A Comprehensive Review of Endogenous EEG-Based BCIs for Dynamic Device Control

Electroencephalogram (EEG)-based brain–computer interfaces (BCIs) provide a novel approach for controlling external devices. BCI technologies can be important enabling technologies for people with severe mobility impairment. Endogenous paradigms, which depend on user-generated commands and do not ne...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 15; p. 5802
Main Authors Padfield, Natasha, Camilleri, Kenneth, Camilleri, Tracey, Fabri, Simon, Bugeja, Marvin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 03.08.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroencephalogram (EEG)-based brain–computer interfaces (BCIs) provide a novel approach for controlling external devices. BCI technologies can be important enabling technologies for people with severe mobility impairment. Endogenous paradigms, which depend on user-generated commands and do not need external stimuli, can provide intuitive control of external devices. This paper discusses BCIs to control various physical devices such as exoskeletons, wheelchairs, mobile robots, and robotic arms. These technologies must be able to navigate complex environments or execute fine motor movements. Brain control of these devices presents an intricate research problem that merges signal processing and classification techniques with control theory. In particular, obtaining strong classification performance for endogenous BCIs is challenging, and EEG decoder output signals can be unstable. These issues present myriad research questions that are discussed in this review paper. This review covers papers published until the end of 2021 that presented BCI-controlled dynamic devices. It discusses the devices controlled, EEG paradigms, shared control, stabilization of the EEG signal, traditional machine learning and deep learning techniques, and user experience. The paper concludes with a discussion of open questions and avenues for future work.
AbstractList Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) provide a novel approach for controlling external devices. BCI technologies can be important enabling technologies for people with severe mobility impairment. Endogenous paradigms, which depend on user-generated commands and do not need external stimuli, can provide intuitive control of external devices. This paper discusses BCIs to control various physical devices such as exoskeletons, wheelchairs, mobile robots, and robotic arms. These technologies must be able to navigate complex environments or execute fine motor movements. Brain control of these devices presents an intricate research problem that merges signal processing and classification techniques with control theory. In particular, obtaining strong classification performance for endogenous BCIs is challenging, and EEG decoder output signals can be unstable. These issues present myriad research questions that are discussed in this review paper. This review covers papers published until the end of 2021 that presented BCI-controlled dynamic devices. It discusses the devices controlled, EEG paradigms, shared control, stabilization of the EEG signal, traditional machine learning and deep learning techniques, and user experience. The paper concludes with a discussion of open questions and avenues for future work.Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) provide a novel approach for controlling external devices. BCI technologies can be important enabling technologies for people with severe mobility impairment. Endogenous paradigms, which depend on user-generated commands and do not need external stimuli, can provide intuitive control of external devices. This paper discusses BCIs to control various physical devices such as exoskeletons, wheelchairs, mobile robots, and robotic arms. These technologies must be able to navigate complex environments or execute fine motor movements. Brain control of these devices presents an intricate research problem that merges signal processing and classification techniques with control theory. In particular, obtaining strong classification performance for endogenous BCIs is challenging, and EEG decoder output signals can be unstable. These issues present myriad research questions that are discussed in this review paper. This review covers papers published until the end of 2021 that presented BCI-controlled dynamic devices. It discusses the devices controlled, EEG paradigms, shared control, stabilization of the EEG signal, traditional machine learning and deep learning techniques, and user experience. The paper concludes with a discussion of open questions and avenues for future work.
Electroencephalogram (EEG)-based brain–computer interfaces (BCIs) provide a novel approach for controlling external devices. BCI technologies can be important enabling technologies for people with severe mobility impairment. Endogenous paradigms, which depend on user-generated commands and do not need external stimuli, can provide intuitive control of external devices. This paper discusses BCIs to control various physical devices such as exoskeletons, wheelchairs, mobile robots, and robotic arms. These technologies must be able to navigate complex environments or execute fine motor movements. Brain control of these devices presents an intricate research problem that merges signal processing and classification techniques with control theory. In particular, obtaining strong classification performance for endogenous BCIs is challenging, and EEG decoder output signals can be unstable. These issues present myriad research questions that are discussed in this review paper. This review covers papers published until the end of 2021 that presented BCI-controlled dynamic devices. It discusses the devices controlled, EEG paradigms, shared control, stabilization of the EEG signal, traditional machine learning and deep learning techniques, and user experience. The paper concludes with a discussion of open questions and avenues for future work.
Author Camilleri, Kenneth
Fabri, Simon
Padfield, Natasha
Bugeja, Marvin
Camilleri, Tracey
AuthorAffiliation 1 Centre for Biomedical Cybernetics, University of Malta, MSD 2080 Msida, Malta; kenneth.camilleri@um.edu.mt
2 Department of Systems and Control Engineering, University of Malta, MSD 2080 Msida, Malta; tracey.camilleri@um.edu.mt (T.C.); simon.fabri@um.edu.mt (S.F.); marvin.bugeja@um.edu.mt (M.B.)
AuthorAffiliation_xml – name: 1 Centre for Biomedical Cybernetics, University of Malta, MSD 2080 Msida, Malta; kenneth.camilleri@um.edu.mt
– name: 2 Department of Systems and Control Engineering, University of Malta, MSD 2080 Msida, Malta; tracey.camilleri@um.edu.mt (T.C.); simon.fabri@um.edu.mt (S.F.); marvin.bugeja@um.edu.mt (M.B.)
Author_xml – sequence: 1
  givenname: Natasha
  orcidid: 0000-0001-5533-4807
  surname: Padfield
  fullname: Padfield, Natasha
– sequence: 2
  givenname: Kenneth
  orcidid: 0000-0003-0436-6408
  surname: Camilleri
  fullname: Camilleri, Kenneth
– sequence: 3
  givenname: Tracey
  surname: Camilleri
  fullname: Camilleri, Tracey
– sequence: 4
  givenname: Simon
  surname: Fabri
  fullname: Fabri, Simon
– sequence: 5
  givenname: Marvin
  orcidid: 0000-0001-6632-2369
  surname: Bugeja
  fullname: Bugeja, Marvin
BookMark eNplkU1v3CAQhlGVqvloD_0HlnppD04wGIMvlZLNJl0pSqQqdzSG8YaVDVvwbpV_X7abRE16AsEzD8M7x-TAB4-EfK7oKectPUuMVUIoyt6Ro6pmdakYowf_7A_JcUorShnnXH0gh1y0QvKGHpHb82IWxnXEB_TJbbH4iVuHv4vQF3NvwxJ92KRiPr8uLyChLS5mi1T0IRaXjx5GZ4rLzBvMEj_FMHwk73sYEn56Wk_I_dX8fvajvLm7XszOb0pT181UNnWHpueCUQFGNX3fWMktYM1rYJ1pFNiuMkJJQ7lqWUexQ2prhb2Axgp-QhZ7rQ2w0uvoRoiPOoDTfw9CXGqIkzMDaqisASEZY5ifxg6QN8gUpdkrWMWz6_vetd50I1qD-SMwvJK-vvHuQS_DVrdcUtXsmvn6JIjh1wbTpEeXDA4DeMzhaSYpq1QtVZvRL2_QVdhEn5PaUVTKVrYqU2d7ysSQUsReGzfB5HYRgxt0RfVu7Ppl7Lni25uK5_b_Z_8Av02rtg
CitedBy_id crossref_primary_10_3390_s23042069
crossref_primary_10_1080_17483107_2023_2211602
crossref_primary_10_1016_j_bspc_2023_105324
crossref_primary_10_1007_s11042_023_18096_6
crossref_primary_10_3390_s25071992
crossref_primary_10_1016_j_neurol_2022_12_008
crossref_primary_10_3390_s23135836
crossref_primary_10_1002_jey2_12011
crossref_primary_10_3390_technologies12120261
crossref_primary_10_1007_s42600_024_00372_5
crossref_primary_10_1039_D4TC00574K
crossref_primary_10_1007_s11517_024_03147_3
crossref_primary_10_1007_s11517_025_03295_0
crossref_primary_10_3389_fbioe_2024_1454262
crossref_primary_10_1080_2326263X_2024_2379009
crossref_primary_10_1088_1361_6579_acd51b
crossref_primary_10_1016_j_rcim_2023_102610
crossref_primary_10_1109_TIM_2025_3546388
crossref_primary_10_1080_10255842_2023_2275244
crossref_primary_10_3390_neurosci5020012
crossref_primary_10_1002_qute_202300185
crossref_primary_10_1016_j_medntd_2025_100353
crossref_primary_10_1080_10447318_2023_2203006
crossref_primary_10_3390_app142311173
crossref_primary_10_3390_s23094477
Cites_doi 10.1109/ACCESS.2021.3100700
10.1109/TBME.2004.827086
10.1109/TSMCC.2012.2226444
10.3389/fnhum.2019.00461
10.1002/tee.22742
10.3389/fnsys.2015.00064
10.3390/electronics9010174
10.1088/1741-2552/aace8c
10.26599/TST.2018.9010111
10.1109/TNSRE.2003.814454
10.1109/MSMC.2019.2958200
10.3389/fnhum.2018.00246
10.1109/ACCESS.2018.2886708
10.1007/s12369-018-0501-8
10.1109/TNSRE.2003.814435
10.1109/ACCESS.2018.2886271
10.3389/fbioe.2020.00735
10.1088/1741-2552/ab377d
10.1109/TNSRE.2020.2974056
10.1109/TMRB.2019.2949865
10.1016/j.jneumeth.2013.11.015
10.1016/S1388-2457(99)00141-8
10.1088/1741-2552/abe20f
10.1109/ACCESS.2020.2984538
10.1515/bams-2021-0095
10.1016/j.neucom.2014.09.078
10.1016/j.eswa.2017.07.033
10.3390/s19061423
10.1063/1.5006461
10.1109/TRO.2012.2201310
10.3389/fnbot.2017.00006
10.1016/j.bspc.2022.103634
10.1109/ACCESS.2021.3071599
10.1016/j.robot.2019.02.014
10.1016/j.neunet.2014.01.006
10.1109/TASE.2019.2911667
10.1186/1743-0003-10-111
10.1109/TNSRE.2015.2439298
10.1109/TSMC.2014.2313317
10.1615/CritRevBiomedEng.v30.i456.80
10.3390/s21062020
10.1016/j.neucom.2018.04.087
10.1016/j.cmpb.2018.06.012
10.1088/1741-2552/aae069
10.1109/ACCESS.2018.2853628
10.1088/1741-2552/ab0328
10.3389/fnins.2012.00039
10.1016/j.eswa.2020.113285
10.1515/bams-2019-0053
10.3389/fnins.2012.00055
10.1109/TNSRE.2016.2646763
10.1109/JAS.2017.7510616
10.1038/srep38565
10.1126/scirobotics.aaw6844
10.1109/ACCESS.2021.3062329
10.1016/j.compbiomed.2014.04.020
10.3390/s20247309
10.3390/s16122050
10.1109/TRO.2019.2943072
10.1111/j.1464-0597.2004.00161.x
10.1186/s12938-019-0633-6
10.1142/S1793536909000199
10.1109/TFUZZ.2016.2637403
10.1007/s10846-017-0477-x
10.1007/s42600-021-00196-7
10.1109/TSMC.2015.2506618
10.1109/TSMC.2019.2955478
10.1109/TBME.2004.827088
10.1109/JPROC.2015.2419736
10.1109/JIOT.2019.2963288
10.1088/1741-2560/10/4/046003
10.1109/TNSRE.2020.2981659
10.1126/scirobotics.aag3296
10.1002/hbm.23730
10.1109/TNSRE.2019.2915801
10.1016/j.eswa.2015.01.031
10.3389/fnins.2018.00943
10.1109/TASE.2019.2956110
10.1109/5.939829
10.1109/TNSRE.2018.2881215
10.1109/TAMD.2014.2387271
10.1109/TCDS.2018.2875052
10.1109/EMBC.2018.8512193
10.1088/1741-2552/aaf12e
10.1109/ACCESS.2020.2991812
10.1142/S0129065717500332
10.1109/I2C2.2017.8321831
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s22155802
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection (ProQuest)
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Proquest Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_a1dca57222e446ebae36e28008925213
PMC9370865
10_3390_s22155802
GrantInformation_xml – fundername: University of Malta
  grantid: ERDF.01.124
– fundername: European Union through the European Regional Development Fund
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c446t-64becf35205ac86ff6d73dae434a2bc68adb1c587c03892b0ebe0d48ef5a6d53
IEDL.DBID DOA
ISSN 1424-8220
IngestDate Wed Aug 27 01:30:05 EDT 2025
Thu Aug 21 13:57:50 EDT 2025
Mon Jul 21 11:36:16 EDT 2025
Fri Jul 25 20:08:10 EDT 2025
Tue Jul 01 02:42:05 EDT 2025
Thu Apr 24 22:57:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-64becf35205ac86ff6d73dae434a2bc68adb1c587c03892b0ebe0d48ef5a6d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6632-2369
0000-0001-5533-4807
0000-0003-0436-6408
OpenAccessLink https://doaj.org/article/a1dca57222e446ebae36e28008925213
PMID 35957360
PQID 2700779798
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_a1dca57222e446ebae36e28008925213
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9370865
proquest_miscellaneous_2702184789
proquest_journals_2700779798
crossref_citationtrail_10_3390_s22155802
crossref_primary_10_3390_s22155802
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220803
PublicationDateYYYYMMDD 2022-08-03
PublicationDate_xml – month: 8
  year: 2022
  text: 20220803
  day: 3
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Chen (ref_29) 2020; 32
Liu (ref_63) 2019; 11
ref_97
LaFleur (ref_27) 2013; 10
ref_95
Sabudin (ref_100) 2016; 11
Khan (ref_28) 2017; 11
Xu (ref_85) 2013; 16
Renkens (ref_17) 2004; 51
Tonin (ref_13) 2019; 36
Ortiz (ref_61) 2020; 8
Ang (ref_79) 2012; 6
Yu (ref_1) 2018; 26
Edelman (ref_42) 2019; 4
(ref_16) 2003; 11
Wang (ref_44) 2018; 6
Zhang (ref_71) 2016; 24
ref_23
ref_22
Hortal (ref_74) 2015; 151
Do (ref_75) 2013; 10
Pfurtscheller (ref_19) 2003; 11
Li (ref_66) 2019; 16
Junwei (ref_25) 2019; 7
Cardoso (ref_56) 2020; 28
Wang (ref_62) 2019; 16
Ji (ref_58) 2021; 116
ref_78
Gordleeva (ref_43) 2020; 8
Pfurtscheller (ref_83) 1999; 110
Ai (ref_54) 2019; 16
Raza (ref_88) 2019; 343
Zuo (ref_90) 2021; 18
Pfurtscheller (ref_15) 2001; 89
Zheng (ref_89) 2022; 76
Chae (ref_73) 2012; 28
Menon (ref_65) 2020; 7
Wankhade (ref_9) 2020; 16
Scherer (ref_18) 2010; 4
Banach (ref_24) 2021; 17
ref_82
ref_80
Li (ref_68) 2014; 224
Leeb (ref_5) 2015; 103
ref_86
Kucukyildiz (ref_33) 2017; 87
Jafarifarmand (ref_55) 2019; 27
Zecca (ref_32) 2002; 30
Ang (ref_46) 2017; 25
Cardoso (ref_36) 2022; 38
Liu (ref_45) 2017; 88
Schirrmeister (ref_94) 2017; 38
Moldoveanu (ref_51) 2019; 7
Espinal (ref_12) 2021; 9
Spychala (ref_37) 2020; 13
Kobayashi (ref_57) 2018; 13
Abiri (ref_10) 2019; 16
Shi (ref_30) 2015; 42
Kim (ref_26) 2014; 51
Perdikis (ref_4) 2020; 6
Wang (ref_8) 2021; 9
Meng (ref_38) 2016; 6
Page (ref_6) 2021; 10
Tangermann (ref_21) 2012; 6
Jeong (ref_41) 2020; 28
He (ref_84) 2016; 46
Frisoli (ref_70) 2012; 42
Gao (ref_40) 2021; 18
Rubio (ref_98) 2004; 53
Gandhi (ref_67) 2014; 44
Yokota (ref_53) 2019; 10
Alhakeem (ref_60) 2020; 8
Bhattacharyya (ref_72) 2017; 4
Zhuang (ref_52) 2021; 51
Lawhern (ref_93) 2018; 15
Ehrlich (ref_77) 2019; 11
Schicktanz (ref_3) 2015; 9
Hekmatmanesh (ref_7) 2021; 9
ref_35
Dornhege (ref_20) 2004; 51
ref_31
Sereshkeh (ref_99) 2017; 27
Baig (ref_91) 2017; 90
ref_39
Tang (ref_2) 2020; 149
Zaidan (ref_11) 2018; 164
Ehrlich (ref_92) 2018; 15
Xu (ref_50) 2019; 115
Bozinovski (ref_81) 2015; 7
Lo (ref_87) 2009; 1
Kasabov (ref_96) 2014; 52
Zhang (ref_49) 2019; 24
Hong (ref_76) 2018; 12
Kim (ref_69) 2019; 18
Cao (ref_14) 2018; 26
(ref_47) 2018; 2018
ref_48
Li (ref_59) 2018; 12
Soekadar (ref_34) 2016; 1
Li (ref_64) 2019; 1
References_xml – volume: 9
  start-page: 110173
  year: 2021
  ident: ref_7
  article-title: Review of the State-of-the-Art of Brain-Controlled Vehicles
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3100700
– volume: 51
  start-page: 1026
  year: 2004
  ident: ref_17
  article-title: Noninvasive Brain-Actuated Control of a Mobile Robot by Human EEG
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827086
– volume: 42
  start-page: 1169
  year: 2012
  ident: ref_70
  article-title: A New Gaze-BCI-Driven Control of an Upper Limb Exoskeleton for Rehabilitation in Real-World Tasks
  publication-title: IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.
  doi: 10.1109/TSMCC.2012.2226444
– volume: 13
  start-page: 461
  year: 2020
  ident: ref_37
  article-title: Exploring Self-Paced Embodiable Neurofeedback for Post-Stroke Motor Rehabilitation
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2019.00461
– volume: 13
  start-page: 1795
  year: 2018
  ident: ref_57
  article-title: BCI-Based Control of Electric Wheelchair Using Fractal Characteristics of EEG
  publication-title: IEEJ Trans. Electr. Electron. Eng.
  doi: 10.1002/tee.22742
– ident: ref_39
– volume: 9
  start-page: 64
  year: 2015
  ident: ref_3
  article-title: Qualitative Assessment of Patients’ Attitudes and Expectations toward BCIs and Implications for Future Technology Development
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2015.00064
– ident: ref_48
  doi: 10.3390/electronics9010174
– volume: 15
  start-page: 056013
  year: 2018
  ident: ref_93
  article-title: EEGNet: A Compact Convolutional Neural Network for EEG-Based Brain-Computer Interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aace8c
– volume: 24
  start-page: 360
  year: 2019
  ident: ref_49
  article-title: Asynchronous Brain-Computer Interface Shared Control of Robotic Grasping
  publication-title: Tsinghua Sci. Technol.
  doi: 10.26599/TST.2018.9010111
– volume: 11
  start-page: 177
  year: 2003
  ident: ref_19
  article-title: Graz-BCI: State of the Art and Clinical Applications
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2003.814454
– volume: 6
  start-page: 12
  year: 2020
  ident: ref_4
  article-title: Brain-Machine Interfaces: A Tale of Two Learners
  publication-title: IEEE Syst. Man Cybern. Mag.
  doi: 10.1109/MSMC.2019.2958200
– volume: 12
  start-page: 246
  year: 2018
  ident: ref_76
  article-title: Feature Extraction and Classification Methods for Hybrid FNIRS-EEG Brain-Computer Interfaces
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2018.00246
– volume: 7
  start-page: 2439
  year: 2019
  ident: ref_25
  article-title: Brain Computer Interface for Neurodegenerative Person Using Electroencephalogram
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2886708
– volume: 11
  start-page: 271
  year: 2019
  ident: ref_77
  article-title: A Feasibility Study for Validating Robot Actions Using EEG-Based Error-Related Potentials
  publication-title: Int. J. Soc. Robot.
  doi: 10.1007/s12369-018-0501-8
– volume: 11
  start-page: 10801
  year: 2016
  ident: ref_100
  article-title: Potential Field Methods and Their Inherent Approaches for Path Planning
  publication-title: ARPN J. Eng. Appl. Sci.
– volume: 11
  start-page: 159
  year: 2003
  ident: ref_16
  article-title: Asynchronous BCI and Local Neural Classifiers: An Overview of the Adaptive Brain Interface Project
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2003.814435
– volume: 7
  start-page: 8151
  year: 2019
  ident: ref_51
  article-title: The TRAVEE System for a Multimodal Neuromotor Rehabilitation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2886271
– ident: ref_97
– volume: 8
  start-page: 735
  year: 2020
  ident: ref_61
  article-title: Sensory Integration in Human Movement: A New Brain-Machine Interface Based on Gamma Band and Attention Level for Controlling a Lower-Limb Exoskeleton
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.00735
– volume: 10
  start-page: 89
  year: 2021
  ident: ref_6
  article-title: The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews
  publication-title: BMJ
– volume: 16
  start-page: 066012
  year: 2019
  ident: ref_62
  article-title: A BCI Based Visual-Haptic Neurofeedback Training Improves Cortical Activations and Classification Performance during Motor Imagery
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab377d
– volume: 28
  start-page: 988
  year: 2020
  ident: ref_56
  article-title: A Low-Cost Lower-Limb Brain-Machine Interface Triggered by Pedaling Motor Imagery for Post-Stroke Patients Rehabilitation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.2974056
– volume: 1
  start-page: 218
  year: 2019
  ident: ref_64
  article-title: Hybrid Brain/Muscle Signals Powered Wearable Walking Exoskeleton Enhancing Motor Ability in Climbing Stairs Activity
  publication-title: IEEE Trans. Med. Robot. Bionics
  doi: 10.1109/TMRB.2019.2949865
– volume: 224
  start-page: 26
  year: 2014
  ident: ref_68
  article-title: Brain-Machine Interface Control of a Manipulator Using Small-World Neural Network and Shared Control Strategy
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2013.11.015
– volume: 110
  start-page: 1842
  year: 1999
  ident: ref_83
  article-title: Event-Related EEG/MEG Synchronization and Desynchronization: Basic Principles
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(99)00141-8
– volume: 18
  start-page: 026018
  year: 2021
  ident: ref_90
  article-title: Cluster Decomposing and Multi-Objective Optimization Based-Ensemble Learning Framework for Motor Imagery-Based Brain-Computer Interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abe20f
– volume: 8
  start-page: 64266
  year: 2020
  ident: ref_60
  article-title: Wheelchair Free Hands Navigation Using Robust DWT-AR Features Extraction Method with Muscle Brain Signals
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2984538
– volume: 17
  start-page: 165
  year: 2021
  ident: ref_24
  article-title: Brain-Computer Interface for Electric Wheelchair Based on Alpha Waves of EEG Signal
  publication-title: Bio-Algorithms Med-Syst.
  doi: 10.1515/bams-2021-0095
– volume: 151
  start-page: 116
  year: 2015
  ident: ref_74
  article-title: SVM-Based Brain-Machine Interface for Controlling a Robot Arm through Four Mental Tasks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.09.078
– volume: 90
  start-page: 184
  year: 2017
  ident: ref_91
  article-title: Differential Evolution Algorithm as a Tool for Optimal Feature Subset Selection in Motor Imagery EEG
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.07.033
– ident: ref_78
  doi: 10.3390/s19061423
– volume: 88
  start-page: 104302
  year: 2017
  ident: ref_45
  article-title: A Brain-Controlled Lower-Limb Exoskeleton for Human Gait Training
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.5006461
– volume: 28
  start-page: 1131
  year: 2012
  ident: ref_73
  article-title: Toward Brain-Actuated Humanoid Robots: Asynchronous Direct Control Using an EEG-Based BCI
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2012.2201310
– volume: 11
  start-page: 6
  year: 2017
  ident: ref_28
  article-title: Hybrid EEG-FNIRS-Based Eight-Command Decoding for BCI: Application to Quadcopter Control
  publication-title: Front. Neurorobotics
  doi: 10.3389/fnbot.2017.00006
– volume: 76
  start-page: 103634
  year: 2022
  ident: ref_89
  article-title: Ensemble Learning Method Based on Temporal, Spatial Features with Multi-Scale Filter Banks for Motor Imagery EEG Classification
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.103634
– volume: 9
  start-page: 55920
  year: 2021
  ident: ref_8
  article-title: Brain-Controlled Wheelchair Review: From Wet Electrode to Dry Electrode, From Single Modal to Hybrid Modal, From Synchronous to Asynchronous
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3071599
– volume: 115
  start-page: 121
  year: 2019
  ident: ref_50
  article-title: Shared Control of a Robotic Arm Using Non-Invasive Brain–Computer Interface and Computer Vision Guidance
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2019.02.014
– volume: 52
  start-page: 62
  year: 2014
  ident: ref_96
  article-title: NeuCube: A Spiking Neural Network Architecture for Mapping, Learning and Understanding of Spatio-Temporal Brain Data
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.01.006
– ident: ref_22
– volume: 16
  start-page: 1664
  year: 2019
  ident: ref_66
  article-title: Development of a Human-Robot Hybrid Intelligent System Based on Brain Teleoperation and Deep Learning SLAM
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2019.2911667
– ident: ref_95
– volume: 10
  start-page: 111
  year: 2013
  ident: ref_75
  article-title: Brain-Computer Interface Controlled Robotic Gait Orthosis
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-10-111
– volume: 4
  start-page: 34
  year: 2010
  ident: ref_18
  article-title: Temporal Coding of Brain Patterns for Direct Limb Control in Humans
  publication-title: Front. Neurosci.
– volume: 24
  start-page: 128
  year: 2016
  ident: ref_71
  article-title: Control of a Wheelchair in an Indoor Environment Based on a Brain-Computer Interface and Automated Navigation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2015.2439298
– volume: 44
  start-page: 1278
  year: 2014
  ident: ref_67
  article-title: EEG-Based Mobile Robot Control through an Adaptive Brain-Robot Interface
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2014.2313317
– volume: 30
  start-page: 459
  year: 2002
  ident: ref_32
  article-title: Control of Multifunctional Prosthetic Hands by Processing the Electromyographic Signal
  publication-title: Crit. Rev. Biomed. Eng.
  doi: 10.1615/CritRevBiomedEng.v30.i456.80
– volume: 16
  start-page: 3543
  year: 2013
  ident: ref_85
  article-title: Online Classification of Single Trial Motor Imagery Electroencephalogram Signals
  publication-title: Int. Inf. Inst. (Tokyo) Inf.
– ident: ref_31
  doi: 10.3390/s21062020
– volume: 343
  start-page: 154
  year: 2019
  ident: ref_88
  article-title: Covariate Shift Estimation Based Adaptive Ensemble Learning for Handling Non-Stationarity in Motor Imagery Related EEG-Based Brain-Computer Interface
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.04.087
– volume: 164
  start-page: 221
  year: 2018
  ident: ref_11
  article-title: A Review of Disability EEG Based Wheelchair Control System: Coherent Taxonomy, Open Challenges and Recommendations
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.06.012
– volume: 15
  start-page: 066014
  year: 2018
  ident: ref_92
  article-title: Human-Agent Co-Adaptation Using Error-Related Potentials
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aae069
– volume: 6
  start-page: 38524
  year: 2018
  ident: ref_44
  article-title: Implementation of a Brain-Computer Interface on a Lower-Limb Exoskeleton
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2853628
– volume: 16
  start-page: 026032
  year: 2019
  ident: ref_54
  article-title: Feature Extraction of Four-Class Motor Imagery EEG Signals Based on Functional Brain Network
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab0328
– volume: 6
  start-page: 39
  year: 2012
  ident: ref_79
  article-title: Filter Bank Common Spatial Pattern Algorithm on BCI Competition IV Datasets 2a and 2b
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2012.00039
– volume: 149
  start-page: 113285
  year: 2020
  ident: ref_2
  article-title: Motor Imagery EEG Recognition Based on Conditional Optimization Empirical Mode Decomposition and Multi-Scale Convolutional Neural Network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113285
– volume: 16
  start-page: 20190053
  year: 2020
  ident: ref_9
  article-title: An Empirical Survey of Electroencephalography-Based Brain-Computer Interfaces
  publication-title: Bio-Algorithms Med-Syst.
  doi: 10.1515/bams-2019-0053
– volume: 6
  start-page: 55
  year: 2012
  ident: ref_21
  article-title: Review of the BCI Competition IV
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2012.00055
– volume: 2018
  start-page: 1624637
  year: 2018
  ident: ref_47
  article-title: Motor Imagery-Based Brain-Computer Interface Coupled to a Robotic Hand Orthosis Aimed for Neurorehabilitation of Stroke Patients
  publication-title: J. Healthc. Eng.
– ident: ref_23
– volume: 25
  start-page: 392
  year: 2017
  ident: ref_46
  article-title: EEG-Based Strategies to Detect Motor Imagery for Control and Rehabilitation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2646763
– volume: 4
  start-page: 639
  year: 2017
  ident: ref_72
  article-title: Motor Imagery and Error Related Potential Induced Position Control of a Robotic Arm
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2017.7510616
– volume: 6
  start-page: 38565
  year: 2016
  ident: ref_38
  article-title: Noninvasive Electroencephalogram Based Control of a Robotic Arm for Reach and Grasp Tasks
  publication-title: Sci. Rep.
  doi: 10.1038/srep38565
– volume: 4
  start-page: eaaw6844
  year: 2019
  ident: ref_42
  article-title: Noninvasive Neuroimaging Enhances Continuous Neural Tracking for Robotic Device Control
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aaw6844
– volume: 9
  start-page: 35766
  year: 2021
  ident: ref_12
  article-title: Biologically-Inspired Legged Robot Locomotion Controlled with a BCI by Means of Cognitive Monitoring
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3062329
– volume: 51
  start-page: 82
  year: 2014
  ident: ref_26
  article-title: Quadcopter Flight Control Using a Low-Cost Hybrid Interface with EEG-Based Classification and Eye Tracking
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2014.04.020
– ident: ref_35
  doi: 10.3390/s20247309
– ident: ref_86
  doi: 10.3390/s16122050
– volume: 36
  start-page: 78
  year: 2019
  ident: ref_13
  article-title: The Role of the Control Framework for Continuous Teleoperation of a Brain–Machine Interface-Driven Mobile Robot
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2019.2943072
– volume: 53
  start-page: 61
  year: 2004
  ident: ref_98
  article-title: Evaluation of Subjective Mental Workload: A Comparison of SWAT, NASA-TLX, and Workload Profile Methods
  publication-title: Appl. Psychol.
  doi: 10.1111/j.1464-0597.2004.00161.x
– volume: 18
  start-page: 14
  year: 2019
  ident: ref_69
  article-title: Vision-Aided Brain-Machine Interface Training System for Robotic Arm Control and Clinical Application on Two Patients with Cervical Spinal Cord Injury
  publication-title: BioMedical Eng. Online
  doi: 10.1186/s12938-019-0633-6
– volume: 1
  start-page: 461
  year: 2009
  ident: ref_87
  article-title: The nonlinear and nonstationary properties in eeg signals: Probing the complex fluctuations by hilbert–huang transform
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536909000199
– volume: 26
  start-page: 101
  year: 2018
  ident: ref_14
  article-title: A Self-Adaptive Online Brain-Machine Interface of a Humanoid Robot Through a General Type-2 Fuzzy Inference System
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2016.2637403
– volume: 87
  start-page: 247
  year: 2017
  ident: ref_33
  article-title: Design and Implementation of a Multi Sensor Based Brain Computer Interface for a Robotic Wheelchair
  publication-title: J. Intell. Robot. Syst. Theory Appl.
  doi: 10.1007/s10846-017-0477-x
– volume: 38
  start-page: 439
  year: 2022
  ident: ref_36
  article-title: BCI Based on Pedal End-Effector Triggered through Pedaling Imagery to Promote Excitability over the Feet Motor Area
  publication-title: Res. Biomed. Eng.
  doi: 10.1007/s42600-021-00196-7
– volume: 46
  start-page: 936
  year: 2016
  ident: ref_84
  article-title: A Wireless BCI and BMI System for Wearable Robots
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2015.2506618
– volume: 51
  start-page: 5392
  year: 2021
  ident: ref_52
  article-title: Ensemble Learning Based Brain-Computer Interface System for Ground Vehicle Control
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2019.2955478
– volume: 51
  start-page: 993
  year: 2004
  ident: ref_20
  article-title: Boosting Bit Rates in Noninvasive EEG Single-Trial Classifications by Feature Combination and Multiclass Paradigms
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827088
– volume: 103
  start-page: 969
  year: 2015
  ident: ref_5
  article-title: Towards Independence: A BCI Telepresence Robot for People with Severe Motor Disabilities
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2419736
– volume: 10
  start-page: 114
  year: 2019
  ident: ref_53
  article-title: Brain-Controlled for Changing Modular Robot Configuration by Employing Neurosky’s Headset
  publication-title: (IJACSA) Int. J. Adv. Comput. Sci. Appl.
– volume: 116
  start-page: 1
  year: 2021
  ident: ref_58
  article-title: A Closed-Loop Brain-Computer Interface with Augmented Reality Feedback for Industrial Human-Robot Collaboration
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 7
  start-page: 5874
  year: 2020
  ident: ref_65
  article-title: SDN-Powered Humanoid with Edge Computing for Assisting Paralyzed Patients
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2963288
– volume: 10
  start-page: 046003
  year: 2013
  ident: ref_27
  article-title: Quadcopter Control in Three-Dimensional Space Using a Noninvasive Motor Imagery-Based Brain-Computer Interface
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/10/4/046003
– volume: 28
  start-page: 1226
  year: 2020
  ident: ref_41
  article-title: Brain-Controlled Robotic Arm System Based on Multi-Directional CNN-BiLSTM Network Using EEG Signals
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.2981659
– volume: 32
  start-page: 991
  year: 2020
  ident: ref_29
  article-title: Quadcopter Robot Control Based on Hybrid Brain-Computer Interface System
  publication-title: Sens. Mater.
– volume: 1
  start-page: eaag3296
  year: 2016
  ident: ref_34
  article-title: Hybrid EEG/EOG-Based Brain/Neural Hand Exoskeleton Restores Fully Independent Daily Living Activities after Quadriplegia
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.aag3296
– volume: 38
  start-page: 5391
  year: 2017
  ident: ref_94
  article-title: Deep Learning with Convolutional Neural Networks for EEG Decoding and Visualization
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23730
– volume: 27
  start-page: 1200
  year: 2019
  ident: ref_55
  article-title: EEG Artifacts Handling in a Real Practical Brain-Computer Interface Controlled Vehicle
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2915801
– volume: 42
  start-page: 4196
  year: 2015
  ident: ref_30
  article-title: Brain Computer Interface System Based on Indoor Semi-Autonomous Navigation and Motor Imagery for Unmanned Aerial Vehicle Control
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.01.031
– volume: 12
  start-page: 1
  year: 2018
  ident: ref_59
  article-title: An Approach for Brain-Controlled Prostheses Based on a Facial Expression Paradigm
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00943
– volume: 18
  start-page: 530
  year: 2021
  ident: ref_40
  article-title: EEG-Based Volitional Control of Prosthetic Legs for Walking in Different Terrains
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2019.2956110
– volume: 89
  start-page: 1123
  year: 2001
  ident: ref_15
  article-title: Motor Imagery and Direct Brain-Computer Communication
  publication-title: Proc. IEEE
  doi: 10.1109/5.939829
– volume: 26
  start-page: 2367
  year: 2018
  ident: ref_1
  article-title: An Asynchronous Control Paradigm Based on Sequential Motor Imagery and Its Application in Wheelchair Navigation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2881215
– volume: 7
  start-page: 39
  year: 2015
  ident: ref_81
  article-title: Mental States, EEG Manifestations, and Mentally Emulated Digital Circuits for Brain-Robot Interaction
  publication-title: IEEE Trans. Auton. Ment. Dev.
  doi: 10.1109/TAMD.2014.2387271
– volume: 11
  start-page: 414
  year: 2019
  ident: ref_63
  article-title: Motor-Imagery-Based Teleoperation of a Dual-Arm Robot Performing Manipulation Tasks
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2018.2875052
– ident: ref_82
  doi: 10.1109/EMBC.2018.8512193
– volume: 16
  start-page: 011001
  year: 2019
  ident: ref_10
  article-title: A Comprehensive Review of EEG-Based Brain-Computer Interface Paradigms
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aaf12e
– volume: 8
  start-page: 84070
  year: 2020
  ident: ref_43
  article-title: Real-Time EEG-EMG Human-Machine Interface-Based Control System for a Lower-Limb Exoskeleton
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2991812
– volume: 27
  start-page: 1750033
  year: 2017
  ident: ref_99
  article-title: Online EEG Classification of Covert Speech for Brain-Computer Interfacing
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065717500332
– ident: ref_80
  doi: 10.1109/I2C2.2017.8321831
SSID ssj0023338
Score 2.509225
SecondaryResourceType review_article
Snippet Electroencephalogram (EEG)-based brain–computer interfaces (BCIs) provide a novel approach for controlling external devices. BCI technologies can be important...
Electroencephalogram (EEG)-based brain-computer interfaces (BCIs) provide a novel approach for controlling external devices. BCI technologies can be important...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5802
SubjectTerms Brain research
brain–computer interface (BCI)
brain–machine interface (BMI)
control
electroencephalogram (EEG)
Electroencephalography
endogenous
Human subjects
Interfaces
Metadata
motor imagery (MI)
Review
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BucABtTxEoK0M4sDFahrHrxPqbrcUJHoq0t4ixw9aCSVld_n_zCTebSMhrvFIScaP-ebhbwA-WpskWQKOptJyunrJKZnErbNDWs3Ega7p-5W6_FF_W8plDritc1nl9kwcDurQe4qRn1CCVGurrfl895tT1yjKruYWGo_hCVGXUUmXXt47XAL9r5FNSKBrf7Ku0L5JkyMoWxs0UPVP8OW0OvKBubnYh-cZJ7KzcWIP4FHsXsCzB-yBL-HqjNFuXsWbsQidjXF-1ie26EI_sq-yxeILn6GpCmw2_7pmiFHZ-diFnp1HOibYfKxWfwXXF4vr-SXP7RG4Rx9uw1WN-k8IoErpvFEpqaBFcLEWtatar4wL7amXRnsi0avaEuerDLWJSToVpHgNe13fxTfAtJMqqtaUdWtqL-rWJ2eTkbHSqapKV8Cnrb4an6nDqYPFrwZdCFJts1NtAR92oncjX8a_hGak9J0AUVwPD_rVzybvmMadBu-kRvwS8Xdj66JQsUJ8i_-CmEMUcLidsibvu3Vzv0oKeL8bxh1DaRDXRdQ7yZBfq40tQE-mevJB05Hu9mbg3kY0h06gfPv_l7-DpxVdk6DSEnEIe5vVn3iE4GXTHg8r9C-reO7W
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9xADLUQXMoBAS0iLaBp1QOXlDCZzwNC7LKUIsEJJG7RZDIDSCjb7i5S---xk2xEJI69ZnzI2OP4OfY8A3y3NkqKBCmGSpvS1cuUikmpdbYpq5nQ0DVd36jLO3F1L-9XYDljs1Pg_N3UjuZJ3c2ef_z98-8UHf6EMk5M2Y_mHOOWNEQpuYYBSZN_Xou-mMBzTMNaUqGh-CAUNYz9A5g5bJJ8E3UuNmGjg4vsrLXvFqyEehvW35AIfoSbM0ZOPQuPbS86a3_3s2lkk7qatiSsbDL5mY4wYlVsNP41ZwhV2Xk7jJ6dB_pasHHbtP4Jbi8mt-PLtJuSkHpM5RapEmiGiDgqk84bFaOqdF65IHLheOmVcVV57KXRnrj0eJmh2bJKmBClU5XMd2C1ntZhF5h2UgVVmkyURvhclD46G40MXEfOM5fA4VJfhe8YxGmQxXOBmQSptuhVm8C3XvR3S5vxntCIlN4LENN182A6eyg6xyncceWd1AhjAm43lC7kKnCEubgXhB55AntLkxXL01NQNV1rq61J4Gu_jI5D1RBXB9Q7yVB6q41NQA9MPXih4Ur99NhQcCOow1xQfv4fO_gCHzjdqaA-lHwPVhezl7CPSGdRHjTn-BUCEfy6
  priority: 102
  providerName: Scholars Portal
Title A Comprehensive Review of Endogenous EEG-Based BCIs for Dynamic Device Control
URI https://www.proquest.com/docview/2700779798
https://www.proquest.com/docview/2702184789
https://pubmed.ncbi.nlm.nih.gov/PMC9370865
https://doaj.org/article/a1dca57222e446ebae36e28008925213
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7a9NIeStMHdZssaumhFxNH1vOY3XiTFLKUksLejCxLJFC8Jbv5_5mxvMsaAr30ooM1B3nG8jejGX0D8M3aKAkJcoRKm9PVy5ySSbl1tk-rmdDTNV0v1OVv8WMpl3utvqgmLNEDJ8WduNPWO6kRxgJGLqFxoVSBo5tjLEfo6Xk-EfO2wdQQapUYeSUeoRKD-pM1R2STZjg72aJPT9I_8izHdZF7QDN_A68HD5GdpZUdwrPQvYVXe7yB72Bxxmgf34fbVH7O0gk_W0VWde0q8a6yqrrIpwhSLZvOrtYMvVN2nvrPs_NAPwg2S3Xq7-FmXt3MLvOhMULuUQebXAnUfETXqZDOGxWjanXZuiBK4XjjlXFtc-ql0Z7o83hToKWKVpgQpVOtLD_AQbfqwkdg2kkVVGMK0RjhS9H46Gw0MnAdOS9cBt-3-qr9QBpOvSv-1Bg8kGrrnWoz-LoT_ZuYMp4SmpLSdwJEbt0_QJPXg8nrf5k8g6Otyephx61rSqBrbbU1GXzZTeNeoQSI6wLqnWQootXGZqBHph4taDzT3d32rNvox2H4Jz_9jzf4DC85XaOg0pPyCA429w_hGJ2bTTOB53qpcTTziwm8mFaLn78m_beN47UwjxYo-rA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcEE8RKGAQSFyipk4c2weEuo-yS9s9LdLeIsd2KBJKyu4ixI_iPzITJ9tGQtx6jS0lHntmvsmMvwF4q3UlyBPE6Cp1TFcvY0omxdroNq2mfEvXdL7IZ1-yzyux2oM__V0YKqvsbWJrqF1j6R_5ISVIpdRSq4-XP2LqGkXZ1b6FRjgWp_73LwzZNh_mE9zfd5yfTJfjWdx1FYgthj7bOM_wsyvEHYkwVuVVlTuZOuOzNDO8tLkyrjyyQklL3HO8THCZicuUr4TJHTWJQIt_C_1uQgolV1fxXYrhXiAvSlOdHG44ulOhuh82vctrOwMM4OywGPOadzu5D_c6WMqOwzl6AHu-fgh3r5EVPoLFMSPjsfYXoeadhbQCayo2rV0TyF7ZdPopHqFndGw0nm8YQmI2CU3v2cSTVWLjUBz_GJY3IbcnsF83tX8KTBqR-7xUSVaqzKZZaSujKyU8lxXniYngfS-vwnZM5dQw43uBEQuJttiJNoI3u6mXgZ7jX5NGJPTdBGLUbh80669Fp6CFOXLWCIlwyeNyfWl8mnuOcBrXghAnjeCg37KiU_NNcXUoI3i9G0YFpayLqT3KneZQGC2VjkAOtnrwQcOR-ttFS_WN4BFjTvHs_y9_Bbdny_Oz4my-OH0Odzjd0KCqlvQA9rfrn_4F4qZt-bI9rQyKG9aOv103LPQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRUJwQDxFoIBBIHGJNmvHsX1AqPuiS2HFoUh7ixzHppUgKbuLUH8a_46ZPLZdCXHrNbaUeOyZ-SYz_gbgtTFBkieI0VWamK5expRMio01TVpN-4au6fMiO_qaflzK5R786e_CUFllbxMbQ13Wjv6RDyhBqpRRRg9CVxbxZTJ7f_4zpg5SlGnt22m0R-TYX_zG8G39bj7BvX7D-Wx6Mj6Kuw4DscMwaBNnKS4hIAZJpHU6CyErlSitT0VqeeEybcti6KRWjnjoeJHgkpMy1T5Im5XUMAKt_w0l5JBUTC0vYz2BoV9LZCSESQZrjq5V6u7nTe_-mi4BO9B2tzDziqeb3YU7HURlh-2Zugd7vroPt68QFz6AxSEjQ7Lyp239O2tTDKwObFqVdUv8yqbTD_EIvWTJRuP5miE8ZpOLyv44c2ziyUKxcVso_xBOrkNuj2C_qiv_GJiyMvNZoZO00KkTaeGCNUFLz1XgPLERvO3llbuOtZyaZ3zPMXoh0eZb0Ubwajv1vKXq-NekEQl9O4HYtZsH9epb3ilrboels1IhdPK4XF9YLzLPEVrjWhDuiAgO-i3LO5Vf55cHNIKX22FUVsrA2Mqj3GkOhdRKmwjUzlbvfNDuSHV22tB-I5DE-FM--f_LX8BN1Iv803xx_BRucbqsQQUu4gD2N6tf_hlCqE3xvDmsDPJrVo6_CYYxKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comprehensive+Review+of+Endogenous+EEG-Based+BCIs+for+Dynamic+Device+Control&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Natasha+Padfield&rft.au=Kenneth+Camilleri&rft.au=Tracey+Camilleri&rft.au=Simon+Fabri&rft.date=2022-08-03&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=15&rft.spage=5802&rft_id=info:doi/10.3390%2Fs22155802&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a1dca57222e446ebae36e28008925213
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon