Fractional order vs. exponential fitting in UTE MR imaging of the patellar tendon
Quantification of the T2∗ relaxation time constant is relevant in various magnetic resonance imaging applications. Mono- or bi-exponential models are typically used to determine these parameters. However, in case of complex, heterogeneous tissues these models could lead to inaccurate results. We com...
Saved in:
Published in | Magnetic resonance imaging Vol. 70; pp. 91 - 97 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Quantification of the T2∗ relaxation time constant is relevant in various magnetic resonance imaging applications. Mono- or bi-exponential models are typically used to determine these parameters. However, in case of complex, heterogeneous tissues these models could lead to inaccurate results. We compared a model, provided by the fractional-order extension of the Bloch equation with the conventional models.
Axial 3D ultra-short echo time (UTE) scans were acquired using a 3.0 T MRI and a 16-channel surface coil. After image registration, voxel-wise T2∗ was quantified with mono-exponential, bi-exponential and fractional-order fitting. We evaluated all three models repeatability and the bias of their derived parameters by fitting at various noise levels. To investigate the effect of the SNR for the different models, a Monte-Carlo experiment with 1000 repeats was performed for different noise levels for one subject. For a cross-sectional investigation, we used the mean fitted values of the ROIs in five volunteers.
Comparing the mono-exponential and the fractional order T2∗ maps, the fractional order fitting method yielded enhanced contrast and an improved delineation of the different tissues. In the case of the bi-exponential method, the long T2∗ component map demonstrated the anatomy clearly with high contrast. Simulations showed a nonzero bias of the parameters for all three mathematical models. ROI based fitting showed that the T2∗ values were different depending on the applied method, and they differed most for the patellar tendon in all subjects.
In high SNR cases, the fractional order and bi-exponential models are both performing well with low bias. However, in all observed cases, one of the bi-exponential components has high standard deviation in T2∗. The bi-exponential model is suitable for T2∗ mapping, but we recommend using the fractional order model for cases of low SNR. |
---|---|
AbstractList | Quantification of the T2∗ relaxation time constant is relevant in various magnetic resonance imaging applications. Mono- or bi-exponential models are typically used to determine these parameters. However, in case of complex, heterogeneous tissues these models could lead to inaccurate results. We compared a model, provided by the fractional-order extension of the Bloch equation with the conventional models.PURPOSEQuantification of the T2∗ relaxation time constant is relevant in various magnetic resonance imaging applications. Mono- or bi-exponential models are typically used to determine these parameters. However, in case of complex, heterogeneous tissues these models could lead to inaccurate results. We compared a model, provided by the fractional-order extension of the Bloch equation with the conventional models.Axial 3D ultra-short echo time (UTE) scans were acquired using a 3.0 T MRI and a 16-channel surface coil. After image registration, voxel-wise T2∗ was quantified with mono-exponential, bi-exponential and fractional-order fitting. We evaluated all three models repeatability and the bias of their derived parameters by fitting at various noise levels. To investigate the effect of the SNR for the different models, a Monte-Carlo experiment with 1000 repeats was performed for different noise levels for one subject. For a cross-sectional investigation, we used the mean fitted values of the ROIs in five volunteers.METHODSAxial 3D ultra-short echo time (UTE) scans were acquired using a 3.0 T MRI and a 16-channel surface coil. After image registration, voxel-wise T2∗ was quantified with mono-exponential, bi-exponential and fractional-order fitting. We evaluated all three models repeatability and the bias of their derived parameters by fitting at various noise levels. To investigate the effect of the SNR for the different models, a Monte-Carlo experiment with 1000 repeats was performed for different noise levels for one subject. For a cross-sectional investigation, we used the mean fitted values of the ROIs in five volunteers.Comparing the mono-exponential and the fractional order T2∗ maps, the fractional order fitting method yielded enhanced contrast and an improved delineation of the different tissues. In the case of the bi-exponential method, the long T2∗ component map demonstrated the anatomy clearly with high contrast. Simulations showed a nonzero bias of the parameters for all three mathematical models. ROI based fitting showed that the T2∗ values were different depending on the applied method, and they differed most for the patellar tendon in all subjects.RESULTSComparing the mono-exponential and the fractional order T2∗ maps, the fractional order fitting method yielded enhanced contrast and an improved delineation of the different tissues. In the case of the bi-exponential method, the long T2∗ component map demonstrated the anatomy clearly with high contrast. Simulations showed a nonzero bias of the parameters for all three mathematical models. ROI based fitting showed that the T2∗ values were different depending on the applied method, and they differed most for the patellar tendon in all subjects.In high SNR cases, the fractional order and bi-exponential models are both performing well with low bias. However, in all observed cases, one of the bi-exponential components has high standard deviation in T2∗. The bi-exponential model is suitable for T2∗ mapping, but we recommend using the fractional order model for cases of low SNR.CONCLUSIONSIn high SNR cases, the fractional order and bi-exponential models are both performing well with low bias. However, in all observed cases, one of the bi-exponential components has high standard deviation in T2∗. The bi-exponential model is suitable for T2∗ mapping, but we recommend using the fractional order model for cases of low SNR. Quantification of the T2∗ relaxation time constant is relevant in various magnetic resonance imaging applications. Mono- or bi-exponential models are typically used to determine these parameters. However, in case of complex, heterogeneous tissues these models could lead to inaccurate results. We compared a model, provided by the fractional-order extension of the Bloch equation with the conventional models. Axial 3D ultra-short echo time (UTE) scans were acquired using a 3.0 T MRI and a 16-channel surface coil. After image registration, voxel-wise T2∗ was quantified with mono-exponential, bi-exponential and fractional-order fitting. We evaluated all three models repeatability and the bias of their derived parameters by fitting at various noise levels. To investigate the effect of the SNR for the different models, a Monte-Carlo experiment with 1000 repeats was performed for different noise levels for one subject. For a cross-sectional investigation, we used the mean fitted values of the ROIs in five volunteers. Comparing the mono-exponential and the fractional order T2∗ maps, the fractional order fitting method yielded enhanced contrast and an improved delineation of the different tissues. In the case of the bi-exponential method, the long T2∗ component map demonstrated the anatomy clearly with high contrast. Simulations showed a nonzero bias of the parameters for all three mathematical models. ROI based fitting showed that the T2∗ values were different depending on the applied method, and they differed most for the patellar tendon in all subjects. In high SNR cases, the fractional order and bi-exponential models are both performing well with low bias. However, in all observed cases, one of the bi-exponential components has high standard deviation in T2∗. The bi-exponential model is suitable for T2∗ mapping, but we recommend using the fractional order model for cases of low SNR. Quantification of the T relaxation time constant is relevant in various magnetic resonance imaging applications. Mono- or bi-exponential models are typically used to determine these parameters. However, in case of complex, heterogeneous tissues these models could lead to inaccurate results. We compared a model, provided by the fractional-order extension of the Bloch equation with the conventional models. Axial 3D ultra-short echo time (UTE) scans were acquired using a 3.0 T MRI and a 16-channel surface coil. After image registration, voxel-wise T was quantified with mono-exponential, bi-exponential and fractional-order fitting. We evaluated all three models repeatability and the bias of their derived parameters by fitting at various noise levels. To investigate the effect of the SNR for the different models, a Monte-Carlo experiment with 1000 repeats was performed for different noise levels for one subject. For a cross-sectional investigation, we used the mean fitted values of the ROIs in five volunteers. Comparing the mono-exponential and the fractional order T maps, the fractional order fitting method yielded enhanced contrast and an improved delineation of the different tissues. In the case of the bi-exponential method, the long T component map demonstrated the anatomy clearly with high contrast. Simulations showed a nonzero bias of the parameters for all three mathematical models. ROI based fitting showed that the T values were different depending on the applied method, and they differed most for the patellar tendon in all subjects. In high SNR cases, the fractional order and bi-exponential models are both performing well with low bias. However, in all observed cases, one of the bi-exponential components has high standard deviation in T . The bi-exponential model is suitable for T mapping, but we recommend using the fractional order model for cases of low SNR. |
Author | Poot, D.H.J. Kotek, G. Oei, E.H.G. Papp, D. Hernandez-Tamames, J.A. Breda, S.J. |
Author_xml | – sequence: 1 givenname: D. surname: Papp fullname: Papp, D. email: d.papp@erasmusmc.nl – sequence: 2 givenname: S.J. surname: Breda fullname: Breda, S.J. – sequence: 3 givenname: E.H.G. surname: Oei fullname: Oei, E.H.G. – sequence: 4 givenname: D.H.J. surname: Poot fullname: Poot, D.H.J. – sequence: 5 givenname: G. surname: Kotek fullname: Kotek, G. – sequence: 6 givenname: J.A. surname: Hernandez-Tamames fullname: Hernandez-Tamames, J.A. email: j.hernandeztamames@erasmusmc.nl |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32302737$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1PGzEQhi1EBSHtD-gF-chlt_Z6d72rnipE2kpUqFWQerP8MZs6bOxgO4j8-3oVuOQAp7FG7zPjeS7QqfMOEPpMSUkJbb-sy02wZUUqUpK6JKQ5QTPacVY0XV-fohnhjBS8av6eo4sY1yQnKtacoXNWMVJxxmfo9yJInax3csQ-GAj4KZYYnrd5k0s2dwebknUrbB2-X97gX3-w3cjV1PEDTv8Ab2WCcZQBJ3DGu4_owyDHCJ9e6hzdL26W1z-K27vvP6-_3Ra6rttUtFpx1gHUTKnWANNGNbTvOkUV452RTIOhNWVUDZz1kreMt11DzUDyc-CKzdHVYe42-McdxCQ2NurpJw78LoqK9bTntG27HL18ie7UBozYhnxC2ItXDTnADwEdfIwBBqFtkpOWFKQdBSViEi7WIgsXk3BBapF1ZpIeka_D32K-HhjIep4sBBG1BZcPtgF0EsbbN-n-iNajdVbL8QH277D_AShEqrk |
CitedBy_id | crossref_primary_10_1166_jmihi_2021_3711 crossref_primary_10_1002_jmri_27600 crossref_primary_10_3389_fmscd_2024_1324050 |
Cites_doi | 10.1002/cmr.a.20129 10.1002/mrm.21620 10.11138/mltj/2017.7.1.163 10.1016/j.joca.2012.01.009 10.1002/mrm.1910340502 10.1002/mrm.10702 10.1002/mrm.24760 10.1002/mrm.22285 10.1002/mrm.23017 10.1002/jmri.22191 10.1016/j.jmr.2011.03.006 10.1002/mrm.25765 10.1136/bjsports-2013-092633 10.1177/0363546511413370 10.1002/mrm.24570 10.1007/s00330-013-2897-8 10.1002/jmri.24713 10.1016/j.matbio.2009.04.001 10.1002/mrm.25913 10.1002/mrm.10198 10.1002/mrm.1910290106 10.1002/jmri.10423 10.1006/jmra.1996.0225 10.1002/jmri.20851 10.1002/mrm.22516 10.1053/crad.2003.1157 10.1016/j.crad.2003.11.021 10.1137/140971191 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Inc. Copyright © 2020 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright © 2020 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.mri.2020.04.005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1873-5894 |
EndPage | 97 |
ExternalDocumentID | 32302737 10_1016_j_mri_2020_04_005 S0730725X19307878 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 3O- 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABDPE ABFNM ABGSF ABJNI ABMAC ABMZM ABNEU ABOCM ABUDA ABWVN ABXDB ACDAQ ACFVG ACGFS ACIEU ACIUM ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEI HMK HMO HVGLF HZ~ IHE J1W KOM M29 M41 MO0 N9A O-L O9- OAUVE OGIMB OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSQ SSU SSZ T5K WUQ XPP Z5R ZGI ZMT ~G- ~S- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG G8K LCYCR RIG AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c446t-6cb738ee43bb6de3cdb51988b1b378da3ced14131bf739a76376851df0763f7b3 |
IEDL.DBID | .~1 |
ISSN | 0730-725X 1873-5894 |
IngestDate | Fri Jul 11 13:03:31 EDT 2025 Mon Jul 21 05:40:26 EDT 2025 Thu Apr 24 23:08:24 EDT 2025 Tue Jul 01 01:55:25 EDT 2025 Fri Feb 23 02:47:24 EST 2024 Tue Aug 26 18:33:13 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Patellar tendon T2∗ relaxation Fractional calculus UTE-MRI T(∗) relaxation |
Language | English |
License | Copyright © 2020 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-6cb738ee43bb6de3cdb51988b1b378da3ced14131bf739a76376851df0763f7b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0730725X19307878 |
PMID | 32302737 |
PQID | 2391971668 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2391971668 pubmed_primary_32302737 crossref_citationtrail_10_1016_j_mri_2020_04_005 crossref_primary_10_1016_j_mri_2020_04_005 elsevier_sciencedirect_doi_10_1016_j_mri_2020_04_005 elsevier_clinicalkey_doi_10_1016_j_mri_2020_04_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2020 2020-07-00 20200701 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Magnetic resonance imaging |
PublicationTitleAlternate | Magn Reson Imaging |
PublicationYear | 2020 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Magin, Feng, Baleanu (bb0100) 2009; 34 Weiger, Hennel, Pruessmann (bb0045) 2010; 64 Zhou, Gao, Abdullah, Magin (bb0130) 2010; 63 Barbieri, Donati, Froehlich, Thoeny (bb0070) 2016; 75 Nayak (bb0160) 2000 Samiric, Parkinson, Ilic, Cook, Feller, Handley (bb0090) 2009; 28 Juras, Apprich, Zbýň, Zak, Deligianni, Szomolanyi (bb0145) 2014; 71 Chappell, Patel, Gatehouse (bb0025) 2003; 18 Attia, Scott, Carpentier, Lian, Van Kuppevelt, Gossard (bb0085) 2014; 48 Robson, Benjamin, Gishen, Bydder (bb0020) 2004; 59 Johnson (bb0035) 2013; 70 Tyler, Robson, Henkelman, Young, Bydder (bb0040) 2007; 25 Cole, Leblanc, Jhingran (bb0135) 1993; 29 Damon, Ding, Anderson, Freyer, Gore (bb0140) 2002; 48 Gatehouse, Bydder (bb0005) 2003; 58 Chang (bb0010) April 2015; 41 Samko, Kilbas, Marichev (bb0110) 1993 (bb0115) 2000 Staroswiecki, Bangerter, Gurney, Grafendorfer, Gold, Hargreaves (bb0155) 2010; 32 Gold, Pauly, Macovski, Herfkens (bb0015) 1995; 34 Balcom, Macgregor, Beyea, Green, Armstrong, Bremner (bb0050) 1996; 123 Juras (bb0065) 2013; 23 Gold (bb0165) 2001 Zwerver, Bredeweg, Van Den Akker-Scheek (bb0080) 2011; 39 Magin, Li, Pilar Velasco, Trujillo, Reiter, Morgenstern (bb0105) 2011; 210 Grodzki, Jakob, Heismann (bb0055) 2012; 67 Qian, Boada (bb0060) 2008; 60 Schwarcz, Bogner, Meric, Correze, Berente, P’al (bb0095) 2004; 51 Liu, Kijowski (bb0150) 2017; 7 Williams, Qian, Golla, Chu (bb0075) 2012; 20 Garrappa (bb0120) 2015; 53 Reiter, Magin, Li, Trujillo, Pilar Velasco, Spencer (bb0030) 2016; 76 Gatehouse (10.1016/j.mri.2020.04.005_bb0005) 2003; 58 Cole (10.1016/j.mri.2020.04.005_bb0135) 1993; 29 Chappell (10.1016/j.mri.2020.04.005_bb0025) 2003; 18 Barbieri (10.1016/j.mri.2020.04.005_bb0070) 2016; 75 Schwarcz (10.1016/j.mri.2020.04.005_bb0095) 2004; 51 Reiter (10.1016/j.mri.2020.04.005_bb0030) 2016; 76 Magin (10.1016/j.mri.2020.04.005_bb0105) 2011; 210 Attia (10.1016/j.mri.2020.04.005_bb0085) 2014; 48 Tyler (10.1016/j.mri.2020.04.005_bb0040) 2007; 25 Robson (10.1016/j.mri.2020.04.005_bb0020) 2004; 59 (10.1016/j.mri.2020.04.005_bb0115) 2000 Magin (10.1016/j.mri.2020.04.005_bb0100) 2009; 34 Gold (10.1016/j.mri.2020.04.005_bb0015) 1995; 34 Gold (10.1016/j.mri.2020.04.005_bb0165) 2001 Garrappa (10.1016/j.mri.2020.04.005_bb0120) 2015; 53 Johnson (10.1016/j.mri.2020.04.005_bb0035) 2013; 70 Weiger (10.1016/j.mri.2020.04.005_bb0045) 2010; 64 Juras (10.1016/j.mri.2020.04.005_bb0065) 2013; 23 Damon (10.1016/j.mri.2020.04.005_bb0140) 2002; 48 Staroswiecki (10.1016/j.mri.2020.04.005_bb0155) 2010; 32 Williams (10.1016/j.mri.2020.04.005_bb0075) 2012; 20 Zhou (10.1016/j.mri.2020.04.005_bb0130) 2010; 63 Zwerver (10.1016/j.mri.2020.04.005_bb0080) 2011; 39 Samko (10.1016/j.mri.2020.04.005_bb0110) 1993 Nayak (10.1016/j.mri.2020.04.005_bb0160) 2000 Chang (10.1016/j.mri.2020.04.005_bb0010) 2015; 41 Grodzki (10.1016/j.mri.2020.04.005_bb0055) 2012; 67 Liu (10.1016/j.mri.2020.04.005_bb0150) 2017; 7 Balcom (10.1016/j.mri.2020.04.005_bb0050) 1996; 123 Samiric (10.1016/j.mri.2020.04.005_bb0090) 2009; 28 Juras (10.1016/j.mri.2020.04.005_bb0145) 2014; 71 Qian (10.1016/j.mri.2020.04.005_bb0060) 2008; 60 |
References_xml | – volume: 123 start-page: 131 year: 1996 end-page: 134 ident: bb0050 article-title: Single-point ramped imaging with T1 enhancement (SPRITE) publication-title: J Magn Reson A – volume: 23 start-page: 2814 year: 2013 end-page: 2822 ident: bb0065 article-title: Bi-exponential T2* analysis of healthy and diseased Achilles tendons: an in vivo preliminary magnetic resonance study and correlation with clinical score publication-title: Eur Radiol – volume: 39 start-page: 1984 year: 2011 end-page: 1988 ident: bb0080 article-title: Prevalence of jumper’s knee among nonelite athletes from different sports: a cross-sectional survey publication-title: Am J Sports Med – volume: 76 start-page: 953 year: 2016 end-page: 962 ident: bb0030 article-title: Anomalous T2 relaxation in normal and degraded cartilage publication-title: Magn Reson Med – volume: 48 start-page: 469 year: 2014 end-page: 475 ident: bb0085 article-title: Greater glycosaminoglycan content in human patellar tendon biopsies is associated with more pain and a lower VISA score publication-title: Br J Sports Med – volume: 63 start-page: 562 year: 2010 end-page: 569 ident: bb0130 article-title: Studies of anomalous diffusion in the human brain using fractional order calculus publication-title: Magn Reson Med – volume: 48 start-page: 97 year: 2002 end-page: 104 ident: bb0140 article-title: Validation of diffusion tensor MRI-based muscle fiber tracking publication-title: Magn Reson Med – volume: 28 start-page: 230 year: 2009 end-page: 236 ident: bb0090 article-title: Changes in the composition of the extracellular matrix in patellar tendinopathy publication-title: Matrix Biol – volume: 34 start-page: 654 year: 1995 end-page: 674 ident: bb0015 article-title: MR spectroscopic imaging of collagen: tendons and knee menisci publication-title: Magn Reson Med – start-page: 509 year: 2000 ident: bb0160 article-title: Proc. ISMRM – volume: 53 start-page: 1350 year: 2015 end-page: 1369 ident: bb0120 article-title: Numerical evaluation of two and three parameter Mittag-Leffler functions publication-title: SIAM J Numer Anal – volume: 34 start-page: 16 year: 2009 end-page: 23 ident: bb0100 article-title: Solving the fractional order Bloch equation publication-title: Concepts Magn Reson A – volume: 25 start-page: 279 year: 2007 end-page: 289 ident: bb0040 article-title: Magnetic resonance imaging with ultrashort TE (UTE) PULSE sequences: technical considerations publication-title: J Magn Reson Imaging – volume: 67 start-page: 510 year: 2012 end-page: 518 ident: bb0055 article-title: Ultrashort echo time imaging using pointwise encoding time reduction with radial acquisition (PETRA) publication-title: Magn Reson Med – volume: 29 start-page: 19 year: 1993 end-page: 24 ident: bb0135 article-title: The origin of biexponential T2 relaxation in muscle water publication-title: Magn Reson Med – year: 2000 ident: bb0115 publication-title: Applications of fractional calculus in physics – volume: 18 start-page: 709 year: 2003 end-page: 713 ident: bb0025 article-title: Magnetic resonance imaging of the liver with ultrashort TE (UTE) pulse sequences publication-title: J Magn Reson Imaging – volume: 64 start-page: 1685 year: 2010 end-page: 1695 ident: bb0045 article-title: Sweep MRI with algebraic reconstruction publication-title: Magn Reson Med – volume: 32 start-page: 446 year: 2010 end-page: 451 ident: bb0155 article-title: In vivo sodium imaging of human patellar cartilage with a 3D cones sequence at 3 T and 7 T publication-title: J Magn Reson Imaging – volume: 59 start-page: 727 year: 2004 end-page: 735 ident: bb0020 article-title: Magnetic resonance imaging of the achilles tendon using ultrashort TE (UTE) pulse sequences publication-title: Clin Radiol – volume: 20 start-page: 486 year: 2012 end-page: 494 ident: bb0075 article-title: UTE-T2 * mapping detects sub-clinical meniscus injury after anterior cruciate ligament tear publication-title: Osteoarthr Cartil/OARS Osteoarthritis Res Soc – volume: 70 start-page: 1241 year: 2013 end-page: 1250 ident: bb0035 article-title: Optimized 3D ultrashort echo time pulmonary MRI publication-title: Magn Reson Med – volume: 41 start-page: 870 year: April 2015 end-page: 883 ident: bb0010 article-title: UTE imaging in the musculoskeletal system publication-title: J Magn Reson Imaging – year: 1993 ident: bb0110 article-title: Fractional integrals and derivatives: theory and applications – volume: 60 start-page: 135 year: 2008 end-page: 145 ident: bb0060 article-title: Acquisition-weighted stack of spirals for fast high-resolution three-dimensional ultra-short echo time MR imaging publication-title: Magn Reson Med – volume: 75 start-page: 2175 year: 2016 end-page: 2184 ident: bb0070 article-title: Impact of the calculation algorithm on biexponential fitting of diffusion-weighted MRI in upper abdominal organs publication-title: Magn Reson Med – volume: 71 start-page: 1015 year: 2014 end-page: 1023 ident: bb0145 article-title: Quantitative MRI analysis of menisci using biexponential T2* fitting with a variable echo time sequence publication-title: Magn Reson Med – volume: 210 start-page: 184 year: 2011 end-page: 191 ident: bb0105 article-title: Anomalous NMR relaxation in cartilage matrix components and native cartilage: fractional-order models publication-title: J Magn Reson – volume: 7 start-page: 163 year: 2017 end-page: 172 ident: bb0150 article-title: Assessment of different fitting methods for in-vivo bi-component T2* analysis of human patellar tendon in magnetic resonance imaging publication-title: Muscles Ligaments Tendons J – volume: 51 start-page: 278 year: 2004 end-page: 285 ident: bb0095 article-title: The existence of biexponential signal decay in magnetic resonance diffusion-weighted imaging appears to be independent of compartmentalization publication-title: Magn Reson Med – start-page: 244 year: 2001 ident: bb0165 article-title: Proc. ISMRM – volume: 58 start-page: 1 year: 2003 end-page: 19 ident: bb0005 article-title: Magnetic resonance imaging of short T2 components in tissue publication-title: Clin Radiol – year: 1993 ident: 10.1016/j.mri.2020.04.005_bb0110 – volume: 34 start-page: 16 year: 2009 ident: 10.1016/j.mri.2020.04.005_bb0100 article-title: Solving the fractional order Bloch equation publication-title: Concepts Magn Reson A doi: 10.1002/cmr.a.20129 – volume: 60 start-page: 135 year: 2008 ident: 10.1016/j.mri.2020.04.005_bb0060 article-title: Acquisition-weighted stack of spirals for fast high-resolution three-dimensional ultra-short echo time MR imaging publication-title: Magn Reson Med doi: 10.1002/mrm.21620 – volume: 7 start-page: 163 issue: 1 year: 2017 ident: 10.1016/j.mri.2020.04.005_bb0150 article-title: Assessment of different fitting methods for in-vivo bi-component T2* analysis of human patellar tendon in magnetic resonance imaging publication-title: Muscles Ligaments Tendons J doi: 10.11138/mltj/2017.7.1.163 – volume: 20 start-page: 486 year: 2012 ident: 10.1016/j.mri.2020.04.005_bb0075 article-title: UTE-T2 * mapping detects sub-clinical meniscus injury after anterior cruciate ligament tear publication-title: Osteoarthr Cartil/OARS Osteoarthritis Res Soc doi: 10.1016/j.joca.2012.01.009 – volume: 34 start-page: 654 year: 1995 ident: 10.1016/j.mri.2020.04.005_bb0015 article-title: MR spectroscopic imaging of collagen: tendons and knee menisci publication-title: Magn Reson Med doi: 10.1002/mrm.1910340502 – volume: 51 start-page: 278 year: 2004 ident: 10.1016/j.mri.2020.04.005_bb0095 article-title: The existence of biexponential signal decay in magnetic resonance diffusion-weighted imaging appears to be independent of compartmentalization publication-title: Magn Reson Med doi: 10.1002/mrm.10702 – volume: 71 start-page: 1015 year: 2014 ident: 10.1016/j.mri.2020.04.005_bb0145 article-title: Quantitative MRI analysis of menisci using biexponential T2* fitting with a variable echo time sequence publication-title: Magn Reson Med doi: 10.1002/mrm.24760 – volume: 63 start-page: 562 year: 2010 ident: 10.1016/j.mri.2020.04.005_bb0130 article-title: Studies of anomalous diffusion in the human brain using fractional order calculus publication-title: Magn Reson Med doi: 10.1002/mrm.22285 – volume: 67 start-page: 510 year: 2012 ident: 10.1016/j.mri.2020.04.005_bb0055 article-title: Ultrashort echo time imaging using pointwise encoding time reduction with radial acquisition (PETRA) publication-title: Magn Reson Med doi: 10.1002/mrm.23017 – volume: 32 start-page: 446 issue: 2 year: 2010 ident: 10.1016/j.mri.2020.04.005_bb0155 article-title: In vivo sodium imaging of human patellar cartilage with a 3D cones sequence at 3 T and 7 T publication-title: J Magn Reson Imaging doi: 10.1002/jmri.22191 – volume: 210 start-page: 184 issue: 2 year: 2011 ident: 10.1016/j.mri.2020.04.005_bb0105 article-title: Anomalous NMR relaxation in cartilage matrix components and native cartilage: fractional-order models publication-title: J Magn Reson doi: 10.1016/j.jmr.2011.03.006 – volume: 75 start-page: 2175 year: 2016 ident: 10.1016/j.mri.2020.04.005_bb0070 article-title: Impact of the calculation algorithm on biexponential fitting of diffusion-weighted MRI in upper abdominal organs publication-title: Magn Reson Med doi: 10.1002/mrm.25765 – volume: 48 start-page: 469 year: 2014 ident: 10.1016/j.mri.2020.04.005_bb0085 article-title: Greater glycosaminoglycan content in human patellar tendon biopsies is associated with more pain and a lower VISA score publication-title: Br J Sports Med doi: 10.1136/bjsports-2013-092633 – volume: 39 start-page: 1984 year: 2011 ident: 10.1016/j.mri.2020.04.005_bb0080 article-title: Prevalence of jumper’s knee among nonelite athletes from different sports: a cross-sectional survey publication-title: Am J Sports Med doi: 10.1177/0363546511413370 – volume: 70 start-page: 1241 issue: 5 year: 2013 ident: 10.1016/j.mri.2020.04.005_bb0035 article-title: Optimized 3D ultrashort echo time pulmonary MRI publication-title: Magn Reson Med doi: 10.1002/mrm.24570 – volume: 23 start-page: 2814 issue: 10 year: 2013 ident: 10.1016/j.mri.2020.04.005_bb0065 article-title: Bi-exponential T2* analysis of healthy and diseased Achilles tendons: an in vivo preliminary magnetic resonance study and correlation with clinical score publication-title: Eur Radiol doi: 10.1007/s00330-013-2897-8 – volume: 41 start-page: 870 issue: 4 year: 2015 ident: 10.1016/j.mri.2020.04.005_bb0010 article-title: UTE imaging in the musculoskeletal system publication-title: J Magn Reson Imaging doi: 10.1002/jmri.24713 – volume: 28 start-page: 230 year: 2009 ident: 10.1016/j.mri.2020.04.005_bb0090 article-title: Changes in the composition of the extracellular matrix in patellar tendinopathy publication-title: Matrix Biol doi: 10.1016/j.matbio.2009.04.001 – start-page: 244 year: 2001 ident: 10.1016/j.mri.2020.04.005_bb0165 – volume: 76 start-page: 953 year: 2016 ident: 10.1016/j.mri.2020.04.005_bb0030 article-title: Anomalous T2 relaxation in normal and degraded cartilage publication-title: Magn Reson Med doi: 10.1002/mrm.25913 – volume: 48 start-page: 97 year: 2002 ident: 10.1016/j.mri.2020.04.005_bb0140 article-title: Validation of diffusion tensor MRI-based muscle fiber tracking publication-title: Magn Reson Med doi: 10.1002/mrm.10198 – year: 2000 ident: 10.1016/j.mri.2020.04.005_bb0115 – volume: 29 start-page: 19 year: 1993 ident: 10.1016/j.mri.2020.04.005_bb0135 article-title: The origin of biexponential T2 relaxation in muscle water publication-title: Magn Reson Med doi: 10.1002/mrm.1910290106 – volume: 18 start-page: 709 year: 2003 ident: 10.1016/j.mri.2020.04.005_bb0025 article-title: Magnetic resonance imaging of the liver with ultrashort TE (UTE) pulse sequences publication-title: J Magn Reson Imaging doi: 10.1002/jmri.10423 – volume: 123 start-page: 131 year: 1996 ident: 10.1016/j.mri.2020.04.005_bb0050 article-title: Single-point ramped imaging with T1 enhancement (SPRITE) publication-title: J Magn Reson A doi: 10.1006/jmra.1996.0225 – volume: 25 start-page: 279 year: 2007 ident: 10.1016/j.mri.2020.04.005_bb0040 article-title: Magnetic resonance imaging with ultrashort TE (UTE) PULSE sequences: technical considerations publication-title: J Magn Reson Imaging doi: 10.1002/jmri.20851 – volume: 64 start-page: 1685 year: 2010 ident: 10.1016/j.mri.2020.04.005_bb0045 article-title: Sweep MRI with algebraic reconstruction publication-title: Magn Reson Med doi: 10.1002/mrm.22516 – start-page: 509 year: 2000 ident: 10.1016/j.mri.2020.04.005_bb0160 – volume: 58 start-page: 1 year: 2003 ident: 10.1016/j.mri.2020.04.005_bb0005 article-title: Magnetic resonance imaging of short T2 components in tissue publication-title: Clin Radiol doi: 10.1053/crad.2003.1157 – volume: 59 start-page: 727 year: 2004 ident: 10.1016/j.mri.2020.04.005_bb0020 article-title: Magnetic resonance imaging of the achilles tendon using ultrashort TE (UTE) pulse sequences publication-title: Clin Radiol doi: 10.1016/j.crad.2003.11.021 – volume: 53 start-page: 1350 issue: 3 year: 2015 ident: 10.1016/j.mri.2020.04.005_bb0120 article-title: Numerical evaluation of two and three parameter Mittag-Leffler functions publication-title: SIAM J Numer Anal doi: 10.1137/140971191 |
SSID | ssj0005235 |
Score | 2.290889 |
Snippet | Quantification of the T2∗ relaxation time constant is relevant in various magnetic resonance imaging applications. Mono- or bi-exponential models are typically... Quantification of the T relaxation time constant is relevant in various magnetic resonance imaging applications. Mono- or bi-exponential models are typically... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 91 |
SubjectTerms | Adult Cross-Sectional Studies Fractional calculus Humans Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging Male Patellar Ligament - diagnostic imaging Patellar tendon T2∗ relaxation Tendons - diagnostic imaging UTE-MRI |
Title | Fractional order vs. exponential fitting in UTE MR imaging of the patellar tendon |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X19307878 https://dx.doi.org/10.1016/j.mri.2020.04.005 https://www.ncbi.nlm.nih.gov/pubmed/32302737 https://www.proquest.com/docview/2391971668 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1dS8MwMAwF8UX8dn6MCD4J3Zqma7LHMTamsoG6wd5C0qVQcd3Yh_jkb_euH0NBJ_jWhrs23F3vLr0vQm4CaSIWCUxpDFwcYdZwZMiNA5rQGE-H0oZYjdzrB92hfz-qj0qkVdTCYFplrvsznZ5q63ylllOzNovj2jMKp_DqI3BBwM4JLPj1fYFSXv34muaRDdkEYAehi8hmmuM1mcdwRPTctNspTrD72Tb95numNqizT_Zy55E2s_0dkJJNDslOLw-PH5HHzjyrUwCgtKcmfVtUqX2fTRNMCoLVKE7znGmc0OGgTXtPNJ6kc4roNKLgC9KZxrISPaf4b3yaHJNhpz1odZ18ZoITwsFu6QShEVxa63NjgrHl4diAjyalYYYLOdYc6MrAcDETCd7QoF3gvFFn48iFy0gYfkK2EtjUGaFSe4YboetMNnzgG3CPGXiuFpH1QsbKxC2opcK8oTjOtXhVRebYiwICKySwcn0FBC6T2zXKLOumsQnYK1igijJRUGwKdP0mJH-N9E2O_kK7Lnis4PvCoIlO7HS1UB5vMGyzFcgyOc2Yv9469zDqy8X5_156QXbxLkv-vSRby_nKXoGLszSVVIYrZLt599DtfwIM5fiq |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-NAEB-8Cne-iHp61s898EmIzWaT7PZRxFI_WjhtoW_LbrqBHJqWWsU_35l8FAU_wLew2UmWmc3MbOY3MwBHsbIpTyVBGmOfWpi1PZUI66EmtDYwiXIJZSP3-nF3GF6OotESnNW5MASrrHR_qdMLbV2NtCputqZZ1rqlzSmDaIQuCNo5qX7AMlWnihqwfHpx1e2_QnqUfTZxvkcEdXCzgHndzzI8JQZ-UfCUmti9b54-cj8LM9RZg9XKf2Sn5RLXYcnlG_CzV0XIf8O_zqxMVcBJRVlN9vRwwtzzdJITLghH06yAOrMsZ8PBOevdsOy-aFXEJilDd5BNDWWWmBmj3-OTfBOGnfPBWder2iZ4CZ7t5l6cWCmUc6GwNh47kYwtumlKWW6FVGMjkLUcbRe3qRRtgwoGjxwRH6c-XqbSii1o5LiobWDKBFZYaSKu2iGKDgXILT7XyNQFCedN8Gtu6aSqKU6tLe50DR77r5HBmhis_VAjg5twvCCZlgU1Ppsc1CLQdaYo6jaN6v4zonBB9GYrfUX2t5axxk-M4iYmd5PHBx2INqdKW7Fqwp9S-Iuli4ACv0LufO-lh_CrO-hd6-uL_tUurNCdEgu8B4357NHto8cztwfVjn4Blwz7Ww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractional+order+vs.+exponential+fitting+in+UTE+MR+imaging+of+the+patellar+tendon&rft.jtitle=Magnetic+resonance+imaging&rft.au=Papp%2C+D.&rft.au=Breda%2C+S.J.&rft.au=Oei%2C+E.H.G.&rft.au=Poot%2C+D.H.J.&rft.date=2020-07-01&rft.pub=Elsevier+Inc&rft.issn=0730-725X&rft.eissn=1873-5894&rft.volume=70&rft.spage=91&rft.epage=97&rft_id=info:doi/10.1016%2Fj.mri.2020.04.005&rft.externalDocID=S0730725X19307878 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon |