Three-Dimensional Reconstruction Method of Rapeseed Plants in the Whole Growth Period Using RGB-D Camera

The three-dimensional reconstruction method using RGB-D camera has a good balance in hardware cost and point cloud quality. However, due to the limitation of inherent structure and imaging principle, the acquired point cloud has problems such as a lot of noise and difficult registration. This paper...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 14; p. 4628
Main Authors Teng, Xiaowen, Zhou, Guangsheng, Wu, Yuxuan, Huang, Chenglong, Dong, Wanjing, Xu, Shengyong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 06.07.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The three-dimensional reconstruction method using RGB-D camera has a good balance in hardware cost and point cloud quality. However, due to the limitation of inherent structure and imaging principle, the acquired point cloud has problems such as a lot of noise and difficult registration. This paper proposes a 3D reconstruction method using Azure Kinect to solve these inherent problems. Shoot color images, depth images and near-infrared images of the target from six perspectives by Azure Kinect sensor with black background. Multiply the binarization result of the 8-bit infrared image with the RGB-D image alignment result provided by Microsoft corporation, which can remove ghosting and most of the background noise. A neighborhood extreme filtering method is proposed to filter out the abrupt points in the depth image, by which the floating noise point and most of the outlier noise will be removed before generating the point cloud, and then using the pass-through filter eliminate rest of the outlier noise. An improved method based on the classic iterative closest point (ICP) algorithm is presented to merge multiple-views point clouds. By continuously reducing both the size of the down-sampling grid and the distance threshold between the corresponding points, the point clouds of each view are continuously registered three times, until get the integral color point cloud. Many experiments on rapeseed plants show that the success rate of cloud registration is 92.5% and the point cloud accuracy obtained by this method is 0.789 mm, the time consuming of a integral scanning is 302 s, and with a good color restoration. Compared with a laser scanner, the proposed method has considerable reconstruction accuracy and a significantly ahead of the reconstruction speed, but the hardware cost is much lower when building a automatic scanning system. This research shows a low-cost, high-precision 3D reconstruction technology, which has the potential to be widely used for non-destructive measurement of rapeseed and other crops phenotype.
AbstractList The three-dimensional reconstruction method using RGB-D camera has a good balance in hardware cost and point cloud quality. However, due to the limitation of inherent structure and imaging principle, the acquired point cloud has problems such as a lot of noise and difficult registration. This paper proposes a 3D reconstruction method using Azure Kinect to solve these inherent problems. Shoot color images, depth images and near-infrared images of the target from six perspectives by Azure Kinect sensor with black background. Multiply the binarization result of the 8-bit infrared image with the RGB-D image alignment result provided by Microsoft corporation, which can remove ghosting and most of the background noise. A neighborhood extreme filtering method is proposed to filter out the abrupt points in the depth image, by which the floating noise point and most of the outlier noise will be removed before generating the point cloud, and then using the pass-through filter eliminate rest of the outlier noise. An improved method based on the classic iterative closest point (ICP) algorithm is presented to merge multiple-views point clouds. By continuously reducing both the size of the down-sampling grid and the distance threshold between the corresponding points, the point clouds of each view are continuously registered three times, until get the integral color point cloud. Many experiments on rapeseed plants show that the success rate of cloud registration is 92.5% and the point cloud accuracy obtained by this method is 0.789 mm, the time consuming of a integral scanning is 302 s, and with a good color restoration. Compared with a laser scanner, the proposed method has considerable reconstruction accuracy and a significantly ahead of the reconstruction speed, but the hardware cost is much lower when building a automatic scanning system. This research shows a low-cost, high-precision 3D reconstruction technology, which has the potential to be widely used for non-destructive measurement of rapeseed and other crops phenotype.
The three-dimensional reconstruction method using RGB-D camera has a good balance in hardware cost and point cloud quality. However, due to the limitation of inherent structure and imaging principle, the acquired point cloud has problems such as a lot of noise and difficult registration. This paper proposes a 3D reconstruction method using Azure Kinect to solve these inherent problems. Shoot color images, depth images and near-infrared images of the target from six perspectives by Azure Kinect sensor with black background. Multiply the binarization result of the 8-bit infrared image with the RGB-D image alignment result provided by Microsoft corporation, which can remove ghosting and most of the background noise. A neighborhood extreme filtering method is proposed to filter out the abrupt points in the depth image, by which the floating noise point and most of the outlier noise will be removed before generating the point cloud, and then using the pass-through filter eliminate rest of the outlier noise. An improved method based on the classic iterative closest point (ICP) algorithm is presented to merge multiple-views point clouds. By continuously reducing both the size of the down-sampling grid and the distance threshold between the corresponding points, the point clouds of each view are continuously registered three times, until get the integral color point cloud. Many experiments on rapeseed plants show that the success rate of cloud registration is 92.5% and the point cloud accuracy obtained by this method is 0.789 mm, the time consuming of a integral scanning is 302 s, and with a good color restoration. Compared with a laser scanner, the proposed method has considerable reconstruction accuracy and a significantly ahead of the reconstruction speed, but the hardware cost is much lower when building a automatic scanning system. This research shows a low-cost, high-precision 3D reconstruction technology, which has the potential to be widely used for non-destructive measurement of rapeseed and other crops phenotype.The three-dimensional reconstruction method using RGB-D camera has a good balance in hardware cost and point cloud quality. However, due to the limitation of inherent structure and imaging principle, the acquired point cloud has problems such as a lot of noise and difficult registration. This paper proposes a 3D reconstruction method using Azure Kinect to solve these inherent problems. Shoot color images, depth images and near-infrared images of the target from six perspectives by Azure Kinect sensor with black background. Multiply the binarization result of the 8-bit infrared image with the RGB-D image alignment result provided by Microsoft corporation, which can remove ghosting and most of the background noise. A neighborhood extreme filtering method is proposed to filter out the abrupt points in the depth image, by which the floating noise point and most of the outlier noise will be removed before generating the point cloud, and then using the pass-through filter eliminate rest of the outlier noise. An improved method based on the classic iterative closest point (ICP) algorithm is presented to merge multiple-views point clouds. By continuously reducing both the size of the down-sampling grid and the distance threshold between the corresponding points, the point clouds of each view are continuously registered three times, until get the integral color point cloud. Many experiments on rapeseed plants show that the success rate of cloud registration is 92.5% and the point cloud accuracy obtained by this method is 0.789 mm, the time consuming of a integral scanning is 302 s, and with a good color restoration. Compared with a laser scanner, the proposed method has considerable reconstruction accuracy and a significantly ahead of the reconstruction speed, but the hardware cost is much lower when building a automatic scanning system. This research shows a low-cost, high-precision 3D reconstruction technology, which has the potential to be widely used for non-destructive measurement of rapeseed and other crops phenotype.
Author Teng, Xiaowen
Huang, Chenglong
Zhou, Guangsheng
Dong, Wanjing
Wu, Yuxuan
Xu, Shengyong
AuthorAffiliation 1 College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; tengmore@webmail.hzau.edu.cn (X.T.); wuyuxuan@webmail.hzau.edu.cn (Y.W.); hcl@mail.hzau.edu.cn (C.H.); dwj@mail.hzau.edu.cn (W.D.)
3 College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; zhougs@mail.hzau.edu.cn
2 Key Laboratory of Agricultural Equipment for the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture, Wuhan 430070, China
AuthorAffiliation_xml – name: 2 Key Laboratory of Agricultural Equipment for the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture, Wuhan 430070, China
– name: 1 College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; tengmore@webmail.hzau.edu.cn (X.T.); wuyuxuan@webmail.hzau.edu.cn (Y.W.); hcl@mail.hzau.edu.cn (C.H.); dwj@mail.hzau.edu.cn (W.D.)
– name: 3 College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; zhougs@mail.hzau.edu.cn
Author_xml – sequence: 1
  givenname: Xiaowen
  surname: Teng
  fullname: Teng, Xiaowen
– sequence: 2
  givenname: Guangsheng
  surname: Zhou
  fullname: Zhou, Guangsheng
– sequence: 3
  givenname: Yuxuan
  surname: Wu
  fullname: Wu, Yuxuan
– sequence: 4
  givenname: Chenglong
  surname: Huang
  fullname: Huang, Chenglong
– sequence: 5
  givenname: Wanjing
  surname: Dong
  fullname: Dong, Wanjing
– sequence: 6
  givenname: Shengyong
  surname: Xu
  fullname: Xu, Shengyong
BookMark eNptkktv1DAQgCNURB9w4B9Y4gKHUDt-xRck2MJSqYhqtYij5diTjVfZeGs7IP49breqaMXJ1sznTzOeOa2OpjBBVb0m-D2lCp-nhhDGRNM-q04Ia1jdNg0--ud-XJ2mtMW4oZS2L6pjyijGVLQn1bAeIkB94XcwJR8mM6IV2DClHGebSwB9gzwEh0KPVmYPCcCh69FMOSE_oTwA-jmEEdAyht95QNcQfaF_JD9t0Gr5qb5AC7ODaF5Wz3szJnh1f55V6y-f14uv9dX35eXi41VtSwe55k4yQpnljnVCUsGxoVxR0hulrBK246XjvpMYpLDMNaJTHesNloYSx1t6Vl0etC6Yrd5HvzPxjw7G67tAiBttYvZ2BO2UExZLqfqGsVayVgCXQjnagZAdtsX14eDaz90OnIUpRzM-kj7OTH7Qm_BLtxQr3pIieHsviOFmhpT1zicLY_k-CHPSDeecYNFyXNA3T9BtmGMZxx3FJC2VyUK9O1A2hpQi9A_FEKxvV0E_rEJhz5-w1mdzO9JSqx__8-IvLDO0Zw
CitedBy_id crossref_primary_10_1155_2022_9355234
crossref_primary_10_1016_j_hpj_2022_09_013
crossref_primary_10_3390_f12121747
crossref_primary_10_3390_agriculture13020348
crossref_primary_10_1016_j_optlastec_2025_112787
crossref_primary_10_3389_fpls_2022_897746
crossref_primary_10_1016_j_jare_2023_11_010
crossref_primary_10_3389_fpls_2023_1146490
crossref_primary_10_3390_s21186276
crossref_primary_10_1007_s11431_023_2569_1
crossref_primary_10_3390_plants11233342
crossref_primary_10_3389_fpls_2024_1459968
crossref_primary_10_3390_s22010139
crossref_primary_10_1186_s13007_023_01031_z
crossref_primary_10_1016_j_compag_2023_108341
crossref_primary_10_1017_wsc_2022_56
crossref_primary_10_1016_j_biosystemseng_2024_05_011
crossref_primary_10_3390_agriculture13010212
crossref_primary_10_3390_agronomy15010029
crossref_primary_10_1016_j_compag_2024_108866
crossref_primary_10_3389_fpls_2025_1449626
crossref_primary_10_3390_agronomy15010245
Cites_doi 10.3390/s150613533
10.1109/TII.2020.3009736
10.3390/rs11010063
10.3390/agronomy9100596
10.3390/s21020664
10.1186/s13007-017-0157-7
10.3390/s18030806
10.1093/jxb/ery373
10.1093/aob/mcr257
10.1186/1471-2105-14-238
10.1146/annurev-arplant-050312-120137
10.1007/s11119-019-09662-w
10.1016/j.compag.2020.105508
10.3390/s21020413
10.3390/rs11202365
10.1016/j.compag.2018.03.003
10.3390/s141120078
10.23919/MVA.2017.7986869
10.1186/s13007-019-0396-x
10.1142/S1793545816500371
10.1117/1.JEI.27.2.023009
10.3390/s150509651
10.1109/TNNLS.2021.3080980
10.1016/j.compag.2018.06.007
10.1080/07038992.2021.1881464
10.3389/fpls.2018.00016
10.1016/j.patrec.2019.10.020
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s21144628
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_d9d6c0779f24487486e5769d3be67b0c
PMC8309581
10_3390_s21144628
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c446t-5d74134c5d4b673650a35931fa99c96cb5339fb70e76c4d26b9b4fa07a31d583
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:16:38 EDT 2025
Thu Aug 21 13:58:01 EDT 2025
Fri Jul 11 01:53:52 EDT 2025
Fri Jul 25 20:00:34 EDT 2025
Thu Apr 24 22:55:34 EDT 2025
Tue Jul 01 03:56:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-5d74134c5d4b673650a35931fa99c96cb5339fb70e76c4d26b9b4fa07a31d583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21144628
PMID 34300368
PQID 2554737697
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_d9d6c0779f24487486e5769d3be67b0c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8309581
proquest_miscellaneous_2555106850
proquest_journals_2554737697
crossref_primary_10_3390_s21144628
crossref_citationtrail_10_3390_s21144628
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210706
PublicationDateYYYYMMDD 2021-07-06
PublicationDate_xml – month: 7
  year: 2021
  text: 20210706
  day: 6
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Xu (ref_27) 2019; 50
ref_14
Hu (ref_26) 2018; 27
Lin (ref_1) 2020; 21
ref_10
Katrine (ref_11) 2015; 15
ref_30
Li (ref_7) 2014; 14
Ana (ref_12) 2019; 11
Johann (ref_19) 2015; 15
Alwaseela (ref_2) 2021; 17
Singh (ref_3) 2021; 47
Theodore (ref_8) 2011; 108
Huang (ref_31) 2019; 50
Andrea (ref_25) 2018; 148
(ref_21) 2016; 12
Wu (ref_6) 2019; 70
Liang (ref_15) 2020; 51
ref_24
Fiorani (ref_9) 2013; 64
ref_22
Xiong (ref_18) 2017; 13
Wei (ref_16) 2016; 9
Xu (ref_23) 2019; 128
Xiong (ref_17) 2018; 151
ref_29
ref_28
Chen (ref_20) 2020; 174
Su (ref_13) 2019; 15
ref_5
ref_4
References_xml – volume: 15
  start-page: 13533
  year: 2015
  ident: ref_11
  article-title: 3D Laser Triangulation for Plant Phenotyping in Challenging Environments
  publication-title: Sensors
  doi: 10.3390/s150613533
– volume: 17
  start-page: 4379
  year: 2021
  ident: ref_2
  article-title: Nutrient Status Diagnosis of Infield Oilseed Rape via Deep Learning-Enabled Dynamic Model
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2020.3009736
– ident: ref_14
  doi: 10.3390/rs11010063
– ident: ref_29
  doi: 10.3390/agronomy9100596
– ident: ref_22
  doi: 10.3390/s21020664
– volume: 50
  start-page: 21
  year: 2019
  ident: ref_27
  article-title: 3D Reconstruction of Rape Branch and Pod Recognition Based on RGB-D Camera
  publication-title: Trans. Chin. Soc. Agric. Mach.
– volume: 13
  start-page: 1
  year: 2017
  ident: ref_18
  article-title: A high-throughput stereo-imaging system for quantifying rape leaf traits during the seedling stage
  publication-title: Plant Methods
  doi: 10.1186/s13007-017-0157-7
– ident: ref_24
  doi: 10.3390/s18030806
– volume: 70
  start-page: 545
  year: 2019
  ident: ref_6
  article-title: Combining high-throughput micro-CT-RGB phenotyping and genome-wide association study to dissect the genetic architecture of tiller growth in rice
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ery373
– volume: 108
  start-page: 987
  year: 2011
  ident: ref_8
  article-title: Using functional–structural plant models to study, understand and integrate plant development and ecophysiology
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcr257
– ident: ref_4
  doi: 10.1186/1471-2105-14-238
– volume: 64
  start-page: 267
  year: 2013
  ident: ref_9
  article-title: Future Scenarios for Plant Phenotyping
  publication-title: Plant Biol.
  doi: 10.1146/annurev-arplant-050312-120137
– volume: 51
  start-page: 209
  year: 2020
  ident: ref_15
  article-title: Three-dimensional Maize Plants Reconstruction and Traits Extraction Based on Structure from Motion
  publication-title: Trans. Chin. Soc. Agric. Mach.
– volume: 21
  start-page: 160
  year: 2020
  ident: ref_1
  article-title: Fruit detection in natural environment using partial shape matching and probabilistic Hough transform
  publication-title: Int. J. Adv. Precis. Agric.
  doi: 10.1007/s11119-019-09662-w
– volume: 174
  start-page: 105508
  year: 2020
  ident: ref_20
  article-title: Three-dimensional perception of orchard banana central stock enhanced by adaptive multi-vision technology
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105508
– ident: ref_30
  doi: 10.3390/s21020413
– volume: 11
  start-page: 2365
  year: 2019
  ident: ref_12
  article-title: Geometric Characterization of Vines from 3D Point Clouds Obtained with Laser Scanner Systems
  publication-title: Remote Sens.
  doi: 10.3390/rs11202365
– volume: 148
  start-page: 29
  year: 2018
  ident: ref_25
  article-title: On-barn pig weight estimation based on body measurements by a Kinect v1 depth camera
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.03.003
– volume: 14
  start-page: 20078
  year: 2014
  ident: ref_7
  article-title: A review of imaging techniques for plant phenotyping
  publication-title: Sensors
  doi: 10.3390/s141120078
– ident: ref_28
  doi: 10.23919/MVA.2017.7986869
– volume: 50
  start-page: 243
  year: 2019
  ident: ref_31
  article-title: Cotton Seedling Leaf Traits Extraction Method from 3D Point CloudBased on Structured Light Imaging
  publication-title: Trans. Chin. Soc. Agric.
– volume: 15
  start-page: 1
  year: 2019
  ident: ref_13
  article-title: Evaluating maize phenotype dynamics under drought stress using terrestrial lidar
  publication-title: Plant Methods
  doi: 10.1186/s13007-019-0396-x
– volume: 9
  start-page: 1650037
  year: 2016
  ident: ref_16
  article-title: High-throughput volumetric reconstruction for 3D wheat plant architecture studies
  publication-title: J. Innov. Opt. Health Sci.
  doi: 10.1142/S1793545816500371
– volume: 27
  start-page: 023009
  year: 2018
  ident: ref_26
  article-title: Multiview point clouds denoising based on interference elimination
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.JEI.27.2.023009
– volume: 15
  start-page: 9651
  year: 2015
  ident: ref_19
  article-title: Accuracy Analysis of a Multi-View Stereo Approach for Phenotyping of Tomato Plants at the Organ Level
  publication-title: Sensors
  doi: 10.3390/s150509651
– volume: 12
  start-page: 1
  year: 2016
  ident: ref_21
  article-title: Direct derivation of maize plant and crop height from low-cost time-of-flight camera measurements
  publication-title: Plant Methods
– ident: ref_5
  doi: 10.1109/TNNLS.2021.3080980
– volume: 151
  start-page: 226
  year: 2018
  ident: ref_17
  article-title: Visual positioning technology of picking robots for dynamic litchi clusters with disturbance
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.06.007
– volume: 47
  start-page: 33
  year: 2021
  ident: ref_3
  article-title: UAV-Based Hyperspectral Imaging Technique to Estimate Canola (Brassica napus L.) Seedpods Maturity
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2021.1881464
– ident: ref_10
  doi: 10.3389/fpls.2018.00016
– volume: 128
  start-page: 505
  year: 2019
  ident: ref_23
  article-title: 3D Reconstruction system for collaborative scanning based on multiple RGB-D cameras
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2019.10.020
SSID ssj0023338
Score 2.4654222
Snippet The three-dimensional reconstruction method using RGB-D camera has a good balance in hardware cost and point cloud quality. However, due to the limitation of...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4628
SubjectTerms Accuracy
Agriculture
Algorithms
Azure Kinect
Calibration
Cameras
Crops
ICP
Lasers
Noise
point cloud filtering
rapeseed
Registration
RGB-D image processing
Scanners
Sensors
three-dimensional reconstruction
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-RAEG7E03oQd1WML9rFg5fGTLrTj6OvGRFWREb0FvoVRpDMwIz_f6s6mXECC172mi5Cp7q66_uSyleEnHuutQeoyqRUiglbG2Z1XjKLYnEQH6IIqcr3Ud6_iIe38m2t1RfWhLXywK3jLoMJ0udKmRoSkVZCywgQ2QTuolQu93j6Qs5bkqmOanFgXq2OEAdSfzkHmiPwL8xe9kki_T1k2a-LXEs0wx2y3SFEetXO7CfZiM0vsrWmG7hLJmNYgchuUZm_VdWgSCO_xGDpn9QYmk5r-mxncQ4pimJ7osWcvjcUMB99xb64dAQkfDGhT3BfsE7lA_R5dM1u6Y3Ft1V7ZDy8G9_cs65lAvPwfAtWBkAIXPgyCIcVW2VueWn4oLbGeCO9A3RnaqfyqKQXoZDOOFHbXFk-CKXm-2SzmTbxgNDCR6PBHOAOF8EBLSucKnhQKDnoxSAjF0tPVr6TE8euFh8V0Ap0erVyekZ-r0xnrYbGv4yucTlWBih7nS5AMFRdMFTfBUNGjpeLWXV7cV5BJAoF56hRGTlbDcMuwk8jtonTz2QDh5PUZZ4R1QuC3oT6I837JOlxaw44VQ8O_8cTHJEfBVbNpKLEY7IJcRNPAPYs3GmK8L-wOP9V
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOBQlZdIKcggDlysJrHjx6nqg90KCYSqRfQW-ZVupSrZNtv_z4w3mzYS4phk5DxmbH-fPfmGkC-ea-0BqjIplWLCNoZZnVfMolgcxIcoQ8ry_SnPf4vvl9XlsODWD2mV2zExDdSh87hGfgjtCQW9waij1S3DqlG4uzqU0HhKnhUw02BKl57NR8LFgX9t1IQ4UPvDHsiOwH8xJ3NQkuqf4MtpduSj6Wa2R3YHnEiPN459SZ7E9hV5cXx1N2hlRDh6pCX4miwX4JXIzlCtf6O0QZFaPgjE0h-pWDTtGnphV7GHaYtiyaJ1T69bCjiQ_sFauXQOxHy9pL-gXbBOKQX0Yn7CzuipxRWsN2Qx-7Y4PWdDGQXm4W3XrAqAGrjwVRAOs7iq3PLK8KKxxngjvQPEZxqn8qikF6GUzjjR2FxZXoRK87dkp-3a-I7Q0kejwRwgEBfBAVUrnSp5UChD6EWRka_b71r7QWIcK13c1EA10AX16IKMfB5NVxtdjX8ZnaBzRgOUwk4nurureuhZdTBB-lwp0wBS0UpoGYFDmcBdlMrlPiMHW9fWQ__s64doysin8TL0LNwusW3s7pMNDFhSV3lG1CQkJg80vdJeL5NGt-aAXXWx__-bvyfPS8yRSSmIB2QHIiJ-AJCzdh9TJP8FgtT7_A
  priority: 102
  providerName: ProQuest
Title Three-Dimensional Reconstruction Method of Rapeseed Plants in the Whole Growth Period Using RGB-D Camera
URI https://www.proquest.com/docview/2554737697
https://www.proquest.com/docview/2555106850
https://pubmed.ncbi.nlm.nih.gov/PMC8309581
https://doaj.org/article/d9d6c0779f24487486e5769d3be67b0c
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB71cYED4ilCy8ogDlwM2djx44AQ23a3QmpVrbZib5FfYStV2dLdSvDvGXuzoZF65JJDPIqS8dj-PnvyDcAHx5RyCFWpEFJSbmpNjcpLaqJYHMYHL3zK8j0Xp5f8-7yc78C2xmbrwNWD1C7Wk7q8vf70-9efrzjgv0TGiZT98wpJDI__WO7CPi5IMhYyOOPdYULBkIZtRIX65r2lKCn292BmP0ny3qozfgpPWrhIvm369xnshOY5PL4nIvgCFjPsjkCPo0z_RmKDRE75TxmWnKUq0WRZk6m5CStcr0isVbRekauGIAAkP2KRXDJBRr5ekAt8LlqnXAIynYzoMTkycevqJczGJ7OjU9rWT6AOv29NS49wgXFXem5j-laZG1ZqNqyN1k4LZxHq6drKPEjhuC-E1ZbXJpeGDX2p2CvYa5ZNeA2kcEErNEfsw7i3yNEKKwvmZdQfdHyYwcetJyvXaovHEhfXFXKM6PSqc3oG7zvTm42gxkNGo9gdnUHUwE43lrc_q3ZIVV574XIpdY0QRUmuREDypD2zQUibuwwOt51ZbeOqwrDkEidVLTN41zXjkIrnJKYJy7tkgzOVUGWegewFQe-F-i3N1SKJcyuGoFUN3_yPLziAR0VMoUkZioewh3ET3iIGWtsB7Mq5xKsaTwawPzo5v5gO0n7CIMX-X9inCd8
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2VsgAWiKcwLTAgkNhYdTzjeSwQahuSlD6EqiC6s-blphKy0zio4qP4R-6MH60lxK7LZK4mke-dmXPs63MQem-IEAagaswY5zFVhYyVSLJYebE4qA-a2tDle8Jm3-nXs-xsA_3p3oXxbZXdnhg2alsZf498B-ajHFaD5J-Xl7F3jfJPVzsLjaYsDt3vK6Bs9aeDMeT3Q5pOvsz3Z3HrKhAboD7rOLNwiBJqMku1b2rKEkUySUaFktJIZjQAIFlonjjODLUp01LTQiVckZHNBIFp76C7FII81xOTac_vCNC9RrwIBpOdGrgV9a9-Do684AwwgLPDZswbp9vkEXrYwlK829TRY7Thyifowe75qpXmcPDphnThU7SYQxG4eOzNARphD-yZ7LUeLT4O3tS4KvCpWroaTknsHZLWNb4oMcBO_MNb8-LpqrpaL_A3mBeiQwcDPp3uxWO8r_wNs2dofhvX9znaLKvSvUA4NU4KCAfERajVwAxTzVNiuVc9NHQUoY_ddc1Nq2jujTV-5sBsfAryPgUReteHLhsZj38F7fnk9AFeeTt8Ua3O83Yh51ZaZhLOZQHASHAqmAPKJi3RjnGdmAhtd6nN2-2gzq-LN0Jv-2FYyP7pjCpd9SvEwP7IRJZEiA9KYvCHhiPlxSJIggsCUFmMXv7_x9-ge7P58VF-dHByuIXup749J3Q_bqNNqA73CvDVWr8OVY1Rfsur6C81dDdH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTkLwgPipBQYYBBIvVtPYseMHhNZ13cagqqoi9hYltrNOQklpiib-NP47zvm1RUK87THJyYlyd_Z9zuX7AN5pFkUaS1UqhJSUJ5miSeSHNHFkcRgfPDBVl-9MnHzjn8_D8x340_4L49oq2zmxmqhNod0e-RDH4xKzQclh1rRFzCfTT-uf1ClIuS-trZxGHSJn9vcVwrfy4-kEff0-CKZHy8MT2igMUI0waEtDgwsq4zo0PHUNTqGfsFCxUZYopZXQKRZDKkulb6XQ3AQiVSnPEl8mbGTCiOGwd2BXOlA0gN3x0Wy-6NAeQ_BXUxnhGP6wRKTF3Y-gvQWw0gnoFbf91swba930ITxoilRyUEfVI9ix-WO4f3CxaYg6LB7dIDJ8AqslhoSlEycVUNN8EIdrr9lpyddKqZoUGVkka1vimkmcXtK2JJc5wSKUfHdCveR4U1xtV2SO46J11c9AFsdjOiGHids-ewrL23jDz2CQF7ndAxJoqyI0x_qLcZMiTgxSGTAjHQei5iMPPrTvNdYNv7mT2fgRI85xLog7F3jwtjNd16Qe_zIaO-d0Bo6HuzpRbC7iJq1jo4zQvpQqwzIpkjwSFgGcMiy1Qqa-9mC_dW3cTA5lfB3KHrzpLmNau281SW6LX5UNzpYiCn0PZC8keg_Uv5JfriqC8Ihh4RyNnv__5q_hLmZQ_OV0dvYC7gWuV6dqhdyHAQaHfYnF1jZ91YQ1gfiWE-kvzbU82Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-Dimensional+Reconstruction+Method+of+Rapeseed+Plants+in+the+Whole+Growth+Period+Using+RGB-D+Camera&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Xiaowen+Teng&rft.au=Guangsheng+Zhou&rft.au=Yuxuan+Wu&rft.au=Chenglong+Huang&rft.date=2021-07-06&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=14&rft.spage=4628&rft_id=info:doi/10.3390%2Fs21144628&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d9d6c0779f24487486e5769d3be67b0c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon