Observation analysis on characteristics of formation,evolution and transition of a long-lasting severe fog and haze episode in North China
An unusual fog and haze event lasted for one week took place during 1–7 December,2011 over North China.To investigate the characteristics and mechanism of formation,evolution,and transition of the fog and haze event,we studied the microphysical properties such as aerosol,cloud condensation nuclei(CC...
Saved in:
Published in | Science China. Earth sciences Vol. 58; no. 3; pp. 329 - 344 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Science China Press
01.03.2015
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An unusual fog and haze event lasted for one week took place during 1–7 December,2011 over North China.To investigate the characteristics and mechanism of formation,evolution,and transition of the fog and haze event,we studied the microphysical properties such as aerosol,cloud condensation nuclei(CCN),fog droplet spectrum and liquid water content(LWC),as well as horizontal visibility and boundary layer properties,using the data collected in the Project of Low-Visibility Weather Monitoring and Forecasting in the Beijing-Tianjin region.The results indicate that the long-lasting fog and haze event occurred in a high pressure weather system and calm wind condition.The stable boundary-layer structure resulted from temperature inversions that were built by warm advection and radiation cooling provided a favorable condition for the accumulation of polluted aerosols and the formation and development of the fog and haze event.In particular,the continuous southerly wet flow advection made the process a persistent and long-lasting event.The horizontal visibility was almost below 2 km in the whole process,and the lowest visibility was only 56 m.The average LWC was about 10^-3 g m^-3,and the maximum LWC reached 0.16 g m^-3.The aerosol number concentration was more than 10000 cm^-3,and its mass concentration ranged from 50 to 160 -g m^-3.The further study shows that the fog and haze event experienced three main processes in different intensities during the whole period,each process could be divided into three main stages:aerosol accumulation,transition and mixture of aerosol and fog,and dissipation.Each stage had different physical features:the aerosol accumulation stage was characterized by the increase of aerosol number concentration in Aitken nuclei and accumulation mode sequentially.In the transition and mixing stage of fog and haze,the latent heating produced by fog droplet condensation process and high aerosol number concentration condition intensified the Brownian coagulation process,which induced the small size of aerosols to become larger ones and enhanced the CCN activation process,thereby promoting the explosive development of the fog event.The ratio of aerosol activated to CCN reached 17%,and the ratio of CCN converted to fog droplet exceeded 100%,showing an explosively broadening of fog droplet spectrum.The decrease and dissipation of the fog was caused by an increased solar radiation heating or the passage of cold frontal system. |
---|---|
AbstractList | An unusual fog and haze event lasted for one week took place during 1-7 December, 2011 over North China. To investigate the characteristics and mechanism of formation, evolution, and transition of the fog and haze event, we studied the microphysical properties such as aerosol, cloud condensation nuclei (CCN), fog droplet spectrum and liquid water content (LWC), as well as horizontal visibility and boundary layer properties, using the data collected in the Project of Low-Visibility Weather Monitoring and Forecasting in the Beijing-Tianjin region. The results indicate that the long-lasting fog and haze event occurred in a high pressure weather system and calm wind condition. The stable boundary-layer structure resulted from temperature inversions that were built by warm advection and radiation cooling provided a favorable condition for the accumulation of polluted aerosols and the formation and development of the fog and haze event. In particular, the continuous southerly wet flow advection made the process a persistent and long-lasting event. The horizontal visibility was almost below 2 km in the whole process, and the lowest visibility was only 56 m. The average LWC was about 10 super(-3) g m super(-3), and the maximum LWC reached 0.16 g m super(-3). The aerosol number concentration was more than 10000 cm super(-3), and its mass concentration ranged from 50 to 160 mu g m super(-3). The further study shows that the fog and haze event experienced three main processes in different intensities during the whole period, each process could be divided into three main stages: aerosol accumulation, transition and mixture of aerosol and fog, and dissipation. Each stage had different physical features: the aerosol accumulation stage was characterized by the increase of aerosol number concentration in Aitken nuclei and accumulation mode sequentially. In the transition and mixing stage of fog and haze, the latent heating produced by fog droplet condensation process and high aerosol number concentration condition intensified the Brownian coagulation process, which induced the small size of aerosols to become larger ones and enhanced the CCN activation process, thereby promoting the explosive development of the fog event. The ratio of aerosol activated to CCN reached 17%, and the ratio of CCN converted to fog droplet exceeded 100%, showing an explosively broadening of fog droplet spectrum. The decrease and dissipation of the fog was caused by an increased solar radiation heating or the passage of cold frontal system. An unusual fog and haze event lasted for one week took place during 1-7 December, 2011 over North China. To investigate the characteristics and mechanism of formation, evolution, and transition of the fog and haze event, we studied the microphysical properties such as aerosol, cloud condensation nuclei (CCN), fog droplet spectrum and liquid water content (LWC), as well as horizontal visibility and boundary layer properties, using the data collected in the Project of Low-Visibility Weather Monitoring and Forecasting in the Beijing-Tianjin region. The results indicate that the long-lasting fog and haze event occurred in a high pressure weather system and calm wind condition. The stable boundary-layer structure resulted from temperature inversions that were built by warm advection and radiation cooling provided a favorable condition for the accumulation of polluted aerosols and the formation and development of the fog and haze event. In particular, the continuous southerly wet flow advection made the process a persistent and long-lasting event. The horizontal visibility was almost below 2 km in the whole process, and the lowest visibility was only 56 m. The average LWC was about 10^sup -3^ g m^sup -3^, and the maximum LWC reached 0.16 g m^sup -3^. The aerosol number concentration was more than 10000 cm^sup -3^, and its mass concentration ranged from 50 to 160 [mu]g m^sup -3^. The further study shows that the fog and haze event experienced three main processes in different intensities during the whole period, each process could be divided into three main stages: aerosol accumulation, transition and mixture of aerosol and fog, and dissipation. Each stage had different physical features: the aerosol accumulation stage was characterized by the increase of aerosol number concentration in Aitken nuclei and accumulation mode sequentially. In the transition and mixing stage of fog and haze, the latent heating produced by fog droplet condensation process and high aerosol number concentration condition intensified the Brownian coagulation process, which induced the small size of aerosols to become larger ones and enhanced the CCN activation process, thereby promoting the explosive development of the fog event. The ratio of aerosol activated to CCN reached 17%, and the ratio of CCN converted to fog droplet exceeded 100%, showing an explosively broadening of fog droplet spectrum. The decrease and dissipation of the fog was caused by an increased solar radiation heating or the passage of cold frontal system. An unusual fog and haze event lasted for one week took place during 1–7 December,2011 over North China.To investigate the characteristics and mechanism of formation,evolution,and transition of the fog and haze event,we studied the microphysical properties such as aerosol,cloud condensation nuclei(CCN),fog droplet spectrum and liquid water content(LWC),as well as horizontal visibility and boundary layer properties,using the data collected in the Project of Low-Visibility Weather Monitoring and Forecasting in the Beijing-Tianjin region.The results indicate that the long-lasting fog and haze event occurred in a high pressure weather system and calm wind condition.The stable boundary-layer structure resulted from temperature inversions that were built by warm advection and radiation cooling provided a favorable condition for the accumulation of polluted aerosols and the formation and development of the fog and haze event.In particular,the continuous southerly wet flow advection made the process a persistent and long-lasting event.The horizontal visibility was almost below 2 km in the whole process,and the lowest visibility was only 56 m.The average LWC was about 10^-3 g m^-3,and the maximum LWC reached 0.16 g m^-3.The aerosol number concentration was more than 10000 cm^-3,and its mass concentration ranged from 50 to 160 -g m^-3.The further study shows that the fog and haze event experienced three main processes in different intensities during the whole period,each process could be divided into three main stages:aerosol accumulation,transition and mixture of aerosol and fog,and dissipation.Each stage had different physical features:the aerosol accumulation stage was characterized by the increase of aerosol number concentration in Aitken nuclei and accumulation mode sequentially.In the transition and mixing stage of fog and haze,the latent heating produced by fog droplet condensation process and high aerosol number concentration condition intensified the Brownian coagulation process,which induced the small size of aerosols to become larger ones and enhanced the CCN activation process,thereby promoting the explosive development of the fog event.The ratio of aerosol activated to CCN reached 17%,and the ratio of CCN converted to fog droplet exceeded 100%,showing an explosively broadening of fog droplet spectrum.The decrease and dissipation of the fog was caused by an increased solar radiation heating or the passage of cold frontal system. An unusual fog and haze event lasted for one week took place during 1–7 December, 2011 over North China. To investigate the characteristics and mechanism of formation, evolution, and transition of the fog and haze event, we studied the microphysical properties such as aerosol, cloud condensation nuclei (CCN), fog droplet spectrum and liquid water content (LWC), as well as horizontal visibility and boundary layer properties, using the data collected in the Project of Low-Visibility Weather Monitoring and Forecasting in the Beijing-Tianjin region. The results indicate that the long-lasting fog and haze event occurred in a high pressure weather system and calm wind condition. The stable boundary-layer structure resulted from temperature inversions that were built by warm advection and radiation cooling provided a favorable condition for the accumulation of polluted aerosols and the formation and development of the fog and haze event. In particular, the continuous southerly wet flow advection made the process a persistent and long-lasting event. The horizontal visibility was almost below 2 km in the whole process, and the lowest visibility was only 56 m. The average LWC was about 10 −3 g m −3 , and the maximum LWC reached 0.16 g m −3 . The aerosol number concentration was more than 10000 cm −3 , and its mass concentration ranged from 50 to 160 μg m −3 . The further study shows that the fog and haze event experienced three main processes in different intensities during the whole period, each process could be divided into three main stages: aerosol accumulation, transition and mixture of aerosol and fog, and dissipation. Each stage had different physical features: the aerosol accumulation stage was characterized by the increase of aerosol number concentration in Aitken nuclei and accumulation mode sequentially. In the transition and mixing stage of fog and haze, the latent heating produced by fog droplet condensation process and high aerosol number concentration condition intensified the Brownian coagulation process, which induced the small size of aerosols to become larger ones and enhanced the CCN activation process, thereby promoting the explosive development of the fog event. The ratio of aerosol activated to CCN reached 17%, and the ratio of CCN converted to fog droplet exceeded 100%, showing an explosively broadening of fog droplet spectrum. The decrease and dissipation of the fog was caused by an increased solar radiation heating or the passage of cold frontal system. |
Author | GUO LiJun GUO XueLiang FANG ChunGang ZHU ShiChao |
AuthorAffiliation | Key Laboratory.for Cloud Physic, Chinese Academy of Meteorological Sciences, Beijing 100081, China School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China |
Author_xml | – sequence: 1 givenname: LiJun surname: Guo fullname: Guo, LiJun organization: Key Laboratory for Cloud Physic, Chinese Academy of Meteorological Sciences, School of Atmospheric Physics, Nanjing University of Information Science & Technology – sequence: 2 givenname: XueLiang surname: Guo fullname: Guo, XueLiang email: guoxl@mail.iap.ac.cn organization: Key Laboratory for Cloud Physic, Chinese Academy of Meteorological Sciences – sequence: 3 givenname: ChunGang surname: Fang fullname: Fang, ChunGang organization: Key Laboratory for Cloud Physic, Chinese Academy of Meteorological Sciences – sequence: 4 givenname: ShiChao surname: Zhu fullname: Zhu, ShiChao organization: Key Laboratory for Cloud Physic, Chinese Academy of Meteorological Sciences, School of Atmospheric Physics, Nanjing University of Information Science & Technology |
BookMark | eNp9kU1vVCEUhompibX2B7gjunFRlAMMF5ZmYtWksRtdE8o9dy7NHZjCnUnqT_BXy3zEmC7Khq_n4ZDzviZnKSck5C3wj8B596kCKMkZB8WUFYqJF-QcjLYMjO3O2lp3inUS5CtyWes9b0O2G9Gdkz-3dxXLzs8xJ-qTnx5rrLStw-iLDzOWWOcY2tFAh1zWB_AKd3nanpSezsWnGg_bRnk65bRik29eWtGKOyzY3NWBHf1vpLiJNfdIY6I_cplHuhxj8m_Iy8FPFS9P8wX5df3l5_Ibu7n9-n35-YYFpfTMdLBgQfba9Lwd3HGhe264BI699MEKYW0vcdHJEEzoBfcD-M4LoTSqAb28IB-O725Kfthind061oDT5BPmbXWgtRELACMb-v4Jep-3pXVpTy2UMcpK26juSIWSay04uBDnQ6NaZ-LkgLt9TO4Yk2sxuX1MTjQTnpibEte-PD7riKNTG5tWWP770zPSu1OhsYXz0Lx_lbSWBqSChfwL4-CzQw |
CitedBy_id | crossref_primary_10_4236_gep_2022_1010008 crossref_primary_10_1016_j_scitotenv_2024_175329 crossref_primary_10_1038_s41612_024_00682_6 crossref_primary_10_1109_ACCESS_2020_3041505 crossref_primary_10_1002_joc_7400 crossref_primary_10_1007_s11430_022_1243_8 crossref_primary_10_1016_j_atmosres_2017_04_020 crossref_primary_10_1007_s11430_022_1092_y crossref_primary_10_1360_SSTe_2022_0310 crossref_primary_10_1016_j_jclepro_2018_12_077 crossref_primary_10_3390_atmos12121666 crossref_primary_10_1016_j_scitotenv_2019_05_319 crossref_primary_10_1016_j_uclim_2024_101951 crossref_primary_10_1029_2021EA002062 crossref_primary_10_3390_su14095117 crossref_primary_10_5194_acp_19_7759_2019 crossref_primary_10_1007_s11356_022_22322_3 crossref_primary_10_3390_atmos13020205 crossref_primary_10_5194_acp_21_3143_2021 crossref_primary_10_3390_rs16132348 crossref_primary_10_1007_s11069_024_06858_w crossref_primary_10_5194_acp_23_1147_2023 crossref_primary_10_3390_su9030352 crossref_primary_10_12677_aep_2024_143059 crossref_primary_10_1016_j_atmosenv_2021_118357 crossref_primary_10_1175_JAS_D_17_0354_1 crossref_primary_10_3389_fenvs_2024_1477693 crossref_primary_10_1007_s12210_022_01060_1 crossref_primary_10_3390_environments10120224 crossref_primary_10_3389_fenvs_2022_1003669 crossref_primary_10_4236_gep_2017_56005 crossref_primary_10_5194_acp_18_203_2018 crossref_primary_10_5194_amt_12_3289_2019 crossref_primary_10_1016_j_rser_2016_12_092 crossref_primary_10_1016_j_atmosres_2019_104639 crossref_primary_10_1016_j_atmosres_2020_105444 crossref_primary_10_5194_acp_22_14879_2022 crossref_primary_10_1007_s11430_020_9766_4 crossref_primary_10_3390_atmos14060960 crossref_primary_10_1007_s00244_017_0447_0 crossref_primary_10_1038_s41612_021_00165_y crossref_primary_10_5194_acp_23_9873_2023 crossref_primary_10_1007_s13351_019_8043_z crossref_primary_10_3390_rs16193713 crossref_primary_10_3390_atmos12050551 crossref_primary_10_3390_atmos11030258 crossref_primary_10_3390_atmos9120502 crossref_primary_10_1016_j_jnc_2017_08_005 |
Cites_doi | 10.1016/1352-2310(96)00202-6 10.1080/07055900.1995.9649523 10.1016/j.atmosenv.2012.09.029 10.1175/1520-0469(1978)035<2020:VSIAFA>2.0.CO;2 10.1039/TF9363201152 10.1016/j.atmosres.2012.08.004 10.1029/97JD02796 10.1023/A:1023350917344 10.1016/j.partic.2012.09.005 10.1034/j.1600-0889.1992.t01-1-00010.x 10.1029/2005JD007036 10.1016/0021-9797(72)90155-5 10.1175/1520-0469(1980)037<0622:MOVRAR>2.0.CO;2 10.5194/acp-9-2459-2009 10.1175/1520-0477-50.6.422 10.1029/2002JD003237 10.1029/JD095iD11p18489 10.1023/A:1023305423337 10.1016/j.atmosenv.2005.07.061 10.1007/s11430-008-0071-y 10.5194/acp-11-8205-2011 10.1175/1520-0469(1998)055<0853:MOTKHE>2.0.CO;2 10.1080/02786820390229534 10.5194/acp-7-1961-2007 10.1175/1520-0469(1991)048<2569:SADSEI>2.0.CO;2 10.5194/acp-13-4501-2013 10.1007/s11434-012-5136-9 10.1007/s00024-007-0211-x 10.1007/s11425-010-4139-8 10.1175/1520-0469(1980)037<1854:RBFCNA>2.0.CO;2 10.1016/j.atmosres.2010.10.015 10.1111/j.1600-0889.1989.tb00132.x 10.1029/2002JD002833 10.5194/acpd-9-17963-2009 10.1016/j.atmosres.2009.01.006 10.1175/1520-0469(1981)038<0454:MOARF>2.0.CO;2 10.1007/s00376-009-8174-8 10.1016/j.atmosenv.2005.04.006 |
ContentType | Journal Article |
Copyright | Science China Press and Springer-Verlag Berlin Heidelberg 2014 Science China Press and Springer-Verlag Berlin Heidelberg 2015 |
Copyright_xml | – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2014 – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2015 |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 3V. 7TG 7UA 7XB 88I 8FK ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ KL. L.G M2P PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI Q9U 7TV |
DOI | 10.1007/s11430-014-4924-2 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库- 镜像站点 CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Pollution Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest Central (Alumni) ProQuest One Academic (New) Pollution Abstracts |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
DocumentTitleAlternate | Observation analysis on characteristics of formation,evolution and transition of a long-lasting severe fog and haze episode in North China |
EISSN | 1869-1897 |
EndPage | 344 |
ExternalDocumentID | 3589137051 10_1007_s11430_014_4924_2 663813415 |
Genre | Feature |
GeographicLocations | China China, People's Rep |
GeographicLocations_xml | – name: China – name: China, People's Rep |
GroupedDBID | -5A -5G -BR -EM -Y2 -~C .VR 06D 0VY 1N0 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 3V. 4.4 406 40D 40E 5VR 5VS 67M 88I 8FE 8FH 8TC 8UJ 92L 95- 95. 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACGOD ACHSB ACHXU ACIGE ACIHN ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACTTH ACVWB ACWMK ACZOJ ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFKRA AFLOW AFNRJ AFQWF AFRAH AFUIB AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ CAG CCEZO CCPQU CCVFK CHBEP COF CQIGP CSCUP CW9 DDRTE DNIVK DPUIP DWQXO EBD EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KOV L8X LK5 LLZTM M2P M4Y M7R MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9J PCBAR PF0 PQQKQ PROAC PT4 Q2X QOS R89 RIG ROL RSV S16 S3B SAP SCL SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TR2 TSG TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z5O Z7R Z7Y ZMTXR ~02 ~A9 ~WA -SA -S~ 0R~ AACDK AAJBT AASML AAXDM AAYZH ABAKF ABQSL ACDTI ACPIV AEFQL AEMSY AEUYN AGQEE AGRTI AIGIU BSONS CAJEA CJPJV H13 Q-- U1G U5K AAPKM AAYXX ABBRH ABDBE ACMFV ADHKG AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION PHGZM PHGZT 7TG 7UA 7XB 8FK ABRTQ C1K F1W H96 KL. L.G PKEHL PQEST PQUKI Q9U 7TV |
ID | FETCH-LOGICAL-c446t-6c91913d68d0446b026d080310ed3ac92299d3e573cc8cd20af1a7a2246e4fea3 |
IEDL.DBID | U2A |
ISSN | 1674-7313 |
IngestDate | Fri Jul 11 06:21:24 EDT 2025 Sun Jul 13 03:43:58 EDT 2025 Thu Apr 24 23:06:49 EDT 2025 Tue Jul 01 02:28:14 EDT 2025 Fri Feb 21 02:32:49 EST 2025 Wed Feb 14 10:37:49 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | North China haze and fog aerosol accumulation transition of haze into fog |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-6c91913d68d0446b026d080310ed3ac92299d3e573cc8cd20af1a7a2246e4fea3 |
Notes | An unusual fog and haze event lasted for one week took place during 1–7 December,2011 over North China.To investigate the characteristics and mechanism of formation,evolution,and transition of the fog and haze event,we studied the microphysical properties such as aerosol,cloud condensation nuclei(CCN),fog droplet spectrum and liquid water content(LWC),as well as horizontal visibility and boundary layer properties,using the data collected in the Project of Low-Visibility Weather Monitoring and Forecasting in the Beijing-Tianjin region.The results indicate that the long-lasting fog and haze event occurred in a high pressure weather system and calm wind condition.The stable boundary-layer structure resulted from temperature inversions that were built by warm advection and radiation cooling provided a favorable condition for the accumulation of polluted aerosols and the formation and development of the fog and haze event.In particular,the continuous southerly wet flow advection made the process a persistent and long-lasting event.The horizontal visibility was almost below 2 km in the whole process,and the lowest visibility was only 56 m.The average LWC was about 10^-3 g m^-3,and the maximum LWC reached 0.16 g m^-3.The aerosol number concentration was more than 10000 cm^-3,and its mass concentration ranged from 50 to 160 -g m^-3.The further study shows that the fog and haze event experienced three main processes in different intensities during the whole period,each process could be divided into three main stages:aerosol accumulation,transition and mixture of aerosol and fog,and dissipation.Each stage had different physical features:the aerosol accumulation stage was characterized by the increase of aerosol number concentration in Aitken nuclei and accumulation mode sequentially.In the transition and mixing stage of fog and haze,the latent heating produced by fog droplet condensation process and high aerosol number concentration condition intensified the Brownian coagulation process,which induced the small size of aerosols to become larger ones and enhanced the CCN activation process,thereby promoting the explosive development of the fog event.The ratio of aerosol activated to CCN reached 17%,and the ratio of CCN converted to fog droplet exceeded 100%,showing an explosively broadening of fog droplet spectrum.The decrease and dissipation of the fog was caused by an increased solar radiation heating or the passage of cold frontal system. 11-5843/P haze and fog; aerosol accumulation; transition of haze into fog; North China SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1654884939 |
PQPubID | 54336 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_1668251183 proquest_journals_1654884939 crossref_citationtrail_10_1007_s11430_014_4924_2 crossref_primary_10_1007_s11430_014_4924_2 springer_journals_10_1007_s11430_014_4924_2 chongqing_primary_663813415 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-03-01 |
PublicationDateYYYYMMDD | 2015-03-01 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg – name: Dordrecht |
PublicationTitle | Science China. Earth sciences |
PublicationTitleAbbrev | Sci. China Earth Sci |
PublicationTitleAlternate | SCIENCE CHINA Earth Sciences |
PublicationYear | 2015 |
Publisher | Science China Press Springer Nature B.V |
Publisher_xml | – name: Science China Press – name: Springer Nature B.V |
References | JacobsonM ZDevelopment and application of a new air pollution modeling system-II. Aerosol module structure and designAtmos Environ19973113114410.1016/1352-2310(96)00202-6 GerberHSupersaturation and droplet spectral evolution in fogJ Atmos Sci1991482569258810.1175/1520-0469(1991)048<2569:SADSEI>2.0.CO;2 PodzimekJDroplet concentration and size distribution in haze and fogStud Geophys Geod19974127729610.1023/A:1023350917344 EliasTHaeffelinMDrobinskiPParticulate contribution to extinction of visible radiation: Pollution, haze, and fogAtmos Res20099244345410.1016/j.atmosres.2009.01.006 EldridgeR GMist-the transition from haze to fogBull Amer Meteorol Soc196950422426 WMO.Aerodrome Reports and Forecasts: A User’s Handbook to the Codes2005GenevaWorld Meteorological Organization PodzimekJAerosol particle scavenging by fog and haze dropletsStud Geophys Geod19984254056010.1023/A:1023305423337 GautamRHsuN CKafatosMInfluences of winter haze on fog/low cloud over the Indo-GangeticJ Geophys Res2007112207218 MengZ YDabdubDSeinfeldJ HSize-resolved and chemically resolved model of atmospheric aerosol dynamicsJ Geophys Res19981033419343510.1029/97JD02796 NiuS JLuC SYuH YFog research in China: An overviewAdv Atmos Sci20102763966110.1007/s00376-009-8174-8 HusarR BHollowayJ MThe properties and climate of atmospheric haze1984Hygroscopic Aerosols, Hampton VirginiaA Deepak Publishing129170 PettersM DKreidenweisS MA single parameter representation of hygroscopic growth and cloud condensation nucleus activityAtmos Chem Phys200771961197110.5194/acp-7-1961-2007 LewisJKoracinDRabinRSea fog off the California coast: Viewed in the context of transient weather systemsJ Geophys Res2003108445710.1029/2002JD002833 China Meteorological Administration.Specifications for Surface Meteorological Observation (in Chinese)20032nd ed.BeijingChina Meteorological Press2425 SteinD CSwapR JGrecoSHaze layer characterization and associated meteorological controls along the eastern coastal region of southern AfricaJ Geophys Res2003108850610.1029/2002JD003237 DrewnickFJayneJ TCanagaratnaMMeasurement of ambient aerosol composition during the PMTACS-NY 2001 using an aerosol mass spectrometer. Part II: Chemically speciated mass distributionsAerosol Sci Tech20043810411710.1080/02786820390229534 MeyerM BJiustoJ EGarlandL GMeasurements of visual range and radiation fog (haze) microphysicsJ Atmos Sci19803762262910.1175/1520-0469(1980)037<0622:MOVRAR>2.0.CO;2 LiZ HLiuD YYangJThe microphysical processes and macroscopic condition of the radiation fog droplet spectrum broadening (in Chinese)Chin J Atmos Sci20113511410.1007/s11425-010-4139-8 GerberH EMicrostructure of a radiation fogJ Atmos Sci19813845445810.1175/1520-0469(1981)038<0454:MOARF>2.0.CO;2 HudsonJ GRelationship between fog condensation nuclei and fog microstructureJ Atmos Sci1980371854186710.1175/1520-0469(1980)037<1854:RBFCNA>2.0.CO;2 LuG XGuoX LDistribution and origin of aerosol and its transform relationship with CCN derived from the spring multi-aircraft measurements of Beijing Cloud Experiment (BCE)Chin Sci Bull2012572460246910.1007/s11434-012-5136-9 WuDTieX XLiC CAn extremely low visibility event over the Guangzhou region: A case studyAtmos Environ2005396568657710.1016/j.atmosenv.2005.07.061 KöhlerHThe nucleus in and the growth of hygroscopic dropletsTrans Faraday Soc1936321152116110.1039/tf9363201152 PinnickR GHoihjelleD LFernandezGVertical structure in atmospheric fog and haze and its effects on visible and infrared extinctionJ Atmos Sci1978352020203210.1175/1520-0469(1978)035<2020:VSIAFA>2.0.CO;2 RangognioJTuletPBergotTInfluence of aerosols on the formation and development of radiation fogAtmos Chem Phys Discuss20099179631801910.5194/acpd-9-17963-2009 JiaX CGuoX LImpacts of anthropogenic atmospheric pollutant on formation and development of a winter heavy fog event (in Chinese)Chin J Atmos Sci2012369951008 ZhangQTieX XLinW LVariability of SO2 in an intensive fog in North China Plain: Evidence of high solubility of SO2Particuology201311414710.1016/j.partic.2012.09.005 FaheyK MPandisS NColettJ LJrThe influence of size-dependent droplet composition on pollutant processing by fogsAtmos Environ2005394561457410.1016/j.atmosenv.2005.04.006 Dall’OstoMHarrisonR MCoeHReal-time secondary aerosol formation during a fog event in LondonAtmos Chem Phys200992459246910.5194/acp-9-2459-2009 HusarR BWhitbyK TLiuB Y HPhysical mechanisms governing the dynamics of Los Angeles smog aerosolJ Colloid Interface Sci19723921122410.1016/0021-9797(72)90155-5 OgrenJ ANooneK JHallbergAMeasurement of the size dependence of the concentration of non-volatile material in fog dropletsTellus Ser B-Chem Phys Meteorol19924457058010.1034/j.1600-0889.1992.t01-1-00010.x LiZ HLiuD YFengYRecent progress in the studies of the fog-water chemical characteristics in China (in Chinese)Acta Meteorol Sin201169544554 LiuX GLiJQuYFormation and evolution mechanism of regional haze: A case study in the megacity Beijing, ChinaAtmos Chem Phys2013134501451410.5194/acp-13-4501-2013 StewartR EYiuD TChungK KWeather conditions associated with the passage of precipitation type transition regions over eastern NewfoundlandAtmos-Ocean199533255310.1080/07055900.1995.9649523 LiZ HPengG ZPhysical and chemical characteristics of the Chongqing winter fog (in Chinese)Acta Meteorol Sin199452477483 SeinfeldJ HPandisS NAtmospheric Chemistry and Physics: From Air Pollution to Climate Change1997New YorkJohn Wiley and Sons377390 YangJNiuZ QShiC EMicrophysics of atmospheric aerosols during winter haze/fog events in Nanjing (in Chinese)Environ Sci20103114251431 PandisS NSeinfeldJ HPilinisCThe smog-fog-smog cycle and acid depositionJ Geophys Res199095184891850010.1029/JD095iD11p18489 ZhangX YZhangY MCaoG LAerosol chemical compositions of Beijing PM1 and its control countermeasures (in Chinese)J Appl Meteorol Sci201223257264 RemerL ATanreDKaufmanY JAlgorithm for Remote Sensing of Tropospheric Aerosol from MODIS: Collection 005. Product ID: MOD04/MYD042006 TangX YZhangY HShaoMAtmospheric Environmental Chemistry (in Chinese)20062nd ed.BeijingHigher Education Press286290 China Meteorological Administration.Observation and forecasting levels of haze. The State Standard of the People’s Republic of China QX/T 113-2010 (in Chinese)2010BeijingChina Meteorological Press KangH QZhuBSuJ FAnalysis of a long-lasting haze episode in Nanjing, ChinaAtmos Res2013120–121788710.1016/j.atmosres.2012.08.004 PuM JZhangG ZYanW LFeatures of a rare advection-radiation fog eventSci China Ser D-Earth Sci2008511044105210.1007/s11430-008-0071-y YuX NZhuBYinYA comparative analysis of aerosol properties in dust and haze-fog days in a Chinese urban regionAtmos Res20119924124710.1016/j.atmosres.2010.10.015 Friedlander S K. Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics. 2nd ed. New York, Oxford University Press. 188–219 QuanJZhangQHeHAnalysis of the formation of fog and haze in North China Plain (NCP)Atmos Chem Phys2011118205821410.5194/acp-11-8205-2011 Meteorological Office.Handbook of Aviation Meteorology19943rd ed.LondonHis Majesty’s Stationery Office HeintzenbergJFine particles in the global troposphere A reviewTellus Ser B-Chem Phys Meteorol19894114916010.1111/j.1600-0889.1989.tb00132.x GultepeITardifRMichaelidesS CFog research: A review of past achievements and future perspectivesPure Appl Geophys20071641121115910.1007/s00024-007-0211-x LiuD YPuM JYangJMicrophysical structure and evolution of a four-day persistent fog event in Nanjing in December 2006Acta Meteorol Sin201024104115 WMO/GAW.WMO/GAW Aerosol Measurement Procedures Guidelines and Recommendations2003GenevaWorld Meteorological Organization LaaksonenAKorhonenPKulmalaMModification of the Kőhler equation to include soluble trace gases and slightly soluble substancesJ Atmos Sci19985585386210.1175/1520-0469(1998)055<0853:MOTKHE>2.0.CO;2 WangX FWangW XYangL XThe secondary formation of inorganic aerosols in the droplet mode through heterogeneous aqueous reactions under haze conditionsAtmos Environ201263687610.1016/j.atmosenv.2012.09.029 J Podzimek (4924_CR38) 1998; 42 X G Liu (4924_CR27) 2013; 13 F Drewnick (4924_CR4) 2004; 38 Z Y Meng (4924_CR29) 1998; 103 M Z Jacobson (4924_CR17) 1997; 31 X Y Tang (4924_CR46) 2006 J Lewis (4924_CR22) 2003; 108 R B Husar (4924_CR16) 1984 S J Niu (4924_CR32) 2010; 27 X Y Zhang (4924_CR54) 2012; 23 Meteorological Office. (4924_CR31) 1994 H Gerber (4924_CR11) 1991; 48 H Q Kang (4924_CR19) 2013; 120–121 J Heintzenberg (4924_CR13) 1989; 41 J Rangognio (4924_CR41) 2009; 9 X N Yu (4924_CR52) 2011; 99 H E Gerber (4924_CR10) 1981; 38 WMO. (4924_CR49) 2005 R E Stewart (4924_CR45) 1995; 33 Q Zhang (4924_CR53) 2013; 11 G X Lu (4924_CR28) 2012; 57 4924_CR8 R B Husar (4924_CR15) 1972; 39 I Gultepe (4924_CR12) 2007; 164 China Meteorological Administration. (4924_CR2) 2010 J A Ogren (4924_CR33) 1992; 44 J H Seinfeld (4924_CR43) 1997 S N Pandis (4924_CR34) 1990; 95 J Yang (4924_CR51) 2010; 31 M B Meyer (4924_CR30) 1980; 37 D Y Liu (4924_CR26) 2010; 24 X F Wang (4924_CR47) 2012; 63 WMO/GAW. (4924_CR48) 2003 R G Pinnick (4924_CR36) 1978; 35 K M Fahey (4924_CR7) 2005; 39 J Podzimek (4924_CR37) 1997; 41 A Laaksonen (4924_CR21) 1998; 55 X C Jia (4924_CR18) 2012; 36 M D Petters (4924_CR35) 2007; 7 L A Remer (4924_CR42) 2006 M J Pu (4924_CR39) 2008; 51 Z H Li (4924_CR24) 2011; 35 D Wu (4924_CR50) 2005; 39 Z H Li (4924_CR23) 1994; 52 R Gautam (4924_CR9) 2007; 112 M Dall’Osto (4924_CR3) 2009; 9 Z H Li (4924_CR25) 2011; 69 T Elias (4924_CR6) 2009; 92 J G Hudson (4924_CR14) 1980; 37 D C Stein (4924_CR44) 2003; 108 China Meteorological Administration. (4924_CR1) 2003 R G Eldridge (4924_CR5) 1969; 50 J Quan (4924_CR40) 2011; 11 H Köhler (4924_CR20) 1936; 32 |
References_xml | – reference: KöhlerHThe nucleus in and the growth of hygroscopic dropletsTrans Faraday Soc1936321152116110.1039/tf9363201152 – reference: PodzimekJDroplet concentration and size distribution in haze and fogStud Geophys Geod19974127729610.1023/A:1023350917344 – reference: SeinfeldJ HPandisS NAtmospheric Chemistry and Physics: From Air Pollution to Climate Change1997New YorkJohn Wiley and Sons377390 – reference: PuM JZhangG ZYanW LFeatures of a rare advection-radiation fog eventSci China Ser D-Earth Sci2008511044105210.1007/s11430-008-0071-y – reference: LiZ HLiuD YFengYRecent progress in the studies of the fog-water chemical characteristics in China (in Chinese)Acta Meteorol Sin201169544554 – reference: NiuS JLuC SYuH YFog research in China: An overviewAdv Atmos Sci20102763966110.1007/s00376-009-8174-8 – reference: PandisS NSeinfeldJ HPilinisCThe smog-fog-smog cycle and acid depositionJ Geophys Res199095184891850010.1029/JD095iD11p18489 – reference: WuDTieX XLiC CAn extremely low visibility event over the Guangzhou region: A case studyAtmos Environ2005396568657710.1016/j.atmosenv.2005.07.061 – reference: LiZ HPengG ZPhysical and chemical characteristics of the Chongqing winter fog (in Chinese)Acta Meteorol Sin199452477483 – reference: WangX FWangW XYangL XThe secondary formation of inorganic aerosols in the droplet mode through heterogeneous aqueous reactions under haze conditionsAtmos Environ201263687610.1016/j.atmosenv.2012.09.029 – reference: HudsonJ GRelationship between fog condensation nuclei and fog microstructureJ Atmos Sci1980371854186710.1175/1520-0469(1980)037<1854:RBFCNA>2.0.CO;2 – reference: HeintzenbergJFine particles in the global troposphere A reviewTellus Ser B-Chem Phys Meteorol19894114916010.1111/j.1600-0889.1989.tb00132.x – reference: PettersM DKreidenweisS MA single parameter representation of hygroscopic growth and cloud condensation nucleus activityAtmos Chem Phys200771961197110.5194/acp-7-1961-2007 – reference: TangX YZhangY HShaoMAtmospheric Environmental Chemistry (in Chinese)20062nd ed.BeijingHigher Education Press286290 – reference: HusarR BHollowayJ MThe properties and climate of atmospheric haze1984Hygroscopic Aerosols, Hampton VirginiaA Deepak Publishing129170 – reference: StewartR EYiuD TChungK KWeather conditions associated with the passage of precipitation type transition regions over eastern NewfoundlandAtmos-Ocean199533255310.1080/07055900.1995.9649523 – reference: PodzimekJAerosol particle scavenging by fog and haze dropletsStud Geophys Geod19984254056010.1023/A:1023305423337 – reference: MeyerM BJiustoJ EGarlandL GMeasurements of visual range and radiation fog (haze) microphysicsJ Atmos Sci19803762262910.1175/1520-0469(1980)037<0622:MOVRAR>2.0.CO;2 – reference: ZhangQTieX XLinW LVariability of SO2 in an intensive fog in North China Plain: Evidence of high solubility of SO2Particuology201311414710.1016/j.partic.2012.09.005 – reference: China Meteorological Administration.Observation and forecasting levels of haze. The State Standard of the People’s Republic of China QX/T 113-2010 (in Chinese)2010BeijingChina Meteorological Press – reference: OgrenJ ANooneK JHallbergAMeasurement of the size dependence of the concentration of non-volatile material in fog dropletsTellus Ser B-Chem Phys Meteorol19924457058010.1034/j.1600-0889.1992.t01-1-00010.x – reference: GerberHSupersaturation and droplet spectral evolution in fogJ Atmos Sci1991482569258810.1175/1520-0469(1991)048<2569:SADSEI>2.0.CO;2 – reference: DrewnickFJayneJ TCanagaratnaMMeasurement of ambient aerosol composition during the PMTACS-NY 2001 using an aerosol mass spectrometer. Part II: Chemically speciated mass distributionsAerosol Sci Tech20043810411710.1080/02786820390229534 – reference: EldridgeR GMist-the transition from haze to fogBull Amer Meteorol Soc196950422426 – reference: LiZ HLiuD YYangJThe microphysical processes and macroscopic condition of the radiation fog droplet spectrum broadening (in Chinese)Chin J Atmos Sci20113511410.1007/s11425-010-4139-8 – reference: China Meteorological Administration.Specifications for Surface Meteorological Observation (in Chinese)20032nd ed.BeijingChina Meteorological Press2425 – reference: Friedlander S K. Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics. 2nd ed. New York, Oxford University Press. 188–219 – reference: GautamRHsuN CKafatosMInfluences of winter haze on fog/low cloud over the Indo-GangeticJ Geophys Res2007112207218 – reference: YuX NZhuBYinYA comparative analysis of aerosol properties in dust and haze-fog days in a Chinese urban regionAtmos Res20119924124710.1016/j.atmosres.2010.10.015 – reference: ZhangX YZhangY MCaoG LAerosol chemical compositions of Beijing PM1 and its control countermeasures (in Chinese)J Appl Meteorol Sci201223257264 – reference: SteinD CSwapR JGrecoSHaze layer characterization and associated meteorological controls along the eastern coastal region of southern AfricaJ Geophys Res2003108850610.1029/2002JD003237 – reference: WMO/GAW.WMO/GAW Aerosol Measurement Procedures Guidelines and Recommendations2003GenevaWorld Meteorological Organization – reference: JiaX CGuoX LImpacts of anthropogenic atmospheric pollutant on formation and development of a winter heavy fog event (in Chinese)Chin J Atmos Sci2012369951008 – reference: RangognioJTuletPBergotTInfluence of aerosols on the formation and development of radiation fogAtmos Chem Phys Discuss20099179631801910.5194/acpd-9-17963-2009 – reference: EliasTHaeffelinMDrobinskiPParticulate contribution to extinction of visible radiation: Pollution, haze, and fogAtmos Res20099244345410.1016/j.atmosres.2009.01.006 – reference: KangH QZhuBSuJ FAnalysis of a long-lasting haze episode in Nanjing, ChinaAtmos Res2013120–121788710.1016/j.atmosres.2012.08.004 – reference: MengZ YDabdubDSeinfeldJ HSize-resolved and chemically resolved model of atmospheric aerosol dynamicsJ Geophys Res19981033419343510.1029/97JD02796 – reference: WMO.Aerodrome Reports and Forecasts: A User’s Handbook to the Codes2005GenevaWorld Meteorological Organization – reference: LiuD YPuM JYangJMicrophysical structure and evolution of a four-day persistent fog event in Nanjing in December 2006Acta Meteorol Sin201024104115 – reference: QuanJZhangQHeHAnalysis of the formation of fog and haze in North China Plain (NCP)Atmos Chem Phys2011118205821410.5194/acp-11-8205-2011 – reference: PinnickR GHoihjelleD LFernandezGVertical structure in atmospheric fog and haze and its effects on visible and infrared extinctionJ Atmos Sci1978352020203210.1175/1520-0469(1978)035<2020:VSIAFA>2.0.CO;2 – reference: LewisJKoracinDRabinRSea fog off the California coast: Viewed in the context of transient weather systemsJ Geophys Res2003108445710.1029/2002JD002833 – reference: HusarR BWhitbyK TLiuB Y HPhysical mechanisms governing the dynamics of Los Angeles smog aerosolJ Colloid Interface Sci19723921122410.1016/0021-9797(72)90155-5 – reference: Dall’OstoMHarrisonR MCoeHReal-time secondary aerosol formation during a fog event in LondonAtmos Chem Phys200992459246910.5194/acp-9-2459-2009 – reference: LaaksonenAKorhonenPKulmalaMModification of the Kőhler equation to include soluble trace gases and slightly soluble substancesJ Atmos Sci19985585386210.1175/1520-0469(1998)055<0853:MOTKHE>2.0.CO;2 – reference: LiuX GLiJQuYFormation and evolution mechanism of regional haze: A case study in the megacity Beijing, ChinaAtmos Chem Phys2013134501451410.5194/acp-13-4501-2013 – reference: GultepeITardifRMichaelidesS CFog research: A review of past achievements and future perspectivesPure Appl Geophys20071641121115910.1007/s00024-007-0211-x – reference: GerberH EMicrostructure of a radiation fogJ Atmos Sci19813845445810.1175/1520-0469(1981)038<0454:MOARF>2.0.CO;2 – reference: RemerL ATanreDKaufmanY JAlgorithm for Remote Sensing of Tropospheric Aerosol from MODIS: Collection 005. Product ID: MOD04/MYD042006 – reference: LuG XGuoX LDistribution and origin of aerosol and its transform relationship with CCN derived from the spring multi-aircraft measurements of Beijing Cloud Experiment (BCE)Chin Sci Bull2012572460246910.1007/s11434-012-5136-9 – reference: Meteorological Office.Handbook of Aviation Meteorology19943rd ed.LondonHis Majesty’s Stationery Office – reference: YangJNiuZ QShiC EMicrophysics of atmospheric aerosols during winter haze/fog events in Nanjing (in Chinese)Environ Sci20103114251431 – reference: FaheyK MPandisS NColettJ LJrThe influence of size-dependent droplet composition on pollutant processing by fogsAtmos Environ2005394561457410.1016/j.atmosenv.2005.04.006 – reference: JacobsonM ZDevelopment and application of a new air pollution modeling system-II. Aerosol module structure and designAtmos Environ19973113114410.1016/1352-2310(96)00202-6 – volume: 31 start-page: 131 year: 1997 ident: 4924_CR17 publication-title: Atmos Environ doi: 10.1016/1352-2310(96)00202-6 – volume: 24 start-page: 104 year: 2010 ident: 4924_CR26 publication-title: Acta Meteorol Sin – start-page: 377 volume-title: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change year: 1997 ident: 4924_CR43 – volume: 36 start-page: 995 year: 2012 ident: 4924_CR18 publication-title: Chin J Atmos Sci – volume: 33 start-page: 25 year: 1995 ident: 4924_CR45 publication-title: Atmos-Ocean doi: 10.1080/07055900.1995.9649523 – ident: 4924_CR8 – volume: 63 start-page: 68 year: 2012 ident: 4924_CR47 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2012.09.029 – start-page: 286 volume-title: Atmospheric Environmental Chemistry (in Chinese) year: 2006 ident: 4924_CR46 – volume: 35 start-page: 2020 year: 1978 ident: 4924_CR36 publication-title: J Atmos Sci doi: 10.1175/1520-0469(1978)035<2020:VSIAFA>2.0.CO;2 – volume: 32 start-page: 1152 year: 1936 ident: 4924_CR20 publication-title: Trans Faraday Soc doi: 10.1039/TF9363201152 – volume: 120–121 start-page: 78 year: 2013 ident: 4924_CR19 publication-title: Atmos Res doi: 10.1016/j.atmosres.2012.08.004 – volume: 103 start-page: 3419 year: 1998 ident: 4924_CR29 publication-title: J Geophys Res doi: 10.1029/97JD02796 – volume-title: Handbook of Aviation Meteorology year: 1994 ident: 4924_CR31 – volume: 41 start-page: 277 year: 1997 ident: 4924_CR37 publication-title: Stud Geophys Geod doi: 10.1023/A:1023350917344 – volume: 11 start-page: 41 year: 2013 ident: 4924_CR53 publication-title: Particuology doi: 10.1016/j.partic.2012.09.005 – volume: 44 start-page: 570 year: 1992 ident: 4924_CR33 publication-title: Tellus Ser B-Chem Phys Meteorol doi: 10.1034/j.1600-0889.1992.t01-1-00010.x – volume: 112 start-page: 207 year: 2007 ident: 4924_CR9 publication-title: J Geophys Res doi: 10.1029/2005JD007036 – volume: 39 start-page: 211 year: 1972 ident: 4924_CR15 publication-title: J Colloid Interface Sci doi: 10.1016/0021-9797(72)90155-5 – volume: 37 start-page: 622 year: 1980 ident: 4924_CR30 publication-title: J Atmos Sci doi: 10.1175/1520-0469(1980)037<0622:MOVRAR>2.0.CO;2 – volume-title: WMO/GAW Aerosol Measurement Procedures Guidelines and Recommendations year: 2003 ident: 4924_CR48 – volume: 9 start-page: 2459 year: 2009 ident: 4924_CR3 publication-title: Atmos Chem Phys doi: 10.5194/acp-9-2459-2009 – volume: 50 start-page: 422 year: 1969 ident: 4924_CR5 publication-title: Bull Amer Meteorol Soc doi: 10.1175/1520-0477-50.6.422 – volume: 108 start-page: 8506 year: 2003 ident: 4924_CR44 publication-title: J Geophys Res doi: 10.1029/2002JD003237 – volume: 95 start-page: 18489 year: 1990 ident: 4924_CR34 publication-title: J Geophys Res doi: 10.1029/JD095iD11p18489 – volume: 42 start-page: 540 year: 1998 ident: 4924_CR38 publication-title: Stud Geophys Geod doi: 10.1023/A:1023305423337 – volume-title: Aerodrome Reports and Forecasts: A User’s Handbook to the Codes year: 2005 ident: 4924_CR49 – volume: 39 start-page: 6568 year: 2005 ident: 4924_CR50 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2005.07.061 – volume: 31 start-page: 1425 year: 2010 ident: 4924_CR51 publication-title: Environ Sci – volume: 51 start-page: 1044 year: 2008 ident: 4924_CR39 publication-title: Sci China Ser D-Earth Sci doi: 10.1007/s11430-008-0071-y – volume: 11 start-page: 8205 year: 2011 ident: 4924_CR40 publication-title: Atmos Chem Phys doi: 10.5194/acp-11-8205-2011 – volume-title: Observation and forecasting levels of haze. The State Standard of the People’s Republic of China QX/T 113-2010 (in Chinese) year: 2010 ident: 4924_CR2 – volume: 55 start-page: 853 year: 1998 ident: 4924_CR21 publication-title: J Atmos Sci doi: 10.1175/1520-0469(1998)055<0853:MOTKHE>2.0.CO;2 – volume: 38 start-page: 104 year: 2004 ident: 4924_CR4 publication-title: Aerosol Sci Tech doi: 10.1080/02786820390229534 – volume: 7 start-page: 1961 year: 2007 ident: 4924_CR35 publication-title: Atmos Chem Phys doi: 10.5194/acp-7-1961-2007 – volume-title: Algorithm for Remote Sensing of Tropospheric Aerosol from MODIS: Collection 005. Product ID: MOD04/MYD04 year: 2006 ident: 4924_CR42 – volume: 48 start-page: 2569 year: 1991 ident: 4924_CR11 publication-title: J Atmos Sci doi: 10.1175/1520-0469(1991)048<2569:SADSEI>2.0.CO;2 – start-page: 129 volume-title: The properties and climate of atmospheric haze year: 1984 ident: 4924_CR16 – volume: 69 start-page: 544 year: 2011 ident: 4924_CR25 publication-title: Acta Meteorol Sin – volume: 13 start-page: 4501 year: 2013 ident: 4924_CR27 publication-title: Atmos Chem Phys doi: 10.5194/acp-13-4501-2013 – volume: 57 start-page: 2460 year: 2012 ident: 4924_CR28 publication-title: Chin Sci Bull doi: 10.1007/s11434-012-5136-9 – volume: 164 start-page: 1121 year: 2007 ident: 4924_CR12 publication-title: Pure Appl Geophys doi: 10.1007/s00024-007-0211-x – volume: 35 start-page: 1 year: 2011 ident: 4924_CR24 publication-title: Chin J Atmos Sci doi: 10.1007/s11425-010-4139-8 – volume: 37 start-page: 1854 year: 1980 ident: 4924_CR14 publication-title: J Atmos Sci doi: 10.1175/1520-0469(1980)037<1854:RBFCNA>2.0.CO;2 – volume: 99 start-page: 241 year: 2011 ident: 4924_CR52 publication-title: Atmos Res doi: 10.1016/j.atmosres.2010.10.015 – volume: 41 start-page: 149 year: 1989 ident: 4924_CR13 publication-title: Tellus Ser B-Chem Phys Meteorol doi: 10.1111/j.1600-0889.1989.tb00132.x – volume: 108 start-page: 4457 year: 2003 ident: 4924_CR22 publication-title: J Geophys Res doi: 10.1029/2002JD002833 – volume: 9 start-page: 17963 year: 2009 ident: 4924_CR41 publication-title: Atmos Chem Phys Discuss doi: 10.5194/acpd-9-17963-2009 – volume: 92 start-page: 443 year: 2009 ident: 4924_CR6 publication-title: Atmos Res doi: 10.1016/j.atmosres.2009.01.006 – volume: 38 start-page: 454 year: 1981 ident: 4924_CR10 publication-title: J Atmos Sci doi: 10.1175/1520-0469(1981)038<0454:MOARF>2.0.CO;2 – start-page: 24 volume-title: Specifications for Surface Meteorological Observation (in Chinese) year: 2003 ident: 4924_CR1 – volume: 27 start-page: 639 year: 2010 ident: 4924_CR32 publication-title: Adv Atmos Sci doi: 10.1007/s00376-009-8174-8 – volume: 39 start-page: 4561 year: 2005 ident: 4924_CR7 publication-title: Atmos Environ doi: 10.1016/j.atmosenv.2005.04.006 – volume: 23 start-page: 257 year: 2012 ident: 4924_CR54 publication-title: J Appl Meteorol Sci – volume: 52 start-page: 477 year: 1994 ident: 4924_CR23 publication-title: Acta Meteorol Sin |
SSID | ssj0000389727 |
Score | 2.2940004 |
Snippet | An unusual fog and haze event lasted for one week took place during 1–7 December,2011 over North China.To investigate the characteristics and mechanism of... An unusual fog and haze event lasted for one week took place during 1–7 December, 2011 over North China. To investigate the characteristics and mechanism of... An unusual fog and haze event lasted for one week took place during 1-7 December, 2011 over North China. To investigate the characteristics and mechanism of... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 329 |
SubjectTerms | Accumulation Advection Aerosols Boundary layers Earth and Environmental Science Earth Sciences Fog Haze Heating High pressure Research Paper Solar radiation Studies Temperature inversions Visibility Water content Weather 中国北方 事件 低能见度天气 气溶胶污染 水平能见度 演化 边界层性质 霾 |
SummonAdditionalLinks | – databaseName: ProQuest dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFD5oi-CL1BuOrSWCT2pwdzIzSZ6KSmsRrCIW-hZym7ZQZrbdrWD_Qv90z8lmZq1g3wYmyQw5Sc53LvkOwJu6cSpEb7lztUQDxbVc6bLhviklRQa1dHRR-NtBs39YfT2qj7LDbZ7TKoczMR3UoffkI_9At26UqrTQO7NzTlWjKLqaS2jch3U8ghUaX-ufdg9-_By9LEQfJ1PdVsq251JMxRDaTPfnEC1QXlbFK7RDeEkECyd9d3yOauO2olqhz38CpkkP7W3Aowwg2celxB_Dvdg9gQdfUoHeP0_h-rsb_azMZsYRhs_-NjMz61s2Xlx8z-LvvASxT2ALUmApl4uaWXaGP8sRZlOKNENVGi8idj5ObU_sVWRxdjrvQ2SnHUuBIJbKcj-Dw73dX5_3eS64wD1ahQveeI3mmwiNChTndWifBUSUiABjENbrEnVXELGWwnvlQzmx7dRKS5x0sWqjFc9hreu7-AJYpWPTCoRvEhGZEt5RzXWtgp9UXuppVcDmONNmtiTWMIh-FBHM1QVMhrk3PnOVU8mMM7NiWSbRGRSdIdGZsoC3Y5dhvDsabw0CNXnPzs1qhRXwenyNu41CKLaL_SW1aVQyykQB74aF8NcQ__vgy7s_uAkPEYjVy9y2LVhbXFzGVwh2Fm47r-gbMxT6Xw priority: 102 providerName: ProQuest |
Title | Observation analysis on characteristics of formation,evolution and transition of a long-lasting severe fog and haze episode in North China |
URI | http://lib.cqvip.com/qk/60111X/201503/663813415.html https://link.springer.com/article/10.1007/s11430-014-4924-2 https://www.proquest.com/docview/1654884939 https://www.proquest.com/docview/1668251183 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9KS8EXsX5g7Acr-KQu3GWT7O7jtVxbLK0iHtSnZb_SFkpSe1dB_wX_aWf2kpwVFXxKILObkNlkfrMz8xuAV2XlVIjecudKiQ6Kq7nSecV9lUuKDGrpqFD49Kw6nhXvzsvzro573me79yHJ9KdeFbuhaackqoIX6DRw_O9ulOS64yKe5ZNhY4UY42Rq1UoJ9lyKseijmX-ahTgVLtvm4gve8b5tWgHO32KkyfQcPoKHHWZkk6WSt2AtNo9h8yj15P32BH68d8PWKrMdyQjDc3-fjJm1NRtqFd-y-LVbdTgmsAXZrJS-RWKWXePDckTWlBXN0HrG24iDL5Lspf0eWby5mrchsquGpdgPS524n8LscPrp4Jh3PRa4R0dwwSuv0WMToVKBQrsOXbKAIBJBXwzCep2juQoillJ4r3zIR7YeW2mJhi4WdbTiGaw3bROfAyt0rGqBiE0iCFPCO2qzrlXwo8JLPS4y2B7etLlZcmkYBDyKOOXKDEb9uze-oyenLhnXZkWsTKozqDpDqjN5Bq-HIf18_xDe6RVqus90bqiUS6lCC53By-EyfmAUNbFNbO9IplLJDxMZvOkXwi9T_O2GL_5LehseIBQrl9ltO7C-uL2Luwh3Fm4PNiZHn0-meNyfnn34uJeW-0-H_fh- |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrRBcUPkToQWMBBfAYjd2EueAEC0tW9ouCLVSb8axnbZSlWy7W1D7CrwLz8iMN8lSJHrrLVJsJ8pMPN94Zr4BeJGkhXLeGl4USYYOSlFylccpt2mcUWQwzwoqFN4ZpcM9-Xk_2V-A320tDKVVtnti2KhdbemM_C1V3Sglc5G_H59w6hpF0dW2hcZMLbb8-U902SbvNj-ifF_G8cb67tqQN10FuEXXZ8pTm6OPIlyqHAUzC3RCHMImhDneCWPzGDdoJ3ySCWuVdXHflAOTGSJe87L0RuC6N2BRCnRlerC4uj76-q071SG6uiz0iaXsfp6JgWhDqaFeD9EJ5YFJLtHv4TEROhzW1cEJmqnLhnGOdv8J0Aa7t7EEdxrAyj7MNOwuLPjqHtz8FBoCn9-HX1-K7lyXmYbhhOG1vcwEzeqSdYWSb5j_0ag8znFsSgYz5I7RMMOO8WU5wnpKyWZouv2px8kHYeyhufDMj48mtfPsqGIh8MRCG_AHsHctongIvaqu_CNgMvdpKRAuZogAlbAF9XjPlbN9abN8ICNY7r60Hs-IPDSiLUWEdkkE_fbba9two1OLjmM9Z3Um0WkUnSbR6TiCV92Udr0rBq-0AtXNHjHRc42O4Hl3G_9uCtmYytdnNCZVwQkUEbxuFeGvJf73wMdXP_AZ3Bru7mzr7c3R1jLcRhCYzPLqVqA3PT3zTxBoTYunjXYz-H7dP9QfrZA2kQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrUBcUPkToT8YCS6A1d04iZ0DQpR2aSksFaJSb8axnbZSlWy7W1B5Bd6Ip2PGm2QpEr31tlJsZ5UZe77xzHwD8CzNCuW8NbwoUokOSlFylccZt1ksKTKYy4IKhT-Nsu395MNBerAAv9taGEqrbM_EcFC72tId-TpV3SiV5CJfL5u0iL3N4ZvxKacOUhRpbdtpzFRk11_8QPdt8npnE2X9PI6HW1_fbfOmwwC36AZNeWZz9FeEy5SjwGaBDolDCIWQxzthbB7jYe2ET6WwVlkX9005MNIQCZtPSm8ErnsDFiV6Rf0eLG5sjfa-dDc8RF0nQ89YyvTnUgxEG1YNtXuIVCgnLOEJ-kA8JnKHo7o6PEWTddlIzpHvP8HaYAOHS3CnAa_s7Uzb7sKCr-7BzfehOfDFffj1uejueJlp2E4Y_raXWaFZXbKuaPIV898b9cc5jk3JeIY8Mhpm2An-WY4Qn9KzGZpxf-Zx8mEYe2R-eubHx5PaeXZcsRCEYqEl-APYvxZRPIReVVf-EbAk91kpEDpKRINK2IL6vefK2X5iZT5IIljuvrQez0g9NCIvReR2aQT99ttr2_CkU7uOEz1neCbRaRSdJtHpOIIX3ZR2vSsGr7QC1c15MdFz7Y7gafcYdzqFb0zl63Mak6ngEIoIXraK8NcS_3vh46tf-ARu4UbSH3dGu8twG_FgOkuxW4He9OzcryLmmhZrjXIz-Hbd--kPTD46xg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observation+analysis+on+characteristics+of+formation%2C+evolution+and+transition+of+a+long-lasting+severe+fog+and+haze+episode+in+North+China&rft.jtitle=Science+China.+Earth+sciences&rft.au=Guo%2C+LiJun&rft.au=Guo%2C+XueLiang&rft.au=Fang%2C+ChunGang&rft.au=Zhu%2C+ShiChao&rft.date=2015-03-01&rft.pub=Science+China+Press&rft.issn=1674-7313&rft.eissn=1869-1897&rft.volume=58&rft.issue=3&rft.spage=329&rft.epage=344&rft_id=info:doi/10.1007%2Fs11430-014-4924-2&rft.externalDocID=10_1007_s11430_014_4924_2 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F60111X%2F60111X.jpg |