Observation analysis on characteristics of formation,evolution and transition of a long-lasting severe fog and haze episode in North China

An unusual fog and haze event lasted for one week took place during 1–7 December,2011 over North China.To investigate the characteristics and mechanism of formation,evolution,and transition of the fog and haze event,we studied the microphysical properties such as aerosol,cloud condensation nuclei(CC...

Full description

Saved in:
Bibliographic Details
Published inScience China. Earth sciences Vol. 58; no. 3; pp. 329 - 344
Main Authors Guo, LiJun, Guo, XueLiang, Fang, ChunGang, Zhu, ShiChao
Format Journal Article
LanguageEnglish
Published Heidelberg Science China Press 01.03.2015
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An unusual fog and haze event lasted for one week took place during 1–7 December,2011 over North China.To investigate the characteristics and mechanism of formation,evolution,and transition of the fog and haze event,we studied the microphysical properties such as aerosol,cloud condensation nuclei(CCN),fog droplet spectrum and liquid water content(LWC),as well as horizontal visibility and boundary layer properties,using the data collected in the Project of Low-Visibility Weather Monitoring and Forecasting in the Beijing-Tianjin region.The results indicate that the long-lasting fog and haze event occurred in a high pressure weather system and calm wind condition.The stable boundary-layer structure resulted from temperature inversions that were built by warm advection and radiation cooling provided a favorable condition for the accumulation of polluted aerosols and the formation and development of the fog and haze event.In particular,the continuous southerly wet flow advection made the process a persistent and long-lasting event.The horizontal visibility was almost below 2 km in the whole process,and the lowest visibility was only 56 m.The average LWC was about 10^-3 g m^-3,and the maximum LWC reached 0.16 g m^-3.The aerosol number concentration was more than 10000 cm^-3,and its mass concentration ranged from 50 to 160 -g m^-3.The further study shows that the fog and haze event experienced three main processes in different intensities during the whole period,each process could be divided into three main stages:aerosol accumulation,transition and mixture of aerosol and fog,and dissipation.Each stage had different physical features:the aerosol accumulation stage was characterized by the increase of aerosol number concentration in Aitken nuclei and accumulation mode sequentially.In the transition and mixing stage of fog and haze,the latent heating produced by fog droplet condensation process and high aerosol number concentration condition intensified the Brownian coagulation process,which induced the small size of aerosols to become larger ones and enhanced the CCN activation process,thereby promoting the explosive development of the fog event.The ratio of aerosol activated to CCN reached 17%,and the ratio of CCN converted to fog droplet exceeded 100%,showing an explosively broadening of fog droplet spectrum.The decrease and dissipation of the fog was caused by an increased solar radiation heating or the passage of cold frontal system.
AbstractList An unusual fog and haze event lasted for one week took place during 1-7 December, 2011 over North China. To investigate the characteristics and mechanism of formation, evolution, and transition of the fog and haze event, we studied the microphysical properties such as aerosol, cloud condensation nuclei (CCN), fog droplet spectrum and liquid water content (LWC), as well as horizontal visibility and boundary layer properties, using the data collected in the Project of Low-Visibility Weather Monitoring and Forecasting in the Beijing-Tianjin region. The results indicate that the long-lasting fog and haze event occurred in a high pressure weather system and calm wind condition. The stable boundary-layer structure resulted from temperature inversions that were built by warm advection and radiation cooling provided a favorable condition for the accumulation of polluted aerosols and the formation and development of the fog and haze event. In particular, the continuous southerly wet flow advection made the process a persistent and long-lasting event. The horizontal visibility was almost below 2 km in the whole process, and the lowest visibility was only 56 m. The average LWC was about 10 super(-3) g m super(-3), and the maximum LWC reached 0.16 g m super(-3). The aerosol number concentration was more than 10000 cm super(-3), and its mass concentration ranged from 50 to 160 mu g m super(-3). The further study shows that the fog and haze event experienced three main processes in different intensities during the whole period, each process could be divided into three main stages: aerosol accumulation, transition and mixture of aerosol and fog, and dissipation. Each stage had different physical features: the aerosol accumulation stage was characterized by the increase of aerosol number concentration in Aitken nuclei and accumulation mode sequentially. In the transition and mixing stage of fog and haze, the latent heating produced by fog droplet condensation process and high aerosol number concentration condition intensified the Brownian coagulation process, which induced the small size of aerosols to become larger ones and enhanced the CCN activation process, thereby promoting the explosive development of the fog event. The ratio of aerosol activated to CCN reached 17%, and the ratio of CCN converted to fog droplet exceeded 100%, showing an explosively broadening of fog droplet spectrum. The decrease and dissipation of the fog was caused by an increased solar radiation heating or the passage of cold frontal system.
An unusual fog and haze event lasted for one week took place during 1-7 December, 2011 over North China. To investigate the characteristics and mechanism of formation, evolution, and transition of the fog and haze event, we studied the microphysical properties such as aerosol, cloud condensation nuclei (CCN), fog droplet spectrum and liquid water content (LWC), as well as horizontal visibility and boundary layer properties, using the data collected in the Project of Low-Visibility Weather Monitoring and Forecasting in the Beijing-Tianjin region. The results indicate that the long-lasting fog and haze event occurred in a high pressure weather system and calm wind condition. The stable boundary-layer structure resulted from temperature inversions that were built by warm advection and radiation cooling provided a favorable condition for the accumulation of polluted aerosols and the formation and development of the fog and haze event. In particular, the continuous southerly wet flow advection made the process a persistent and long-lasting event. The horizontal visibility was almost below 2 km in the whole process, and the lowest visibility was only 56 m. The average LWC was about 10^sup -3^ g m^sup -3^, and the maximum LWC reached 0.16 g m^sup -3^. The aerosol number concentration was more than 10000 cm^sup -3^, and its mass concentration ranged from 50 to 160 [mu]g m^sup -3^. The further study shows that the fog and haze event experienced three main processes in different intensities during the whole period, each process could be divided into three main stages: aerosol accumulation, transition and mixture of aerosol and fog, and dissipation. Each stage had different physical features: the aerosol accumulation stage was characterized by the increase of aerosol number concentration in Aitken nuclei and accumulation mode sequentially. In the transition and mixing stage of fog and haze, the latent heating produced by fog droplet condensation process and high aerosol number concentration condition intensified the Brownian coagulation process, which induced the small size of aerosols to become larger ones and enhanced the CCN activation process, thereby promoting the explosive development of the fog event. The ratio of aerosol activated to CCN reached 17%, and the ratio of CCN converted to fog droplet exceeded 100%, showing an explosively broadening of fog droplet spectrum. The decrease and dissipation of the fog was caused by an increased solar radiation heating or the passage of cold frontal system.
An unusual fog and haze event lasted for one week took place during 1–7 December,2011 over North China.To investigate the characteristics and mechanism of formation,evolution,and transition of the fog and haze event,we studied the microphysical properties such as aerosol,cloud condensation nuclei(CCN),fog droplet spectrum and liquid water content(LWC),as well as horizontal visibility and boundary layer properties,using the data collected in the Project of Low-Visibility Weather Monitoring and Forecasting in the Beijing-Tianjin region.The results indicate that the long-lasting fog and haze event occurred in a high pressure weather system and calm wind condition.The stable boundary-layer structure resulted from temperature inversions that were built by warm advection and radiation cooling provided a favorable condition for the accumulation of polluted aerosols and the formation and development of the fog and haze event.In particular,the continuous southerly wet flow advection made the process a persistent and long-lasting event.The horizontal visibility was almost below 2 km in the whole process,and the lowest visibility was only 56 m.The average LWC was about 10^-3 g m^-3,and the maximum LWC reached 0.16 g m^-3.The aerosol number concentration was more than 10000 cm^-3,and its mass concentration ranged from 50 to 160 -g m^-3.The further study shows that the fog and haze event experienced three main processes in different intensities during the whole period,each process could be divided into three main stages:aerosol accumulation,transition and mixture of aerosol and fog,and dissipation.Each stage had different physical features:the aerosol accumulation stage was characterized by the increase of aerosol number concentration in Aitken nuclei and accumulation mode sequentially.In the transition and mixing stage of fog and haze,the latent heating produced by fog droplet condensation process and high aerosol number concentration condition intensified the Brownian coagulation process,which induced the small size of aerosols to become larger ones and enhanced the CCN activation process,thereby promoting the explosive development of the fog event.The ratio of aerosol activated to CCN reached 17%,and the ratio of CCN converted to fog droplet exceeded 100%,showing an explosively broadening of fog droplet spectrum.The decrease and dissipation of the fog was caused by an increased solar radiation heating or the passage of cold frontal system.
An unusual fog and haze event lasted for one week took place during 1–7 December, 2011 over North China. To investigate the characteristics and mechanism of formation, evolution, and transition of the fog and haze event, we studied the microphysical properties such as aerosol, cloud condensation nuclei (CCN), fog droplet spectrum and liquid water content (LWC), as well as horizontal visibility and boundary layer properties, using the data collected in the Project of Low-Visibility Weather Monitoring and Forecasting in the Beijing-Tianjin region. The results indicate that the long-lasting fog and haze event occurred in a high pressure weather system and calm wind condition. The stable boundary-layer structure resulted from temperature inversions that were built by warm advection and radiation cooling provided a favorable condition for the accumulation of polluted aerosols and the formation and development of the fog and haze event. In particular, the continuous southerly wet flow advection made the process a persistent and long-lasting event. The horizontal visibility was almost below 2 km in the whole process, and the lowest visibility was only 56 m. The average LWC was about 10 −3 g m −3 , and the maximum LWC reached 0.16 g m −3 . The aerosol number concentration was more than 10000 cm −3 , and its mass concentration ranged from 50 to 160 μg m −3 . The further study shows that the fog and haze event experienced three main processes in different intensities during the whole period, each process could be divided into three main stages: aerosol accumulation, transition and mixture of aerosol and fog, and dissipation. Each stage had different physical features: the aerosol accumulation stage was characterized by the increase of aerosol number concentration in Aitken nuclei and accumulation mode sequentially. In the transition and mixing stage of fog and haze, the latent heating produced by fog droplet condensation process and high aerosol number concentration condition intensified the Brownian coagulation process, which induced the small size of aerosols to become larger ones and enhanced the CCN activation process, thereby promoting the explosive development of the fog event. The ratio of aerosol activated to CCN reached 17%, and the ratio of CCN converted to fog droplet exceeded 100%, showing an explosively broadening of fog droplet spectrum. The decrease and dissipation of the fog was caused by an increased solar radiation heating or the passage of cold frontal system.
Author GUO LiJun GUO XueLiang FANG ChunGang ZHU ShiChao
AuthorAffiliation Key Laboratory.for Cloud Physic, Chinese Academy of Meteorological Sciences, Beijing 100081, China School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
Author_xml – sequence: 1
  givenname: LiJun
  surname: Guo
  fullname: Guo, LiJun
  organization: Key Laboratory for Cloud Physic, Chinese Academy of Meteorological Sciences, School of Atmospheric Physics, Nanjing University of Information Science & Technology
– sequence: 2
  givenname: XueLiang
  surname: Guo
  fullname: Guo, XueLiang
  email: guoxl@mail.iap.ac.cn
  organization: Key Laboratory for Cloud Physic, Chinese Academy of Meteorological Sciences
– sequence: 3
  givenname: ChunGang
  surname: Fang
  fullname: Fang, ChunGang
  organization: Key Laboratory for Cloud Physic, Chinese Academy of Meteorological Sciences
– sequence: 4
  givenname: ShiChao
  surname: Zhu
  fullname: Zhu, ShiChao
  organization: Key Laboratory for Cloud Physic, Chinese Academy of Meteorological Sciences, School of Atmospheric Physics, Nanjing University of Information Science & Technology
BookMark eNp9kU1vVCEUhompibX2B7gjunFRlAMMF5ZmYtWksRtdE8o9dy7NHZjCnUnqT_BXy3zEmC7Khq_n4ZDzviZnKSck5C3wj8B596kCKMkZB8WUFYqJF-QcjLYMjO3O2lp3inUS5CtyWes9b0O2G9Gdkz-3dxXLzs8xJ-qTnx5rrLStw-iLDzOWWOcY2tFAh1zWB_AKd3nanpSezsWnGg_bRnk65bRik29eWtGKOyzY3NWBHf1vpLiJNfdIY6I_cplHuhxj8m_Iy8FPFS9P8wX5df3l5_Ibu7n9-n35-YYFpfTMdLBgQfba9Lwd3HGhe264BI699MEKYW0vcdHJEEzoBfcD-M4LoTSqAb28IB-O725Kfthind061oDT5BPmbXWgtRELACMb-v4Jep-3pXVpTy2UMcpK26juSIWSay04uBDnQ6NaZ-LkgLt9TO4Yk2sxuX1MTjQTnpibEte-PD7riKNTG5tWWP770zPSu1OhsYXz0Lx_lbSWBqSChfwL4-CzQw
CitedBy_id crossref_primary_10_4236_gep_2022_1010008
crossref_primary_10_1016_j_scitotenv_2024_175329
crossref_primary_10_1038_s41612_024_00682_6
crossref_primary_10_1109_ACCESS_2020_3041505
crossref_primary_10_1002_joc_7400
crossref_primary_10_1007_s11430_022_1243_8
crossref_primary_10_1016_j_atmosres_2017_04_020
crossref_primary_10_1007_s11430_022_1092_y
crossref_primary_10_1360_SSTe_2022_0310
crossref_primary_10_1016_j_jclepro_2018_12_077
crossref_primary_10_3390_atmos12121666
crossref_primary_10_1016_j_scitotenv_2019_05_319
crossref_primary_10_1016_j_uclim_2024_101951
crossref_primary_10_1029_2021EA002062
crossref_primary_10_3390_su14095117
crossref_primary_10_5194_acp_19_7759_2019
crossref_primary_10_1007_s11356_022_22322_3
crossref_primary_10_3390_atmos13020205
crossref_primary_10_5194_acp_21_3143_2021
crossref_primary_10_3390_rs16132348
crossref_primary_10_1007_s11069_024_06858_w
crossref_primary_10_5194_acp_23_1147_2023
crossref_primary_10_3390_su9030352
crossref_primary_10_12677_aep_2024_143059
crossref_primary_10_1016_j_atmosenv_2021_118357
crossref_primary_10_1175_JAS_D_17_0354_1
crossref_primary_10_3389_fenvs_2024_1477693
crossref_primary_10_1007_s12210_022_01060_1
crossref_primary_10_3390_environments10120224
crossref_primary_10_3389_fenvs_2022_1003669
crossref_primary_10_4236_gep_2017_56005
crossref_primary_10_5194_acp_18_203_2018
crossref_primary_10_5194_amt_12_3289_2019
crossref_primary_10_1016_j_rser_2016_12_092
crossref_primary_10_1016_j_atmosres_2019_104639
crossref_primary_10_1016_j_atmosres_2020_105444
crossref_primary_10_5194_acp_22_14879_2022
crossref_primary_10_1007_s11430_020_9766_4
crossref_primary_10_3390_atmos14060960
crossref_primary_10_1007_s00244_017_0447_0
crossref_primary_10_1038_s41612_021_00165_y
crossref_primary_10_5194_acp_23_9873_2023
crossref_primary_10_1007_s13351_019_8043_z
crossref_primary_10_3390_rs16193713
crossref_primary_10_3390_atmos12050551
crossref_primary_10_3390_atmos11030258
crossref_primary_10_3390_atmos9120502
crossref_primary_10_1016_j_jnc_2017_08_005
Cites_doi 10.1016/1352-2310(96)00202-6
10.1080/07055900.1995.9649523
10.1016/j.atmosenv.2012.09.029
10.1175/1520-0469(1978)035<2020:VSIAFA>2.0.CO;2
10.1039/TF9363201152
10.1016/j.atmosres.2012.08.004
10.1029/97JD02796
10.1023/A:1023350917344
10.1016/j.partic.2012.09.005
10.1034/j.1600-0889.1992.t01-1-00010.x
10.1029/2005JD007036
10.1016/0021-9797(72)90155-5
10.1175/1520-0469(1980)037<0622:MOVRAR>2.0.CO;2
10.5194/acp-9-2459-2009
10.1175/1520-0477-50.6.422
10.1029/2002JD003237
10.1029/JD095iD11p18489
10.1023/A:1023305423337
10.1016/j.atmosenv.2005.07.061
10.1007/s11430-008-0071-y
10.5194/acp-11-8205-2011
10.1175/1520-0469(1998)055<0853:MOTKHE>2.0.CO;2
10.1080/02786820390229534
10.5194/acp-7-1961-2007
10.1175/1520-0469(1991)048<2569:SADSEI>2.0.CO;2
10.5194/acp-13-4501-2013
10.1007/s11434-012-5136-9
10.1007/s00024-007-0211-x
10.1007/s11425-010-4139-8
10.1175/1520-0469(1980)037<1854:RBFCNA>2.0.CO;2
10.1016/j.atmosres.2010.10.015
10.1111/j.1600-0889.1989.tb00132.x
10.1029/2002JD002833
10.5194/acpd-9-17963-2009
10.1016/j.atmosres.2009.01.006
10.1175/1520-0469(1981)038<0454:MOARF>2.0.CO;2
10.1007/s00376-009-8174-8
10.1016/j.atmosenv.2005.04.006
ContentType Journal Article
Copyright Science China Press and Springer-Verlag Berlin Heidelberg 2014
Science China Press and Springer-Verlag Berlin Heidelberg 2015
Copyright_xml – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2014
– notice: Science China Press and Springer-Verlag Berlin Heidelberg 2015
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
3V.
7TG
7UA
7XB
88I
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
KL.
L.G
M2P
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
7TV
DOI 10.1007/s11430-014-4924-2
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Pollution Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Pollution Abstracts
DatabaseTitleList Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
DocumentTitleAlternate Observation analysis on characteristics of formation,evolution and transition of a long-lasting severe fog and haze episode in North China
EISSN 1869-1897
EndPage 344
ExternalDocumentID 3589137051
10_1007_s11430_014_4924_2
663813415
Genre Feature
GeographicLocations China
China, People's Rep
GeographicLocations_xml – name: China
– name: China, People's Rep
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0VY
1N0
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
3V.
4.4
406
40D
40E
5VR
5VS
67M
88I
8FE
8FH
8TC
8UJ
92L
95-
95.
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIHN
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
CAG
CCEZO
CCPQU
CCVFK
CHBEP
COF
CQIGP
CSCUP
CW9
DDRTE
DNIVK
DPUIP
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
L8X
LK5
LLZTM
M2P
M4Y
M7R
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9J
PCBAR
PF0
PQQKQ
PROAC
PT4
Q2X
QOS
R89
RIG
ROL
RSV
S16
S3B
SAP
SCL
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TR2
TSG
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z5O
Z7R
Z7Y
ZMTXR
~02
~A9
~WA
-SA
-S~
0R~
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ABQSL
ACDTI
ACPIV
AEFQL
AEMSY
AEUYN
AGQEE
AGRTI
AIGIU
BSONS
CAJEA
CJPJV
H13
Q--
U1G
U5K
AAPKM
AAYXX
ABBRH
ABDBE
ACMFV
ADHKG
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7TG
7UA
7XB
8FK
ABRTQ
C1K
F1W
H96
KL.
L.G
PKEHL
PQEST
PQUKI
Q9U
7TV
ID FETCH-LOGICAL-c446t-6c91913d68d0446b026d080310ed3ac92299d3e573cc8cd20af1a7a2246e4fea3
IEDL.DBID U2A
ISSN 1674-7313
IngestDate Fri Jul 11 06:21:24 EDT 2025
Sun Jul 13 03:43:58 EDT 2025
Thu Apr 24 23:06:49 EDT 2025
Tue Jul 01 02:28:14 EDT 2025
Fri Feb 21 02:32:49 EST 2025
Wed Feb 14 10:37:49 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords North China
haze and fog
aerosol accumulation
transition of haze into fog
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-6c91913d68d0446b026d080310ed3ac92299d3e573cc8cd20af1a7a2246e4fea3
Notes An unusual fog and haze event lasted for one week took place during 1–7 December,2011 over North China.To investigate the characteristics and mechanism of formation,evolution,and transition of the fog and haze event,we studied the microphysical properties such as aerosol,cloud condensation nuclei(CCN),fog droplet spectrum and liquid water content(LWC),as well as horizontal visibility and boundary layer properties,using the data collected in the Project of Low-Visibility Weather Monitoring and Forecasting in the Beijing-Tianjin region.The results indicate that the long-lasting fog and haze event occurred in a high pressure weather system and calm wind condition.The stable boundary-layer structure resulted from temperature inversions that were built by warm advection and radiation cooling provided a favorable condition for the accumulation of polluted aerosols and the formation and development of the fog and haze event.In particular,the continuous southerly wet flow advection made the process a persistent and long-lasting event.The horizontal visibility was almost below 2 km in the whole process,and the lowest visibility was only 56 m.The average LWC was about 10^-3 g m^-3,and the maximum LWC reached 0.16 g m^-3.The aerosol number concentration was more than 10000 cm^-3,and its mass concentration ranged from 50 to 160 -g m^-3.The further study shows that the fog and haze event experienced three main processes in different intensities during the whole period,each process could be divided into three main stages:aerosol accumulation,transition and mixture of aerosol and fog,and dissipation.Each stage had different physical features:the aerosol accumulation stage was characterized by the increase of aerosol number concentration in Aitken nuclei and accumulation mode sequentially.In the transition and mixing stage of fog and haze,the latent heating produced by fog droplet condensation process and high aerosol number concentration condition intensified the Brownian coagulation process,which induced the small size of aerosols to become larger ones and enhanced the CCN activation process,thereby promoting the explosive development of the fog event.The ratio of aerosol activated to CCN reached 17%,and the ratio of CCN converted to fog droplet exceeded 100%,showing an explosively broadening of fog droplet spectrum.The decrease and dissipation of the fog was caused by an increased solar radiation heating or the passage of cold frontal system.
11-5843/P
haze and fog; aerosol accumulation; transition of haze into fog; North China
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1654884939
PQPubID 54336
PageCount 16
ParticipantIDs proquest_miscellaneous_1668251183
proquest_journals_1654884939
crossref_citationtrail_10_1007_s11430_014_4924_2
crossref_primary_10_1007_s11430_014_4924_2
springer_journals_10_1007_s11430_014_4924_2
chongqing_primary_663813415
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-01
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
– name: Dordrecht
PublicationTitle Science China. Earth sciences
PublicationTitleAbbrev Sci. China Earth Sci
PublicationTitleAlternate SCIENCE CHINA Earth Sciences
PublicationYear 2015
Publisher Science China Press
Springer Nature B.V
Publisher_xml – name: Science China Press
– name: Springer Nature B.V
References JacobsonM ZDevelopment and application of a new air pollution modeling system-II. Aerosol module structure and designAtmos Environ19973113114410.1016/1352-2310(96)00202-6
GerberHSupersaturation and droplet spectral evolution in fogJ Atmos Sci1991482569258810.1175/1520-0469(1991)048<2569:SADSEI>2.0.CO;2
PodzimekJDroplet concentration and size distribution in haze and fogStud Geophys Geod19974127729610.1023/A:1023350917344
EliasTHaeffelinMDrobinskiPParticulate contribution to extinction of visible radiation: Pollution, haze, and fogAtmos Res20099244345410.1016/j.atmosres.2009.01.006
EldridgeR GMist-the transition from haze to fogBull Amer Meteorol Soc196950422426
WMO.Aerodrome Reports and Forecasts: A User’s Handbook to the Codes2005GenevaWorld Meteorological Organization
PodzimekJAerosol particle scavenging by fog and haze dropletsStud Geophys Geod19984254056010.1023/A:1023305423337
GautamRHsuN CKafatosMInfluences of winter haze on fog/low cloud over the Indo-GangeticJ Geophys Res2007112207218
MengZ YDabdubDSeinfeldJ HSize-resolved and chemically resolved model of atmospheric aerosol dynamicsJ Geophys Res19981033419343510.1029/97JD02796
NiuS JLuC SYuH YFog research in China: An overviewAdv Atmos Sci20102763966110.1007/s00376-009-8174-8
HusarR BHollowayJ MThe properties and climate of atmospheric haze1984Hygroscopic Aerosols, Hampton VirginiaA Deepak Publishing129170
PettersM DKreidenweisS MA single parameter representation of hygroscopic growth and cloud condensation nucleus activityAtmos Chem Phys200771961197110.5194/acp-7-1961-2007
LewisJKoracinDRabinRSea fog off the California coast: Viewed in the context of transient weather systemsJ Geophys Res2003108445710.1029/2002JD002833
China Meteorological Administration.Specifications for Surface Meteorological Observation (in Chinese)20032nd ed.BeijingChina Meteorological Press2425
SteinD CSwapR JGrecoSHaze layer characterization and associated meteorological controls along the eastern coastal region of southern AfricaJ Geophys Res2003108850610.1029/2002JD003237
DrewnickFJayneJ TCanagaratnaMMeasurement of ambient aerosol composition during the PMTACS-NY 2001 using an aerosol mass spectrometer. Part II: Chemically speciated mass distributionsAerosol Sci Tech20043810411710.1080/02786820390229534
MeyerM BJiustoJ EGarlandL GMeasurements of visual range and radiation fog (haze) microphysicsJ Atmos Sci19803762262910.1175/1520-0469(1980)037<0622:MOVRAR>2.0.CO;2
LiZ HLiuD YYangJThe microphysical processes and macroscopic condition of the radiation fog droplet spectrum broadening (in Chinese)Chin J Atmos Sci20113511410.1007/s11425-010-4139-8
GerberH EMicrostructure of a radiation fogJ Atmos Sci19813845445810.1175/1520-0469(1981)038<0454:MOARF>2.0.CO;2
HudsonJ GRelationship between fog condensation nuclei and fog microstructureJ Atmos Sci1980371854186710.1175/1520-0469(1980)037<1854:RBFCNA>2.0.CO;2
LuG XGuoX LDistribution and origin of aerosol and its transform relationship with CCN derived from the spring multi-aircraft measurements of Beijing Cloud Experiment (BCE)Chin Sci Bull2012572460246910.1007/s11434-012-5136-9
WuDTieX XLiC CAn extremely low visibility event over the Guangzhou region: A case studyAtmos Environ2005396568657710.1016/j.atmosenv.2005.07.061
KöhlerHThe nucleus in and the growth of hygroscopic dropletsTrans Faraday Soc1936321152116110.1039/tf9363201152
PinnickR GHoihjelleD LFernandezGVertical structure in atmospheric fog and haze and its effects on visible and infrared extinctionJ Atmos Sci1978352020203210.1175/1520-0469(1978)035<2020:VSIAFA>2.0.CO;2
RangognioJTuletPBergotTInfluence of aerosols on the formation and development of radiation fogAtmos Chem Phys Discuss20099179631801910.5194/acpd-9-17963-2009
JiaX CGuoX LImpacts of anthropogenic atmospheric pollutant on formation and development of a winter heavy fog event (in Chinese)Chin J Atmos Sci2012369951008
ZhangQTieX XLinW LVariability of SO2 in an intensive fog in North China Plain: Evidence of high solubility of SO2Particuology201311414710.1016/j.partic.2012.09.005
FaheyK MPandisS NColettJ LJrThe influence of size-dependent droplet composition on pollutant processing by fogsAtmos Environ2005394561457410.1016/j.atmosenv.2005.04.006
Dall’OstoMHarrisonR MCoeHReal-time secondary aerosol formation during a fog event in LondonAtmos Chem Phys200992459246910.5194/acp-9-2459-2009
HusarR BWhitbyK TLiuB Y HPhysical mechanisms governing the dynamics of Los Angeles smog aerosolJ Colloid Interface Sci19723921122410.1016/0021-9797(72)90155-5
OgrenJ ANooneK JHallbergAMeasurement of the size dependence of the concentration of non-volatile material in fog dropletsTellus Ser B-Chem Phys Meteorol19924457058010.1034/j.1600-0889.1992.t01-1-00010.x
LiZ HLiuD YFengYRecent progress in the studies of the fog-water chemical characteristics in China (in Chinese)Acta Meteorol Sin201169544554
LiuX GLiJQuYFormation and evolution mechanism of regional haze: A case study in the megacity Beijing, ChinaAtmos Chem Phys2013134501451410.5194/acp-13-4501-2013
StewartR EYiuD TChungK KWeather conditions associated with the passage of precipitation type transition regions over eastern NewfoundlandAtmos-Ocean199533255310.1080/07055900.1995.9649523
LiZ HPengG ZPhysical and chemical characteristics of the Chongqing winter fog (in Chinese)Acta Meteorol Sin199452477483
SeinfeldJ HPandisS NAtmospheric Chemistry and Physics: From Air Pollution to Climate Change1997New YorkJohn Wiley and Sons377390
YangJNiuZ QShiC EMicrophysics of atmospheric aerosols during winter haze/fog events in Nanjing (in Chinese)Environ Sci20103114251431
PandisS NSeinfeldJ HPilinisCThe smog-fog-smog cycle and acid depositionJ Geophys Res199095184891850010.1029/JD095iD11p18489
ZhangX YZhangY MCaoG LAerosol chemical compositions of Beijing PM1 and its control countermeasures (in Chinese)J Appl Meteorol Sci201223257264
RemerL ATanreDKaufmanY JAlgorithm for Remote Sensing of Tropospheric Aerosol from MODIS: Collection 005. Product ID: MOD04/MYD042006
TangX YZhangY HShaoMAtmospheric Environmental Chemistry (in Chinese)20062nd ed.BeijingHigher Education Press286290
China Meteorological Administration.Observation and forecasting levels of haze. The State Standard of the People’s Republic of China QX/T 113-2010 (in Chinese)2010BeijingChina Meteorological Press
KangH QZhuBSuJ FAnalysis of a long-lasting haze episode in Nanjing, ChinaAtmos Res2013120–121788710.1016/j.atmosres.2012.08.004
PuM JZhangG ZYanW LFeatures of a rare advection-radiation fog eventSci China Ser D-Earth Sci2008511044105210.1007/s11430-008-0071-y
YuX NZhuBYinYA comparative analysis of aerosol properties in dust and haze-fog days in a Chinese urban regionAtmos Res20119924124710.1016/j.atmosres.2010.10.015
Friedlander S K. Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics. 2nd ed. New York, Oxford University Press. 188–219
QuanJZhangQHeHAnalysis of the formation of fog and haze in North China Plain (NCP)Atmos Chem Phys2011118205821410.5194/acp-11-8205-2011
Meteorological Office.Handbook of Aviation Meteorology19943rd ed.LondonHis Majesty’s Stationery Office
HeintzenbergJFine particles in the global troposphere A reviewTellus Ser B-Chem Phys Meteorol19894114916010.1111/j.1600-0889.1989.tb00132.x
GultepeITardifRMichaelidesS CFog research: A review of past achievements and future perspectivesPure Appl Geophys20071641121115910.1007/s00024-007-0211-x
LiuD YPuM JYangJMicrophysical structure and evolution of a four-day persistent fog event in Nanjing in December 2006Acta Meteorol Sin201024104115
WMO/GAW.WMO/GAW Aerosol Measurement Procedures Guidelines and Recommendations2003GenevaWorld Meteorological Organization
LaaksonenAKorhonenPKulmalaMModification of the Kőhler equation to include soluble trace gases and slightly soluble substancesJ Atmos Sci19985585386210.1175/1520-0469(1998)055<0853:MOTKHE>2.0.CO;2
WangX FWangW XYangL XThe secondary formation of inorganic aerosols in the droplet mode through heterogeneous aqueous reactions under haze conditionsAtmos Environ201263687610.1016/j.atmosenv.2012.09.029
J Podzimek (4924_CR38) 1998; 42
X G Liu (4924_CR27) 2013; 13
F Drewnick (4924_CR4) 2004; 38
Z Y Meng (4924_CR29) 1998; 103
M Z Jacobson (4924_CR17) 1997; 31
X Y Tang (4924_CR46) 2006
J Lewis (4924_CR22) 2003; 108
R B Husar (4924_CR16) 1984
S J Niu (4924_CR32) 2010; 27
X Y Zhang (4924_CR54) 2012; 23
Meteorological Office. (4924_CR31) 1994
H Gerber (4924_CR11) 1991; 48
H Q Kang (4924_CR19) 2013; 120–121
J Heintzenberg (4924_CR13) 1989; 41
J Rangognio (4924_CR41) 2009; 9
X N Yu (4924_CR52) 2011; 99
H E Gerber (4924_CR10) 1981; 38
WMO. (4924_CR49) 2005
R E Stewart (4924_CR45) 1995; 33
Q Zhang (4924_CR53) 2013; 11
G X Lu (4924_CR28) 2012; 57
4924_CR8
R B Husar (4924_CR15) 1972; 39
I Gultepe (4924_CR12) 2007; 164
China Meteorological Administration. (4924_CR2) 2010
J A Ogren (4924_CR33) 1992; 44
J H Seinfeld (4924_CR43) 1997
S N Pandis (4924_CR34) 1990; 95
J Yang (4924_CR51) 2010; 31
M B Meyer (4924_CR30) 1980; 37
D Y Liu (4924_CR26) 2010; 24
X F Wang (4924_CR47) 2012; 63
WMO/GAW. (4924_CR48) 2003
R G Pinnick (4924_CR36) 1978; 35
K M Fahey (4924_CR7) 2005; 39
J Podzimek (4924_CR37) 1997; 41
A Laaksonen (4924_CR21) 1998; 55
X C Jia (4924_CR18) 2012; 36
M D Petters (4924_CR35) 2007; 7
L A Remer (4924_CR42) 2006
M J Pu (4924_CR39) 2008; 51
Z H Li (4924_CR24) 2011; 35
D Wu (4924_CR50) 2005; 39
Z H Li (4924_CR23) 1994; 52
R Gautam (4924_CR9) 2007; 112
M Dall’Osto (4924_CR3) 2009; 9
Z H Li (4924_CR25) 2011; 69
T Elias (4924_CR6) 2009; 92
J G Hudson (4924_CR14) 1980; 37
D C Stein (4924_CR44) 2003; 108
China Meteorological Administration. (4924_CR1) 2003
R G Eldridge (4924_CR5) 1969; 50
J Quan (4924_CR40) 2011; 11
H Köhler (4924_CR20) 1936; 32
References_xml – reference: KöhlerHThe nucleus in and the growth of hygroscopic dropletsTrans Faraday Soc1936321152116110.1039/tf9363201152
– reference: PodzimekJDroplet concentration and size distribution in haze and fogStud Geophys Geod19974127729610.1023/A:1023350917344
– reference: SeinfeldJ HPandisS NAtmospheric Chemistry and Physics: From Air Pollution to Climate Change1997New YorkJohn Wiley and Sons377390
– reference: PuM JZhangG ZYanW LFeatures of a rare advection-radiation fog eventSci China Ser D-Earth Sci2008511044105210.1007/s11430-008-0071-y
– reference: LiZ HLiuD YFengYRecent progress in the studies of the fog-water chemical characteristics in China (in Chinese)Acta Meteorol Sin201169544554
– reference: NiuS JLuC SYuH YFog research in China: An overviewAdv Atmos Sci20102763966110.1007/s00376-009-8174-8
– reference: PandisS NSeinfeldJ HPilinisCThe smog-fog-smog cycle and acid depositionJ Geophys Res199095184891850010.1029/JD095iD11p18489
– reference: WuDTieX XLiC CAn extremely low visibility event over the Guangzhou region: A case studyAtmos Environ2005396568657710.1016/j.atmosenv.2005.07.061
– reference: LiZ HPengG ZPhysical and chemical characteristics of the Chongqing winter fog (in Chinese)Acta Meteorol Sin199452477483
– reference: WangX FWangW XYangL XThe secondary formation of inorganic aerosols in the droplet mode through heterogeneous aqueous reactions under haze conditionsAtmos Environ201263687610.1016/j.atmosenv.2012.09.029
– reference: HudsonJ GRelationship between fog condensation nuclei and fog microstructureJ Atmos Sci1980371854186710.1175/1520-0469(1980)037<1854:RBFCNA>2.0.CO;2
– reference: HeintzenbergJFine particles in the global troposphere A reviewTellus Ser B-Chem Phys Meteorol19894114916010.1111/j.1600-0889.1989.tb00132.x
– reference: PettersM DKreidenweisS MA single parameter representation of hygroscopic growth and cloud condensation nucleus activityAtmos Chem Phys200771961197110.5194/acp-7-1961-2007
– reference: TangX YZhangY HShaoMAtmospheric Environmental Chemistry (in Chinese)20062nd ed.BeijingHigher Education Press286290
– reference: HusarR BHollowayJ MThe properties and climate of atmospheric haze1984Hygroscopic Aerosols, Hampton VirginiaA Deepak Publishing129170
– reference: StewartR EYiuD TChungK KWeather conditions associated with the passage of precipitation type transition regions over eastern NewfoundlandAtmos-Ocean199533255310.1080/07055900.1995.9649523
– reference: PodzimekJAerosol particle scavenging by fog and haze dropletsStud Geophys Geod19984254056010.1023/A:1023305423337
– reference: MeyerM BJiustoJ EGarlandL GMeasurements of visual range and radiation fog (haze) microphysicsJ Atmos Sci19803762262910.1175/1520-0469(1980)037<0622:MOVRAR>2.0.CO;2
– reference: ZhangQTieX XLinW LVariability of SO2 in an intensive fog in North China Plain: Evidence of high solubility of SO2Particuology201311414710.1016/j.partic.2012.09.005
– reference: China Meteorological Administration.Observation and forecasting levels of haze. The State Standard of the People’s Republic of China QX/T 113-2010 (in Chinese)2010BeijingChina Meteorological Press
– reference: OgrenJ ANooneK JHallbergAMeasurement of the size dependence of the concentration of non-volatile material in fog dropletsTellus Ser B-Chem Phys Meteorol19924457058010.1034/j.1600-0889.1992.t01-1-00010.x
– reference: GerberHSupersaturation and droplet spectral evolution in fogJ Atmos Sci1991482569258810.1175/1520-0469(1991)048<2569:SADSEI>2.0.CO;2
– reference: DrewnickFJayneJ TCanagaratnaMMeasurement of ambient aerosol composition during the PMTACS-NY 2001 using an aerosol mass spectrometer. Part II: Chemically speciated mass distributionsAerosol Sci Tech20043810411710.1080/02786820390229534
– reference: EldridgeR GMist-the transition from haze to fogBull Amer Meteorol Soc196950422426
– reference: LiZ HLiuD YYangJThe microphysical processes and macroscopic condition of the radiation fog droplet spectrum broadening (in Chinese)Chin J Atmos Sci20113511410.1007/s11425-010-4139-8
– reference: China Meteorological Administration.Specifications for Surface Meteorological Observation (in Chinese)20032nd ed.BeijingChina Meteorological Press2425
– reference: Friedlander S K. Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics. 2nd ed. New York, Oxford University Press. 188–219
– reference: GautamRHsuN CKafatosMInfluences of winter haze on fog/low cloud over the Indo-GangeticJ Geophys Res2007112207218
– reference: YuX NZhuBYinYA comparative analysis of aerosol properties in dust and haze-fog days in a Chinese urban regionAtmos Res20119924124710.1016/j.atmosres.2010.10.015
– reference: ZhangX YZhangY MCaoG LAerosol chemical compositions of Beijing PM1 and its control countermeasures (in Chinese)J Appl Meteorol Sci201223257264
– reference: SteinD CSwapR JGrecoSHaze layer characterization and associated meteorological controls along the eastern coastal region of southern AfricaJ Geophys Res2003108850610.1029/2002JD003237
– reference: WMO/GAW.WMO/GAW Aerosol Measurement Procedures Guidelines and Recommendations2003GenevaWorld Meteorological Organization
– reference: JiaX CGuoX LImpacts of anthropogenic atmospheric pollutant on formation and development of a winter heavy fog event (in Chinese)Chin J Atmos Sci2012369951008
– reference: RangognioJTuletPBergotTInfluence of aerosols on the formation and development of radiation fogAtmos Chem Phys Discuss20099179631801910.5194/acpd-9-17963-2009
– reference: EliasTHaeffelinMDrobinskiPParticulate contribution to extinction of visible radiation: Pollution, haze, and fogAtmos Res20099244345410.1016/j.atmosres.2009.01.006
– reference: KangH QZhuBSuJ FAnalysis of a long-lasting haze episode in Nanjing, ChinaAtmos Res2013120–121788710.1016/j.atmosres.2012.08.004
– reference: MengZ YDabdubDSeinfeldJ HSize-resolved and chemically resolved model of atmospheric aerosol dynamicsJ Geophys Res19981033419343510.1029/97JD02796
– reference: WMO.Aerodrome Reports and Forecasts: A User’s Handbook to the Codes2005GenevaWorld Meteorological Organization
– reference: LiuD YPuM JYangJMicrophysical structure and evolution of a four-day persistent fog event in Nanjing in December 2006Acta Meteorol Sin201024104115
– reference: QuanJZhangQHeHAnalysis of the formation of fog and haze in North China Plain (NCP)Atmos Chem Phys2011118205821410.5194/acp-11-8205-2011
– reference: PinnickR GHoihjelleD LFernandezGVertical structure in atmospheric fog and haze and its effects on visible and infrared extinctionJ Atmos Sci1978352020203210.1175/1520-0469(1978)035<2020:VSIAFA>2.0.CO;2
– reference: LewisJKoracinDRabinRSea fog off the California coast: Viewed in the context of transient weather systemsJ Geophys Res2003108445710.1029/2002JD002833
– reference: HusarR BWhitbyK TLiuB Y HPhysical mechanisms governing the dynamics of Los Angeles smog aerosolJ Colloid Interface Sci19723921122410.1016/0021-9797(72)90155-5
– reference: Dall’OstoMHarrisonR MCoeHReal-time secondary aerosol formation during a fog event in LondonAtmos Chem Phys200992459246910.5194/acp-9-2459-2009
– reference: LaaksonenAKorhonenPKulmalaMModification of the Kőhler equation to include soluble trace gases and slightly soluble substancesJ Atmos Sci19985585386210.1175/1520-0469(1998)055<0853:MOTKHE>2.0.CO;2
– reference: LiuX GLiJQuYFormation and evolution mechanism of regional haze: A case study in the megacity Beijing, ChinaAtmos Chem Phys2013134501451410.5194/acp-13-4501-2013
– reference: GultepeITardifRMichaelidesS CFog research: A review of past achievements and future perspectivesPure Appl Geophys20071641121115910.1007/s00024-007-0211-x
– reference: GerberH EMicrostructure of a radiation fogJ Atmos Sci19813845445810.1175/1520-0469(1981)038<0454:MOARF>2.0.CO;2
– reference: RemerL ATanreDKaufmanY JAlgorithm for Remote Sensing of Tropospheric Aerosol from MODIS: Collection 005. Product ID: MOD04/MYD042006
– reference: LuG XGuoX LDistribution and origin of aerosol and its transform relationship with CCN derived from the spring multi-aircraft measurements of Beijing Cloud Experiment (BCE)Chin Sci Bull2012572460246910.1007/s11434-012-5136-9
– reference: Meteorological Office.Handbook of Aviation Meteorology19943rd ed.LondonHis Majesty’s Stationery Office
– reference: YangJNiuZ QShiC EMicrophysics of atmospheric aerosols during winter haze/fog events in Nanjing (in Chinese)Environ Sci20103114251431
– reference: FaheyK MPandisS NColettJ LJrThe influence of size-dependent droplet composition on pollutant processing by fogsAtmos Environ2005394561457410.1016/j.atmosenv.2005.04.006
– reference: JacobsonM ZDevelopment and application of a new air pollution modeling system-II. Aerosol module structure and designAtmos Environ19973113114410.1016/1352-2310(96)00202-6
– volume: 31
  start-page: 131
  year: 1997
  ident: 4924_CR17
  publication-title: Atmos Environ
  doi: 10.1016/1352-2310(96)00202-6
– volume: 24
  start-page: 104
  year: 2010
  ident: 4924_CR26
  publication-title: Acta Meteorol Sin
– start-page: 377
  volume-title: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change
  year: 1997
  ident: 4924_CR43
– volume: 36
  start-page: 995
  year: 2012
  ident: 4924_CR18
  publication-title: Chin J Atmos Sci
– volume: 33
  start-page: 25
  year: 1995
  ident: 4924_CR45
  publication-title: Atmos-Ocean
  doi: 10.1080/07055900.1995.9649523
– ident: 4924_CR8
– volume: 63
  start-page: 68
  year: 2012
  ident: 4924_CR47
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2012.09.029
– start-page: 286
  volume-title: Atmospheric Environmental Chemistry (in Chinese)
  year: 2006
  ident: 4924_CR46
– volume: 35
  start-page: 2020
  year: 1978
  ident: 4924_CR36
  publication-title: J Atmos Sci
  doi: 10.1175/1520-0469(1978)035<2020:VSIAFA>2.0.CO;2
– volume: 32
  start-page: 1152
  year: 1936
  ident: 4924_CR20
  publication-title: Trans Faraday Soc
  doi: 10.1039/TF9363201152
– volume: 120–121
  start-page: 78
  year: 2013
  ident: 4924_CR19
  publication-title: Atmos Res
  doi: 10.1016/j.atmosres.2012.08.004
– volume: 103
  start-page: 3419
  year: 1998
  ident: 4924_CR29
  publication-title: J Geophys Res
  doi: 10.1029/97JD02796
– volume-title: Handbook of Aviation Meteorology
  year: 1994
  ident: 4924_CR31
– volume: 41
  start-page: 277
  year: 1997
  ident: 4924_CR37
  publication-title: Stud Geophys Geod
  doi: 10.1023/A:1023350917344
– volume: 11
  start-page: 41
  year: 2013
  ident: 4924_CR53
  publication-title: Particuology
  doi: 10.1016/j.partic.2012.09.005
– volume: 44
  start-page: 570
  year: 1992
  ident: 4924_CR33
  publication-title: Tellus Ser B-Chem Phys Meteorol
  doi: 10.1034/j.1600-0889.1992.t01-1-00010.x
– volume: 112
  start-page: 207
  year: 2007
  ident: 4924_CR9
  publication-title: J Geophys Res
  doi: 10.1029/2005JD007036
– volume: 39
  start-page: 211
  year: 1972
  ident: 4924_CR15
  publication-title: J Colloid Interface Sci
  doi: 10.1016/0021-9797(72)90155-5
– volume: 37
  start-page: 622
  year: 1980
  ident: 4924_CR30
  publication-title: J Atmos Sci
  doi: 10.1175/1520-0469(1980)037<0622:MOVRAR>2.0.CO;2
– volume-title: WMO/GAW Aerosol Measurement Procedures Guidelines and Recommendations
  year: 2003
  ident: 4924_CR48
– volume: 9
  start-page: 2459
  year: 2009
  ident: 4924_CR3
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-9-2459-2009
– volume: 50
  start-page: 422
  year: 1969
  ident: 4924_CR5
  publication-title: Bull Amer Meteorol Soc
  doi: 10.1175/1520-0477-50.6.422
– volume: 108
  start-page: 8506
  year: 2003
  ident: 4924_CR44
  publication-title: J Geophys Res
  doi: 10.1029/2002JD003237
– volume: 95
  start-page: 18489
  year: 1990
  ident: 4924_CR34
  publication-title: J Geophys Res
  doi: 10.1029/JD095iD11p18489
– volume: 42
  start-page: 540
  year: 1998
  ident: 4924_CR38
  publication-title: Stud Geophys Geod
  doi: 10.1023/A:1023305423337
– volume-title: Aerodrome Reports and Forecasts: A User’s Handbook to the Codes
  year: 2005
  ident: 4924_CR49
– volume: 39
  start-page: 6568
  year: 2005
  ident: 4924_CR50
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2005.07.061
– volume: 31
  start-page: 1425
  year: 2010
  ident: 4924_CR51
  publication-title: Environ Sci
– volume: 51
  start-page: 1044
  year: 2008
  ident: 4924_CR39
  publication-title: Sci China Ser D-Earth Sci
  doi: 10.1007/s11430-008-0071-y
– volume: 11
  start-page: 8205
  year: 2011
  ident: 4924_CR40
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-11-8205-2011
– volume-title: Observation and forecasting levels of haze. The State Standard of the People’s Republic of China QX/T 113-2010 (in Chinese)
  year: 2010
  ident: 4924_CR2
– volume: 55
  start-page: 853
  year: 1998
  ident: 4924_CR21
  publication-title: J Atmos Sci
  doi: 10.1175/1520-0469(1998)055<0853:MOTKHE>2.0.CO;2
– volume: 38
  start-page: 104
  year: 2004
  ident: 4924_CR4
  publication-title: Aerosol Sci Tech
  doi: 10.1080/02786820390229534
– volume: 7
  start-page: 1961
  year: 2007
  ident: 4924_CR35
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-7-1961-2007
– volume-title: Algorithm for Remote Sensing of Tropospheric Aerosol from MODIS: Collection 005. Product ID: MOD04/MYD04
  year: 2006
  ident: 4924_CR42
– volume: 48
  start-page: 2569
  year: 1991
  ident: 4924_CR11
  publication-title: J Atmos Sci
  doi: 10.1175/1520-0469(1991)048<2569:SADSEI>2.0.CO;2
– start-page: 129
  volume-title: The properties and climate of atmospheric haze
  year: 1984
  ident: 4924_CR16
– volume: 69
  start-page: 544
  year: 2011
  ident: 4924_CR25
  publication-title: Acta Meteorol Sin
– volume: 13
  start-page: 4501
  year: 2013
  ident: 4924_CR27
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-13-4501-2013
– volume: 57
  start-page: 2460
  year: 2012
  ident: 4924_CR28
  publication-title: Chin Sci Bull
  doi: 10.1007/s11434-012-5136-9
– volume: 164
  start-page: 1121
  year: 2007
  ident: 4924_CR12
  publication-title: Pure Appl Geophys
  doi: 10.1007/s00024-007-0211-x
– volume: 35
  start-page: 1
  year: 2011
  ident: 4924_CR24
  publication-title: Chin J Atmos Sci
  doi: 10.1007/s11425-010-4139-8
– volume: 37
  start-page: 1854
  year: 1980
  ident: 4924_CR14
  publication-title: J Atmos Sci
  doi: 10.1175/1520-0469(1980)037<1854:RBFCNA>2.0.CO;2
– volume: 99
  start-page: 241
  year: 2011
  ident: 4924_CR52
  publication-title: Atmos Res
  doi: 10.1016/j.atmosres.2010.10.015
– volume: 41
  start-page: 149
  year: 1989
  ident: 4924_CR13
  publication-title: Tellus Ser B-Chem Phys Meteorol
  doi: 10.1111/j.1600-0889.1989.tb00132.x
– volume: 108
  start-page: 4457
  year: 2003
  ident: 4924_CR22
  publication-title: J Geophys Res
  doi: 10.1029/2002JD002833
– volume: 9
  start-page: 17963
  year: 2009
  ident: 4924_CR41
  publication-title: Atmos Chem Phys Discuss
  doi: 10.5194/acpd-9-17963-2009
– volume: 92
  start-page: 443
  year: 2009
  ident: 4924_CR6
  publication-title: Atmos Res
  doi: 10.1016/j.atmosres.2009.01.006
– volume: 38
  start-page: 454
  year: 1981
  ident: 4924_CR10
  publication-title: J Atmos Sci
  doi: 10.1175/1520-0469(1981)038<0454:MOARF>2.0.CO;2
– start-page: 24
  volume-title: Specifications for Surface Meteorological Observation (in Chinese)
  year: 2003
  ident: 4924_CR1
– volume: 27
  start-page: 639
  year: 2010
  ident: 4924_CR32
  publication-title: Adv Atmos Sci
  doi: 10.1007/s00376-009-8174-8
– volume: 39
  start-page: 4561
  year: 2005
  ident: 4924_CR7
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2005.04.006
– volume: 23
  start-page: 257
  year: 2012
  ident: 4924_CR54
  publication-title: J Appl Meteorol Sci
– volume: 52
  start-page: 477
  year: 1994
  ident: 4924_CR23
  publication-title: Acta Meteorol Sin
SSID ssj0000389727
Score 2.2940004
Snippet An unusual fog and haze event lasted for one week took place during 1–7 December,2011 over North China.To investigate the characteristics and mechanism of...
An unusual fog and haze event lasted for one week took place during 1–7 December, 2011 over North China. To investigate the characteristics and mechanism of...
An unusual fog and haze event lasted for one week took place during 1-7 December, 2011 over North China. To investigate the characteristics and mechanism of...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 329
SubjectTerms Accumulation
Advection
Aerosols
Boundary layers
Earth and Environmental Science
Earth Sciences
Fog
Haze
Heating
High pressure
Research Paper
Solar radiation
Studies
Temperature inversions
Visibility
Water content
Weather
中国北方
事件
低能见度天气
气溶胶污染
水平能见度
演化
边界层性质

SummonAdditionalLinks – databaseName: ProQuest
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFD5oi-CL1BuOrSWCT2pwdzIzSZ6KSmsRrCIW-hZym7ZQZrbdrWD_Qv90z8lmZq1g3wYmyQw5Sc53LvkOwJu6cSpEb7lztUQDxbVc6bLhviklRQa1dHRR-NtBs39YfT2qj7LDbZ7TKoczMR3UoffkI_9At26UqrTQO7NzTlWjKLqaS2jch3U8ghUaX-ufdg9-_By9LEQfJ1PdVsq251JMxRDaTPfnEC1QXlbFK7RDeEkECyd9d3yOauO2olqhz38CpkkP7W3Aowwg2celxB_Dvdg9gQdfUoHeP0_h-rsb_azMZsYRhs_-NjMz61s2Xlx8z-LvvASxT2ALUmApl4uaWXaGP8sRZlOKNENVGi8idj5ObU_sVWRxdjrvQ2SnHUuBIJbKcj-Dw73dX5_3eS64wD1ahQveeI3mmwiNChTndWifBUSUiABjENbrEnVXELGWwnvlQzmx7dRKS5x0sWqjFc9hreu7-AJYpWPTCoRvEhGZEt5RzXWtgp9UXuppVcDmONNmtiTWMIh-FBHM1QVMhrk3PnOVU8mMM7NiWSbRGRSdIdGZsoC3Y5dhvDsabw0CNXnPzs1qhRXwenyNu41CKLaL_SW1aVQyykQB74aF8NcQ__vgy7s_uAkPEYjVy9y2LVhbXFzGVwh2Fm47r-gbMxT6Xw
  priority: 102
  providerName: ProQuest
Title Observation analysis on characteristics of formation,evolution and transition of a long-lasting severe fog and haze episode in North China
URI http://lib.cqvip.com/qk/60111X/201503/663813415.html
https://link.springer.com/article/10.1007/s11430-014-4924-2
https://www.proquest.com/docview/1654884939
https://www.proquest.com/docview/1668251183
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9KS8EXsX5g7Acr-KQu3GWT7O7jtVxbLK0iHtSnZb_SFkpSe1dB_wX_aWf2kpwVFXxKILObkNlkfrMz8xuAV2XlVIjecudKiQ6Kq7nSecV9lUuKDGrpqFD49Kw6nhXvzsvzro573me79yHJ9KdeFbuhaackqoIX6DRw_O9ulOS64yKe5ZNhY4UY42Rq1UoJ9lyKseijmX-ahTgVLtvm4gve8b5tWgHO32KkyfQcPoKHHWZkk6WSt2AtNo9h8yj15P32BH68d8PWKrMdyQjDc3-fjJm1NRtqFd-y-LVbdTgmsAXZrJS-RWKWXePDckTWlBXN0HrG24iDL5Lspf0eWby5mrchsquGpdgPS524n8LscPrp4Jh3PRa4R0dwwSuv0WMToVKBQrsOXbKAIBJBXwzCep2juQoillJ4r3zIR7YeW2mJhi4WdbTiGaw3bROfAyt0rGqBiE0iCFPCO2qzrlXwo8JLPS4y2B7etLlZcmkYBDyKOOXKDEb9uze-oyenLhnXZkWsTKozqDpDqjN5Bq-HIf18_xDe6RVqus90bqiUS6lCC53By-EyfmAUNbFNbO9IplLJDxMZvOkXwi9T_O2GL_5LehseIBQrl9ltO7C-uL2Luwh3Fm4PNiZHn0-meNyfnn34uJeW-0-H_fh-
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrRBcUPkToQWMBBfAYjd2EueAEC0tW9ouCLVSb8axnbZSlWy7W1D7CrwLz8iMN8lSJHrrLVJsJ8pMPN94Zr4BeJGkhXLeGl4USYYOSlFylccpt2mcUWQwzwoqFN4ZpcM9-Xk_2V-A320tDKVVtnti2KhdbemM_C1V3Sglc5G_H59w6hpF0dW2hcZMLbb8-U902SbvNj-ifF_G8cb67tqQN10FuEXXZ8pTm6OPIlyqHAUzC3RCHMImhDneCWPzGDdoJ3ySCWuVdXHflAOTGSJe87L0RuC6N2BRCnRlerC4uj76-q071SG6uiz0iaXsfp6JgWhDqaFeD9EJ5YFJLtHv4TEROhzW1cEJmqnLhnGOdv8J0Aa7t7EEdxrAyj7MNOwuLPjqHtz8FBoCn9-HX1-K7lyXmYbhhOG1vcwEzeqSdYWSb5j_0ag8znFsSgYz5I7RMMOO8WU5wnpKyWZouv2px8kHYeyhufDMj48mtfPsqGIh8MRCG_AHsHctongIvaqu_CNgMvdpKRAuZogAlbAF9XjPlbN9abN8ICNY7r60Hs-IPDSiLUWEdkkE_fbba9two1OLjmM9Z3Um0WkUnSbR6TiCV92Udr0rBq-0AtXNHjHRc42O4Hl3G_9uCtmYytdnNCZVwQkUEbxuFeGvJf73wMdXP_AZ3Bru7mzr7c3R1jLcRhCYzPLqVqA3PT3zTxBoTYunjXYz-H7dP9QfrZA2kQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrUBcUPkToT8YCS6A1d04iZ0DQpR2aSksFaJSb8axnbZSlWy7W1B5Bd6Ip2PGm2QpEr31tlJsZ5UZe77xzHwD8CzNCuW8NbwoUokOSlFylccZt1ksKTKYy4IKhT-Nsu395MNBerAAv9taGEqrbM_EcFC72tId-TpV3SiV5CJfL5u0iL3N4ZvxKacOUhRpbdtpzFRk11_8QPdt8npnE2X9PI6HW1_fbfOmwwC36AZNeWZz9FeEy5SjwGaBDolDCIWQxzthbB7jYe2ET6WwVlkX9005MNIQCZtPSm8ErnsDFiV6Rf0eLG5sjfa-dDc8RF0nQ89YyvTnUgxEG1YNtXuIVCgnLOEJ-kA8JnKHo7o6PEWTddlIzpHvP8HaYAOHS3CnAa_s7Uzb7sKCr-7BzfehOfDFffj1uejueJlp2E4Y_raXWaFZXbKuaPIV898b9cc5jk3JeIY8Mhpm2An-WY4Qn9KzGZpxf-Zx8mEYe2R-eubHx5PaeXZcsRCEYqEl-APYvxZRPIReVVf-EbAk91kpEDpKRINK2IL6vefK2X5iZT5IIljuvrQez0g9NCIvReR2aQT99ttr2_CkU7uOEz1neCbRaRSdJtHpOIIX3ZR2vSsGr7QC1c15MdFz7Y7gafcYdzqFb0zl63Mak6ngEIoIXraK8NcS_3vh46tf-ARu4UbSH3dGu8twG_FgOkuxW4He9OzcryLmmhZrjXIz-Hbd--kPTD46xg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observation+analysis+on+characteristics+of+formation%2C+evolution+and+transition+of+a+long-lasting+severe+fog+and+haze+episode+in+North+China&rft.jtitle=Science+China.+Earth+sciences&rft.au=Guo%2C+LiJun&rft.au=Guo%2C+XueLiang&rft.au=Fang%2C+ChunGang&rft.au=Zhu%2C+ShiChao&rft.date=2015-03-01&rft.pub=Science+China+Press&rft.issn=1674-7313&rft.eissn=1869-1897&rft.volume=58&rft.issue=3&rft.spage=329&rft.epage=344&rft_id=info:doi/10.1007%2Fs11430-014-4924-2&rft.externalDocID=10_1007_s11430_014_4924_2
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F60111X%2F60111X.jpg