by histone modifications publication-title: Cell Res. – volume: 24 start-page: 413 year: 2019 end-page: 430 ident: bb0135 article-title: Linking autophagy to abiotic and biotic stress responses publication-title: Trends Plant Sci. – volume: 33 start-page: 380 year: 2017 end-page: 390 ident: bb0360 article-title: m publication-title: Trends Genet. – volume: 70 start-page: 347 year: 2019 end-page: 376 ident: bb0300 article-title: Leaf senescence: systems and dynamics aspects publication-title: Annu. Rev. Plant Biol. – volume: 5 year: 2016 ident: bb0335 article-title: POWERDRESS interacts with HISTONE DEACETYLASE 9 to promote aging in publication-title: Elife – volume: 11 start-page: 381 year: 2016 end-page: 388 ident: bb0405 article-title: Aging is associated with hypermethylation of autophagy genes in macrophages publication-title: Epigenetics – volume: 494 start-page: 20 year: 2017 end-page: 26 ident: bb0190 article-title: MeWRKY20 and its interacting and activating autophagy-related protein 8 (MeATG8) regulate plant disease resistance in cassava publication-title: Biochem. Biophys. Res. Commun. – volume: 30 start-page: 968 year: 2018 ident: 10.1016/j.tig.2020.06.013_bb0385 article-title: The m6A reader ECT2 controls trichome morphology by affecting mRNA stability in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.17.00934 – volume: 25 start-page: 4596 year: 2013 ident: 10.1016/j.tig.2020.06.013_bb0050 article-title: A BAR-domain protein SH3P2, which binds to phosphatidylinositol 3-phosphate and ATG8, regulates autophagosome formation in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.113.118307 – volume: 6 year: 2015 ident: 10.1016/j.tig.2020.06.013_bb0450 article-title: Acetylation of Beclin 1 inhibits autophagosome maturation and promotes tumour growth publication-title: Nat. Commun. doi: 10.1038/ncomms8215 – volume: 109 start-page: 11206 year: 2012 ident: 10.1016/j.tig.2020.06.013_bb0445 article-title: Ume6 transcription factor is part of a signaling cascade that regulates autophagy publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1200313109 – volume: 27 start-page: 391 year: 2015 ident: 10.1016/j.tig.2020.06.013_bb0060 article-title: The endosomal protein CHARGED MULTIVESICULAR BODY PROTEIN1 regulates the autophagic turnover of plastids in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.114.135939 – volume: 24 start-page: 413 year: 2019 ident: 10.1016/j.tig.2020.06.013_bb0135 article-title: Linking autophagy to abiotic and biotic stress responses publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2019.02.001 – volume: 494 start-page: 20 year: 2017 ident: 10.1016/j.tig.2020.06.013_bb0190 article-title: MeWRKY20 and its interacting and activating autophagy-related protein 8 (MeATG8) regulate plant disease resistance in cassava publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2017.10.091 – volume: 25 start-page: 1146 year: 2018 ident: 10.1016/j.tig.2020.06.013_bb0390 article-title: N6-Methyladenosine inhibits local ribonucleolytic cleavage to stabilize mRNAs in Arabidopsis publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.10.020 – volume: 38 start-page: 186 year: 2016 ident: 10.1016/j.tig.2020.06.013_bb0375 article-title: N6-Methyladenosine RNA modification regulates shoot stem cell fate in Arabidopsis publication-title: Dev. Cell doi: 10.1016/j.devcel.2016.06.008 – volume: 4 start-page: 1056 year: 2018 ident: 10.1016/j.tig.2020.06.013_bb0080 article-title: Maize multi-omics reveal roles for autophagic recycling in proteome remodelling and lipid turnover publication-title: Nat. Plants doi: 10.1038/s41477-018-0299-2 – volume: 32 start-page: 295 year: 2020 ident: 10.1016/j.tig.2020.06.013_bb0250 article-title: Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses publication-title: Plant Cell doi: 10.1105/tpc.19.00335 – volume: 42 start-page: 535 year: 2005 ident: 10.1016/j.tig.2020.06.013_bb0240 article-title: AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana publication-title: Plant J. doi: 10.1111/j.1365-313X.2005.02397.x – volume: 336 start-page: 474 year: 2012 ident: 10.1016/j.tig.2020.06.013_bb0440 article-title: Function and molecular mechanism of acetylation in autophagy regulation publication-title: Science doi: 10.1126/science.1216990 – volume: 5 start-page: 174 year: 2014 ident: 10.1016/j.tig.2020.06.013_bb0275 article-title: Role and regulation of autophagy in heat stress responses of tomato plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2014.00174 – volume: 42 start-page: 7681 year: 2014 ident: 10.1016/j.tig.2020.06.013_bb0305 article-title: A DNA-binding-site landscape and regulatory network analysis for NAC transcription factors in Arabidopsis thaliana publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku502 – volume: 10 start-page: 584 year: 2019 ident: 10.1016/j.tig.2020.06.013_bb0420 article-title: Increased autophagy of rice can increase yield and nitrogen use efficiency (NUE) publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00584 – volume: 11 start-page: 2233 year: 2015 ident: 10.1016/j.tig.2020.06.013_bb0170 article-title: Autophagy contributes to regulation of the hypoxia response during submergence in Arabidopsis thaliana publication-title: Autophagy doi: 10.1080/15548627.2015.1112483 – volume: 223 start-page: 1461 year: 2019 ident: 10.1016/j.tig.2020.06.013_bb0085 article-title: Proteomic and lipidomic analyses of the Arabidopsis atg5 autophagy mutant reveal major changes in endoplasmic reticulum and peroxisome metabolisms and in lipid composition publication-title: New Phytol. doi: 10.1111/nph.15913 – volume: 6 start-page: 1438 year: 2013 ident: 10.1016/j.tig.2020.06.013_bb0310 article-title: NAC transcription factor ORE1 and senescence-induced BIFUNCTIONAL NUCLEASE1 (BFN1) constitute a regulatory cascade in Arabidopsis publication-title: Mol. Plant doi: 10.1093/mp/sst012 – volume: 26 start-page: 1854 year: 2016 ident: 10.1016/j.tig.2020.06.013_bb0255 article-title: TOR signaling promotes accumulation of BZR1 to balance growth with carbon availability in Arabidopsis publication-title: Curr. Biol. doi: 10.1016/j.cub.2016.05.005 – volume: 23 start-page: 677 year: 2018 ident: 10.1016/j.tig.2020.06.013_bb0130 article-title: Autophagosome biogenesis and the endoplasmic reticulum: a plant perspective publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2018.05.002 – volume: 500 start-page: 468 year: 2013 ident: 10.1016/j.tig.2020.06.013_bb0325 article-title: The histone H4 lysine 16 acetyltransferase hMOF regulates the outcome of autophagy publication-title: Nature doi: 10.1038/nature12313 – volume: 23 start-page: 873 year: 2011 ident: 10.1016/j.tig.2020.06.013_bb0145 article-title: High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation publication-title: Plant Cell doi: 10.1105/tpc.111.083345 – volume: 10 start-page: 98 year: 2010 ident: 10.1016/j.tig.2020.06.013_bb0395 article-title: Genetic and epigenetic silencing of the Beclin 1 gene in sporadic breast tumors publication-title: BMC Cancer doi: 10.1186/1471-2407-10-98 – volume: 9 start-page: 332 year: 2020 ident: 10.1016/j.tig.2020.06.013_bb0095 article-title: Autophagy controls sulphur metabolism in the rosette leaves of Arabidopsis and facilitates S remobilization to the seeds publication-title: Cells doi: 10.3390/cells9020332 – volume: 8 year: 2019 ident: 10.1016/j.tig.2020.06.013_bb0265 article-title: Functional analysis of MaWRKY24 in transcriptional activation of autophagy-related gene 8f/g and plant disease susceptibility to soil-borne Fusarium oxysporum f. sp. cubense publication-title: Pathogens doi: 10.3390/pathogens8040264 – volume: 28 start-page: 955 year: 2018 ident: 10.1016/j.tig.2020.06.013_bb0370 article-title: m6A RNA modification controls autophagy through upregulating ULK1 protein abundance publication-title: Cell Res. doi: 10.1038/s41422-018-0069-8 – volume: 182 start-page: 1284 year: 2020 ident: 10.1016/j.tig.2020.06.013_bb0285 article-title: Autophagy increases zinc bioavailability to avoid light-mediated reactive oxygen species production under zinc deficiency publication-title: Plant Physiol. doi: 10.1104/pp.19.01522 – volume: 8 start-page: 1204 year: 2017 ident: 10.1016/j.tig.2020.06.013_bb0035 article-title: TOR-dependent and-independent pathways regulate autophagy in Arabidopsis thaliana publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01204 – volume: 11 start-page: 2033 year: 2015 ident: 10.1016/j.tig.2020.06.013_bb0100 article-title: Tomato HsfA1a plays a critical role in plant drought tolerance by activating ATG genes and inducing autophagy publication-title: Autophagy doi: 10.1080/15548627.2015.1098798 – volume: 9 start-page: 1021 year: 2020 ident: 10.1016/j.tig.2020.06.013_bb0225 article-title: Transcriptional plasticity of autophagy-related genes correlates with the genetic response to nitrate starvation in Arabidopsis thaliana publication-title: Cells doi: 10.3390/cells9041021 – volume: 42 start-page: 1045 year: 2019 ident: 10.1016/j.tig.2020.06.013_bb0230 article-title: Autophagy and its role in plant abiotic stress management publication-title: Plant Cell Environ. doi: 10.1111/pce.13404 – volume: 179 start-page: 460 year: 2018 ident: 10.1016/j.tig.2020.06.013_bb0280 article-title: The local phosphate deficiency response activates ER stress-dependent autophagy publication-title: Plant Physiol. doi: 10.1104/pp.18.01379 – volume: 62 start-page: 1611 year: 2011 ident: 10.1016/j.tig.2020.06.013_bb0490 article-title: MicroRNA activity in the Arabidopsis male germline publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq452 – volume: 27 start-page: 306 year: 2015 ident: 10.1016/j.tig.2020.06.013_bb0070 article-title: Global analysis of the role of autophagy in cellular metabolism and energy homeostasis in Arabidopsis seedlings under carbon starvation publication-title: Plant Cell doi: 10.1105/tpc.114.134205 – volume: 42 start-page: 1054 year: 2019 ident: 10.1016/j.tig.2020.06.013_bb0215 article-title: A regulatory role of autophagy for resetting the memory of heat stress in plants publication-title: Plant Cell Environ. doi: 10.1111/pce.13426 – volume: 30 start-page: 5036 year: 2002 ident: 10.1016/j.tig.2020.06.013_bb0460 article-title: Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkf660 – volume: 7 year: 2016 ident: 10.1016/j.tig.2020.06.013_bb0185 article-title: Autophagy, a conserved mechanism for protein degradation, responds to heat, and other abiotic stresses in Capsicum annuum L publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00131 – volume: 17 start-page: 797 year: 2016 ident: 10.1016/j.tig.2020.06.013_bb0180 article-title: Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice publication-title: BMC Genomics doi: 10.1186/s12864-016-3113-4 – volume: 15 start-page: 65 year: 2014 ident: 10.1016/j.tig.2020.06.013_bb0320 article-title: The return of the nucleus: transcriptional and epigenetic control of autophagy publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3716 – volume: 16 start-page: 2063 year: 2018 ident: 10.1016/j.tig.2020.06.013_bb0105 article-title: Mitochondrial alternative oxidase-dependent autophagy involved in ethylene-mediated drought tolerance in Solanum lycopersicum publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12939 – volume: 8 start-page: 1426 year: 2019 ident: 10.1016/j.tig.2020.06.013_bb0235 article-title: Autophagy and nutrients management in plants publication-title: Cells doi: 10.3390/cells8111426 – volume: 112 start-page: 1886 year: 2015 ident: 10.1016/j.tig.2020.06.013_bb0055 article-title: Dual roles of an Arabidopsis ESCRT component FREE1 in regulating vacuolar protein transport and autophagic degradation publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1421271112 – volume: 31 start-page: 2973 year: 2019 ident: 10.1016/j.tig.2020.06.013_bb0045 article-title: Genetic analyses of the Arabidopsis ATG1 kinase complex reveal both kinase-dependent and independent autophagic routes during fixed-carbon starvation publication-title: Plant Cell doi: 10.1105/tpc.19.00066 – volume: 11 start-page: 381 year: 2016 ident: 10.1016/j.tig.2020.06.013_bb0405 article-title: Aging is associated with hypermethylation of autophagy genes in macrophages publication-title: Epigenetics doi: 10.1080/15592294.2016.1144007 – volume: 11 start-page: R81 year: 2010 ident: 10.1016/j.tig.2020.06.013_bb0485 article-title: Multiple distinct small RNAs originate from the same microRNA precursors publication-title: Genome Biol. doi: 10.1186/gb-2010-11-8-r81 – volume: 11 start-page: 588 year: 2020 ident: 10.1016/j.tig.2020.06.013_bb0430 article-title: A rice autophagy gene OsATG8b is involved in nitrogen remobilization and control of grain quality publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00588 – volume: 5 year: 2010 ident: 10.1016/j.tig.2020.06.013_bb0030 article-title: TOR is a negative regulator of autophagy in Arabidopsis thaliana publication-title: PLoS One – year: 2019 ident: 10.1016/j.tig.2020.06.013_bb0365 article-title: m6A mRNA methylation controls autophagy and adipogenesis by targeting Atg5 and Atg7 publication-title: Autophagy – volume: 63 start-page: 3297 year: 2012 ident: 10.1016/j.tig.2020.06.013_bb0465 article-title: HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis publication-title: J. Exp. Bot. doi: 10.1093/jxb/ers059 – volume: 18 start-page: 363 year: 2011 ident: 10.1016/j.tig.2020.06.013_bb0015 article-title: Genome-wide identification, classification, and expression analysis of autophagy-associated gene homologues in rice (Oryza sativa L.) publication-title: DNA Res. doi: 10.1093/dnares/dsr024 – volume: 147 start-page: 1 year: 2020 ident: 10.1016/j.tig.2020.06.013_bb0155 article-title: Identification of key genes and transcription factors in ageing Arabidopsis papilla cells by transcriptome analysis publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2019.12.008 – volume: 69 start-page: 1403 year: 2018 ident: 10.1016/j.tig.2020.06.013_bb0150 article-title: Autophagy controls resource allocation and protein storage accumulation in Arabidopsis seeds publication-title: J. Exp. Bot. doi: 10.1093/jxb/ery012 – volume: 36 start-page: 1237 year: 2017 ident: 10.1016/j.tig.2020.06.013_bb0195 article-title: Genome-wide analysis of autophagy-related genes in banana highlights MaATG8s in cell death and autophagy in immune response to Fusarium wilt publication-title: Plant Cell Rep. doi: 10.1007/s00299-017-2149-5 – volume: 5 start-page: 954 year: 2009 ident: 10.1016/j.tig.2020.06.013_bb0245 article-title: Autophagy is required for tolerance of drought and salt stress in plants publication-title: Autophagy doi: 10.4161/auto.5.7.9290 – volume: 70 start-page: 347 year: 2019 ident: 10.1016/j.tig.2020.06.013_bb0300 article-title: Leaf senescence: systems and dynamics aspects publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050718-095859 – volume: 8 year: 2019 ident: 10.1016/j.tig.2020.06.013_bb0355 article-title: Arabidopsis WRKY53, a node of multi-layer regulation in the network of senescence publication-title: Plants (Basel) – volume: 39 year: 2020 ident: 10.1016/j.tig.2020.06.013_bb0090 article-title: Autophagy mediates temporary reprogramming and dedifferentiation in plant somatic cells publication-title: EMBO J. doi: 10.15252/embj.2019103315 – volume: 33 start-page: 380 year: 2017 ident: 10.1016/j.tig.2020.06.013_bb0360 article-title: m6A in mRNA: an ancient mechanism for fine-tuning gene expression publication-title: Trends Genet. doi: 10.1016/j.tig.2017.04.003 – volume: 13 start-page: 598 year: 2020 ident: 10.1016/j.tig.2020.06.013_bb0340 article-title: Histone deacetylase HDA9 and WRKY53 transcription factor are mutual antagonists in regulation of plant stress response publication-title: Mol. Plant doi: 10.1016/j.molp.2019.12.011 – volume: 165 start-page: 1280 year: 2016 ident: 10.1016/j.tig.2020.06.013_bb0350 article-title: Cistrome and epicistrome features shape the regulatory DNA landscape publication-title: Cell doi: 10.1016/j.cell.2016.04.038 – volume: 229 start-page: 7 year: 2018 ident: 10.1016/j.tig.2020.06.013_bb0205 article-title: Genome-wide sequence and expressional analysis of autophagy gene family in bread wheat (Triticum aestivum L.) publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2018.06.012 – volume: 63 start-page: 342 year: 2017 ident: 10.1016/j.tig.2020.06.013_bb0200 article-title: Autophagy is induced under Zn limitation and contributes to Zn-limited stress tolerance in Arabidopsis (Arabidopsis thaliana) publication-title: Soil Sci. Plant Nutr. doi: 10.1080/00380768.2017.1360750 – volume: 23 start-page: 175 year: 2007 ident: 10.1016/j.tig.2020.06.013_bb0475 article-title: microRNA functions publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.23.090506.123406 – volume: 12 year: 2017 ident: 10.1016/j.tig.2020.06.013_bb0040 article-title: SnRK1 activates autophagy via the TOR signaling pathway in Arabidopsis thaliana publication-title: PLoS One doi: 10.1371/journal.pone.0182591 – volume: 11 year: 2015 ident: 10.1016/j.tig.2020.06.013_bb0175 article-title: Trehalose accumulation triggers autophagy during plant desiccation publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1005705 – volume: 9 start-page: 819 year: 2013 ident: 10.1016/j.tig.2020.06.013_bb0435 article-title: The emerging role of acetylation in the regulation of autophagy publication-title: Autophagy doi: 10.4161/auto.23908 – volume: 10 start-page: 306 year: 2019 ident: 10.1016/j.tig.2020.06.013_bb0220 article-title: Chromatin state-based analysis of epigenetic H3K4me3 marks of Arabidopsis in response to dark stress publication-title: Front. Genet. doi: 10.3389/fgene.2019.00306 – volume: 16 start-page: 545 year: 2018 ident: 10.1016/j.tig.2020.06.013_bb0415 article-title: Improvement of drought tolerance by overexpressing MdATG18a is mediated by modified antioxidant system and activated autophagy in transgenic apple publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12794 – volume: 20 start-page: 4956 year: 2019 ident: 10.1016/j.tig.2020.06.013_bb0425 article-title: OsATG8c-mediated increased autophagy regulates the yield and nitrogen use efficiency in rice publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20194956 – volume: 21 year: 2020 ident: 10.1016/j.tig.2020.06.013_bb0165 article-title: Genomic characterization and expressional profiles of autophagy-related genes (ATGs) in oilseed crop castor bean (Ricinus communis L.) publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21020562 – volume: 323 start-page: 1053 year: 2009 ident: 10.1016/j.tig.2020.06.013_bb0495 article-title: Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis publication-title: Science doi: 10.1126/science.1166386 – volume: 39 start-page: 61 year: 2007 ident: 10.1016/j.tig.2020.06.013_bb0410 article-title: Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription publication-title: Nat. Genet. doi: 10.1038/ng1929 – volume: 247 start-page: 1449 year: 2018 ident: 10.1016/j.tig.2020.06.013_bb0210 article-title: Genome-wide analysis of autophagy-related genes (ARGs) in grapevine and plant tolerance to copper stress publication-title: Planta doi: 10.1007/s00425-018-2864-3 – volume: 1867 start-page: 118662 year: 2020 ident: 10.1016/j.tig.2020.06.013_bb0480 article-title: MicroRNAs as major regulators of the autophagy pathway publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2020.118662 – volume: 30 start-page: 134 year: 2018 ident: 10.1016/j.tig.2020.06.013_bb0470 article-title: Canonical and noncanonical actions of Arabidopsis histone deacetylases in ribosomal RNA processing publication-title: Plant Cell doi: 10.1105/tpc.17.00626 – volume: 41 start-page: 33 year: 2017 ident: 10.1016/j.tig.2020.06.013_bb0260 article-title: Selective autophagy of BES1 mediated by DSK2 balances plant growth and survival publication-title: Dev. Cell doi: 10.1016/j.devcel.2017.03.013 – volume: 13 start-page: 515 year: 2020 ident: 10.1016/j.tig.2020.06.013_bb0125 article-title: HY5-HDA9 module transcriptionally regulates plant autophagy in response to light-to-dark conversion and nitrogen starvation publication-title: Mol. Plant doi: 10.1016/j.molp.2020.02.011 – volume: 7 start-page: 8677 year: 2017 ident: 10.1016/j.tig.2020.06.013_bb0065 article-title: Disruption of the plant-specific CFS1 gene impairs autophagosome turnover and triggers EDS1-dependent cell death publication-title: Sci. Rep. doi: 10.1038/s41598-017-08577-8 – volume: 27 start-page: 1389 year: 2015 ident: 10.1016/j.tig.2020.06.013_bb0020 article-title: Autophagic recycling plays a central role in maize nitrogen remobilization publication-title: Plant Cell doi: 10.1105/tpc.15.00158 – volume: 66 start-page: 953 year: 2011 ident: 10.1016/j.tig.2020.06.013_bb0270 article-title: A critical role of autophagy in plant resistance to necrotrophic fungal pathogens publication-title: Plant J. doi: 10.1111/j.1365-313X.2011.04553.x – volume: 5 year: 2016 ident: 10.1016/j.tig.2020.06.013_bb0335 article-title: POWERDRESS interacts with HISTONE DEACETYLASE 9 to promote aging in Arabidopsis publication-title: Elife doi: 10.7554/eLife.17214 – volume: 71 start-page: 1092 year: 2019 ident: 10.1016/j.tig.2020.06.013_bb0115 article-title: Brassinosteroids act as a positive regulator of NBR1-dependent selective autophagy in response to chilling stress in tomato publication-title: J. Exp. Bot. doi: 10.1093/jxb/erz466 – volume: 141 start-page: 776 year: 2006 ident: 10.1016/j.tig.2020.06.013_bb0140 article-title: Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence publication-title: Plant Physiol. doi: 10.1104/pp.106.079293 – volume: 289 start-page: 22306 year: 2014 ident: 10.1016/j.tig.2020.06.013_bb0400 article-title: Methylation silencing of ULK2, an autophagy gene, is essential for astrocyte transformation and tumor growth publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.567032 – volume: 169 start-page: 379 year: 2015 ident: 10.1016/j.tig.2020.06.013_bb0290 article-title: Transcription factor Arabidopsis Activating Factor1 integrates carbon starvation responses with trehalose metabolism publication-title: Plant Physiol. doi: 10.1104/pp.15.00917 – volume: 69 start-page: 1415 year: 2018 ident: 10.1016/j.tig.2020.06.013_bb0075 article-title: Transcriptional stimulation of rate-limiting components of the autophagic pathway improves plant fitness publication-title: J. Exp. Bot. doi: 10.1093/jxb/ery010 – volume: 179 start-page: 671 year: 2019 ident: 10.1016/j.tig.2020.06.013_bb0110 article-title: BZR1 mediates brassinosteroid-induced autophagy and nitrogen starvation in tomato publication-title: Plant Physiol. doi: 10.1104/pp.18.01028 – volume: 65 start-page: 346 year: 2011 ident: 10.1016/j.tig.2020.06.013_bb0345 article-title: Genome-wide mapping of the HY5-mediated gene networks in Arabidopsis that involve both transcriptional and post-transcriptional regulation publication-title: Plant J. doi: 10.1111/j.1365-313X.2010.04426.x – volume: 29 start-page: 2995 year: 2017 ident: 10.1016/j.tig.2020.06.013_bb0380 article-title: ALKBH10B is an RNA N6-methyladenosine demethylase affecting Arabidopsis floral transition publication-title: Plant Cell doi: 10.1105/tpc.16.00912 – volume: 22 start-page: 245 year: 2015 ident: 10.1016/j.tig.2020.06.013_bb0025 article-title: A comprehensive, genome-wide analysis of autophagy-related genes identified in tobacco suggests a central role of autophagy in plant response to various environmental cues publication-title: DNA Res. doi: 10.1093/dnares/dsv012 – year: 2020 ident: 10.1016/j.tig.2020.06.013_bb0160 article-title: Autophagy-mediated compartmental cytoplasmic deletion is essential for tobacco pollen germination and male fertility publication-title: Autophagy doi: 10.1080/15548627.2020.1719722 – volume: 21 start-page: 381 year: 2011 ident: 10.1016/j.tig.2020.06.013_bb0315 article-title: Regulation of chromatin by histone modifications publication-title: Cell Res. doi: 10.1038/cr.2011.22 – volume: 129 start-page: 1181 year: 2002 ident: 10.1016/j.tig.2020.06.013_bb0010 article-title: Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene publication-title: Plant Physiol. doi: 10.1104/pp.011024 – volume: 101 start-page: 237 year: 2020 ident: 10.1016/j.tig.2020.06.013_bb0330 article-title: Plant Regulomics: a data-driven interface for retrieving upstream regulators from plant multi-omics data publication-title: Plant J. doi: 10.1111/tpj.14526 – volume: 69 start-page: 173 year: 2018 ident: 10.1016/j.tig.2020.06.013_bb0005 article-title: Autophagy: the master of bulk and selective recycling publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042817-040606 – volume: 194 start-page: 732 year: 2012 ident: 10.1016/j.tig.2020.06.013_bb0295 article-title: Autophagy machinery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis publication-title: New Phytol. doi: 10.1111/j.1469-8137.2012.04084.x – volume: 16 start-page: 123 year: 2020 ident: 10.1016/j.tig.2020.06.013_bb0120 article-title: Identification of transcription factors that regulate ATG8 expression and autophagy in Arabidopsis publication-title: Autophagy doi: 10.1080/15548627.2019.1598753 – volume: 57 start-page: 456 year: 2015 ident: 10.1016/j.tig.2020.06.013_bb0455 article-title: Deacetylation of nuclear LC3 drives autophagy initiation under starvation publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.12.013 |
SSID | ssj0005735 |
Score | 2.450884 |
SecondaryResourceType | review_article |
Snippet | Autophagy, a highly conserved quality control mechanism, is essential for maintaining cellular homeostasis and healthy growth of plants. Compared with... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 676 |
SubjectTerms | ATG genes autophagy epigenetic regulation histone modification transcriptional regulation |
Title | Transcriptional and Epigenetic Regulation of Autophagy in Plants |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0168952520301591 https://dx.doi.org/10.1016/j.tig.2020.06.013 https://www.proquest.com/docview/2424997152 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfEiWhXro0TwJMSmyT6Sm0VaqtIe1EJvy2YfJSJpsemhF3-7s3kUFazgMZuZEGZ3v5lhXghdUeopUBzSpaB8XExj5goW-a4UyjCiiNDEFicPR3Qwxg8TMqmhu6oWxqZVlthfYHqO1uVKu5Rme54k7WcwVsKI-MS3Vj0pKtgxs6f85uNLmgcrhmwCsWupq8hmnuOVJVNwEX0vb-HZCX7TTT9QOlc9_X20V9qMTrf4rQNU02kDbRdTJFcNtDMs4-OH6DZXPRUQAI9IldOb246btljReSomz8M7Z2ac7tJ2FRDTlZOkjp1elC2O0Ljfe7kbuOWMBFeCI5e51IAF4-EYRwJrcK4UM4QYKoyWob2wUSBDSTVmgTI6xpIJxrzQhCyQQsRUBMeons5SfYIcwWCDPCUCrAj2mQTHA7wbpVlMIkNY1EReJR0uywbido7FG68yxV45CJRbgXKbLdcJmuh6zTIvumdsIvYrkfOqLBSAjAO2b2LCa6Zv5-YvtstqTzncJxskEameLRfclstEEQOz5vR_nz5Du_apyEM7R_XsfakvwHDJ4lZ-Mltoq3v_OBh9ArvV61I |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB6CQ5tcSps01EkfKvQUEFakfUi3mhBj149Da0Nuy2ofxiHIppYP-feZ0cOlhbrQq3ZnEbO738yw880AfBEismg4TCjQ-IRM5DLUMotDo62X3HLtOJGTpzMxXLBv9_z-CG5bLgylVTbYX2N6hdbNl16jzd5mter9QGclzXjMY_LqOTHYj6k6Fe_AcX80Hs5-ZXrIus8mzg9JoH3crNK8ytUSo8Q4qqp43iR_M09_AHVlfQav4VXjNgb9-s_ewJErzuBF3Ujy6QxeTpsn8nP4WlmfFgtQRhc2uNtQ0U3iKwbf6-bzOBasfdDfUWEBvXwKVkVADYzK7VtYDO7mt8OwaZMQGozlylB4dGIilrNMM4fxlZWecy-0dyalO5slJjXCMZlY73JmpJYySn0qE6N1LnRyAZ1iXbh3EGiJexRZnTDLWSwNxh4Y4Fgnc555LrMuRK12lGlqiFMri0fVJos9KFSoIoUqSpi7SbpwvRfZ1AU0Dk2OW5WrlhmKWKYQ3g8Jsb3Qb0fnX2Kf2z1VeKXonUQXbr3bKmLMZJlEz-by_5b-BCfD-XSiJqPZ-ApOaaROS3sPnfLnzn1AP6bMPzbn9BnU0e4D |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptional+and+Epigenetic+Regulation+of+Autophagy+in+Plants&rft.jtitle=Trends+in+genetics&rft.au=Yang%2C+Chao&rft.au=Luo%2C+Ming&rft.au=Zhuang%2C+Xiaohong&rft.au=Li%2C+Faqiang&rft.date=2020-09-01&rft.pub=Elsevier+Ltd&rft.issn=0168-9525&rft.volume=36&rft.issue=9&rft.spage=676&rft.epage=688&rft_id=info:doi/10.1016%2Fj.tig.2020.06.013&rft.externalDocID=S0168952520301591 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9525&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9525&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9525&client=summon |