Fractional order vs. exponential fitting in UTE MR imaging of the patellar tendon

Quantification of the T2∗ relaxation time constant is relevant in various magnetic resonance imaging applications. Mono- or bi-exponential models are typically used to determine these parameters. However, in case of complex, heterogeneous tissues these models could lead to inaccurate results. We com...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance imaging Vol. 70; pp. 91 - 97
Main Authors Papp, D., Breda, S.J., Oei, E.H.G., Poot, D.H.J., Kotek, G., Hernandez-Tamames, J.A.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Quantification of the T2∗ relaxation time constant is relevant in various magnetic resonance imaging applications. Mono- or bi-exponential models are typically used to determine these parameters. However, in case of complex, heterogeneous tissues these models could lead to inaccurate results. We compared a model, provided by the fractional-order extension of the Bloch equation with the conventional models. Axial 3D ultra-short echo time (UTE) scans were acquired using a 3.0 T MRI and a 16-channel surface coil. After image registration, voxel-wise T2∗ was quantified with mono-exponential, bi-exponential and fractional-order fitting. We evaluated all three models repeatability and the bias of their derived parameters by fitting at various noise levels. To investigate the effect of the SNR for the different models, a Monte-Carlo experiment with 1000 repeats was performed for different noise levels for one subject. For a cross-sectional investigation, we used the mean fitted values of the ROIs in five volunteers. Comparing the mono-exponential and the fractional order T2∗ maps, the fractional order fitting method yielded enhanced contrast and an improved delineation of the different tissues. In the case of the bi-exponential method, the long T2∗ component map demonstrated the anatomy clearly with high contrast. Simulations showed a nonzero bias of the parameters for all three mathematical models. ROI based fitting showed that the T2∗ values were different depending on the applied method, and they differed most for the patellar tendon in all subjects. In high SNR cases, the fractional order and bi-exponential models are both performing well with low bias. However, in all observed cases, one of the bi-exponential components has high standard deviation in T2∗. The bi-exponential model is suitable for T2∗ mapping, but we recommend using the fractional order model for cases of low SNR.
AbstractList Quantification of the T2∗ relaxation time constant is relevant in various magnetic resonance imaging applications. Mono- or bi-exponential models are typically used to determine these parameters. However, in case of complex, heterogeneous tissues these models could lead to inaccurate results. We compared a model, provided by the fractional-order extension of the Bloch equation with the conventional models.PURPOSEQuantification of the T2∗ relaxation time constant is relevant in various magnetic resonance imaging applications. Mono- or bi-exponential models are typically used to determine these parameters. However, in case of complex, heterogeneous tissues these models could lead to inaccurate results. We compared a model, provided by the fractional-order extension of the Bloch equation with the conventional models.Axial 3D ultra-short echo time (UTE) scans were acquired using a 3.0 T MRI and a 16-channel surface coil. After image registration, voxel-wise T2∗ was quantified with mono-exponential, bi-exponential and fractional-order fitting. We evaluated all three models repeatability and the bias of their derived parameters by fitting at various noise levels. To investigate the effect of the SNR for the different models, a Monte-Carlo experiment with 1000 repeats was performed for different noise levels for one subject. For a cross-sectional investigation, we used the mean fitted values of the ROIs in five volunteers.METHODSAxial 3D ultra-short echo time (UTE) scans were acquired using a 3.0 T MRI and a 16-channel surface coil. After image registration, voxel-wise T2∗ was quantified with mono-exponential, bi-exponential and fractional-order fitting. We evaluated all three models repeatability and the bias of their derived parameters by fitting at various noise levels. To investigate the effect of the SNR for the different models, a Monte-Carlo experiment with 1000 repeats was performed for different noise levels for one subject. For a cross-sectional investigation, we used the mean fitted values of the ROIs in five volunteers.Comparing the mono-exponential and the fractional order T2∗ maps, the fractional order fitting method yielded enhanced contrast and an improved delineation of the different tissues. In the case of the bi-exponential method, the long T2∗ component map demonstrated the anatomy clearly with high contrast. Simulations showed a nonzero bias of the parameters for all three mathematical models. ROI based fitting showed that the T2∗ values were different depending on the applied method, and they differed most for the patellar tendon in all subjects.RESULTSComparing the mono-exponential and the fractional order T2∗ maps, the fractional order fitting method yielded enhanced contrast and an improved delineation of the different tissues. In the case of the bi-exponential method, the long T2∗ component map demonstrated the anatomy clearly with high contrast. Simulations showed a nonzero bias of the parameters for all three mathematical models. ROI based fitting showed that the T2∗ values were different depending on the applied method, and they differed most for the patellar tendon in all subjects.In high SNR cases, the fractional order and bi-exponential models are both performing well with low bias. However, in all observed cases, one of the bi-exponential components has high standard deviation in T2∗. The bi-exponential model is suitable for T2∗ mapping, but we recommend using the fractional order model for cases of low SNR.CONCLUSIONSIn high SNR cases, the fractional order and bi-exponential models are both performing well with low bias. However, in all observed cases, one of the bi-exponential components has high standard deviation in T2∗. The bi-exponential model is suitable for T2∗ mapping, but we recommend using the fractional order model for cases of low SNR.
Quantification of the T2∗ relaxation time constant is relevant in various magnetic resonance imaging applications. Mono- or bi-exponential models are typically used to determine these parameters. However, in case of complex, heterogeneous tissues these models could lead to inaccurate results. We compared a model, provided by the fractional-order extension of the Bloch equation with the conventional models. Axial 3D ultra-short echo time (UTE) scans were acquired using a 3.0 T MRI and a 16-channel surface coil. After image registration, voxel-wise T2∗ was quantified with mono-exponential, bi-exponential and fractional-order fitting. We evaluated all three models repeatability and the bias of their derived parameters by fitting at various noise levels. To investigate the effect of the SNR for the different models, a Monte-Carlo experiment with 1000 repeats was performed for different noise levels for one subject. For a cross-sectional investigation, we used the mean fitted values of the ROIs in five volunteers. Comparing the mono-exponential and the fractional order T2∗ maps, the fractional order fitting method yielded enhanced contrast and an improved delineation of the different tissues. In the case of the bi-exponential method, the long T2∗ component map demonstrated the anatomy clearly with high contrast. Simulations showed a nonzero bias of the parameters for all three mathematical models. ROI based fitting showed that the T2∗ values were different depending on the applied method, and they differed most for the patellar tendon in all subjects. In high SNR cases, the fractional order and bi-exponential models are both performing well with low bias. However, in all observed cases, one of the bi-exponential components has high standard deviation in T2∗. The bi-exponential model is suitable for T2∗ mapping, but we recommend using the fractional order model for cases of low SNR.
Quantification of the T relaxation time constant is relevant in various magnetic resonance imaging applications. Mono- or bi-exponential models are typically used to determine these parameters. However, in case of complex, heterogeneous tissues these models could lead to inaccurate results. We compared a model, provided by the fractional-order extension of the Bloch equation with the conventional models. Axial 3D ultra-short echo time (UTE) scans were acquired using a 3.0 T MRI and a 16-channel surface coil. After image registration, voxel-wise T was quantified with mono-exponential, bi-exponential and fractional-order fitting. We evaluated all three models repeatability and the bias of their derived parameters by fitting at various noise levels. To investigate the effect of the SNR for the different models, a Monte-Carlo experiment with 1000 repeats was performed for different noise levels for one subject. For a cross-sectional investigation, we used the mean fitted values of the ROIs in five volunteers. Comparing the mono-exponential and the fractional order T maps, the fractional order fitting method yielded enhanced contrast and an improved delineation of the different tissues. In the case of the bi-exponential method, the long T component map demonstrated the anatomy clearly with high contrast. Simulations showed a nonzero bias of the parameters for all three mathematical models. ROI based fitting showed that the T values were different depending on the applied method, and they differed most for the patellar tendon in all subjects. In high SNR cases, the fractional order and bi-exponential models are both performing well with low bias. However, in all observed cases, one of the bi-exponential components has high standard deviation in T . The bi-exponential model is suitable for T mapping, but we recommend using the fractional order model for cases of low SNR.
Author Poot, D.H.J.
Kotek, G.
Oei, E.H.G.
Papp, D.
Hernandez-Tamames, J.A.
Breda, S.J.
Author_xml – sequence: 1
  givenname: D.
  surname: Papp
  fullname: Papp, D.
  email: d.papp@erasmusmc.nl
– sequence: 2
  givenname: S.J.
  surname: Breda
  fullname: Breda, S.J.
– sequence: 3
  givenname: E.H.G.
  surname: Oei
  fullname: Oei, E.H.G.
– sequence: 4
  givenname: D.H.J.
  surname: Poot
  fullname: Poot, D.H.J.
– sequence: 5
  givenname: G.
  surname: Kotek
  fullname: Kotek, G.
– sequence: 6
  givenname: J.A.
  surname: Hernandez-Tamames
  fullname: Hernandez-Tamames, J.A.
  email: j.hernandeztamames@erasmusmc.nl
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32302737$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1PGzEQhi1EBSHtD-gF-chlt_Z6d72rnipE2kpUqFWQerP8MZs6bOxgO4j8-3oVuOQAp7FG7zPjeS7QqfMOEPpMSUkJbb-sy02wZUUqUpK6JKQ5QTPacVY0XV-fohnhjBS8av6eo4sY1yQnKtacoXNWMVJxxmfo9yJInax3csQ-GAj4KZYYnrd5k0s2dwebknUrbB2-X97gX3-w3cjV1PEDTv8Ab2WCcZQBJ3DGu4_owyDHCJ9e6hzdL26W1z-K27vvP6-_3Ra6rttUtFpx1gHUTKnWANNGNbTvOkUV452RTIOhNWVUDZz1kreMt11DzUDyc-CKzdHVYe42-McdxCQ2NurpJw78LoqK9bTntG27HL18ie7UBozYhnxC2ItXDTnADwEdfIwBBqFtkpOWFKQdBSViEi7WIgsXk3BBapF1ZpIeka_D32K-HhjIep4sBBG1BZcPtgF0EsbbN-n-iNajdVbL8QH277D_AShEqrk
CitedBy_id crossref_primary_10_1166_jmihi_2021_3711
crossref_primary_10_1002_jmri_27600
crossref_primary_10_3389_fmscd_2024_1324050
Cites_doi 10.1002/cmr.a.20129
10.1002/mrm.21620
10.11138/mltj/2017.7.1.163
10.1016/j.joca.2012.01.009
10.1002/mrm.1910340502
10.1002/mrm.10702
10.1002/mrm.24760
10.1002/mrm.22285
10.1002/mrm.23017
10.1002/jmri.22191
10.1016/j.jmr.2011.03.006
10.1002/mrm.25765
10.1136/bjsports-2013-092633
10.1177/0363546511413370
10.1002/mrm.24570
10.1007/s00330-013-2897-8
10.1002/jmri.24713
10.1016/j.matbio.2009.04.001
10.1002/mrm.25913
10.1002/mrm.10198
10.1002/mrm.1910290106
10.1002/jmri.10423
10.1006/jmra.1996.0225
10.1002/jmri.20851
10.1002/mrm.22516
10.1053/crad.2003.1157
10.1016/j.crad.2003.11.021
10.1137/140971191
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.mri.2020.04.005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-5894
EndPage 97
ExternalDocumentID 32302737
10_1016_j_mri_2020_04_005
S0730725X19307878
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
3O-
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABDPE
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABNEU
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSQ
SSU
SSZ
T5K
WUQ
XPP
Z5R
ZGI
ZMT
~G-
~S-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
G8K
LCYCR
RIG
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c446t-6cb738ee43bb6de3cdb51988b1b378da3ced14131bf739a76376851df0763f7b3
IEDL.DBID .~1
ISSN 0730-725X
1873-5894
IngestDate Fri Jul 11 13:03:31 EDT 2025
Mon Jul 21 05:40:26 EDT 2025
Thu Apr 24 23:08:24 EDT 2025
Tue Jul 01 01:55:25 EDT 2025
Fri Feb 23 02:47:24 EST 2024
Tue Aug 26 18:33:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Patellar tendon
T2∗ relaxation
Fractional calculus
UTE-MRI
T(∗) relaxation
Language English
License Copyright © 2020 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-6cb738ee43bb6de3cdb51988b1b378da3ced14131bf739a76376851df0763f7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0730725X19307878
PMID 32302737
PQID 2391971668
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2391971668
pubmed_primary_32302737
crossref_citationtrail_10_1016_j_mri_2020_04_005
crossref_primary_10_1016_j_mri_2020_04_005
elsevier_sciencedirect_doi_10_1016_j_mri_2020_04_005
elsevier_clinicalkey_doi_10_1016_j_mri_2020_04_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2020
2020-07-00
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Magnetic resonance imaging
PublicationTitleAlternate Magn Reson Imaging
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Magin, Feng, Baleanu (bb0100) 2009; 34
Weiger, Hennel, Pruessmann (bb0045) 2010; 64
Zhou, Gao, Abdullah, Magin (bb0130) 2010; 63
Barbieri, Donati, Froehlich, Thoeny (bb0070) 2016; 75
Nayak (bb0160) 2000
Samiric, Parkinson, Ilic, Cook, Feller, Handley (bb0090) 2009; 28
Juras, Apprich, Zbýň, Zak, Deligianni, Szomolanyi (bb0145) 2014; 71
Chappell, Patel, Gatehouse (bb0025) 2003; 18
Attia, Scott, Carpentier, Lian, Van Kuppevelt, Gossard (bb0085) 2014; 48
Robson, Benjamin, Gishen, Bydder (bb0020) 2004; 59
Johnson (bb0035) 2013; 70
Tyler, Robson, Henkelman, Young, Bydder (bb0040) 2007; 25
Cole, Leblanc, Jhingran (bb0135) 1993; 29
Damon, Ding, Anderson, Freyer, Gore (bb0140) 2002; 48
Gatehouse, Bydder (bb0005) 2003; 58
Chang (bb0010) April 2015; 41
Samko, Kilbas, Marichev (bb0110) 1993
(bb0115) 2000
Staroswiecki, Bangerter, Gurney, Grafendorfer, Gold, Hargreaves (bb0155) 2010; 32
Gold, Pauly, Macovski, Herfkens (bb0015) 1995; 34
Balcom, Macgregor, Beyea, Green, Armstrong, Bremner (bb0050) 1996; 123
Juras (bb0065) 2013; 23
Gold (bb0165) 2001
Zwerver, Bredeweg, Van Den Akker-Scheek (bb0080) 2011; 39
Magin, Li, Pilar Velasco, Trujillo, Reiter, Morgenstern (bb0105) 2011; 210
Grodzki, Jakob, Heismann (bb0055) 2012; 67
Qian, Boada (bb0060) 2008; 60
Schwarcz, Bogner, Meric, Correze, Berente, P’al (bb0095) 2004; 51
Liu, Kijowski (bb0150) 2017; 7
Williams, Qian, Golla, Chu (bb0075) 2012; 20
Garrappa (bb0120) 2015; 53
Reiter, Magin, Li, Trujillo, Pilar Velasco, Spencer (bb0030) 2016; 76
Gatehouse (10.1016/j.mri.2020.04.005_bb0005) 2003; 58
Cole (10.1016/j.mri.2020.04.005_bb0135) 1993; 29
Chappell (10.1016/j.mri.2020.04.005_bb0025) 2003; 18
Barbieri (10.1016/j.mri.2020.04.005_bb0070) 2016; 75
Schwarcz (10.1016/j.mri.2020.04.005_bb0095) 2004; 51
Reiter (10.1016/j.mri.2020.04.005_bb0030) 2016; 76
Magin (10.1016/j.mri.2020.04.005_bb0105) 2011; 210
Attia (10.1016/j.mri.2020.04.005_bb0085) 2014; 48
Tyler (10.1016/j.mri.2020.04.005_bb0040) 2007; 25
Robson (10.1016/j.mri.2020.04.005_bb0020) 2004; 59
(10.1016/j.mri.2020.04.005_bb0115) 2000
Magin (10.1016/j.mri.2020.04.005_bb0100) 2009; 34
Gold (10.1016/j.mri.2020.04.005_bb0015) 1995; 34
Gold (10.1016/j.mri.2020.04.005_bb0165) 2001
Garrappa (10.1016/j.mri.2020.04.005_bb0120) 2015; 53
Johnson (10.1016/j.mri.2020.04.005_bb0035) 2013; 70
Weiger (10.1016/j.mri.2020.04.005_bb0045) 2010; 64
Juras (10.1016/j.mri.2020.04.005_bb0065) 2013; 23
Damon (10.1016/j.mri.2020.04.005_bb0140) 2002; 48
Staroswiecki (10.1016/j.mri.2020.04.005_bb0155) 2010; 32
Williams (10.1016/j.mri.2020.04.005_bb0075) 2012; 20
Zhou (10.1016/j.mri.2020.04.005_bb0130) 2010; 63
Zwerver (10.1016/j.mri.2020.04.005_bb0080) 2011; 39
Samko (10.1016/j.mri.2020.04.005_bb0110) 1993
Nayak (10.1016/j.mri.2020.04.005_bb0160) 2000
Chang (10.1016/j.mri.2020.04.005_bb0010) 2015; 41
Grodzki (10.1016/j.mri.2020.04.005_bb0055) 2012; 67
Liu (10.1016/j.mri.2020.04.005_bb0150) 2017; 7
Balcom (10.1016/j.mri.2020.04.005_bb0050) 1996; 123
Samiric (10.1016/j.mri.2020.04.005_bb0090) 2009; 28
Juras (10.1016/j.mri.2020.04.005_bb0145) 2014; 71
Qian (10.1016/j.mri.2020.04.005_bb0060) 2008; 60
References_xml – volume: 123
  start-page: 131
  year: 1996
  end-page: 134
  ident: bb0050
  article-title: Single-point ramped imaging with T1 enhancement (SPRITE)
  publication-title: J Magn Reson A
– volume: 23
  start-page: 2814
  year: 2013
  end-page: 2822
  ident: bb0065
  article-title: Bi-exponential T2* analysis of healthy and diseased Achilles tendons: an in vivo preliminary magnetic resonance study and correlation with clinical score
  publication-title: Eur Radiol
– volume: 39
  start-page: 1984
  year: 2011
  end-page: 1988
  ident: bb0080
  article-title: Prevalence of jumper’s knee among nonelite athletes from different sports: a cross-sectional survey
  publication-title: Am J Sports Med
– volume: 76
  start-page: 953
  year: 2016
  end-page: 962
  ident: bb0030
  article-title: Anomalous T2 relaxation in normal and degraded cartilage
  publication-title: Magn Reson Med
– volume: 48
  start-page: 469
  year: 2014
  end-page: 475
  ident: bb0085
  article-title: Greater glycosaminoglycan content in human patellar tendon biopsies is associated with more pain and a lower VISA score
  publication-title: Br J Sports Med
– volume: 63
  start-page: 562
  year: 2010
  end-page: 569
  ident: bb0130
  article-title: Studies of anomalous diffusion in the human brain using fractional order calculus
  publication-title: Magn Reson Med
– volume: 48
  start-page: 97
  year: 2002
  end-page: 104
  ident: bb0140
  article-title: Validation of diffusion tensor MRI-based muscle fiber tracking
  publication-title: Magn Reson Med
– volume: 28
  start-page: 230
  year: 2009
  end-page: 236
  ident: bb0090
  article-title: Changes in the composition of the extracellular matrix in patellar tendinopathy
  publication-title: Matrix Biol
– volume: 34
  start-page: 654
  year: 1995
  end-page: 674
  ident: bb0015
  article-title: MR spectroscopic imaging of collagen: tendons and knee menisci
  publication-title: Magn Reson Med
– start-page: 509
  year: 2000
  ident: bb0160
  article-title: Proc. ISMRM
– volume: 53
  start-page: 1350
  year: 2015
  end-page: 1369
  ident: bb0120
  article-title: Numerical evaluation of two and three parameter Mittag-Leffler functions
  publication-title: SIAM J Numer Anal
– volume: 34
  start-page: 16
  year: 2009
  end-page: 23
  ident: bb0100
  article-title: Solving the fractional order Bloch equation
  publication-title: Concepts Magn Reson A
– volume: 25
  start-page: 279
  year: 2007
  end-page: 289
  ident: bb0040
  article-title: Magnetic resonance imaging with ultrashort TE (UTE) PULSE sequences: technical considerations
  publication-title: J Magn Reson Imaging
– volume: 67
  start-page: 510
  year: 2012
  end-page: 518
  ident: bb0055
  article-title: Ultrashort echo time imaging using pointwise encoding time reduction with radial acquisition (PETRA)
  publication-title: Magn Reson Med
– volume: 29
  start-page: 19
  year: 1993
  end-page: 24
  ident: bb0135
  article-title: The origin of biexponential T2 relaxation in muscle water
  publication-title: Magn Reson Med
– year: 2000
  ident: bb0115
  publication-title: Applications of fractional calculus in physics
– volume: 18
  start-page: 709
  year: 2003
  end-page: 713
  ident: bb0025
  article-title: Magnetic resonance imaging of the liver with ultrashort TE (UTE) pulse sequences
  publication-title: J Magn Reson Imaging
– volume: 64
  start-page: 1685
  year: 2010
  end-page: 1695
  ident: bb0045
  article-title: Sweep MRI with algebraic reconstruction
  publication-title: Magn Reson Med
– volume: 32
  start-page: 446
  year: 2010
  end-page: 451
  ident: bb0155
  article-title: In vivo sodium imaging of human patellar cartilage with a 3D cones sequence at 3 T and 7 T
  publication-title: J Magn Reson Imaging
– volume: 59
  start-page: 727
  year: 2004
  end-page: 735
  ident: bb0020
  article-title: Magnetic resonance imaging of the achilles tendon using ultrashort TE (UTE) pulse sequences
  publication-title: Clin Radiol
– volume: 20
  start-page: 486
  year: 2012
  end-page: 494
  ident: bb0075
  article-title: UTE-T2 * mapping detects sub-clinical meniscus injury after anterior cruciate ligament tear
  publication-title: Osteoarthr Cartil/OARS Osteoarthritis Res Soc
– volume: 70
  start-page: 1241
  year: 2013
  end-page: 1250
  ident: bb0035
  article-title: Optimized 3D ultrashort echo time pulmonary MRI
  publication-title: Magn Reson Med
– volume: 41
  start-page: 870
  year: April 2015
  end-page: 883
  ident: bb0010
  article-title: UTE imaging in the musculoskeletal system
  publication-title: J Magn Reson Imaging
– year: 1993
  ident: bb0110
  article-title: Fractional integrals and derivatives: theory and applications
– volume: 60
  start-page: 135
  year: 2008
  end-page: 145
  ident: bb0060
  article-title: Acquisition-weighted stack of spirals for fast high-resolution three-dimensional ultra-short echo time MR imaging
  publication-title: Magn Reson Med
– volume: 75
  start-page: 2175
  year: 2016
  end-page: 2184
  ident: bb0070
  article-title: Impact of the calculation algorithm on biexponential fitting of diffusion-weighted MRI in upper abdominal organs
  publication-title: Magn Reson Med
– volume: 71
  start-page: 1015
  year: 2014
  end-page: 1023
  ident: bb0145
  article-title: Quantitative MRI analysis of menisci using biexponential T2* fitting with a variable echo time sequence
  publication-title: Magn Reson Med
– volume: 210
  start-page: 184
  year: 2011
  end-page: 191
  ident: bb0105
  article-title: Anomalous NMR relaxation in cartilage matrix components and native cartilage: fractional-order models
  publication-title: J Magn Reson
– volume: 7
  start-page: 163
  year: 2017
  end-page: 172
  ident: bb0150
  article-title: Assessment of different fitting methods for in-vivo bi-component T2* analysis of human patellar tendon in magnetic resonance imaging
  publication-title: Muscles Ligaments Tendons J
– volume: 51
  start-page: 278
  year: 2004
  end-page: 285
  ident: bb0095
  article-title: The existence of biexponential signal decay in magnetic resonance diffusion-weighted imaging appears to be independent of compartmentalization
  publication-title: Magn Reson Med
– start-page: 244
  year: 2001
  ident: bb0165
  article-title: Proc. ISMRM
– volume: 58
  start-page: 1
  year: 2003
  end-page: 19
  ident: bb0005
  article-title: Magnetic resonance imaging of short T2 components in tissue
  publication-title: Clin Radiol
– year: 1993
  ident: 10.1016/j.mri.2020.04.005_bb0110
– volume: 34
  start-page: 16
  year: 2009
  ident: 10.1016/j.mri.2020.04.005_bb0100
  article-title: Solving the fractional order Bloch equation
  publication-title: Concepts Magn Reson A
  doi: 10.1002/cmr.a.20129
– volume: 60
  start-page: 135
  year: 2008
  ident: 10.1016/j.mri.2020.04.005_bb0060
  article-title: Acquisition-weighted stack of spirals for fast high-resolution three-dimensional ultra-short echo time MR imaging
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21620
– volume: 7
  start-page: 163
  issue: 1
  year: 2017
  ident: 10.1016/j.mri.2020.04.005_bb0150
  article-title: Assessment of different fitting methods for in-vivo bi-component T2* analysis of human patellar tendon in magnetic resonance imaging
  publication-title: Muscles Ligaments Tendons J
  doi: 10.11138/mltj/2017.7.1.163
– volume: 20
  start-page: 486
  year: 2012
  ident: 10.1016/j.mri.2020.04.005_bb0075
  article-title: UTE-T2 * mapping detects sub-clinical meniscus injury after anterior cruciate ligament tear
  publication-title: Osteoarthr Cartil/OARS Osteoarthritis Res Soc
  doi: 10.1016/j.joca.2012.01.009
– volume: 34
  start-page: 654
  year: 1995
  ident: 10.1016/j.mri.2020.04.005_bb0015
  article-title: MR spectroscopic imaging of collagen: tendons and knee menisci
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910340502
– volume: 51
  start-page: 278
  year: 2004
  ident: 10.1016/j.mri.2020.04.005_bb0095
  article-title: The existence of biexponential signal decay in magnetic resonance diffusion-weighted imaging appears to be independent of compartmentalization
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10702
– volume: 71
  start-page: 1015
  year: 2014
  ident: 10.1016/j.mri.2020.04.005_bb0145
  article-title: Quantitative MRI analysis of menisci using biexponential T2* fitting with a variable echo time sequence
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24760
– volume: 63
  start-page: 562
  year: 2010
  ident: 10.1016/j.mri.2020.04.005_bb0130
  article-title: Studies of anomalous diffusion in the human brain using fractional order calculus
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22285
– volume: 67
  start-page: 510
  year: 2012
  ident: 10.1016/j.mri.2020.04.005_bb0055
  article-title: Ultrashort echo time imaging using pointwise encoding time reduction with radial acquisition (PETRA)
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.23017
– volume: 32
  start-page: 446
  issue: 2
  year: 2010
  ident: 10.1016/j.mri.2020.04.005_bb0155
  article-title: In vivo sodium imaging of human patellar cartilage with a 3D cones sequence at 3 T and 7 T
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.22191
– volume: 210
  start-page: 184
  issue: 2
  year: 2011
  ident: 10.1016/j.mri.2020.04.005_bb0105
  article-title: Anomalous NMR relaxation in cartilage matrix components and native cartilage: fractional-order models
  publication-title: J Magn Reson
  doi: 10.1016/j.jmr.2011.03.006
– volume: 75
  start-page: 2175
  year: 2016
  ident: 10.1016/j.mri.2020.04.005_bb0070
  article-title: Impact of the calculation algorithm on biexponential fitting of diffusion-weighted MRI in upper abdominal organs
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25765
– volume: 48
  start-page: 469
  year: 2014
  ident: 10.1016/j.mri.2020.04.005_bb0085
  article-title: Greater glycosaminoglycan content in human patellar tendon biopsies is associated with more pain and a lower VISA score
  publication-title: Br J Sports Med
  doi: 10.1136/bjsports-2013-092633
– volume: 39
  start-page: 1984
  year: 2011
  ident: 10.1016/j.mri.2020.04.005_bb0080
  article-title: Prevalence of jumper’s knee among nonelite athletes from different sports: a cross-sectional survey
  publication-title: Am J Sports Med
  doi: 10.1177/0363546511413370
– volume: 70
  start-page: 1241
  issue: 5
  year: 2013
  ident: 10.1016/j.mri.2020.04.005_bb0035
  article-title: Optimized 3D ultrashort echo time pulmonary MRI
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24570
– volume: 23
  start-page: 2814
  issue: 10
  year: 2013
  ident: 10.1016/j.mri.2020.04.005_bb0065
  article-title: Bi-exponential T2* analysis of healthy and diseased Achilles tendons: an in vivo preliminary magnetic resonance study and correlation with clinical score
  publication-title: Eur Radiol
  doi: 10.1007/s00330-013-2897-8
– volume: 41
  start-page: 870
  issue: 4
  year: 2015
  ident: 10.1016/j.mri.2020.04.005_bb0010
  article-title: UTE imaging in the musculoskeletal system
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.24713
– volume: 28
  start-page: 230
  year: 2009
  ident: 10.1016/j.mri.2020.04.005_bb0090
  article-title: Changes in the composition of the extracellular matrix in patellar tendinopathy
  publication-title: Matrix Biol
  doi: 10.1016/j.matbio.2009.04.001
– start-page: 244
  year: 2001
  ident: 10.1016/j.mri.2020.04.005_bb0165
– volume: 76
  start-page: 953
  year: 2016
  ident: 10.1016/j.mri.2020.04.005_bb0030
  article-title: Anomalous T2 relaxation in normal and degraded cartilage
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.25913
– volume: 48
  start-page: 97
  year: 2002
  ident: 10.1016/j.mri.2020.04.005_bb0140
  article-title: Validation of diffusion tensor MRI-based muscle fiber tracking
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10198
– year: 2000
  ident: 10.1016/j.mri.2020.04.005_bb0115
– volume: 29
  start-page: 19
  year: 1993
  ident: 10.1016/j.mri.2020.04.005_bb0135
  article-title: The origin of biexponential T2 relaxation in muscle water
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910290106
– volume: 18
  start-page: 709
  year: 2003
  ident: 10.1016/j.mri.2020.04.005_bb0025
  article-title: Magnetic resonance imaging of the liver with ultrashort TE (UTE) pulse sequences
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.10423
– volume: 123
  start-page: 131
  year: 1996
  ident: 10.1016/j.mri.2020.04.005_bb0050
  article-title: Single-point ramped imaging with T1 enhancement (SPRITE)
  publication-title: J Magn Reson A
  doi: 10.1006/jmra.1996.0225
– volume: 25
  start-page: 279
  year: 2007
  ident: 10.1016/j.mri.2020.04.005_bb0040
  article-title: Magnetic resonance imaging with ultrashort TE (UTE) PULSE sequences: technical considerations
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.20851
– volume: 64
  start-page: 1685
  year: 2010
  ident: 10.1016/j.mri.2020.04.005_bb0045
  article-title: Sweep MRI with algebraic reconstruction
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22516
– start-page: 509
  year: 2000
  ident: 10.1016/j.mri.2020.04.005_bb0160
– volume: 58
  start-page: 1
  year: 2003
  ident: 10.1016/j.mri.2020.04.005_bb0005
  article-title: Magnetic resonance imaging of short T2 components in tissue
  publication-title: Clin Radiol
  doi: 10.1053/crad.2003.1157
– volume: 59
  start-page: 727
  year: 2004
  ident: 10.1016/j.mri.2020.04.005_bb0020
  article-title: Magnetic resonance imaging of the achilles tendon using ultrashort TE (UTE) pulse sequences
  publication-title: Clin Radiol
  doi: 10.1016/j.crad.2003.11.021
– volume: 53
  start-page: 1350
  issue: 3
  year: 2015
  ident: 10.1016/j.mri.2020.04.005_bb0120
  article-title: Numerical evaluation of two and three parameter Mittag-Leffler functions
  publication-title: SIAM J Numer Anal
  doi: 10.1137/140971191
SSID ssj0005235
Score 2.290889
Snippet Quantification of the T2∗ relaxation time constant is relevant in various magnetic resonance imaging applications. Mono- or bi-exponential models are typically...
Quantification of the T relaxation time constant is relevant in various magnetic resonance imaging applications. Mono- or bi-exponential models are typically...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 91
SubjectTerms Adult
Cross-Sectional Studies
Fractional calculus
Humans
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging
Male
Patellar Ligament - diagnostic imaging
Patellar tendon
T2∗ relaxation
Tendons - diagnostic imaging
UTE-MRI
Title Fractional order vs. exponential fitting in UTE MR imaging of the patellar tendon
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X19307878
https://dx.doi.org/10.1016/j.mri.2020.04.005
https://www.ncbi.nlm.nih.gov/pubmed/32302737
https://www.proquest.com/docview/2391971668
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1dS8MwMAwF8UX8dn6MCD4J3Zqma7LHMTamsoG6wd5C0qVQcd3Yh_jkb_euH0NBJ_jWhrs23F3vLr0vQm4CaSIWCUxpDFwcYdZwZMiNA5rQGE-H0oZYjdzrB92hfz-qj0qkVdTCYFplrvsznZ5q63ylllOzNovj2jMKp_DqI3BBwM4JLPj1fYFSXv34muaRDdkEYAehi8hmmuM1mcdwRPTctNspTrD72Tb95numNqizT_Zy55E2s_0dkJJNDslOLw-PH5HHzjyrUwCgtKcmfVtUqX2fTRNMCoLVKE7znGmc0OGgTXtPNJ6kc4roNKLgC9KZxrISPaf4b3yaHJNhpz1odZ18ZoITwsFu6QShEVxa63NjgrHl4diAjyalYYYLOdYc6MrAcDETCd7QoF3gvFFn48iFy0gYfkK2EtjUGaFSe4YboetMNnzgG3CPGXiuFpH1QsbKxC2opcK8oTjOtXhVRebYiwICKySwcn0FBC6T2zXKLOumsQnYK1igijJRUGwKdP0mJH-N9E2O_kK7Lnis4PvCoIlO7HS1UB5vMGyzFcgyOc2Yv9469zDqy8X5_156QXbxLkv-vSRby_nKXoGLszSVVIYrZLt599DtfwIM5fiq
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-NAEB-8Cne-iHp61s898EmIzWaT7PZRxFI_WjhtoW_LbrqBHJqWWsU_35l8FAU_wLew2UmWmc3MbOY3MwBHsbIpTyVBGmOfWpi1PZUI66EmtDYwiXIJZSP3-nF3GF6OotESnNW5MASrrHR_qdMLbV2NtCputqZZ1rqlzSmDaIQuCNo5qX7AMlWnihqwfHpx1e2_QnqUfTZxvkcEdXCzgHndzzI8JQZ-UfCUmti9b54-cj8LM9RZg9XKf2Sn5RLXYcnlG_CzV0XIf8O_zqxMVcBJRVlN9vRwwtzzdJITLghH06yAOrMsZ8PBOevdsOy-aFXEJilDd5BNDWWWmBmj3-OTfBOGnfPBWder2iZ4CZ7t5l6cWCmUc6GwNh47kYwtumlKWW6FVGMjkLUcbRe3qRRtgwoGjxwRH6c-XqbSii1o5LiobWDKBFZYaSKu2iGKDgXILT7XyNQFCedN8Gtu6aSqKU6tLe50DR77r5HBmhis_VAjg5twvCCZlgU1Ppsc1CLQdaYo6jaN6v4zonBB9GYrfUX2t5axxk-M4iYmd5PHBx2INqdKW7Fqwp9S-Iuli4ACv0LufO-lh_CrO-hd6-uL_tUurNCdEgu8B4357NHto8cztwfVjn4Blwz7Ww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractional+order+vs.+exponential+fitting+in+UTE+MR+imaging+of+the+patellar+tendon&rft.jtitle=Magnetic+resonance+imaging&rft.au=Papp%2C+D.&rft.au=Breda%2C+S.J.&rft.au=Oei%2C+E.H.G.&rft.au=Poot%2C+D.H.J.&rft.date=2020-07-01&rft.pub=Elsevier+Inc&rft.issn=0730-725X&rft.eissn=1873-5894&rft.volume=70&rft.spage=91&rft.epage=97&rft_id=info:doi/10.1016%2Fj.mri.2020.04.005&rft.externalDocID=S0730725X19307878
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon