Transcriptional and Epigenetic Regulation of Autophagy in Plants

Autophagy, a highly conserved quality control mechanism, is essential for maintaining cellular homeostasis and healthy growth of plants. Compared with extensive research in the cytoplasmic control of autophagy, studies regarding the nuclear events involved in the regulation of plant autophagy are ju...

Full description

Saved in:
Bibliographic Details
Published inTrends in genetics Vol. 36; no. 9; pp. 676 - 688
Main Authors Yang, Chao, Luo, Ming, Zhuang, Xiaohong, Li, Faqiang, Gao, Caiji
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Autophagy, a highly conserved quality control mechanism, is essential for maintaining cellular homeostasis and healthy growth of plants. Compared with extensive research in the cytoplasmic control of autophagy, studies regarding the nuclear events involved in the regulation of plant autophagy are just beginning to emerge. Accumulating evidence reveals a coordinated expression of plant autophagy genes in response to diverse developmental states and growth conditions. Here, we summarize recent progress in the identification of tightly controlled transcription factors and histone marks associated with the autophagic process in plants, and propose several modules, consisting of transcription regulators and epigenetic modifiers, as important nuclear players that could contribute to both short-term and long-term controls of plant autophagy at the transcriptional and post-transcriptional levels. Coordinated transcriptional upregulation of ATG genes emerges as a general mechanism of autophagy activation in plants.Recent studies unveil several key transcription factors involved in the transcriptional control of plant autophagy.HDA9 functions as an important epigenetic modifier to modulate plant autophagy in response to developmental or stress cues.Genome-wide studies illustrate the enrichment of specific epigenetic marks or nucleobase modifications on ATG loci in plants.
AbstractList Autophagy, a highly conserved quality control mechanism, is essential for maintaining cellular homeostasis and healthy growth of plants. Compared with extensive research in the cytoplasmic control of autophagy, studies regarding the nuclear events involved in the regulation of plant autophagy are just beginning to emerge. Accumulating evidence reveals a coordinated expression of plant autophagy genes in response to diverse developmental states and growth conditions. Here, we summarize recent progress in the identification of tightly controlled transcription factors and histone marks associated with the autophagic process in plants, and propose several modules, consisting of transcription regulators and epigenetic modifiers, as important nuclear players that could contribute to both short-term and long-term controls of plant autophagy at the transcriptional and post-transcriptional levels. Coordinated transcriptional upregulation of ATG genes emerges as a general mechanism of autophagy activation in plants.Recent studies unveil several key transcription factors involved in the transcriptional control of plant autophagy.HDA9 functions as an important epigenetic modifier to modulate plant autophagy in response to developmental or stress cues.Genome-wide studies illustrate the enrichment of specific epigenetic marks or nucleobase modifications on ATG loci in plants.
Autophagy, a highly conserved quality control mechanism, is essential for maintaining cellular homeostasis and healthy growth of plants. Compared with extensive research in the cytoplasmic control of autophagy, studies regarding the nuclear events involved in the regulation of plant autophagy are just beginning to emerge. Accumulating evidence reveals a coordinated expression of plant autophagy genes in response to diverse developmental states and growth conditions. Here, we summarize recent progress in the identification of tightly controlled transcription factors and histone marks associated with the autophagic process in plants, and propose several modules, consisting of transcription regulators and epigenetic modifiers, as important nuclear players that could contribute to both short-term and long-term controls of plant autophagy at the transcriptional and post-transcriptional levels.Autophagy, a highly conserved quality control mechanism, is essential for maintaining cellular homeostasis and healthy growth of plants. Compared with extensive research in the cytoplasmic control of autophagy, studies regarding the nuclear events involved in the regulation of plant autophagy are just beginning to emerge. Accumulating evidence reveals a coordinated expression of plant autophagy genes in response to diverse developmental states and growth conditions. Here, we summarize recent progress in the identification of tightly controlled transcription factors and histone marks associated with the autophagic process in plants, and propose several modules, consisting of transcription regulators and epigenetic modifiers, as important nuclear players that could contribute to both short-term and long-term controls of plant autophagy at the transcriptional and post-transcriptional levels.
Author Gao, Caiji
Yang, Chao
Zhuang, Xiaohong
Luo, Ming
Li, Faqiang
Author_xml – sequence: 1
  givenname: Chao
  surname: Yang
  fullname: Yang, Chao
  organization: Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
– sequence: 2
  givenname: Ming
  surname: Luo
  fullname: Luo, Ming
  organization: Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
– sequence: 3
  givenname: Xiaohong
  surname: Zhuang
  fullname: Zhuang, Xiaohong
  organization: School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
– sequence: 4
  givenname: Faqiang
  surname: Li
  fullname: Li, Faqiang
  organization: Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
– sequence: 5
  givenname: Caiji
  surname: Gao
  fullname: Gao, Caiji
  email: gaocaiji@m.scnu.edu.cn
  organization: Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
BookMark eNqFkD1PwzAQhj0UiRb4AWwZWRrOiWMnYqGqyodUCYTKbLnOubikTrBdpP57UsrUoUwn3b3P6e4ZkYFrHRJyTSGlQPntOo12lWaQQQo8BZoPyLDvl-OqyIpzMgphDQCFyIshuV945YL2tou2dapJlKuTWWdX6DBanbzhatuo_SxpTTLZxrb7UKtdYl3y2igXwyU5M6oJePVXL8j7w2wxfRrPXx6fp5P5WDPG45gbKDiwJasUQw60FqYoDFcGdQmQ0yrXpebIRF4bXDItlBBQmlLkWqklV_kFuTns7Xz7tcUQ5cYGjU1_BLbbIDOWsaoStMj6qDhEtW9D8GiktvH3h-iVbSQFufck17L3JPeeJHDZe-pJekR23m6U351k7g4M9t9_W_QyaItOY2096ijr1p6kqyNaN9ZZrZpP3P3D_gAZjpf8
CitedBy_id crossref_primary_10_1016_j_xplc_2024_100815
crossref_primary_10_1038_s41598_024_65555_7
crossref_primary_10_1093_jxb_erac298
crossref_primary_10_3389_fpls_2020_618944
crossref_primary_10_1007_s44281_023_00021_4
crossref_primary_10_1111_nph_18557
crossref_primary_10_1111_jpi_12990
crossref_primary_10_1038_s41467_023_39482_6
crossref_primary_10_1007_s11033_021_06298_w
crossref_primary_10_1016_j_biortech_2024_131466
crossref_primary_10_1111_tpj_15481
crossref_primary_10_3390_ijms23137301
crossref_primary_10_1007_s00425_021_03668_3
crossref_primary_10_1016_j_molp_2023_07_001
crossref_primary_10_3389_fpls_2023_1123436
crossref_primary_10_3390_ijms22168779
crossref_primary_10_1016_j_foodchem_2024_139987
crossref_primary_10_1271_kagakutoseibutsu_60_352
crossref_primary_10_1007_s44307_024_00027_7
crossref_primary_10_1007_s44307_023_00002_8
crossref_primary_10_1080_15592324_2021_1977527
crossref_primary_10_1111_jipb_13005
crossref_primary_10_1016_j_plantsci_2024_112371
crossref_primary_10_1111_jipb_13343
crossref_primary_10_1007_s00299_025_03476_z
Cites_doi 10.1105/tpc.17.00934
10.1105/tpc.113.118307
10.1038/ncomms8215
10.1073/pnas.1200313109
10.1105/tpc.114.135939
10.1016/j.tplants.2019.02.001
10.1016/j.bbrc.2017.10.091
10.1016/j.celrep.2018.10.020
10.1016/j.devcel.2016.06.008
10.1038/s41477-018-0299-2
10.1105/tpc.19.00335
10.1111/j.1365-313X.2005.02397.x
10.1126/science.1216990
10.3389/fpls.2014.00174
10.1093/nar/gku502
10.3389/fpls.2019.00584
10.1080/15548627.2015.1112483
10.1111/nph.15913
10.1093/mp/sst012
10.1016/j.cub.2016.05.005
10.1016/j.tplants.2018.05.002
10.1038/nature12313
10.1105/tpc.111.083345
10.1186/1471-2407-10-98
10.3390/cells9020332
10.3390/pathogens8040264
10.1038/s41422-018-0069-8
10.1104/pp.19.01522
10.3389/fpls.2017.01204
10.1080/15548627.2015.1098798
10.3390/cells9041021
10.1111/pce.13404
10.1104/pp.18.01379
10.1093/jxb/erq452
10.1105/tpc.114.134205
10.1111/pce.13426
10.1093/nar/gkf660
10.3389/fpls.2016.00131
10.1186/s12864-016-3113-4
10.1038/nrm3716
10.1111/pbi.12939
10.3390/cells8111426
10.1073/pnas.1421271112
10.1105/tpc.19.00066
10.1080/15592294.2016.1144007
10.1186/gb-2010-11-8-r81
10.3389/fpls.2020.00588
10.1093/jxb/ers059
10.1093/dnares/dsr024
10.1016/j.plaphy.2019.12.008
10.1093/jxb/ery012
10.1007/s00299-017-2149-5
10.4161/auto.5.7.9290
10.1146/annurev-arplant-050718-095859
10.15252/embj.2019103315
10.1016/j.tig.2017.04.003
10.1016/j.molp.2019.12.011
10.1016/j.cell.2016.04.038
10.1016/j.jplph.2018.06.012
10.1080/00380768.2017.1360750
10.1146/annurev.cellbio.23.090506.123406
10.1371/journal.pone.0182591
10.1371/journal.pgen.1005705
10.4161/auto.23908
10.3389/fgene.2019.00306
10.1111/pbi.12794
10.3390/ijms20194956
10.3390/ijms21020562
10.1126/science.1166386
10.1038/ng1929
10.1007/s00425-018-2864-3
10.1016/j.bbamcr.2020.118662
10.1105/tpc.17.00626
10.1016/j.devcel.2017.03.013
10.1016/j.molp.2020.02.011
10.1038/s41598-017-08577-8
10.1105/tpc.15.00158
10.1111/j.1365-313X.2011.04553.x
10.7554/eLife.17214
10.1093/jxb/erz466
10.1104/pp.106.079293
10.1074/jbc.M114.567032
10.1104/pp.15.00917
10.1093/jxb/ery010
10.1104/pp.18.01028
10.1111/j.1365-313X.2010.04426.x
10.1105/tpc.16.00912
10.1093/dnares/dsv012
10.1080/15548627.2020.1719722
10.1038/cr.2011.22
10.1104/pp.011024
10.1111/tpj.14526
10.1146/annurev-arplant-042817-040606
10.1111/j.1469-8137.2012.04084.x
10.1080/15548627.2019.1598753
10.1016/j.molcel.2014.12.013
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.tig.2020.06.013
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EndPage 688
ExternalDocumentID 10_1016_j_tig_2020_06_013
S0168952520301591
GroupedDBID ---
--K
--M
-DZ
-RU
-~X
.1-
.FO
.GJ
.~1
0R~
123
1B1
1P~
1~.
1~5
29Q
3O-
4.4
457
4G.
53G
5VS
7-5
71M
85S
8P~
9JM
9M8
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAMRU
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABDPE
ABFNM
ABFRF
ABGSF
ABLJU
ABMAC
ABUDA
ABXDB
ACDAQ
ACGFO
ACGFS
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADUVX
ADVLN
ADXHL
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
D0L
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HZ~
IH2
IHE
J1W
K-O
KOM
LX3
M41
MO0
MVM
N9A
O-L
O9-
O9.
OAUVE
OK~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SSU
SSZ
T5K
TN5
UQL
WH7
WUQ
Y6R
Z5R
ZCA
ZCG
ZGI
~G-
~KM
1RT
AACTN
AAIAV
ABYKQ
AFCTW
AFKWA
AFMIJ
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
G8K
RIG
XFK
ZA5
AAYXX
AGRNS
BNPGV
CITATION
SSH
7X8
ID FETCH-LOGICAL-c446t-6f05604b49a4e601d7f55f6afec8003193c8c6e473dfeb4c7a7708f873caab6a3
IEDL.DBID .~1
ISSN 0168-9525
IngestDate Fri Jul 11 15:18:55 EDT 2025
Thu Apr 24 23:06:41 EDT 2025
Tue Jul 01 01:43:36 EDT 2025
Fri Feb 23 02:46:45 EST 2024
Tue Aug 26 19:13:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords ATG genes
autophagy
histone modification
epigenetic regulation
transcriptional regulation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-6f05604b49a4e601d7f55f6afec8003193c8c6e473dfeb4c7a7708f873caab6a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PQID 2424997152
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2424997152
crossref_citationtrail_10_1016_j_tig_2020_06_013
crossref_primary_10_1016_j_tig_2020_06_013
elsevier_sciencedirect_doi_10_1016_j_tig_2020_06_013
elsevier_clinicalkey_doi_10_1016_j_tig_2020_06_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationTitle Trends in genetics
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ran (bb0330) 2020; 101
Pu (bb0035) 2017; 8
Avin-Wittenberg (bb0070) 2015; 27
Signorelli (bb0135) 2019; 24
Liu (bb0265) 2019; 8
Gao (bb0055) 2015; 112
Guiboileau (bb0295) 2012; 194
Anderson (bb0390) 2018; 25
Hanaoka (bb0010) 2002; 129
Duan (bb0380) 2017; 29
Liu (bb0245) 2009; 5
Wang (bb0365) 2019
Bushati, Cohen (bb0475) 2007; 23
Li (bb0395) 2010; 10
Matallana-Ramirez (bb0310) 2013; 6
Fan (bb0430) 2020; 11
Jin (bb0370) 2018; 28
Akkoc, Gozuacik (bb0480) 2020; 1867
Kim (bb0495) 2009; 323
Zhai (bb0185) 2016; 7
Luo (bb0465) 2012; 63
Pandey (bb0460) 2002; 30
Yang (bb0125) 2020; 13
Lai (bb0270) 2011; 66
Chen (bb0335) 2016; 5
Breeze (bb0145) 2011; 23
O’Malley (bb0350) 2016; 165
Chen (bb0170) 2015; 11
Zheng (bb0340) 2020; 13
Marshall, Vierstra (bb0005) 2018; 69
Spitzer (bb0060) 2015; 27
Wang (bb0100) 2015; 11
Garapati (bb0290) 2015; 169
Chen (bb0470) 2018; 30
Zhou (bb0275) 2014; 5
Lindemose (bb0305) 2014; 42
Bedu (bb0225) 2020; 9
Have (bb0085) 2019; 223
Ye (bb0155) 2020; 147
Füllgrabe (bb0325) 2013; 500
Borges (bb0490) 2011; 62
Sun (bb0415) 2018; 16
Zhuang (bb0050) 2013; 25
Minina (bb0075) 2018; 69
Yue (bb0205) 2018; 229
Chen (bb0235) 2019; 8
Han (bb0165) 2020; 21
Yi (bb0440) 2012; 336
Di Berardino (bb0150) 2018; 69
Xia (bb0015) 2011; 18
Shinozaki (bb0285) 2020; 182
Rodriguez (bb0090) 2020; 39
Yan (bb0220) 2019; 10
Woo (bb0300) 2019; 70
Yan (bb0190) 2017; 494
Zilberman (bb0410) 2007; 39
Williams (bb0175) 2015; 11
Huang (bb0045) 2019; 31
Nolan (bb0250) 2020; 32
Nolan (bb0260) 2017; 41
Zhang (bb0255) 2016; 26
Wei (bb0385) 2018; 30
Zhen (bb0425) 2019; 20
Naumann (bb0280) 2018; 179
Zhou (bb0025) 2015; 22
Roignant, Soller (bb0360) 2017; 33
van der Graaff (bb0140) 2006; 141
Wang (bb0110) 2019; 179
Shukla (bb0400) 2014; 289
McLoughlin (bb0080) 2018; 4
Bartholomew (bb0445) 2012; 109
Sun (bb0450) 2015; 6
Bannister, Kouzarides (bb0315) 2011; 21
Yu (bb0420) 2019; 10
Wang (bb0120) 2020; 16
Zhang (bb0485) 2010; 11
Soto-Burgos, Bassham (bb0040) 2017; 12
Lornac (bb0095) 2020; 9
Shangguan (bb0210) 2018; 247
Khalil (bb0405) 2016; 11
Zhu (bb0105) 2018; 16
Sedaghatmehr (bb0215) 2019; 42
Chi (bb0115) 2019; 71
Bánréti (bb0435) 2013; 9
Zhuang (bb0130) 2018; 23
Wei (bb0195) 2017; 36
Li (bb0180) 2016; 17
Liu, Bassham (bb0030) 2010; 5
Zhao (bb0160) 2020
Schellmann (bb0065) 2017; 7
Zentgraf, Doll (bb0355) 2019; 8
Xiong (bb0240) 2005; 42
Shen (bb0375) 2016; 38
Eguchi (bb0200) 2017; 63
Huang (bb0455) 2015; 57
Avin-Wittenberg (bb0230) 2019; 42
Li (bb0020) 2015; 27
Füllgrabe (bb0320) 2014; 15
Zhang (bb0345) 2011; 65
Yan (10.1016/j.tig.2020.06.013_bb0220) 2019; 10
Li (10.1016/j.tig.2020.06.013_bb0180) 2016; 17
Signorelli (10.1016/j.tig.2020.06.013_bb0135) 2019; 24
Yi (10.1016/j.tig.2020.06.013_bb0440) 2012; 336
Zilberman (10.1016/j.tig.2020.06.013_bb0410) 2007; 39
Rodriguez (10.1016/j.tig.2020.06.013_bb0090) 2020; 39
Minina (10.1016/j.tig.2020.06.013_bb0075) 2018; 69
Lai (10.1016/j.tig.2020.06.013_bb0270) 2011; 66
Huang (10.1016/j.tig.2020.06.013_bb0455) 2015; 57
Guiboileau (10.1016/j.tig.2020.06.013_bb0295) 2012; 194
Anderson (10.1016/j.tig.2020.06.013_bb0390) 2018; 25
McLoughlin (10.1016/j.tig.2020.06.013_bb0080) 2018; 4
Wang (10.1016/j.tig.2020.06.013_bb0120) 2020; 16
Zhang (10.1016/j.tig.2020.06.013_bb0345) 2011; 65
Lornac (10.1016/j.tig.2020.06.013_bb0095) 2020; 9
Chi (10.1016/j.tig.2020.06.013_bb0115) 2019; 71
Nolan (10.1016/j.tig.2020.06.013_bb0250) 2020; 32
Wang (10.1016/j.tig.2020.06.013_bb0100) 2015; 11
Roignant (10.1016/j.tig.2020.06.013_bb0360) 2017; 33
Xia (10.1016/j.tig.2020.06.013_bb0015) 2011; 18
Zhen (10.1016/j.tig.2020.06.013_bb0425) 2019; 20
Gao (10.1016/j.tig.2020.06.013_bb0055) 2015; 112
Spitzer (10.1016/j.tig.2020.06.013_bb0060) 2015; 27
Yan (10.1016/j.tig.2020.06.013_bb0190) 2017; 494
Zhao (10.1016/j.tig.2020.06.013_bb0160) 2020
Have (10.1016/j.tig.2020.06.013_bb0085) 2019; 223
Sun (10.1016/j.tig.2020.06.013_bb0450) 2015; 6
Yue (10.1016/j.tig.2020.06.013_bb0205) 2018; 229
Bannister (10.1016/j.tig.2020.06.013_bb0315) 2011; 21
Yu (10.1016/j.tig.2020.06.013_bb0420) 2019; 10
Bánréti (10.1016/j.tig.2020.06.013_bb0435) 2013; 9
Li (10.1016/j.tig.2020.06.013_bb0395) 2010; 10
Füllgrabe (10.1016/j.tig.2020.06.013_bb0325) 2013; 500
Bedu (10.1016/j.tig.2020.06.013_bb0225) 2020; 9
Pandey (10.1016/j.tig.2020.06.013_bb0460) 2002; 30
Borges (10.1016/j.tig.2020.06.013_bb0490) 2011; 62
Eguchi (10.1016/j.tig.2020.06.013_bb0200) 2017; 63
Füllgrabe (10.1016/j.tig.2020.06.013_bb0320) 2014; 15
Garapati (10.1016/j.tig.2020.06.013_bb0290) 2015; 169
Huang (10.1016/j.tig.2020.06.013_bb0045) 2019; 31
Sun (10.1016/j.tig.2020.06.013_bb0415) 2018; 16
Ye (10.1016/j.tig.2020.06.013_bb0155) 2020; 147
Wei (10.1016/j.tig.2020.06.013_bb0195) 2017; 36
Nolan (10.1016/j.tig.2020.06.013_bb0260) 2017; 41
Zheng (10.1016/j.tig.2020.06.013_bb0340) 2020; 13
Breeze (10.1016/j.tig.2020.06.013_bb0145) 2011; 23
Khalil (10.1016/j.tig.2020.06.013_bb0405) 2016; 11
Ran (10.1016/j.tig.2020.06.013_bb0330) 2020; 101
Shinozaki (10.1016/j.tig.2020.06.013_bb0285) 2020; 182
Hanaoka (10.1016/j.tig.2020.06.013_bb0010) 2002; 129
Bartholomew (10.1016/j.tig.2020.06.013_bb0445) 2012; 109
Shukla (10.1016/j.tig.2020.06.013_bb0400) 2014; 289
Zhai (10.1016/j.tig.2020.06.013_bb0185) 2016; 7
Duan (10.1016/j.tig.2020.06.013_bb0380) 2017; 29
Zhu (10.1016/j.tig.2020.06.013_bb0105) 2018; 16
Zhuang (10.1016/j.tig.2020.06.013_bb0130) 2018; 23
Akkoc (10.1016/j.tig.2020.06.013_bb0480) 2020; 1867
Liu (10.1016/j.tig.2020.06.013_bb0245) 2009; 5
Avin-Wittenberg (10.1016/j.tig.2020.06.013_bb0070) 2015; 27
Wang (10.1016/j.tig.2020.06.013_bb0110) 2019; 179
Zentgraf (10.1016/j.tig.2020.06.013_bb0355) 2019; 8
Shen (10.1016/j.tig.2020.06.013_bb0375) 2016; 38
Naumann (10.1016/j.tig.2020.06.013_bb0280) 2018; 179
Pu (10.1016/j.tig.2020.06.013_bb0035) 2017; 8
Li (10.1016/j.tig.2020.06.013_bb0020) 2015; 27
Xiong (10.1016/j.tig.2020.06.013_bb0240) 2005; 42
Matallana-Ramirez (10.1016/j.tig.2020.06.013_bb0310) 2013; 6
Wang (10.1016/j.tig.2020.06.013_bb0365) 2019
Zhang (10.1016/j.tig.2020.06.013_bb0485) 2010; 11
Liu (10.1016/j.tig.2020.06.013_bb0030) 2010; 5
Zhuang (10.1016/j.tig.2020.06.013_bb0050) 2013; 25
O’Malley (10.1016/j.tig.2020.06.013_bb0350) 2016; 165
Zhou (10.1016/j.tig.2020.06.013_bb0025) 2015; 22
Kim (10.1016/j.tig.2020.06.013_bb0495) 2009; 323
Schellmann (10.1016/j.tig.2020.06.013_bb0065) 2017; 7
Liu (10.1016/j.tig.2020.06.013_bb0265) 2019; 8
Han (10.1016/j.tig.2020.06.013_bb0165) 2020; 21
Lindemose (10.1016/j.tig.2020.06.013_bb0305) 2014; 42
Marshall (10.1016/j.tig.2020.06.013_bb0005) 2018; 69
Chen (10.1016/j.tig.2020.06.013_bb0170) 2015; 11
Avin-Wittenberg (10.1016/j.tig.2020.06.013_bb0230) 2019; 42
Woo (10.1016/j.tig.2020.06.013_bb0300) 2019; 70
Fan (10.1016/j.tig.2020.06.013_bb0430) 2020; 11
Shangguan (10.1016/j.tig.2020.06.013_bb0210) 2018; 247
Chen (10.1016/j.tig.2020.06.013_bb0470) 2018; 30
Chen (10.1016/j.tig.2020.06.013_bb0235) 2019; 8
Soto-Burgos (10.1016/j.tig.2020.06.013_bb0040) 2017; 12
van der Graaff (10.1016/j.tig.2020.06.013_bb0140) 2006; 141
Jin (10.1016/j.tig.2020.06.013_bb0370) 2018; 28
Wei (10.1016/j.tig.2020.06.013_bb0385) 2018; 30
Williams (10.1016/j.tig.2020.06.013_bb0175) 2015; 11
Di Berardino (10.1016/j.tig.2020.06.013_bb0150) 2018; 69
Yang (10.1016/j.tig.2020.06.013_bb0125) 2020; 13
Chen (10.1016/j.tig.2020.06.013_bb0335) 2016; 5
Bushati (10.1016/j.tig.2020.06.013_bb0475) 2007; 23
Sedaghatmehr (10.1016/j.tig.2020.06.013_bb0215) 2019; 42
Zhang (10.1016/j.tig.2020.06.013_bb0255) 2016; 26
Zhou (10.1016/j.tig.2020.06.013_bb0275) 2014; 5
Luo (10.1016/j.tig.2020.06.013_bb0465) 2012; 63
References_xml – volume: 5
  year: 2010
  ident: bb0030
  article-title: TOR is a negative regulator of autophagy in
  publication-title: PLoS One
– volume: 4
  start-page: 1056
  year: 2018
  end-page: 1070
  ident: bb0080
  article-title: Maize multi-omics reveal roles for autophagic recycling in proteome remodelling and lipid turnover
  publication-title: Nat. Plants
– volume: 30
  start-page: 134
  year: 2018
  end-page: 152
  ident: bb0470
  article-title: Canonical and noncanonical actions of
  publication-title: Plant Cell
– volume: 41
  start-page: 33
  year: 2017
  end-page: 46
  ident: bb0260
  article-title: Selective autophagy of BES1 mediated by DSK2 balances plant growth and survival
  publication-title: Dev. Cell
– volume: 112
  start-page: 1886
  year: 2015
  end-page: 1891
  ident: bb0055
  article-title: Dual roles of an
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 147
  start-page: 1
  year: 2020
  end-page: 9
  ident: bb0155
  article-title: Identification of key genes and transcription factors in ageing
  publication-title: Plant Physiol. Biochem.
– volume: 13
  start-page: 598
  year: 2020
  end-page: 611
  ident: bb0340
  article-title: Histone deacetylase HDA9 and WRKY53 transcription factor are mutual antagonists in regulation of plant stress response
  publication-title: Mol. Plant
– volume: 500
  start-page: 468
  year: 2013
  end-page: 471
  ident: bb0325
  article-title: The histone H4 lysine 16 acetyltransferase hMOF regulates the outcome of autophagy
  publication-title: Nature
– volume: 11
  start-page: 2233
  year: 2015
  end-page: 2246
  ident: bb0170
  article-title: Autophagy contributes to regulation of the hypoxia response during submergence in
  publication-title: Autophagy
– volume: 9
  start-page: 819
  year: 2013
  end-page: 829
  ident: bb0435
  article-title: The emerging role of acetylation in the regulation of autophagy
  publication-title: Autophagy
– volume: 42
  start-page: 1045
  year: 2019
  end-page: 1053
  ident: bb0230
  article-title: Autophagy and its role in plant abiotic stress management
  publication-title: Plant Cell Environ.
– volume: 15
  start-page: 65
  year: 2014
  end-page: 74
  ident: bb0320
  article-title: The return of the nucleus: transcriptional and epigenetic control of autophagy
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 323
  start-page: 1053
  year: 2009
  end-page: 1057
  ident: bb0495
  article-title: Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in
  publication-title: Science
– volume: 30
  start-page: 968
  year: 2018
  end-page: 985
  ident: bb0385
  article-title: The m
  publication-title: Plant Cell
– volume: 179
  start-page: 671
  year: 2019
  end-page: 685
  ident: bb0110
  article-title: BZR1 mediates brassinosteroid-induced autophagy and nitrogen starvation in tomato
  publication-title: Plant Physiol.
– volume: 21
  year: 2020
  ident: bb0165
  article-title: Genomic characterization and expressional profiles of autophagy-related genes (ATGs) in oilseed crop castor bean (
  publication-title: Int. J. Mol. Sci.
– volume: 10
  start-page: 306
  year: 2019
  ident: bb0220
  article-title: Chromatin state-based analysis of epigenetic H3K4me3 marks of
  publication-title: Front. Genet.
– volume: 63
  start-page: 3297
  year: 2012
  end-page: 3306
  ident: bb0465
  article-title: HD2C interacts with HDA6 and is involved in ABA and salt stress response in
  publication-title: J. Exp. Bot.
– volume: 69
  start-page: 173
  year: 2018
  end-page: 208
  ident: bb0005
  article-title: Autophagy: the master of bulk and selective recycling
  publication-title: Annu. Rev. Plant Biol.
– volume: 141
  start-page: 776
  year: 2006
  end-page: 792
  ident: bb0140
  article-title: Transcription analysis of
  publication-title: Plant Physiol.
– volume: 8
  start-page: 1426
  year: 2019
  ident: bb0235
  article-title: Autophagy and nutrients management in plants
  publication-title: Cells
– volume: 63
  start-page: 342
  year: 2017
  end-page: 350
  ident: bb0200
  article-title: Autophagy is induced under Zn limitation and contributes to Zn-limited stress tolerance in
  publication-title: Soil Sci. Plant Nutr.
– volume: 13
  start-page: 515
  year: 2020
  end-page: 531
  ident: bb0125
  article-title: HY5-HDA9 module transcriptionally regulates plant autophagy in response to light-to-dark conversion and nitrogen starvation
  publication-title: Mol. Plant
– volume: 22
  start-page: 245
  year: 2015
  end-page: 257
  ident: bb0025
  article-title: A comprehensive, genome-wide analysis of autophagy-related genes identified in tobacco suggests a central role of autophagy in plant response to various environmental cues
  publication-title: DNA Res.
– volume: 71
  start-page: 1092
  year: 2019
  end-page: 1106
  ident: bb0115
  article-title: Brassinosteroids act as a positive regulator of NBR1-dependent selective autophagy in response to chilling stress in tomato
  publication-title: J. Exp. Bot.
– year: 2020
  ident: bb0160
  article-title: Autophagy-mediated compartmental cytoplasmic deletion is essential for tobacco pollen germination and male fertility
  publication-title: Autophagy
– volume: 16
  start-page: 123
  year: 2020
  end-page: 139
  ident: bb0120
  article-title: Identification of transcription factors that regulate ATG8 expression and autophagy in
  publication-title: Autophagy
– volume: 17
  start-page: 797
  year: 2016
  ident: bb0180
  article-title: Genome-wide analysis of autophagy-associated genes in foxtail millet (
  publication-title: BMC Genomics
– volume: 30
  start-page: 5036
  year: 2002
  end-page: 5055
  ident: bb0460
  article-title: Analysis of histone acetyltransferase and histone deacetylase families of
  publication-title: Nucleic Acids Res.
– volume: 101
  start-page: 237
  year: 2020
  end-page: 248
  ident: bb0330
  article-title: Plant Regulomics: a data-driven interface for retrieving upstream regulators from plant multi-omics data
  publication-title: Plant J.
– volume: 7
  start-page: 8677
  year: 2017
  ident: bb0065
  article-title: Disruption of the plant-specific CFS1 gene impairs autophagosome turnover and triggers EDS1-dependent cell death
  publication-title: Sci. Rep.
– volume: 8
  year: 2019
  ident: bb0265
  article-title: Functional analysis of MaWRKY24 in transcriptional activation of autophagy-related gene 8f/g and plant disease susceptibility to soil-borne
  publication-title: Pathogens
– volume: 38
  start-page: 186
  year: 2016
  end-page: 200
  ident: bb0375
  article-title: 6-Methyladenosine RNA modification regulates shoot stem cell fate in
  publication-title: Dev. Cell
– volume: 23
  start-page: 175
  year: 2007
  end-page: 205
  ident: bb0475
  article-title: microRNA functions
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 165
  start-page: 1280
  year: 2016
  end-page: 1292
  ident: bb0350
  article-title: Cistrome and epicistrome features shape the regulatory DNA landscape
  publication-title: Cell
– volume: 6
  start-page: 1438
  year: 2013
  end-page: 1452
  ident: bb0310
  article-title: NAC transcription factor ORE1 and senescence-induced BIFUNCTIONAL NUCLEASE1 (BFN1) constitute a regulatory cascade in
  publication-title: Mol. Plant
– volume: 289
  start-page: 22306
  year: 2014
  end-page: 22318
  ident: bb0400
  article-title: Methylation silencing of ULK2, an autophagy gene, is essential for astrocyte transformation and tumor growth
  publication-title: J. Biol. Chem.
– volume: 129
  start-page: 1181
  year: 2002
  end-page: 1193
  ident: bb0010
  article-title: Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an
  publication-title: Plant Physiol.
– volume: 42
  start-page: 535
  year: 2005
  end-page: 546
  ident: bb0240
  article-title: AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in
  publication-title: Plant J.
– volume: 16
  start-page: 2063
  year: 2018
  end-page: 2076
  ident: bb0105
  article-title: Mitochondrial alternative oxidase-dependent autophagy involved in ethylene-mediated drought tolerance in
  publication-title: Plant Biotechnol. J.
– volume: 229
  start-page: 7
  year: 2018
  end-page: 21
  ident: bb0205
  article-title: Genome-wide sequence and expressional analysis of autophagy gene family in bread wheat (
  publication-title: J. Plant Physiol.
– volume: 25
  start-page: 1146
  year: 2018
  end-page: 1157
  ident: bb0390
  article-title: 6-Methyladenosine inhibits local ribonucleolytic cleavage to stabilize mRNAs in
  publication-title: Cell Rep.
– volume: 12
  year: 2017
  ident: bb0040
  article-title: SnRK1 activates autophagy via the TOR signaling pathway in
  publication-title: PLoS One
– volume: 8
  year: 2019
  ident: bb0355
  article-title: WRKY53, a node of multi-layer regulation in the network of senescence
  publication-title: Plants (Basel)
– volume: 65
  start-page: 346
  year: 2011
  end-page: 358
  ident: bb0345
  article-title: Genome-wide mapping of the HY5-mediated gene networks in
  publication-title: Plant J.
– volume: 1867
  start-page: 118662
  year: 2020
  ident: bb0480
  article-title: MicroRNAs as major regulators of the autophagy pathway
  publication-title: Biochim. Biophys. Acta
– volume: 69
  start-page: 1415
  year: 2018
  end-page: 1432
  ident: bb0075
  article-title: Transcriptional stimulation of rate-limiting components of the autophagic pathway improves plant fitness
  publication-title: J. Exp. Bot.
– volume: 10
  start-page: 584
  year: 2019
  ident: bb0420
  article-title: Increased autophagy of rice can increase yield and nitrogen use efficiency (NUE)
  publication-title: Front. Plant Sci.
– volume: 66
  start-page: 953
  year: 2011
  end-page: 968
  ident: bb0270
  article-title: A critical role of autophagy in plant resistance to necrotrophic fungal pathogens
  publication-title: Plant J.
– volume: 69
  start-page: 1403
  year: 2018
  end-page: 1414
  ident: bb0150
  article-title: Autophagy controls resource allocation and protein storage accumulation in
  publication-title: J. Exp. Bot.
– volume: 169
  start-page: 379
  year: 2015
  end-page: 390
  ident: bb0290
  article-title: Transcription factor
  publication-title: Plant Physiol.
– volume: 32
  start-page: 295
  year: 2020
  end-page: 318
  ident: bb0250
  article-title: Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses
  publication-title: Plant Cell
– volume: 20
  start-page: 4956
  year: 2019
  ident: bb0425
  article-title: OsATG8c-mediated increased autophagy regulates the yield and nitrogen use efficiency in rice
  publication-title: Int. J. Mol. Sci.
– volume: 25
  start-page: 4596
  year: 2013
  end-page: 4615
  ident: bb0050
  article-title: A BAR-domain protein SH3P2, which binds to phosphatidylinositol 3-phosphate and ATG8, regulates autophagosome formation in
  publication-title: Plant Cell
– volume: 7
  year: 2016
  ident: bb0185
  article-title: Autophagy, a conserved mechanism for protein degradation, responds to heat, and other abiotic stresses in
  publication-title: Front. Plant Sci.
– volume: 182
  start-page: 1284
  year: 2020
  end-page: 1296
  ident: bb0285
  article-title: Autophagy increases zinc bioavailability to avoid light-mediated reactive oxygen species production under zinc deficiency
  publication-title: Plant Physiol.
– volume: 57
  start-page: 456
  year: 2015
  end-page: 466
  ident: bb0455
  article-title: Deacetylation of nuclear LC3 drives autophagy initiation under starvation
  publication-title: Mol. Cell
– volume: 27
  start-page: 1389
  year: 2015
  end-page: 1408
  ident: bb0020
  article-title: Autophagic recycling plays a central role in maize nitrogen remobilization
  publication-title: Plant Cell
– volume: 62
  start-page: 1611
  year: 2011
  end-page: 1620
  ident: bb0490
  article-title: MicroRNA activity in the
  publication-title: J. Exp. Bot.
– volume: 11
  year: 2015
  ident: bb0175
  article-title: Trehalose accumulation triggers autophagy during plant desiccation
  publication-title: PLoS Genet.
– volume: 5
  start-page: 954
  year: 2009
  end-page: 963
  ident: bb0245
  article-title: Autophagy is required for tolerance of drought and salt stress in plants
  publication-title: Autophagy
– volume: 194
  start-page: 732
  year: 2012
  end-page: 740
  ident: bb0295
  article-title: Autophagy machinery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in
  publication-title: New Phytol.
– volume: 26
  start-page: 1854
  year: 2016
  end-page: 1860
  ident: bb0255
  article-title: TOR signaling promotes accumulation of BZR1 to balance growth with carbon availability in
  publication-title: Curr. Biol.
– volume: 18
  start-page: 363
  year: 2011
  end-page: 377
  ident: bb0015
  article-title: Genome-wide identification, classification, and expression analysis of autophagy-associated gene homologues in rice (
  publication-title: DNA Res.
– volume: 9
  start-page: 332
  year: 2020
  ident: bb0095
  article-title: Autophagy controls sulphur metabolism in the rosette leaves of
  publication-title: Cells
– volume: 179
  start-page: 460
  year: 2018
  end-page: 476
  ident: bb0280
  article-title: The local phosphate deficiency response activates ER stress-dependent autophagy
  publication-title: Plant Physiol.
– volume: 11
  start-page: 588
  year: 2020
  ident: bb0430
  article-title: A rice autophagy gene OsATG8b is involved in nitrogen remobilization and control of grain quality
  publication-title: Front. Plant Sci.
– volume: 39
  start-page: 61
  year: 2007
  end-page: 69
  ident: bb0410
  article-title: Genome-wide analysis of
  publication-title: Nat. Genet.
– volume: 10
  start-page: 98
  year: 2010
  ident: bb0395
  article-title: Genetic and epigenetic silencing of the Beclin 1 gene in sporadic breast tumors
  publication-title: BMC Cancer
– volume: 31
  start-page: 2973
  year: 2019
  end-page: 2995
  ident: bb0045
  article-title: Genetic analyses of the
  publication-title: Plant Cell
– volume: 11
  start-page: 2033
  year: 2015
  end-page: 2047
  ident: bb0100
  article-title: Tomato HsfA1a plays a critical role in plant drought tolerance by activating ATG genes and inducing autophagy
  publication-title: Autophagy
– volume: 223
  start-page: 1461
  year: 2019
  end-page: 1477
  ident: bb0085
  article-title: Proteomic and lipidomic analyses of the
  publication-title: New Phytol.
– year: 2019
  ident: bb0365
  article-title: m
  publication-title: Autophagy
– volume: 27
  start-page: 391
  year: 2015
  end-page: 402
  ident: bb0060
  article-title: The endosomal protein CHARGED MULTIVESICULAR BODY PROTEIN1 regulates the autophagic turnover of plastids in
  publication-title: Plant Cell
– volume: 9
  start-page: 1021
  year: 2020
  ident: bb0225
  article-title: Transcriptional plasticity of autophagy-related genes correlates with the genetic response to nitrate starvation in
  publication-title: Cells
– volume: 16
  start-page: 545
  year: 2018
  end-page: 557
  ident: bb0415
  article-title: Improvement of drought tolerance by overexpressing MdATG18a is mediated by modified antioxidant system and activated autophagy in transgenic apple
  publication-title: Plant Biotechnol. J.
– volume: 6
  year: 2015
  ident: bb0450
  article-title: Acetylation of Beclin 1 inhibits autophagosome maturation and promotes tumour growth
  publication-title: Nat. Commun.
– volume: 5
  start-page: 174
  year: 2014
  ident: bb0275
  article-title: Role and regulation of autophagy in heat stress responses of tomato plants
  publication-title: Front. Plant Sci.
– volume: 109
  start-page: 11206
  year: 2012
  end-page: 11210
  ident: bb0445
  article-title: Ume6 transcription factor is part of a signaling cascade that regulates autophagy
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 11
  start-page: R81
  year: 2010
  ident: bb0485
  article-title: Multiple distinct small RNAs originate from the same microRNA precursors
  publication-title: Genome Biol.
– volume: 28
  start-page: 955
  year: 2018
  end-page: 957
  ident: bb0370
  article-title: m
  publication-title: Cell Res.
– volume: 336
  start-page: 474
  year: 2012
  ident: bb0440
  article-title: Function and molecular mechanism of acetylation in autophagy regulation
  publication-title: Science
– volume: 29
  start-page: 2995
  year: 2017
  end-page: 3011
  ident: bb0380
  article-title: ALKBH10B is an RNA
  publication-title: Plant Cell
– volume: 23
  start-page: 677
  year: 2018
  end-page: 692
  ident: bb0130
  article-title: Autophagosome biogenesis and the endoplasmic reticulum: a plant perspective
  publication-title: Trends Plant Sci.
– volume: 23
  start-page: 873
  year: 2011
  end-page: 894
  ident: bb0145
  article-title: High-resolution temporal profiling of transcripts during
  publication-title: Plant Cell
– volume: 8
  start-page: 1204
  year: 2017
  ident: bb0035
  article-title: TOR-dependent and-independent pathways regulate autophagy in
  publication-title: Front. Plant Sci.
– volume: 27
  start-page: 306
  year: 2015
  end-page: 322
  ident: bb0070
  article-title: Global analysis of the role of autophagy in cellular metabolism and energy homeostasis in
  publication-title: Plant Cell
– volume: 36
  start-page: 1237
  year: 2017
  end-page: 1250
  ident: bb0195
  article-title: Genome-wide analysis of autophagy-related genes in banana highlights MaATG8s in cell death and autophagy in immune response to
  publication-title: Plant Cell Rep.
– volume: 247
  start-page: 1449
  year: 2018
  end-page: 1463
  ident: bb0210
  article-title: Genome-wide analysis of autophagy-related genes (ARGs) in grapevine and plant tolerance to copper stress
  publication-title: Planta
– volume: 39
  year: 2020
  ident: bb0090
  article-title: Autophagy mediates temporary reprogramming and dedifferentiation in plant somatic cells
  publication-title: EMBO J.
– volume: 42
  start-page: 1054
  year: 2019
  end-page: 1064
  ident: bb0215
  article-title: A regulatory role of autophagy for resetting the memory of heat stress in plants
  publication-title: Plant Cell Environ.
– volume: 42
  start-page: 7681
  year: 2014
  end-page: 7693
  ident: bb0305
  article-title: A DNA-binding-site landscape and regulatory network analysis for NAC transcription factors in
  publication-title: Nucleic Acids Res.
– volume: 21
  start-page: 381
  year: 2011
  end-page: 395
  ident: bb0315
  article-title: Regulation of chromatin by histone modifications
  publication-title: Cell Res.
– volume: 24
  start-page: 413
  year: 2019
  end-page: 430
  ident: bb0135
  article-title: Linking autophagy to abiotic and biotic stress responses
  publication-title: Trends Plant Sci.
– volume: 33
  start-page: 380
  year: 2017
  end-page: 390
  ident: bb0360
  article-title: m
  publication-title: Trends Genet.
– volume: 70
  start-page: 347
  year: 2019
  end-page: 376
  ident: bb0300
  article-title: Leaf senescence: systems and dynamics aspects
  publication-title: Annu. Rev. Plant Biol.
– volume: 5
  year: 2016
  ident: bb0335
  article-title: POWERDRESS interacts with HISTONE DEACETYLASE 9 to promote aging in
  publication-title: Elife
– volume: 11
  start-page: 381
  year: 2016
  end-page: 388
  ident: bb0405
  article-title: Aging is associated with hypermethylation of autophagy genes in macrophages
  publication-title: Epigenetics
– volume: 494
  start-page: 20
  year: 2017
  end-page: 26
  ident: bb0190
  article-title: MeWRKY20 and its interacting and activating autophagy-related protein 8 (MeATG8) regulate plant disease resistance in cassava
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 30
  start-page: 968
  year: 2018
  ident: 10.1016/j.tig.2020.06.013_bb0385
  article-title: The m6A reader ECT2 controls trichome morphology by affecting mRNA stability in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.17.00934
– volume: 25
  start-page: 4596
  year: 2013
  ident: 10.1016/j.tig.2020.06.013_bb0050
  article-title: A BAR-domain protein SH3P2, which binds to phosphatidylinositol 3-phosphate and ATG8, regulates autophagosome formation in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.113.118307
– volume: 6
  year: 2015
  ident: 10.1016/j.tig.2020.06.013_bb0450
  article-title: Acetylation of Beclin 1 inhibits autophagosome maturation and promotes tumour growth
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8215
– volume: 109
  start-page: 11206
  year: 2012
  ident: 10.1016/j.tig.2020.06.013_bb0445
  article-title: Ume6 transcription factor is part of a signaling cascade that regulates autophagy
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1200313109
– volume: 27
  start-page: 391
  year: 2015
  ident: 10.1016/j.tig.2020.06.013_bb0060
  article-title: The endosomal protein CHARGED MULTIVESICULAR BODY PROTEIN1 regulates the autophagic turnover of plastids in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.114.135939
– volume: 24
  start-page: 413
  year: 2019
  ident: 10.1016/j.tig.2020.06.013_bb0135
  article-title: Linking autophagy to abiotic and biotic stress responses
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2019.02.001
– volume: 494
  start-page: 20
  year: 2017
  ident: 10.1016/j.tig.2020.06.013_bb0190
  article-title: MeWRKY20 and its interacting and activating autophagy-related protein 8 (MeATG8) regulate plant disease resistance in cassava
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2017.10.091
– volume: 25
  start-page: 1146
  year: 2018
  ident: 10.1016/j.tig.2020.06.013_bb0390
  article-title: N6-Methyladenosine inhibits local ribonucleolytic cleavage to stabilize mRNAs in Arabidopsis
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.10.020
– volume: 38
  start-page: 186
  year: 2016
  ident: 10.1016/j.tig.2020.06.013_bb0375
  article-title: N6-Methyladenosine RNA modification regulates shoot stem cell fate in Arabidopsis
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2016.06.008
– volume: 4
  start-page: 1056
  year: 2018
  ident: 10.1016/j.tig.2020.06.013_bb0080
  article-title: Maize multi-omics reveal roles for autophagic recycling in proteome remodelling and lipid turnover
  publication-title: Nat. Plants
  doi: 10.1038/s41477-018-0299-2
– volume: 32
  start-page: 295
  year: 2020
  ident: 10.1016/j.tig.2020.06.013_bb0250
  article-title: Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses
  publication-title: Plant Cell
  doi: 10.1105/tpc.19.00335
– volume: 42
  start-page: 535
  year: 2005
  ident: 10.1016/j.tig.2020.06.013_bb0240
  article-title: AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2005.02397.x
– volume: 336
  start-page: 474
  year: 2012
  ident: 10.1016/j.tig.2020.06.013_bb0440
  article-title: Function and molecular mechanism of acetylation in autophagy regulation
  publication-title: Science
  doi: 10.1126/science.1216990
– volume: 5
  start-page: 174
  year: 2014
  ident: 10.1016/j.tig.2020.06.013_bb0275
  article-title: Role and regulation of autophagy in heat stress responses of tomato plants
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2014.00174
– volume: 42
  start-page: 7681
  year: 2014
  ident: 10.1016/j.tig.2020.06.013_bb0305
  article-title: A DNA-binding-site landscape and regulatory network analysis for NAC transcription factors in Arabidopsis thaliana
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku502
– volume: 10
  start-page: 584
  year: 2019
  ident: 10.1016/j.tig.2020.06.013_bb0420
  article-title: Increased autophagy of rice can increase yield and nitrogen use efficiency (NUE)
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00584
– volume: 11
  start-page: 2233
  year: 2015
  ident: 10.1016/j.tig.2020.06.013_bb0170
  article-title: Autophagy contributes to regulation of the hypoxia response during submergence in Arabidopsis thaliana
  publication-title: Autophagy
  doi: 10.1080/15548627.2015.1112483
– volume: 223
  start-page: 1461
  year: 2019
  ident: 10.1016/j.tig.2020.06.013_bb0085
  article-title: Proteomic and lipidomic analyses of the Arabidopsis atg5 autophagy mutant reveal major changes in endoplasmic reticulum and peroxisome metabolisms and in lipid composition
  publication-title: New Phytol.
  doi: 10.1111/nph.15913
– volume: 6
  start-page: 1438
  year: 2013
  ident: 10.1016/j.tig.2020.06.013_bb0310
  article-title: NAC transcription factor ORE1 and senescence-induced BIFUNCTIONAL NUCLEASE1 (BFN1) constitute a regulatory cascade in Arabidopsis
  publication-title: Mol. Plant
  doi: 10.1093/mp/sst012
– volume: 26
  start-page: 1854
  year: 2016
  ident: 10.1016/j.tig.2020.06.013_bb0255
  article-title: TOR signaling promotes accumulation of BZR1 to balance growth with carbon availability in Arabidopsis
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2016.05.005
– volume: 23
  start-page: 677
  year: 2018
  ident: 10.1016/j.tig.2020.06.013_bb0130
  article-title: Autophagosome biogenesis and the endoplasmic reticulum: a plant perspective
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2018.05.002
– volume: 500
  start-page: 468
  year: 2013
  ident: 10.1016/j.tig.2020.06.013_bb0325
  article-title: The histone H4 lysine 16 acetyltransferase hMOF regulates the outcome of autophagy
  publication-title: Nature
  doi: 10.1038/nature12313
– volume: 23
  start-page: 873
  year: 2011
  ident: 10.1016/j.tig.2020.06.013_bb0145
  article-title: High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation
  publication-title: Plant Cell
  doi: 10.1105/tpc.111.083345
– volume: 10
  start-page: 98
  year: 2010
  ident: 10.1016/j.tig.2020.06.013_bb0395
  article-title: Genetic and epigenetic silencing of the Beclin 1 gene in sporadic breast tumors
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-10-98
– volume: 9
  start-page: 332
  year: 2020
  ident: 10.1016/j.tig.2020.06.013_bb0095
  article-title: Autophagy controls sulphur metabolism in the rosette leaves of Arabidopsis and facilitates S remobilization to the seeds
  publication-title: Cells
  doi: 10.3390/cells9020332
– volume: 8
  year: 2019
  ident: 10.1016/j.tig.2020.06.013_bb0265
  article-title: Functional analysis of MaWRKY24 in transcriptional activation of autophagy-related gene 8f/g and plant disease susceptibility to soil-borne Fusarium oxysporum f. sp. cubense
  publication-title: Pathogens
  doi: 10.3390/pathogens8040264
– volume: 28
  start-page: 955
  year: 2018
  ident: 10.1016/j.tig.2020.06.013_bb0370
  article-title: m6A RNA modification controls autophagy through upregulating ULK1 protein abundance
  publication-title: Cell Res.
  doi: 10.1038/s41422-018-0069-8
– volume: 182
  start-page: 1284
  year: 2020
  ident: 10.1016/j.tig.2020.06.013_bb0285
  article-title: Autophagy increases zinc bioavailability to avoid light-mediated reactive oxygen species production under zinc deficiency
  publication-title: Plant Physiol.
  doi: 10.1104/pp.19.01522
– volume: 8
  start-page: 1204
  year: 2017
  ident: 10.1016/j.tig.2020.06.013_bb0035
  article-title: TOR-dependent and-independent pathways regulate autophagy in Arabidopsis thaliana
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01204
– volume: 11
  start-page: 2033
  year: 2015
  ident: 10.1016/j.tig.2020.06.013_bb0100
  article-title: Tomato HsfA1a plays a critical role in plant drought tolerance by activating ATG genes and inducing autophagy
  publication-title: Autophagy
  doi: 10.1080/15548627.2015.1098798
– volume: 9
  start-page: 1021
  year: 2020
  ident: 10.1016/j.tig.2020.06.013_bb0225
  article-title: Transcriptional plasticity of autophagy-related genes correlates with the genetic response to nitrate starvation in Arabidopsis thaliana
  publication-title: Cells
  doi: 10.3390/cells9041021
– volume: 42
  start-page: 1045
  year: 2019
  ident: 10.1016/j.tig.2020.06.013_bb0230
  article-title: Autophagy and its role in plant abiotic stress management
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.13404
– volume: 179
  start-page: 460
  year: 2018
  ident: 10.1016/j.tig.2020.06.013_bb0280
  article-title: The local phosphate deficiency response activates ER stress-dependent autophagy
  publication-title: Plant Physiol.
  doi: 10.1104/pp.18.01379
– volume: 62
  start-page: 1611
  year: 2011
  ident: 10.1016/j.tig.2020.06.013_bb0490
  article-title: MicroRNA activity in the Arabidopsis male germline
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erq452
– volume: 27
  start-page: 306
  year: 2015
  ident: 10.1016/j.tig.2020.06.013_bb0070
  article-title: Global analysis of the role of autophagy in cellular metabolism and energy homeostasis in Arabidopsis seedlings under carbon starvation
  publication-title: Plant Cell
  doi: 10.1105/tpc.114.134205
– volume: 42
  start-page: 1054
  year: 2019
  ident: 10.1016/j.tig.2020.06.013_bb0215
  article-title: A regulatory role of autophagy for resetting the memory of heat stress in plants
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.13426
– volume: 30
  start-page: 5036
  year: 2002
  ident: 10.1016/j.tig.2020.06.013_bb0460
  article-title: Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkf660
– volume: 7
  year: 2016
  ident: 10.1016/j.tig.2020.06.013_bb0185
  article-title: Autophagy, a conserved mechanism for protein degradation, responds to heat, and other abiotic stresses in Capsicum annuum L
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00131
– volume: 17
  start-page: 797
  year: 2016
  ident: 10.1016/j.tig.2020.06.013_bb0180
  article-title: Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice
  publication-title: BMC Genomics
  doi: 10.1186/s12864-016-3113-4
– volume: 15
  start-page: 65
  year: 2014
  ident: 10.1016/j.tig.2020.06.013_bb0320
  article-title: The return of the nucleus: transcriptional and epigenetic control of autophagy
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3716
– volume: 16
  start-page: 2063
  year: 2018
  ident: 10.1016/j.tig.2020.06.013_bb0105
  article-title: Mitochondrial alternative oxidase-dependent autophagy involved in ethylene-mediated drought tolerance in Solanum lycopersicum
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12939
– volume: 8
  start-page: 1426
  year: 2019
  ident: 10.1016/j.tig.2020.06.013_bb0235
  article-title: Autophagy and nutrients management in plants
  publication-title: Cells
  doi: 10.3390/cells8111426
– volume: 112
  start-page: 1886
  year: 2015
  ident: 10.1016/j.tig.2020.06.013_bb0055
  article-title: Dual roles of an Arabidopsis ESCRT component FREE1 in regulating vacuolar protein transport and autophagic degradation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1421271112
– volume: 31
  start-page: 2973
  year: 2019
  ident: 10.1016/j.tig.2020.06.013_bb0045
  article-title: Genetic analyses of the Arabidopsis ATG1 kinase complex reveal both kinase-dependent and independent autophagic routes during fixed-carbon starvation
  publication-title: Plant Cell
  doi: 10.1105/tpc.19.00066
– volume: 11
  start-page: 381
  year: 2016
  ident: 10.1016/j.tig.2020.06.013_bb0405
  article-title: Aging is associated with hypermethylation of autophagy genes in macrophages
  publication-title: Epigenetics
  doi: 10.1080/15592294.2016.1144007
– volume: 11
  start-page: R81
  year: 2010
  ident: 10.1016/j.tig.2020.06.013_bb0485
  article-title: Multiple distinct small RNAs originate from the same microRNA precursors
  publication-title: Genome Biol.
  doi: 10.1186/gb-2010-11-8-r81
– volume: 11
  start-page: 588
  year: 2020
  ident: 10.1016/j.tig.2020.06.013_bb0430
  article-title: A rice autophagy gene OsATG8b is involved in nitrogen remobilization and control of grain quality
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00588
– volume: 5
  year: 2010
  ident: 10.1016/j.tig.2020.06.013_bb0030
  article-title: TOR is a negative regulator of autophagy in Arabidopsis thaliana
  publication-title: PLoS One
– year: 2019
  ident: 10.1016/j.tig.2020.06.013_bb0365
  article-title: m6A mRNA methylation controls autophagy and adipogenesis by targeting Atg5 and Atg7
  publication-title: Autophagy
– volume: 63
  start-page: 3297
  year: 2012
  ident: 10.1016/j.tig.2020.06.013_bb0465
  article-title: HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ers059
– volume: 18
  start-page: 363
  year: 2011
  ident: 10.1016/j.tig.2020.06.013_bb0015
  article-title: Genome-wide identification, classification, and expression analysis of autophagy-associated gene homologues in rice (Oryza sativa L.)
  publication-title: DNA Res.
  doi: 10.1093/dnares/dsr024
– volume: 147
  start-page: 1
  year: 2020
  ident: 10.1016/j.tig.2020.06.013_bb0155
  article-title: Identification of key genes and transcription factors in ageing Arabidopsis papilla cells by transcriptome analysis
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2019.12.008
– volume: 69
  start-page: 1403
  year: 2018
  ident: 10.1016/j.tig.2020.06.013_bb0150
  article-title: Autophagy controls resource allocation and protein storage accumulation in Arabidopsis seeds
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ery012
– volume: 36
  start-page: 1237
  year: 2017
  ident: 10.1016/j.tig.2020.06.013_bb0195
  article-title: Genome-wide analysis of autophagy-related genes in banana highlights MaATG8s in cell death and autophagy in immune response to Fusarium wilt
  publication-title: Plant Cell Rep.
  doi: 10.1007/s00299-017-2149-5
– volume: 5
  start-page: 954
  year: 2009
  ident: 10.1016/j.tig.2020.06.013_bb0245
  article-title: Autophagy is required for tolerance of drought and salt stress in plants
  publication-title: Autophagy
  doi: 10.4161/auto.5.7.9290
– volume: 70
  start-page: 347
  year: 2019
  ident: 10.1016/j.tig.2020.06.013_bb0300
  article-title: Leaf senescence: systems and dynamics aspects
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-050718-095859
– volume: 8
  year: 2019
  ident: 10.1016/j.tig.2020.06.013_bb0355
  article-title: Arabidopsis WRKY53, a node of multi-layer regulation in the network of senescence
  publication-title: Plants (Basel)
– volume: 39
  year: 2020
  ident: 10.1016/j.tig.2020.06.013_bb0090
  article-title: Autophagy mediates temporary reprogramming and dedifferentiation in plant somatic cells
  publication-title: EMBO J.
  doi: 10.15252/embj.2019103315
– volume: 33
  start-page: 380
  year: 2017
  ident: 10.1016/j.tig.2020.06.013_bb0360
  article-title: m6A in mRNA: an ancient mechanism for fine-tuning gene expression
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2017.04.003
– volume: 13
  start-page: 598
  year: 2020
  ident: 10.1016/j.tig.2020.06.013_bb0340
  article-title: Histone deacetylase HDA9 and WRKY53 transcription factor are mutual antagonists in regulation of plant stress response
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2019.12.011
– volume: 165
  start-page: 1280
  year: 2016
  ident: 10.1016/j.tig.2020.06.013_bb0350
  article-title: Cistrome and epicistrome features shape the regulatory DNA landscape
  publication-title: Cell
  doi: 10.1016/j.cell.2016.04.038
– volume: 229
  start-page: 7
  year: 2018
  ident: 10.1016/j.tig.2020.06.013_bb0205
  article-title: Genome-wide sequence and expressional analysis of autophagy gene family in bread wheat (Triticum aestivum L.)
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2018.06.012
– volume: 63
  start-page: 342
  year: 2017
  ident: 10.1016/j.tig.2020.06.013_bb0200
  article-title: Autophagy is induced under Zn limitation and contributes to Zn-limited stress tolerance in Arabidopsis (Arabidopsis thaliana)
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.2017.1360750
– volume: 23
  start-page: 175
  year: 2007
  ident: 10.1016/j.tig.2020.06.013_bb0475
  article-title: microRNA functions
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.23.090506.123406
– volume: 12
  year: 2017
  ident: 10.1016/j.tig.2020.06.013_bb0040
  article-title: SnRK1 activates autophagy via the TOR signaling pathway in Arabidopsis thaliana
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0182591
– volume: 11
  year: 2015
  ident: 10.1016/j.tig.2020.06.013_bb0175
  article-title: Trehalose accumulation triggers autophagy during plant desiccation
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005705
– volume: 9
  start-page: 819
  year: 2013
  ident: 10.1016/j.tig.2020.06.013_bb0435
  article-title: The emerging role of acetylation in the regulation of autophagy
  publication-title: Autophagy
  doi: 10.4161/auto.23908
– volume: 10
  start-page: 306
  year: 2019
  ident: 10.1016/j.tig.2020.06.013_bb0220
  article-title: Chromatin state-based analysis of epigenetic H3K4me3 marks of Arabidopsis in response to dark stress
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2019.00306
– volume: 16
  start-page: 545
  year: 2018
  ident: 10.1016/j.tig.2020.06.013_bb0415
  article-title: Improvement of drought tolerance by overexpressing MdATG18a is mediated by modified antioxidant system and activated autophagy in transgenic apple
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12794
– volume: 20
  start-page: 4956
  year: 2019
  ident: 10.1016/j.tig.2020.06.013_bb0425
  article-title: OsATG8c-mediated increased autophagy regulates the yield and nitrogen use efficiency in rice
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20194956
– volume: 21
  year: 2020
  ident: 10.1016/j.tig.2020.06.013_bb0165
  article-title: Genomic characterization and expressional profiles of autophagy-related genes (ATGs) in oilseed crop castor bean (Ricinus communis L.)
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21020562
– volume: 323
  start-page: 1053
  year: 2009
  ident: 10.1016/j.tig.2020.06.013_bb0495
  article-title: Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis
  publication-title: Science
  doi: 10.1126/science.1166386
– volume: 39
  start-page: 61
  year: 2007
  ident: 10.1016/j.tig.2020.06.013_bb0410
  article-title: Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription
  publication-title: Nat. Genet.
  doi: 10.1038/ng1929
– volume: 247
  start-page: 1449
  year: 2018
  ident: 10.1016/j.tig.2020.06.013_bb0210
  article-title: Genome-wide analysis of autophagy-related genes (ARGs) in grapevine and plant tolerance to copper stress
  publication-title: Planta
  doi: 10.1007/s00425-018-2864-3
– volume: 1867
  start-page: 118662
  year: 2020
  ident: 10.1016/j.tig.2020.06.013_bb0480
  article-title: MicroRNAs as major regulators of the autophagy pathway
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2020.118662
– volume: 30
  start-page: 134
  year: 2018
  ident: 10.1016/j.tig.2020.06.013_bb0470
  article-title: Canonical and noncanonical actions of Arabidopsis histone deacetylases in ribosomal RNA processing
  publication-title: Plant Cell
  doi: 10.1105/tpc.17.00626
– volume: 41
  start-page: 33
  year: 2017
  ident: 10.1016/j.tig.2020.06.013_bb0260
  article-title: Selective autophagy of BES1 mediated by DSK2 balances plant growth and survival
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2017.03.013
– volume: 13
  start-page: 515
  year: 2020
  ident: 10.1016/j.tig.2020.06.013_bb0125
  article-title: HY5-HDA9 module transcriptionally regulates plant autophagy in response to light-to-dark conversion and nitrogen starvation
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2020.02.011
– volume: 7
  start-page: 8677
  year: 2017
  ident: 10.1016/j.tig.2020.06.013_bb0065
  article-title: Disruption of the plant-specific CFS1 gene impairs autophagosome turnover and triggers EDS1-dependent cell death
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-08577-8
– volume: 27
  start-page: 1389
  year: 2015
  ident: 10.1016/j.tig.2020.06.013_bb0020
  article-title: Autophagic recycling plays a central role in maize nitrogen remobilization
  publication-title: Plant Cell
  doi: 10.1105/tpc.15.00158
– volume: 66
  start-page: 953
  year: 2011
  ident: 10.1016/j.tig.2020.06.013_bb0270
  article-title: A critical role of autophagy in plant resistance to necrotrophic fungal pathogens
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2011.04553.x
– volume: 5
  year: 2016
  ident: 10.1016/j.tig.2020.06.013_bb0335
  article-title: POWERDRESS interacts with HISTONE DEACETYLASE 9 to promote aging in Arabidopsis
  publication-title: Elife
  doi: 10.7554/eLife.17214
– volume: 71
  start-page: 1092
  year: 2019
  ident: 10.1016/j.tig.2020.06.013_bb0115
  article-title: Brassinosteroids act as a positive regulator of NBR1-dependent selective autophagy in response to chilling stress in tomato
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erz466
– volume: 141
  start-page: 776
  year: 2006
  ident: 10.1016/j.tig.2020.06.013_bb0140
  article-title: Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.079293
– volume: 289
  start-page: 22306
  year: 2014
  ident: 10.1016/j.tig.2020.06.013_bb0400
  article-title: Methylation silencing of ULK2, an autophagy gene, is essential for astrocyte transformation and tumor growth
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.567032
– volume: 169
  start-page: 379
  year: 2015
  ident: 10.1016/j.tig.2020.06.013_bb0290
  article-title: Transcription factor Arabidopsis Activating Factor1 integrates carbon starvation responses with trehalose metabolism
  publication-title: Plant Physiol.
  doi: 10.1104/pp.15.00917
– volume: 69
  start-page: 1415
  year: 2018
  ident: 10.1016/j.tig.2020.06.013_bb0075
  article-title: Transcriptional stimulation of rate-limiting components of the autophagic pathway improves plant fitness
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ery010
– volume: 179
  start-page: 671
  year: 2019
  ident: 10.1016/j.tig.2020.06.013_bb0110
  article-title: BZR1 mediates brassinosteroid-induced autophagy and nitrogen starvation in tomato
  publication-title: Plant Physiol.
  doi: 10.1104/pp.18.01028
– volume: 65
  start-page: 346
  year: 2011
  ident: 10.1016/j.tig.2020.06.013_bb0345
  article-title: Genome-wide mapping of the HY5-mediated gene networks in Arabidopsis that involve both transcriptional and post-transcriptional regulation
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2010.04426.x
– volume: 29
  start-page: 2995
  year: 2017
  ident: 10.1016/j.tig.2020.06.013_bb0380
  article-title: ALKBH10B is an RNA N6-methyladenosine demethylase affecting Arabidopsis floral transition
  publication-title: Plant Cell
  doi: 10.1105/tpc.16.00912
– volume: 22
  start-page: 245
  year: 2015
  ident: 10.1016/j.tig.2020.06.013_bb0025
  article-title: A comprehensive, genome-wide analysis of autophagy-related genes identified in tobacco suggests a central role of autophagy in plant response to various environmental cues
  publication-title: DNA Res.
  doi: 10.1093/dnares/dsv012
– year: 2020
  ident: 10.1016/j.tig.2020.06.013_bb0160
  article-title: Autophagy-mediated compartmental cytoplasmic deletion is essential for tobacco pollen germination and male fertility
  publication-title: Autophagy
  doi: 10.1080/15548627.2020.1719722
– volume: 21
  start-page: 381
  year: 2011
  ident: 10.1016/j.tig.2020.06.013_bb0315
  article-title: Regulation of chromatin by histone modifications
  publication-title: Cell Res.
  doi: 10.1038/cr.2011.22
– volume: 129
  start-page: 1181
  year: 2002
  ident: 10.1016/j.tig.2020.06.013_bb0010
  article-title: Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene
  publication-title: Plant Physiol.
  doi: 10.1104/pp.011024
– volume: 101
  start-page: 237
  year: 2020
  ident: 10.1016/j.tig.2020.06.013_bb0330
  article-title: Plant Regulomics: a data-driven interface for retrieving upstream regulators from plant multi-omics data
  publication-title: Plant J.
  doi: 10.1111/tpj.14526
– volume: 69
  start-page: 173
  year: 2018
  ident: 10.1016/j.tig.2020.06.013_bb0005
  article-title: Autophagy: the master of bulk and selective recycling
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042817-040606
– volume: 194
  start-page: 732
  year: 2012
  ident: 10.1016/j.tig.2020.06.013_bb0295
  article-title: Autophagy machinery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2012.04084.x
– volume: 16
  start-page: 123
  year: 2020
  ident: 10.1016/j.tig.2020.06.013_bb0120
  article-title: Identification of transcription factors that regulate ATG8 expression and autophagy in Arabidopsis
  publication-title: Autophagy
  doi: 10.1080/15548627.2019.1598753
– volume: 57
  start-page: 456
  year: 2015
  ident: 10.1016/j.tig.2020.06.013_bb0455
  article-title: Deacetylation of nuclear LC3 drives autophagy initiation under starvation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.12.013
SSID ssj0005735
Score 2.450884
SecondaryResourceType review_article
Snippet Autophagy, a highly conserved quality control mechanism, is essential for maintaining cellular homeostasis and healthy growth of plants. Compared with...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 676
SubjectTerms ATG genes
autophagy
epigenetic regulation
histone modification
transcriptional regulation
Title Transcriptional and Epigenetic Regulation of Autophagy in Plants
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0168952520301591
https://dx.doi.org/10.1016/j.tig.2020.06.013
https://www.proquest.com/docview/2424997152
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KRfEiWhXro0TwJMSmyT6Sm0VaqtIe1EJvy2YfJSJpsemhF3-7s3kUFazgMZuZEGZ3v5lhXghdUeopUBzSpaB8XExj5goW-a4UyjCiiNDEFicPR3Qwxg8TMqmhu6oWxqZVlthfYHqO1uVKu5Rme54k7WcwVsKI-MS3Vj0pKtgxs6f85uNLmgcrhmwCsWupq8hmnuOVJVNwEX0vb-HZCX7TTT9QOlc9_X20V9qMTrf4rQNU02kDbRdTJFcNtDMs4-OH6DZXPRUQAI9IldOb246btljReSomz8M7Z2ac7tJ2FRDTlZOkjp1elC2O0Ljfe7kbuOWMBFeCI5e51IAF4-EYRwJrcK4UM4QYKoyWob2wUSBDSTVmgTI6xpIJxrzQhCyQQsRUBMeons5SfYIcwWCDPCUCrAj2mQTHA7wbpVlMIkNY1EReJR0uywbido7FG68yxV45CJRbgXKbLdcJmuh6zTIvumdsIvYrkfOqLBSAjAO2b2LCa6Zv5-YvtstqTzncJxskEameLRfclstEEQOz5vR_nz5Du_apyEM7R_XsfakvwHDJ4lZ-Mltoq3v_OBh9ArvV61I
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB6CQ5tcSps01EkfKvQUEFakfUi3mhBj149Da0Nuy2ofxiHIppYP-feZ0cOlhbrQq3ZnEbO738yw880AfBEismg4TCjQ-IRM5DLUMotDo62X3HLtOJGTpzMxXLBv9_z-CG5bLgylVTbYX2N6hdbNl16jzd5mter9QGclzXjMY_LqOTHYj6k6Fe_AcX80Hs5-ZXrIus8mzg9JoH3crNK8ytUSo8Q4qqp43iR_M09_AHVlfQav4VXjNgb9-s_ewJErzuBF3Ujy6QxeTpsn8nP4WlmfFgtQRhc2uNtQ0U3iKwbf6-bzOBasfdDfUWEBvXwKVkVADYzK7VtYDO7mt8OwaZMQGozlylB4dGIilrNMM4fxlZWecy-0dyalO5slJjXCMZlY73JmpJYySn0qE6N1LnRyAZ1iXbh3EGiJexRZnTDLWSwNxh4Y4Fgnc555LrMuRK12lGlqiFMri0fVJos9KFSoIoUqSpi7SbpwvRfZ1AU0Dk2OW5WrlhmKWKYQ3g8Jsb3Qb0fnX2Kf2z1VeKXonUQXbr3bKmLMZJlEz-by_5b-BCfD-XSiJqPZ-ApOaaROS3sPnfLnzn1AP6bMPzbn9BnU0e4D
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptional+and+Epigenetic+Regulation+of+Autophagy+in+Plants&rft.jtitle=Trends+in+genetics&rft.au=Yang%2C+Chao&rft.au=Luo%2C+Ming&rft.au=Zhuang%2C+Xiaohong&rft.au=Li%2C+Faqiang&rft.date=2020-09-01&rft.pub=Elsevier+Ltd&rft.issn=0168-9525&rft.volume=36&rft.issue=9&rft.spage=676&rft.epage=688&rft_id=info:doi/10.1016%2Fj.tig.2020.06.013&rft.externalDocID=S0168952520301591
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9525&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9525&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9525&client=summon