Deep Learning Empowered Structural Health Monitoring and Damage Diagnostics for Structures with Weldment via Decoding Ultrasonic Guided Wave

Welding is widely used in the connection of metallic structures, including welded joints in oil/gas metallic pipelines and other structures. The welding process is vulnerable to the inclusion of different types of welding defects, such as lack of penetration and undercut. These defects often initial...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 14; p. 5390
Main Authors Zhang, Zi, Pan, Hong, Wang, Xingyu, Lin, Zhibin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 19.07.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Welding is widely used in the connection of metallic structures, including welded joints in oil/gas metallic pipelines and other structures. The welding process is vulnerable to the inclusion of different types of welding defects, such as lack of penetration and undercut. These defects often initialize early-age cracking and induced corrosion. Moreover, welding-induced defects often accompany other types of mechanical damage, thereby leading to more challenges in damage detection. As such, identification of weldment defects and interaction with other mechanical damages at their early stage is crucial to ensure structural integrity and avoid potential premature failure. The current strategies of damage identification are achieved using ultrasonic guided wave approaches that rely on a change in physical parameters of propagating waves to discriminate as to whether there exist damaged states or not. However, the inherently complex nature of weldment, the complication of damages interactions, and large-scale/long span structural components integrated with structure uncertainties pose great challenges in data interpretation and making an informed decision. Artificial intelligence and machine learning have recently become emerging methods for data fusion, with great potential for structural signal processing through decoding ultrasonic guided waves. Therefore, this study aimed to employ the deep learning method, convolutional neural network (CNN), for better characterization of damage features in terms of welding defect type, severity, locations, and interaction with other damage types. The architecture of the CNN was set up to provide an effective classifier for data representation and data fusion. A total of 16 damage states were designed for training and calibrating the accuracy of the proposed method. The results revealed that the deep learning method enables effectively and automatically extracting features of ultrasonic guided waves and yielding high precise prediction for damage detection of structures with welding defects in complex situations. In addition, the effectiveness and robustness of the proposed methods for structure uncertainties using different embedding materials, and data under noise interference, was also validated and findings demonstrated that the proposed deep learning methods still exhibited a high accuracy at high noise levels.
AbstractList Welding is widely used in the connection of metallic structures, including welded joints in oil/gas metallic pipelines and other structures. The welding process is vulnerable to the inclusion of different types of welding defects, such as lack of penetration and undercut. These defects often initialize early-age cracking and induced corrosion. Moreover, welding-induced defects often accompany other types of mechanical damage, thereby leading to more challenges in damage detection. As such, identification of weldment defects and interaction with other mechanical damages at their early stage is crucial to ensure structural integrity and avoid potential premature failure. The current strategies of damage identification are achieved using ultrasonic guided wave approaches that rely on a change in physical parameters of propagating waves to discriminate as to whether there exist damaged states or not. However, the inherently complex nature of weldment, the complication of damages interactions, and large-scale/long span structural components integrated with structure uncertainties pose great challenges in data interpretation and making an informed decision. Artificial intelligence and machine learning have recently become emerging methods for data fusion, with great potential for structural signal processing through decoding ultrasonic guided waves. Therefore, this study aimed to employ the deep learning method, convolutional neural network (CNN), for better characterization of damage features in terms of welding defect type, severity, locations, and interaction with other damage types. The architecture of the CNN was set up to provide an effective classifier for data representation and data fusion. A total of 16 damage states were designed for training and calibrating the accuracy of the proposed method. The results revealed that the deep learning method enables effectively and automatically extracting features of ultrasonic guided waves and yielding high precise prediction for damage detection of structures with welding defects in complex situations. In addition, the effectiveness and robustness of the proposed methods for structure uncertainties using different embedding materials, and data under noise interference, was also validated and findings demonstrated that the proposed deep learning methods still exhibited a high accuracy at high noise levels.
Welding is widely used in the connection of metallic structures, including welded joints in oil/gas metallic pipelines and other structures. The welding process is vulnerable to the inclusion of different types of welding defects, such as lack of penetration and undercut. These defects often initialize early-age cracking and induced corrosion. Moreover, welding-induced defects often accompany other types of mechanical damage, thereby leading to more challenges in damage detection. As such, identification of weldment defects and interaction with other mechanical damages at their early stage is crucial to ensure structural integrity and avoid potential premature failure. The current strategies of damage identification are achieved using ultrasonic guided wave approaches that rely on a change in physical parameters of propagating waves to discriminate as to whether there exist damaged states or not. However, the inherently complex nature of weldment, the complication of damages interactions, and large-scale/long span structural components integrated with structure uncertainties pose great challenges in data interpretation and making an informed decision. Artificial intelligence and machine learning have recently become emerging methods for data fusion, with great potential for structural signal processing through decoding ultrasonic guided waves. Therefore, this study aimed to employ the deep learning method, convolutional neural network (CNN), for better characterization of damage features in terms of welding defect type, severity, locations, and interaction with other damage types. The architecture of the CNN was set up to provide an effective classifier for data representation and data fusion. A total of 16 damage states were designed for training and calibrating the accuracy of the proposed method. The results revealed that the deep learning method enables effectively and automatically extracting features of ultrasonic guided waves and yielding high precise prediction for damage detection of structures with welding defects in complex situations. In addition, the effectiveness and robustness of the proposed methods for structure uncertainties using different embedding materials, and data under noise interference, was also validated and findings demonstrated that the proposed deep learning methods still exhibited a high accuracy at high noise levels.Welding is widely used in the connection of metallic structures, including welded joints in oil/gas metallic pipelines and other structures. The welding process is vulnerable to the inclusion of different types of welding defects, such as lack of penetration and undercut. These defects often initialize early-age cracking and induced corrosion. Moreover, welding-induced defects often accompany other types of mechanical damage, thereby leading to more challenges in damage detection. As such, identification of weldment defects and interaction with other mechanical damages at their early stage is crucial to ensure structural integrity and avoid potential premature failure. The current strategies of damage identification are achieved using ultrasonic guided wave approaches that rely on a change in physical parameters of propagating waves to discriminate as to whether there exist damaged states or not. However, the inherently complex nature of weldment, the complication of damages interactions, and large-scale/long span structural components integrated with structure uncertainties pose great challenges in data interpretation and making an informed decision. Artificial intelligence and machine learning have recently become emerging methods for data fusion, with great potential for structural signal processing through decoding ultrasonic guided waves. Therefore, this study aimed to employ the deep learning method, convolutional neural network (CNN), for better characterization of damage features in terms of welding defect type, severity, locations, and interaction with other damage types. The architecture of the CNN was set up to provide an effective classifier for data representation and data fusion. A total of 16 damage states were designed for training and calibrating the accuracy of the proposed method. The results revealed that the deep learning method enables effectively and automatically extracting features of ultrasonic guided waves and yielding high precise prediction for damage detection of structures with welding defects in complex situations. In addition, the effectiveness and robustness of the proposed methods for structure uncertainties using different embedding materials, and data under noise interference, was also validated and findings demonstrated that the proposed deep learning methods still exhibited a high accuracy at high noise levels.
Author Wang, Xingyu
Zhang, Zi
Pan, Hong
Lin, Zhibin
AuthorAffiliation Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58018, USA; zi.zhang@ndsu.edu (Z.Z.); hong.pan@ndsu.edu (H.P.); xingyu.wang@ndsu.edu (X.W.)
AuthorAffiliation_xml – name: Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58018, USA; zi.zhang@ndsu.edu (Z.Z.); hong.pan@ndsu.edu (H.P.); xingyu.wang@ndsu.edu (X.W.)
Author_xml – sequence: 1
  givenname: Zi
  surname: Zhang
  fullname: Zhang, Zi
– sequence: 2
  givenname: Hong
  surname: Pan
  fullname: Pan, Hong
– sequence: 3
  givenname: Xingyu
  orcidid: 0000-0001-8869-6150
  surname: Wang
  fullname: Wang, Xingyu
– sequence: 4
  givenname: Zhibin
  surname: Lin
  fullname: Lin, Zhibin
BookMark eNptkstu1DAUQCNURNuBBX9giQ0shvqVhzdIqFPaSoNYQNWldWPfTF0l8WA7U_EPfDQOU41oxcpX9rnnPuTT4mj0IxbFW0Y_CqHoWeScyTJHL4oTJrlcNpzTo3_i4-I0xntKuRCieVUci7JRjFbNSfF7hbgla4QwunFDLoatf8CAlnxPYTJpCtCTK4Q-3ZGvfnTJhxmD0ZIVDLBBsnKwGX1MzkTS-XDIw0geXM66xd4OOCayc0BWaLydBTd9ChCz0JDLydlc7xZ2-Lp42UEf8c3juShuvlz8OL9arr9dXp9_Xi-NlFVaVmUFtjasKlvLpBJgOFOMd20rO4aWc16DsjW1ooFSgm0qqlhjedtZU5e2E4vieu-1Hu71NrgBwi_twem_Fz5sNIQ8UY9ayU7aTtU0b0w2EloUSjQcq0o1gjObXZ_2ru3UDmhNHjXv7In06cvo7vTG77QSXCpWZcH7R0HwPyeMSQ8uGux7GNFPUfNKlVwxlustinfP0Hs_hTGvaqYkrWtVztSHPWWCjzFgd2iGUT3_F334L5k9e8YalyA5P_fq-v9k_AE0ysPg
CitedBy_id crossref_primary_10_1016_j_jmapro_2023_03_011
crossref_primary_10_1016_j_measurement_2023_113221
crossref_primary_10_3390_app15031316
crossref_primary_10_1016_j_oceaneng_2023_116604
crossref_primary_10_1016_j_measurement_2024_115662
crossref_primary_10_1016_j_neunet_2025_107153
crossref_primary_10_3390_computation11110218
crossref_primary_10_3390_s23146505
crossref_primary_10_1016_j_conbuildmat_2023_134728
crossref_primary_10_1016_j_oceaneng_2024_118293
crossref_primary_10_1088_1361_665X_ad5504
crossref_primary_10_3390_buildings12111772
crossref_primary_10_1016_j_ultras_2024_107314
crossref_primary_10_3390_app14198981
crossref_primary_10_3390_s23167059
crossref_primary_10_3390_s24041204
Cites_doi 10.1115/1.2789105
10.3390/s18124470
10.1117/12.2296964
10.1061/(ASCE)AS.1943-5525.0000978
10.1016/j.ultras.2004.01.064
10.1016/S0963-8695(02)00041-5
10.1016/j.jmatprotec.2006.02.024
10.1109/58.503719
10.1111/mice.12334
10.1061/9780784484289.032
10.1109/5.726791
10.1007/s12205-017-1518-5
10.1016/j.asoc.2005.05.003
10.1016/0041-624X(86)90005-3
10.1007/s12205-018-1301-2
10.1007/BF00733822
10.1016/j.measurement.2020.108262
10.1016/j.ultras.2016.01.009
10.1016/j.ndteint.2010.01.002
10.1016/0041-624X(79)90006-4
10.21629/JSEE.2017.01.18
10.1016/j.matlet.2017.01.021
10.1121/1.4972118
10.1007/s10845-014-0971-y
10.3390/s20061790
10.1134/S1061830917120038
10.1016/j.jmatprotec.2018.12.008
10.1109/TUFFC.2021.3060094
10.1016/0963-8695(92)90003-Y
10.1016/S0963-8695(98)00045-0
10.1016/j.jsv.2016.10.043
10.1111/mice.12263
10.1016/j.compositesb.2018.12.120
10.1590/S1678-58782005000400007
10.1088/1361-665X/ab1cc9
10.1201/9780429279119-516
10.2991/iiicec-15.2015.446
10.1061/(ASCE)BE.1943-5592.0001199
10.1080/10589759.2014.914210
10.1109/TUFFC.2020.3025546
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22145390
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_94f4df970589484abe39382e6698321d
PMC9324916
10_3390_s22145390
GrantInformation_xml – fundername: USDOTs
  grantid: DTPH5616HCAP03; 693JK318500010CAAP; 693JK31850009CAAP; 693JK32110003POTA
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c446t-656ad7c165bd1493ac21912fbb4f1ed2227a9d70d38a54ad860918d2bfdc75df3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:27:20 EDT 2025
Thu Aug 21 14:07:32 EDT 2025
Fri Jul 11 04:16:51 EDT 2025
Fri Jul 25 20:03:20 EDT 2025
Thu Apr 24 23:11:20 EDT 2025
Tue Jul 01 02:42:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-656ad7c165bd1493ac21912fbb4f1ed2227a9d70d38a54ad860918d2bfdc75df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8869-6150
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22145390
PMID 35891068
PQID 2694077958
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_94f4df970589484abe39382e6698321d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9324916
proquest_miscellaneous_2695291198
proquest_journals_2694077958
crossref_primary_10_3390_s22145390
crossref_citationtrail_10_3390_s22145390
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220719
PublicationDateYYYYMMDD 2022-07-19
PublicationDate_xml – month: 7
  year: 2022
  text: 20220719
  day: 19
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Case (ref_15) 1996; 43
Veiga (ref_30) 2005; 27
Lin (ref_2) 2018; 23
Hua (ref_9) 2019; 267
Pan (ref_24) 2019; 32
Lee (ref_18) 2007; 7
Leinov (ref_50) 2016; 140
Nair (ref_19) 2019; 161
Alleyne (ref_42) 1998; 65
Chen (ref_32) 2014; 29
Doerr (ref_14) 2017; 190
Arone (ref_11) 2006; 176
Lecun (ref_49) 1998; 86
Zhang (ref_16) 2017; 28
Gui (ref_26) 2017; 21
Saade (ref_34) 2020; 166
Burkov (ref_12) 2017; 53
Cha (ref_37) 2017; 33
Moser (ref_45) 1999; 32
ref_23
ref_21
ref_20
Alleyne (ref_8) 1992; 25
Pan (ref_22) 2018; 22
ref_28
ref_27
Chen (ref_29) 2021; 68
Mustapha (ref_33) 2018; 1
Li (ref_39) 2020; 68
Cha (ref_36) 2017; 32
Pan (ref_25) 2018; 23
Ogilvy (ref_10) 1986; 24
Zhao (ref_38) 2017; 28
Alleyne (ref_6) 1996; 15
ref_47
Abdeljaber (ref_35) 2017; 388
ref_46
ref_43
Drai (ref_17) 2002; 35
ref_40
ref_1
Silk (ref_41) 1979; 17
Wang (ref_7) 2010; 43
ref_3
ref_48
ref_5
Bettayeb (ref_31) 2004; 42
ref_4
Lee (ref_13) 2016; 68
Xu (ref_44) 2019; 28
References_xml – volume: 65
  start-page: 635
  year: 1998
  ident: ref_42
  article-title: The Reflection of Guided Waves from Circumferential Notches in Pipes
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.2789105
– ident: ref_5
– ident: ref_40
  doi: 10.3390/s18124470
– ident: ref_48
  doi: 10.1117/12.2296964
– volume: 32
  start-page: 04019014.1
  year: 2019
  ident: ref_24
  article-title: Enabling Damage Identification of Structures Using Time Series–Based Feature Extraction Algorithms
  publication-title: J. Aerosp. Eng.
  doi: 10.1061/(ASCE)AS.1943-5525.0000978
– volume: 42
  start-page: 853
  year: 2004
  ident: ref_31
  article-title: An improved automated ultrasonic NDE system by wavelet and neuron networks
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2004.01.064
– volume: 35
  start-page: 567
  year: 2002
  ident: ref_17
  article-title: Time frequency and wavelet transform applied to selected problems in ultrasonics NDE
  publication-title: NDT E Int.
  doi: 10.1016/S0963-8695(02)00041-5
– volume: 176
  start-page: 95
  year: 2006
  ident: ref_11
  article-title: Defect characterization in Al welded joints by non-contact Lamb wave technique
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2006.02.024
– volume: 43
  start-page: 592
  year: 1996
  ident: ref_15
  article-title: Flaw identification from time and frequency features of ultrasonic waveforms
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.503719
– volume: 33
  start-page: 731
  year: 2017
  ident: ref_37
  article-title: Autonomous Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12334
– ident: ref_27
  doi: 10.1061/9780784484289.032
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_49
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 21
  start-page: 523
  year: 2017
  ident: ref_26
  article-title: Data-driven support vector machine with optimization techniques for structural health monitoring and damage detection
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-017-1518-5
– ident: ref_4
– volume: 7
  start-page: 156
  year: 2007
  ident: ref_18
  article-title: Feature extraction and gating techniques for ultrasonic shaft signal classification
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2005.05.003
– volume: 24
  start-page: 337
  year: 1986
  ident: ref_10
  article-title: Ultrasonic beam profiles and beam propagation in an austenitic weld using a theoretical ray tracing model
  publication-title: Ultrasonics
  doi: 10.1016/0041-624X(86)90005-3
– volume: 22
  start-page: 928
  year: 2018
  ident: ref_22
  article-title: Deep BBN Learning for Health Assessment toward Decision-Making on Structures under Uncertainties
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-018-1301-2
– volume: 15
  start-page: 11
  year: 1996
  ident: ref_6
  article-title: The excitation of Lamb waves in pipes using dry-coupled piezoelectric transducers
  publication-title: J. Nondestruct. Eval.
  doi: 10.1007/BF00733822
– volume: 166
  start-page: 108262
  year: 2020
  ident: ref_34
  article-title: Assessment of the structural conditions in steel pipeline under various operational conditions—A machine learning approach
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108262
– volume: 68
  start-page: 1
  year: 2016
  ident: ref_13
  article-title: A novel ultrasonic NDE for shrink fit welded structures using interface waves
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2016.01.009
– volume: 43
  start-page: 365
  year: 2010
  ident: ref_7
  article-title: Experimental investigation of reflection in guided wave-based inspection for the characterization of pipeline defects
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2010.01.002
– volume: 17
  start-page: 11
  year: 1979
  ident: ref_41
  article-title: The propagation in metal tubing of ultrasonic wave modes equivalent to Lamb waves
  publication-title: Ultrasonics
  doi: 10.1016/0041-624X(79)90006-4
– volume: 28
  start-page: 162
  year: 2017
  ident: ref_38
  article-title: Convolutional neural networks for time series classification
  publication-title: J. Syst. Eng. Electron.
  doi: 10.21629/JSEE.2017.01.18
– volume: 190
  start-page: 221
  year: 2017
  ident: ref_14
  article-title: Evaluation of the heat-affected zone (HAZ) of a weld joint using nonlinear Rayleigh waves
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2017.01.021
– ident: ref_20
– volume: 140
  start-page: 4528
  year: 2016
  ident: ref_50
  article-title: Investigation of guided wave propagation in pipes fully and partially embedded in concrete
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4972118
– ident: ref_3
– ident: ref_47
– volume: 23
  start-page: 04018068.1
  year: 2018
  ident: ref_2
  article-title: Electrochemical Characterization of Steel Bridge Welds under Simulated Durability Test
  publication-title: J. Bridg. Eng.
– volume: 28
  start-page: 207
  year: 2017
  ident: ref_16
  article-title: Real-time seam penetration identification in arc welding based on fusion of sound, voltage and spectrum signals
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-014-0971-y
– ident: ref_23
  doi: 10.3390/s20061790
– volume: 53
  start-page: 817
  year: 2017
  ident: ref_12
  article-title: Applying an Ultrasonic Lamb Wave Based Rechnique to Testing the Condition of V96ts3T12 Aluminum Alloy
  publication-title: Russ. J. Nondestruct. Test.
  doi: 10.1134/S1061830917120038
– volume: 267
  start-page: 205
  year: 2019
  ident: ref_9
  article-title: In-situ ultrasonic detection of resistance spot welding quality using embedded probe
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2018.12.008
– volume: 68
  start-page: 2277
  year: 2021
  ident: ref_29
  article-title: Evolutionary Strategy-Based Location Algorithm for High-Resolution Lamb Wave Defect Detection With Sparse Array
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2021.3060094
– ident: ref_21
– volume: 25
  start-page: 11
  year: 1992
  ident: ref_8
  article-title: Optimization of lamb wave inspection techniques
  publication-title: NDT E Int.
  doi: 10.1016/0963-8695(92)90003-Y
– volume: 32
  start-page: 225
  year: 1999
  ident: ref_45
  article-title: Modeling elastic wave propagation in waveguides with the finite element method
  publication-title: NDT E Int.
  doi: 10.1016/S0963-8695(98)00045-0
– volume: 388
  start-page: 154
  year: 2017
  ident: ref_35
  article-title: Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.10.043
– volume: 32
  start-page: 361
  year: 2017
  ident: ref_36
  article-title: Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12263
– volume: 161
  start-page: 691
  year: 2019
  ident: ref_19
  article-title: Acoustic emission pattern recognition in CFRP retrofitted RC beams for failure mode identification
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2018.12.120
– volume: 27
  start-page: 394
  year: 2005
  ident: ref_30
  article-title: The use of artificial neural network in the classification of pulse-echo and TOFD ultra-sonic signals
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1590/S1678-58782005000400007
– volume: 28
  start-page: 075019
  year: 2019
  ident: ref_44
  article-title: PZT transducer array enabled pipeline defect locating based on time-reversal method and matching pursuit de-noising
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/ab1cc9
– ident: ref_46
– ident: ref_28
  doi: 10.1201/9780429279119-516
– ident: ref_1
  doi: 10.2991/iiicec-15.2015.446
– volume: 23
  start-page: 04018033
  year: 2018
  ident: ref_25
  article-title: Time-Frequency-Based Data-Driven Structural Diagnosis and Damage Detection for Cable-Stayed Bridges
  publication-title: J. Bridg. Eng.
  doi: 10.1061/(ASCE)BE.1943-5592.0001199
– volume: 29
  start-page: 243
  year: 2014
  ident: ref_32
  article-title: A support vector machine approach for classification of welding defects from ultrasonic signals
  publication-title: Nondestruct. Test. Eval.
  doi: 10.1080/10589759.2014.914210
– ident: ref_43
– volume: 68
  start-page: 935
  year: 2020
  ident: ref_39
  article-title: Deep Learning Analysis of Ultrasonic Guided Waves for Cortical Bone Characterization
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2020.3025546
– volume: 1
  start-page: 021007
  year: 2018
  ident: ref_33
  article-title: Multisource data fusion for classification of surface cracks in steel pipes
  publication-title: J. Nondestruct. Eval. Diagn. Progn. Eng. Syst.
SSID ssj0023338
Score 2.4578633
Snippet Welding is widely used in the connection of metallic structures, including welded joints in oil/gas metallic pipelines and other structures. The welding...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5390
SubjectTerms Accuracy
Artificial intelligence
convolutional neural network
data-driven approach
Deep learning
Defects
machine learning
Neural networks
nondestructive detection
Nondestructive testing
Propagation
Simulation
Steel pipes
structural health monitoring
ultrasonic guided wave
Velocity
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT_SAgBaxUNCAeuASNfEjsY-021L1wKWs2ltkZ2xYaZuutG1_BT-amSQbbSQkLlzjseJ4xvNwZr4R4tjnLgUbiox80SrTOvnMh0Zl1qRcNpUJedNlW3wvLxf66tbc7rT64pywHh6437gTp5PG5Cpuf6et9iEqp6yMZem4yQ6y9iWbtw2mhlBLUeTV4wgpCupPNpIBuRUr3h3r04H0TzzLaV7kjqG5eCleDB4ifO1X9ko8i-1rsb-DG3ggfs9jXMMAjfoTzu_W3OssIlx3aLCMpAF9fRH0Z5angW8R5v6OFAjM-wQ7hmgG8lrHeXEDfDELN3GFfG0IT0sPc4pQ2cLBYkXr3TCWLnx7XCK978Y_xUOxuDj_cXaZDW0VsoZiv4eMPDiPVVOUJiDFR8o3pLUKmULQqYjIxbHeYZWjst5oj7ak_bUoQ0JiHib1Ruy19218K0Am9CqahGUkjVvKYFNhXSxUg0aZqGfiy3a762bAHOfWF6uaYg_mTD1yZiY-j6TrHmjjb0SnzLORgLGxuwckMfUgMfW_JGYmjrYcr4cDu6m5oDevKmfsTHwah-mo8f8T38b7x47GSDIOjmiqiaRMFjQdaZe_OtBu8pM1ueLv_scXvBfPJVdhML6nOxJ7JCPxA_lGD-Fjdwz-ANrgEAI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgXOCA-BQLBRnEgUvUJLYT-4SA7bbiwAVW7S2yPXZZaZvdkra_gh_NTOINGwlxjceylbFn3tjjN4y9t7mJTrsiQyxaZ1JGm1nnRaZVzEtfK5f7PtviW3W6lF_P1Xk6cOtSWuXOJvaGGjaezsiP6MVlXtdG6Y_bq4yqRtHtaiqhcZfdK9DTUEqXXpyMAZfA-GtgExIY2h91JdFyCzK_ez6op-qf4MtpduSeu1k8Yg8TTuSfBsU-ZndC-4Q92GMPfMp-z0PY8kSQesGPL7dU8SwA_95zwhKfBh9eGfFh51I3blvgc3uJZoTPhzQ7ImrmiF3HfqHjdDzLz8Ia6PCQ364sn2OcSn6OL9c4344YdfnJzQpwvDN7G56x5eL4x5fTLBVXyDxGgNcZ4jgLtS8q5QCjJGE92q6ijM7JWASgJ7LWQJ2D0FZJC7pCZKGhdBFQhRDFc3bQbtrwgvEyghVBRagC2t2qdDoW2oRCeFBCBTljH3a_u_GJeZwKYKwbjEBIM82omRl7N4puB7qNfwl9Jp2NAsSQ3X_Y_Lpo0oZrjIwSoqmpbKLU0rogjNBlqCpDxZlgxg53Gm_Stu2av4tsxt6Ozbjh6BbFtmFz08uoEl2EQZl6slImE5q2tKufPXU3omWJgPzl_wd_xe6X9MqC-DvNITtA7YfXiH2u3Zt-gf8Bw3YIxA
  priority: 102
  providerName: ProQuest
Title Deep Learning Empowered Structural Health Monitoring and Damage Diagnostics for Structures with Weldment via Decoding Ultrasonic Guided Wave
URI https://www.proquest.com/docview/2694077958
https://www.proquest.com/docview/2695291198
https://pubmed.ncbi.nlm.nih.gov/PMC9324916
https://doaj.org/article/94f4df970589484abe39382e6698321d
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELb6kFA5IJ5ioawM4sAlkPgR2weEKLvbCokKAavuLbJju6y0zS7dtoL_wI9mJslGG6knLlGUjJUo4_F849jfR8hrm5rotMsSwKIqESLaxLqSJ1rGlJVKurSsV1uc5idT8XkmZztko7HZfsD1raUd6klNLxdvf__68wEC_j1WnFCyv1szpNuGs12yDwlJoZDBF9H9TGAcyrCGVKhvfkDucBTVS5FndSsr1eT9PcTZXy-5lYAm98m9FjnSj42rH5CdUD0kd7f4BB-Rv6MQVrSlTD2n44sVaqAFT7_XLLHIsEGbfUe0iWVsRm3l6chewMBCR83CO6RupoBmu3ZhTXHClp6FhcfpRHozt3QElStmPjpdwPuukWOXHl_PPTzvzN6Ex2Q6Gf_4dJK0cgtJCTXhVQLIznpVZrl0HuombksYzTIWnRMxCx43zVrjVeq5tlJYr3PAGtozFz041Uf-hOxVyyo8JZRFb3mQ0ecBRuKcOR0zbULGSy-5DGJA3mw-d1G2XOQoibEooCZBJxWdkwbkVWe6agg4bjM6Qp91BsiZXV9YXp4XbQgWRkTho1EopCi0sC5wwzULeW5QrskPyOHG48WmHxa40TdVykg9IC-72xCC-F_FVmF5XdtIBknDgI3q9ZTeC_XvVPOfNZk34GcBEP3Zf7d8Tg4YbslAsk9zSPagY4QXAJSu3JDsqpmCo54cD8n-0fj067dhPekwrAPkHytKG8U
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFMsLWAQSFyiJn4k8QEhIN1uaemFrtpbasd2WWmb3ZK2iP_Ab-E3MpMXGwlx6zUex5ZnPA_b8w0hr3WovElNFIAvmgRCeB1oU_AglT5kRSJNWNSvLQ7iyVR8PpbHa-R3lwuDzyo7nVgrarso8Ix8CzMuwyRRMn2_PA-wahTernYlNBqx2HM_f0DIVr3bzYC_bxgbbx9-mgRtVYGggNDnIgAHRtukiGJpLIQHXBewaSPmjRE-chZzQ7WySWh5qqXQNo3BpKaWGW9h7tZz-O8NclNwsOSYmT7e6QM8DvFeg14EjeFWxRAGnKO6X7F5dWmAgT87fI25Yt7G98jd1i-lHxpBuk_WXPmA3FlBK3xIfmXOLWkLyHpKt8-WWGHNWfq1xqBF_A7aZDXRRlNgN6pLSzN9BmqLZs2zPgSGpuAr9_1cRfE4mB65ucXDSno10zSDuBjtKp3OYb4VIvjSncuZhfGO9JV7RKbXsuyPyXq5KN0TQpm3mjvpbexAz8fMpD5KlYt4YSWXTozI226586JFOseCG_McIh7kTN5zZkRe9aTLBt7jX0QfkWc9ASJy1x8W30_zdoPnSnhhvUqwTKNIhTaOK54yF8cKi0HZEdnsOJ63aqLK_wr1iLzsm2GD462NLt3isqaRDEySAppkICmDCQ1bytm3GiocvHMBAcDT_w_-gtyaHH7Zz_d3D_Y2yG2GGR6IHao2yTpIgnsGfteFeV4LOyUn1727_gCPwkYo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVEJwQDxFoMCCQOJixd6H7T0gRHFCS1FUAVF7M7ve3RIpdQJui_gP_CJ-HTO2Y2IJcevVnvVr3uuZbwh5rkPlTWqiAGLRJBDC60Cbggep9CErEmnCoq62mMZ7M_H-WB5vkd_rXhgsq1zbxNpQ22WBe-Qj7LgMk0TJdOTbsojDbPJ69S3ACVL4p3U9TqMRkQP38wekb9Wr_Qx4_YKxyfjz272gnTAQFJAGnQUQzGibFFEsjYVUgesCFDhi3hjhI2exT1Qrm4SWp1oKbdMY3GtqmfEW3sN6Dte9QrYTzIoGZHt3PD382KV7HLK_BsuIcxWOKoag4ByN_4YHrAcF9KLbfm3mhrOb3CQ32iiVvmnE6hbZcuVtcn0Du_AO-ZU5t6ItPOsJHZ-ucN6as_RTjUiLaB606XGijd3AZVSXlmb6FIwYzZoiP4SJphA5d-tcRXFzmB65hcWtS3ox1zSDLBm9LJ0t4HkrxPOl787nFu53pC_cXTK7lA9_jwzKZenuE8q81dxJb2MHVj9mJvVRqlzECyu5dGJIXq4_d160uOc4fmORQ_6DnMk7zgzJs4501YB9_ItoF3nWESA-d31g-f0kb9U9V8IL61WCQxtFKrRxXPGUuThWOBrKDsnOmuN5azSq_K-ID8nT7jSoO_7D0aVbntc0koGDUkCT9CSl90D9M-X8aw0cDrG6gHTgwf9v_oRcBc3KP-xPDx6SawzbPRBIVO2QAQiCewRB2Jl53Eo7JV8uW8H-AMiXS7o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Empowered+Structural+Health+Monitoring+and+Damage+Diagnostics+for+Structures+with+Weldment+via+Decoding+Ultrasonic+Guided+Wave&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Zi&rft.au=Pan%2C+Hong&rft.au=Wang%2C+Xingyu&rft.au=Lin%2C+Zhibin&rft.date=2022-07-19&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=22&rft.issue=14&rft_id=info:doi/10.3390%2Fs22145390&rft_id=info%3Apmid%2F35891068&rft.externalDocID=PMC9324916
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon