Vector score alpha integration for classifier late fusion
•Alpha integration encompasses many classic fusion operators.•This paper proposes vector score integration (VSI), a new alpha integration method.•The parameters of VSI are optimized to achieve the minimum probability of error.•VSI was applied to two classification tasks using electroencephalographic...
Saved in:
Published in | Pattern recognition letters Vol. 136; pp. 48 - 55 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.08.2020
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Alpha integration encompasses many classic fusion operators.•This paper proposes vector score integration (VSI), a new alpha integration method.•The parameters of VSI are optimized to achieve the minimum probability of error.•VSI was applied to two classification tasks using electroencephalographic signals.•VSI outperformed other fusion methods in both applications.
Alpha integration is a family of integrators that encompasses many classic fusion operators (e.g., mean, product, minimum, maximum) as particular cases. This paper proposes vector score integration (VSI), a new alpha integration method for late fusion of multiple classifiers considering the joint effect of all the classes of the multi-class problem. Theoretical derivations to optimize the parameters of VSI for achieving the minimum probability of error are provided. VSI was applied to two classification tasks using electroencephalographic signals. The first task was the automatic stage classification of a neuropsychological test performed by epileptic subjects and the second one was the classification of sleep stages from apnea patients. Four single classifiers (linear and quadratic discriminant analysis, naive Bayes, and random forest) and three competitive fusion methods were estimated for comparison: mean, majority voting, and separated score integration (SSI). SSI is based on alpha integration, but unlike the proposed method, it considers the scores from each class in isolation, not accounting for possible dependencies among scores corresponding to different classes. VSI was able to optimally combine the results from all the single classifiers, in terms of accuracy and kappa coefficient, and outperformed the results of the other fusion methods in both applications. |
---|---|
AbstractList | Alpha integration is a family of integrators that encompasses many classic fusion operators (e.g., mean, product, minimum, maximum) as particular cases. This paper proposes vector score integration (VSI), a new alpha integration method for late fusion of multiple classifiers considering the joint effect of all the classes of the multi-class problem. Theoretical derivations to optimize the parameters of VSI for achieving the minimum probability of error are provided. VSI was applied to two classification tasks using electroencephalographic signals. The first task was the automatic stage classification of a neuropsychological test performed by epileptic subjects and the second one was the classification of sleep stages from apnea patients. Four single classifiers (linear and quadratic discriminant analysis, naive Bayes, and random forest) and three competitive fusion methods were estimated for comparison: mean, majority voting, and separated score integration (SSI). SSI is based on alpha integration, but unlike the proposed method, it considers the scores from each class in isolation, not accounting for possible dependencies among scores corresponding to different classes. VSI was able to optimally combine the results from all the single classifiers, in terms of accuracy and kappa coefficient, and outperformed the results of the other fusion methods in both applications. •Alpha integration encompasses many classic fusion operators.•This paper proposes vector score integration (VSI), a new alpha integration method.•The parameters of VSI are optimized to achieve the minimum probability of error.•VSI was applied to two classification tasks using electroencephalographic signals.•VSI outperformed other fusion methods in both applications. Alpha integration is a family of integrators that encompasses many classic fusion operators (e.g., mean, product, minimum, maximum) as particular cases. This paper proposes vector score integration (VSI), a new alpha integration method for late fusion of multiple classifiers considering the joint effect of all the classes of the multi-class problem. Theoretical derivations to optimize the parameters of VSI for achieving the minimum probability of error are provided. VSI was applied to two classification tasks using electroencephalographic signals. The first task was the automatic stage classification of a neuropsychological test performed by epileptic subjects and the second one was the classification of sleep stages from apnea patients. Four single classifiers (linear and quadratic discriminant analysis, naive Bayes, and random forest) and three competitive fusion methods were estimated for comparison: mean, majority voting, and separated score integration (SSI). SSI is based on alpha integration, but unlike the proposed method, it considers the scores from each class in isolation, not accounting for possible dependencies among scores corresponding to different classes. VSI was able to optimally combine the results from all the single classifiers, in terms of accuracy and kappa coefficient, and outperformed the results of the other fusion methods in both applications. |
Author | Vergara, Luis Salazar, Addisson Safont, Gonzalo |
Author_xml | – sequence: 1 givenname: Gonzalo orcidid: 0000-0002-2401-1594 surname: Safont fullname: Safont, Gonzalo email: gonsaar@upvnet.upv.es – sequence: 2 givenname: Addisson orcidid: 0000-0001-5849-5104 surname: Salazar fullname: Salazar, Addisson – sequence: 3 givenname: Luis surname: Vergara fullname: Vergara, Luis |
BookMark | eNqFkD1PwzAQhi1UJNrCP2CIxJxw_ozDgIQqvqRKLMBqua4NjkISbBeJf49LmBhguuGe9z3ds0CzfugtQqcYKgxYnLfVqFOwpiJAoAJeAWYHaI5lTcqaMjZD84zVpRScH6FFjC0ACNrIOWqerUlDKKIZgi10N77qwvfJvgSd_NAXLu9Mp2P0zttQdDrZwu1iXh2jQ6e7aE9-5hI93Vw_ru7K9cPt_epqXRrGRCr5RjaEGUqpA8wlFZw4sIwKYUi9kZLwzDUMNlwS4SxhDoyAbcMdwZI7Q5fobOodw_C-szGpdtiFPp9UhLEaMBDMM3UxUSYMMQbrlPHp-4UUtO8UBrVXpVo1qVJ7VQq4yqpymP0Kj8G_6fD5X-xyitn8_kfWo6Lxtjd26zOa1Hbwfxd8AVtJhXM |
CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3113397 crossref_primary_10_3390_computers13010013 crossref_primary_10_1109_ACCESS_2020_3040199 crossref_primary_10_1109_ACCESS_2023_3252004 crossref_primary_10_1109_ACCESS_2024_3355115 crossref_primary_10_3390_app13105834 crossref_primary_10_1049_bme2_12026 crossref_primary_10_3390_computers11080125 crossref_primary_10_3390_brainsci13081143 crossref_primary_10_3390_healthcare10040729 crossref_primary_10_1109_ACCESS_2024_3387279 crossref_primary_10_1109_ACCESS_2023_3344776 crossref_primary_10_3390_signals4040048 crossref_primary_10_3390_rs15112758 |
Cites_doi | 10.1016/j.dsp.2015.11.009 10.1162/neco.2007.19.10.2780 10.1016/0013-4694(73)90260-5 10.1109/TITB.2012.2188299 10.1016/j.patrec.2016.02.010 10.1016/j.patrec.2017.05.003 10.1016/j.patrec.2018.03.009 10.1162/NECO_a_00766 10.1145/3306128 10.1016/j.bspc.2013.12.003 10.1016/j.inffus.2019.05.001 10.1109/TPAMI.2018.2798607 10.1162/neco_a_01169 10.1016/j.patrec.2014.11.007 10.1093/arclin/acq098 10.1109/ACCESS.2018.2813079 10.1162/NECO_a_00445 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier Science Ltd. Aug 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Aug 2020 |
DBID | AAYXX CITATION 7SC 7TK 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.patrec.2020.05.014 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Neurosciences Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Neurosciences Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1872-7344 |
EndPage | 55 |
ExternalDocumentID | 10_1016_j_patrec_2020_05_014 S0167865520301860 |
GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WH7 WUQ XFK XPP Y6R ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7TK 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c446t-5b8924c333f01583652f0e4366c27b8825c44940b5826fe24f0c60d95f2185fc3 |
IEDL.DBID | .~1 |
ISSN | 0167-8655 |
IngestDate | Fri Jul 25 04:46:12 EDT 2025 Thu Apr 24 23:00:08 EDT 2025 Tue Jul 01 02:40:41 EDT 2025 Fri Feb 23 02:47:10 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-5b8924c333f01583652f0e4366c27b8825c44940b5826fe24f0c60d95f2185fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5849-5104 0000-0002-2401-1594 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0167865520301860 |
PQID | 2447010215 |
PQPubID | 2047552 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2447010215 crossref_citationtrail_10_1016_j_patrec_2020_05_014 crossref_primary_10_1016_j_patrec_2020_05_014 elsevier_sciencedirect_doi_10_1016_j_patrec_2020_05_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2020 2020-08-00 20200801 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Pattern recognition letters |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Hjorth (bib0021) 1973; 34 Nocedal, Wright (bib0019) 2006 Thoma, Thalhammer, Harth, Studer (bib0006) 2019; 13 Jouirou, Baâzaoui, Barhoumi (bib0002) 2019; 52 Ringeval, Eyben, Kroupi, Yuce, Thiran, Ebrahimi, Lalanne, Schuller (bib0004) 2015; 66 Park, Ahn, Lee (bib0007) 2018; 2018 Safont, Salazar, Vergara (bib0015) 2019; 31 Choi, Choi, Katake, Choe (bib0016) 2010 Salazar, Safont, Vergara (bib0025) 2018 Soriano, Vergara, Ahmed, Salazar (bib0014) 2015; 27 Sturari, Liciotti, Pierdicca, Frontoni, Mancini, Contigiani, Zingaretti (bib0005) 2016; 81 Xie, Minn (bib0023) 2012; 16 Wang, Hua, Hao, Xie (bib0024) 2017; 2017 Baltrusaitis, Ahuja, Morency (bib0001) 2019; 41 Bharath-Bhushan, Danti (bib0011) 2017; 94 Amari (bib0012) 2007; 19 Danelljan, Bhat, Gladh, Khan, Felsberg (bib0003) 2019; 124 C. Heneghan. (2011) Physionet. [Online]. Mohandes, Deriche, Aliyu (bib0008) 2018; 6 Amari (bib0013) 2016 Choi, Choi, Choe (bib0017) 2013; 25 Vergara, Soriano, Safont, Salazar (bib0027) 2016; 50 Motamedi-Fakhr, Moshrefi-Torbati, Hill, Hill, White (bib0022) 2014; 10 Zhao (bib0010) 2019; 9 Quintana (bib0018) 2010; 26 Sagi, Rokach (bib0009) 2018; 8 A. Salazar, G. Safont, and L. Vergara, “Surrogate techniques for testing fraud detection algorithms in credit card operations,” in Proceedings of the 48th IEEE International Carnahan Conference on Security Technology ICCST 2014, Article no. 6986987, 2014, pp. 124-129. Quintana (10.1016/j.patrec.2020.05.014_bib0018) 2010; 26 Xie (10.1016/j.patrec.2020.05.014_bib0023) 2012; 16 Jouirou (10.1016/j.patrec.2020.05.014_bib0002) 2019; 52 Mohandes (10.1016/j.patrec.2020.05.014_bib0008) 2018; 6 Choi (10.1016/j.patrec.2020.05.014_bib0017) 2013; 25 Park (10.1016/j.patrec.2020.05.014_bib0007) 2018; 2018 Amari (10.1016/j.patrec.2020.05.014_bib0012) 2007; 19 Ringeval (10.1016/j.patrec.2020.05.014_bib0004) 2015; 66 Salazar (10.1016/j.patrec.2020.05.014_bib0025) 2018 Danelljan (10.1016/j.patrec.2020.05.014_bib0003) 2019; 124 Zhao (10.1016/j.patrec.2020.05.014_bib0010) 2019; 9 Bharath-Bhushan (10.1016/j.patrec.2020.05.014_bib0011) 2017; 94 Thoma (10.1016/j.patrec.2020.05.014_bib0006) 2019; 13 Vergara (10.1016/j.patrec.2020.05.014_bib0027) 2016; 50 Safont (10.1016/j.patrec.2020.05.014_bib0015) 2019; 31 Baltrusaitis (10.1016/j.patrec.2020.05.014_bib0001) 2019; 41 Wang (10.1016/j.patrec.2020.05.014_bib0024) 2017; 2017 Motamedi-Fakhr (10.1016/j.patrec.2020.05.014_bib0022) 2014; 10 Nocedal (10.1016/j.patrec.2020.05.014_bib0019) 2006 Soriano (10.1016/j.patrec.2020.05.014_bib0014) 2015; 27 Hjorth (10.1016/j.patrec.2020.05.014_bib0021) 1973; 34 10.1016/j.patrec.2020.05.014_bib0020 Choi (10.1016/j.patrec.2020.05.014_bib0016) 2010 10.1016/j.patrec.2020.05.014_bib0026 Amari (10.1016/j.patrec.2020.05.014_bib0013) 2016 Sturari (10.1016/j.patrec.2020.05.014_bib0005) 2016; 81 Sagi (10.1016/j.patrec.2020.05.014_bib0009) 2018; 8 |
References_xml | – volume: 9 start-page: 1 year: 2019 end-page: 10 ident: bib0010 article-title: Learning from longitudinal data in electronic health record and genetic data to improve cardiovascular event prediction publication-title: Sci. Rep. – reference: C. Heneghan. (2011) Physionet. [Online]. – volume: 41 start-page: 423 year: 2019 end-page: 443 ident: bib0001 article-title: Multimodal machine learning: a survey and taxonomy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 26 start-page: 144 year: 2010 end-page: 157 ident: bib0018 article-title: Spanish multicenter normative studies (Neuronorma project): norms for the abbreviated Barcelona Test publication-title: Arch. Clin. Neuropsychol. – volume: 19 start-page: 2796 year: 2007 ident: bib0012 article-title: Integration of stochastic models by minimizing α-divergence publication-title: Neural. Comput. – volume: 124 start-page: 74 year: 2019 end-page: 81 ident: bib0003 article-title: Deep motion and appearance cues for visual tracking publication-title: Pattern. Recognit. Lett. – volume: 10 start-page: 21 year: 2014 end-page: 33 ident: bib0022 article-title: Signal processing techniques applied to human sleep EEG signals – a review publication-title: Biomed. Signal Process. Control – volume: 34 start-page: 321 year: 1973 end-page: 325 ident: bib0021 article-title: The physical significance of time domain descriptors in EEG analysis publication-title: Electroencephalogr. Clin. Neurophysiol. – year: 2016 ident: bib0013 article-title: Information Geometry and its Applications – volume: 2017 start-page: 1 year: 2017 end-page: 7 ident: bib0024 article-title: A cycle deep belief network model for multivariate time series classification publication-title: Math. Probl. Eng. – volume: 50 start-page: 24 year: 2016 end-page: 33 ident: bib0027 article-title: On the fusion of non-independent detectors publication-title: Digital Signal Process. – volume: 13 year: 2019 ident: bib0006 article-title: FusE: entity-centric data fusion on linked data publication-title: ACM Trans. Web – volume: 2018 start-page: 1 year: 2018 end-page: 15 ident: bib0007 article-title: Development of data fusion method based on topological relationships using indoorGML core module publication-title: J. Sens. – volume: 66 start-page: 22 year: 2015 end-page: 30 ident: bib0004 article-title: Prediction of asynchronous dimensional emotion ratings from audiovisual and physiological data publication-title: Pattern. Recognit. Lett. – volume: 52 start-page: 308 year: 2019 end-page: 321 ident: bib0002 article-title: Multi-view information fusion in mammograms: a comprehensive overview publication-title: Inf. Fusion – volume: 81 start-page: 30 year: 2016 end-page: 40 ident: bib0005 article-title: Robust and affordable retail customer profiling by vision and radio beacon sensor fusion publication-title: Pattern. Recognit. Lett. – start-page: 2058 year: 2010 end-page: 2061 ident: bib0016 article-title: Learning α-integration with partially-labeled data publication-title: Proceedings of the IEEE International Conference on Acoustic, Speech, and Signal Processing (ICASSP) – volume: 25 start-page: 1585 year: 2013 end-page: 1604 ident: bib0017 article-title: Parameter learning for alpha integration publication-title: Neural. Comput. – start-page: 4976 year: 2018 end-page: 4982 ident: bib0025 article-title: Semi-supervised learning for imbalanced classification of credit card transaction publication-title: Proceedings of the IEEE International Joint Conference on Neural Networks IJCNN 2018 – reference: A. Salazar, G. Safont, and L. Vergara, “Surrogate techniques for testing fraud detection algorithms in credit card operations,” in Proceedings of the 48th IEEE International Carnahan Conference on Security Technology ICCST 2014, Article no. 6986987, 2014, pp. 124-129. – volume: 16 start-page: 469 year: 2012 end-page: 477 ident: bib0023 article-title: Real-time sleep apnea detection by classifier combination publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 27 start-page: 1983 year: 2015 end-page: 2010 ident: bib0014 article-title: Fusion of scores in a detection context based on alpha integration publication-title: Neural. Comput. – year: 2006 ident: bib0019 article-title: Numerical Optimization – volume: 6 start-page: 19626 year: 2018 end-page: 19639 ident: bib0008 article-title: Classifiers combination techniques: a comprehensive review publication-title: IEEE Access – volume: 8 start-page: 1 year: 2018 end-page: 18 ident: bib0009 article-title: Ensemble learning: a survey publication-title: Wiley Interdisciplinary Rev.: Data Min. Knowl. Discov. – volume: 94 start-page: 118 year: 2017 end-page: 126 ident: bib0011 article-title: Classification of text documents based on score level fusion approach publication-title: Pattern Recognit. Lett. – volume: 31 start-page: 806 year: 2019 end-page: 825 ident: bib0015 article-title: Multiclass alpha integration of scores from multiple classifiers publication-title: Neural. Comput. – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.patrec.2020.05.014_bib0010 article-title: Learning from longitudinal data in electronic health record and genetic data to improve cardiovascular event prediction publication-title: Sci. Rep. – volume: 50 start-page: 24 year: 2016 ident: 10.1016/j.patrec.2020.05.014_bib0027 article-title: On the fusion of non-independent detectors publication-title: Digital Signal Process. doi: 10.1016/j.dsp.2015.11.009 – volume: 19 start-page: 2796 issue: 10 year: 2007 ident: 10.1016/j.patrec.2020.05.014_bib0012 article-title: Integration of stochastic models by minimizing α-divergence publication-title: Neural. Comput. doi: 10.1162/neco.2007.19.10.2780 – volume: 34 start-page: 321 issue: 3 year: 1973 ident: 10.1016/j.patrec.2020.05.014_bib0021 article-title: The physical significance of time domain descriptors in EEG analysis publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(73)90260-5 – volume: 2018 start-page: 1 issue: 4094235 year: 2018 ident: 10.1016/j.patrec.2020.05.014_bib0007 article-title: Development of data fusion method based on topological relationships using indoorGML core module publication-title: J. Sens. – volume: 16 start-page: 469 issue: 3 year: 2012 ident: 10.1016/j.patrec.2020.05.014_bib0023 article-title: Real-time sleep apnea detection by classifier combination publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2012.2188299 – start-page: 4976 year: 2018 ident: 10.1016/j.patrec.2020.05.014_bib0025 article-title: Semi-supervised learning for imbalanced classification of credit card transaction – volume: 81 start-page: 30 year: 2016 ident: 10.1016/j.patrec.2020.05.014_bib0005 article-title: Robust and affordable retail customer profiling by vision and radio beacon sensor fusion publication-title: Pattern. Recognit. Lett. doi: 10.1016/j.patrec.2016.02.010 – volume: 94 start-page: 118 year: 2017 ident: 10.1016/j.patrec.2020.05.014_bib0011 article-title: Classification of text documents based on score level fusion approach publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2017.05.003 – start-page: 2058 year: 2010 ident: 10.1016/j.patrec.2020.05.014_bib0016 article-title: Learning α-integration with partially-labeled data – volume: 124 start-page: 74 year: 2019 ident: 10.1016/j.patrec.2020.05.014_bib0003 article-title: Deep motion and appearance cues for visual tracking publication-title: Pattern. Recognit. Lett. doi: 10.1016/j.patrec.2018.03.009 – volume: 2017 start-page: 1 year: 2017 ident: 10.1016/j.patrec.2020.05.014_bib0024 article-title: A cycle deep belief network model for multivariate time series classification publication-title: Math. Probl. Eng. – year: 2016 ident: 10.1016/j.patrec.2020.05.014_bib0013 – volume: 27 start-page: 1983 issue: 9 year: 2015 ident: 10.1016/j.patrec.2020.05.014_bib0014 article-title: Fusion of scores in a detection context based on alpha integration publication-title: Neural. Comput. doi: 10.1162/NECO_a_00766 – volume: 13 issue: 2 year: 2019 ident: 10.1016/j.patrec.2020.05.014_bib0006 article-title: FusE: entity-centric data fusion on linked data publication-title: ACM Trans. Web doi: 10.1145/3306128 – volume: 10 start-page: 21 year: 2014 ident: 10.1016/j.patrec.2020.05.014_bib0022 article-title: Signal processing techniques applied to human sleep EEG signals – a review publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2013.12.003 – year: 2006 ident: 10.1016/j.patrec.2020.05.014_bib0019 – volume: 52 start-page: 308 year: 2019 ident: 10.1016/j.patrec.2020.05.014_bib0002 article-title: Multi-view information fusion in mammograms: a comprehensive overview publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.05.001 – volume: 41 start-page: 423 issue: 2 year: 2019 ident: 10.1016/j.patrec.2020.05.014_bib0001 article-title: Multimodal machine learning: a survey and taxonomy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2798607 – volume: 31 start-page: 806 issue: 4 year: 2019 ident: 10.1016/j.patrec.2020.05.014_bib0015 article-title: Multiclass alpha integration of scores from multiple classifiers publication-title: Neural. Comput. doi: 10.1162/neco_a_01169 – volume: 66 start-page: 22 year: 2015 ident: 10.1016/j.patrec.2020.05.014_bib0004 article-title: Prediction of asynchronous dimensional emotion ratings from audiovisual and physiological data publication-title: Pattern. Recognit. Lett. doi: 10.1016/j.patrec.2014.11.007 – volume: 8 start-page: 1 issue: 4 year: 2018 ident: 10.1016/j.patrec.2020.05.014_bib0009 article-title: Ensemble learning: a survey publication-title: Wiley Interdisciplinary Rev.: Data Min. Knowl. Discov. – volume: 26 start-page: 144 issue: 2 year: 2010 ident: 10.1016/j.patrec.2020.05.014_bib0018 article-title: Spanish multicenter normative studies (Neuronorma project): norms for the abbreviated Barcelona Test publication-title: Arch. Clin. Neuropsychol. doi: 10.1093/arclin/acq098 – volume: 6 start-page: 19626 year: 2018 ident: 10.1016/j.patrec.2020.05.014_bib0008 article-title: Classifiers combination techniques: a comprehensive review publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2813079 – ident: 10.1016/j.patrec.2020.05.014_bib0026 – volume: 25 start-page: 1585 issue: 6 year: 2013 ident: 10.1016/j.patrec.2020.05.014_bib0017 article-title: Parameter learning for alpha integration publication-title: Neural. Comput. doi: 10.1162/NECO_a_00445 – ident: 10.1016/j.patrec.2020.05.014_bib0020 |
SSID | ssj0006398 |
Score | 2.4343028 |
Snippet | •Alpha integration encompasses many classic fusion operators.•This paper proposes vector score integration (VSI), a new alpha integration method.•The... Alpha integration is a family of integrators that encompasses many classic fusion operators (e.g., mean, product, minimum, maximum) as particular cases. This... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 48 |
SubjectTerms | Apnea Bayesian analysis Classification Classifiers Discriminant analysis EEG Epilepsy Integration Integrators Optimization Sleep Sleep disorders |
Title | Vector score alpha integration for classifier late fusion |
URI | https://dx.doi.org/10.1016/j.patrec.2020.05.014 https://www.proquest.com/docview/2447010215 |
Volume | 136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mcYEDjwFiMKYcuJaF5tHmOE1MA6RdYGi3qE0TaWgaE9uu_HbstuEloUkcWyVp5ST2Z8v-TMiVygsmvHORdl5FgjsWpWmmMW6lnNPKy6zM8h2r0UTcT-W0QQahFgbTKmvdX-n0UlvXb3q1NHvL2az3iAn0WFYZI6pPFfrtQiR4yq_fv9I8wAKngd8bR4fyuTLHC-PNDokMY1bxd4q_zNMvRV1an-Eh2a9hI-1Xf3ZEGm7RIgehJQOtb2iL7H3jFzwm-rmMydMVclXSsqyWBn4I2A8KgJVahM8zD5-nc8Cd1G8wfnZCJsPbp8EoqnslRBYcunUk8xQ8Kcs592DgQdAy9swJrpSNkxxgtIRxWrBcgj_hXSw8s4oVWnqw8dJbfkqai9eFOyNUci99HosMq1StBtdbqczdeK6LIuY6bxMeRGRsTSSO_SzmJmSMvZhKsAYFa5g0INg2iT5nLSsijS3jkyB98-NAGND1W2Z2wmaZ-kKuDKCYpGxjLs__vfAF2cWnKv2vQ5rrt427BEiyzrvlmeuSnf7dw2j8ASgI3xw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT8IwEL4QeFAf_IEaUdQ--Low17Wsj4RIQJAXwfDWbF2bYAgSgf_f69YSNTEkvm5tt1zbu-8ud98BPPAsD2OjdSC04UFMdRgkSSps3IprLbhhaZHlO-b9afw8Y7MKdH0tjE2rdLq_1OmFtnZPWk6ardV83nq1CfS2rDKyqD7h6LfXLDsVq0KtMxj2xzuFjEY48RTfdoKvoCvSvGzIWVsuwygsKTzjvyzUL11dGKDeKRw75Eg65c-dQUUv63DiuzIQd0nrcPSNYvAcxFsRlidrS1dJispa4ikicEsIYlaiLIKeG_w8WSD0JGZrQ2gXMO09Tbr9wLVLCBT6dJuAZQk6U4pSatDGo6xZZEIdU85V1M4QSTMcJ-IwY-hSGB3FJlQ8zAUzaOaZUfQSqsuPpb4CwqhhJovi1BaqKoHeN-epfjRU5HlERdYA6kUkleMSty0tFtInjb3LUrDSClaGTKJgGxDsZq1KLo0949te-vLHmZCo7vfMbPrNku5OriUCmXbRyZxd_3vhezjoT15GcjQYD2_g0L4pswGbUN18bvUtIpRNdudO4Bfbb-HN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vector+score+alpha+integration+for+classifier+late+fusion&rft.jtitle=Pattern+recognition+letters&rft.au=Safont%2C+Gonzalo&rft.au=Salazar%2C+Addisson&rft.au=Vergara%2C+Luis&rft.date=2020-08-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=136&rft.spage=48&rft_id=info:doi/10.1016%2Fj.patrec.2020.05.014&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon |