Vector score alpha integration for classifier late fusion

•Alpha integration encompasses many classic fusion operators.•This paper proposes vector score integration (VSI), a new alpha integration method.•The parameters of VSI are optimized to achieve the minimum probability of error.•VSI was applied to two classification tasks using electroencephalographic...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition letters Vol. 136; pp. 48 - 55
Main Authors Safont, Gonzalo, Salazar, Addisson, Vergara, Luis
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.08.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Alpha integration encompasses many classic fusion operators.•This paper proposes vector score integration (VSI), a new alpha integration method.•The parameters of VSI are optimized to achieve the minimum probability of error.•VSI was applied to two classification tasks using electroencephalographic signals.•VSI outperformed other fusion methods in both applications. Alpha integration is a family of integrators that encompasses many classic fusion operators (e.g., mean, product, minimum, maximum) as particular cases. This paper proposes vector score integration (VSI), a new alpha integration method for late fusion of multiple classifiers considering the joint effect of all the classes of the multi-class problem. Theoretical derivations to optimize the parameters of VSI for achieving the minimum probability of error are provided. VSI was applied to two classification tasks using electroencephalographic signals. The first task was the automatic stage classification of a neuropsychological test performed by epileptic subjects and the second one was the classification of sleep stages from apnea patients. Four single classifiers (linear and quadratic discriminant analysis, naive Bayes, and random forest) and three competitive fusion methods were estimated for comparison: mean, majority voting, and separated score integration (SSI). SSI is based on alpha integration, but unlike the proposed method, it considers the scores from each class in isolation, not accounting for possible dependencies among scores corresponding to different classes. VSI was able to optimally combine the results from all the single classifiers, in terms of accuracy and kappa coefficient, and outperformed the results of the other fusion methods in both applications.
AbstractList Alpha integration is a family of integrators that encompasses many classic fusion operators (e.g., mean, product, minimum, maximum) as particular cases. This paper proposes vector score integration (VSI), a new alpha integration method for late fusion of multiple classifiers considering the joint effect of all the classes of the multi-class problem. Theoretical derivations to optimize the parameters of VSI for achieving the minimum probability of error are provided. VSI was applied to two classification tasks using electroencephalographic signals. The first task was the automatic stage classification of a neuropsychological test performed by epileptic subjects and the second one was the classification of sleep stages from apnea patients. Four single classifiers (linear and quadratic discriminant analysis, naive Bayes, and random forest) and three competitive fusion methods were estimated for comparison: mean, majority voting, and separated score integration (SSI). SSI is based on alpha integration, but unlike the proposed method, it considers the scores from each class in isolation, not accounting for possible dependencies among scores corresponding to different classes. VSI was able to optimally combine the results from all the single classifiers, in terms of accuracy and kappa coefficient, and outperformed the results of the other fusion methods in both applications.
•Alpha integration encompasses many classic fusion operators.•This paper proposes vector score integration (VSI), a new alpha integration method.•The parameters of VSI are optimized to achieve the minimum probability of error.•VSI was applied to two classification tasks using electroencephalographic signals.•VSI outperformed other fusion methods in both applications. Alpha integration is a family of integrators that encompasses many classic fusion operators (e.g., mean, product, minimum, maximum) as particular cases. This paper proposes vector score integration (VSI), a new alpha integration method for late fusion of multiple classifiers considering the joint effect of all the classes of the multi-class problem. Theoretical derivations to optimize the parameters of VSI for achieving the minimum probability of error are provided. VSI was applied to two classification tasks using electroencephalographic signals. The first task was the automatic stage classification of a neuropsychological test performed by epileptic subjects and the second one was the classification of sleep stages from apnea patients. Four single classifiers (linear and quadratic discriminant analysis, naive Bayes, and random forest) and three competitive fusion methods were estimated for comparison: mean, majority voting, and separated score integration (SSI). SSI is based on alpha integration, but unlike the proposed method, it considers the scores from each class in isolation, not accounting for possible dependencies among scores corresponding to different classes. VSI was able to optimally combine the results from all the single classifiers, in terms of accuracy and kappa coefficient, and outperformed the results of the other fusion methods in both applications.
Author Vergara, Luis
Salazar, Addisson
Safont, Gonzalo
Author_xml – sequence: 1
  givenname: Gonzalo
  orcidid: 0000-0002-2401-1594
  surname: Safont
  fullname: Safont, Gonzalo
  email: gonsaar@upvnet.upv.es
– sequence: 2
  givenname: Addisson
  orcidid: 0000-0001-5849-5104
  surname: Salazar
  fullname: Salazar, Addisson
– sequence: 3
  givenname: Luis
  surname: Vergara
  fullname: Vergara, Luis
BookMark eNqFkD1PwzAQhi1UJNrCP2CIxJxw_ozDgIQqvqRKLMBqua4NjkISbBeJf49LmBhguuGe9z3ds0CzfugtQqcYKgxYnLfVqFOwpiJAoAJeAWYHaI5lTcqaMjZD84zVpRScH6FFjC0ACNrIOWqerUlDKKIZgi10N77qwvfJvgSd_NAXLu9Mp2P0zttQdDrZwu1iXh2jQ6e7aE9-5hI93Vw_ru7K9cPt_epqXRrGRCr5RjaEGUqpA8wlFZw4sIwKYUi9kZLwzDUMNlwS4SxhDoyAbcMdwZI7Q5fobOodw_C-szGpdtiFPp9UhLEaMBDMM3UxUSYMMQbrlPHp-4UUtO8UBrVXpVo1qVJ7VQq4yqpymP0Kj8G_6fD5X-xyitn8_kfWo6Lxtjd26zOa1Hbwfxd8AVtJhXM
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3113397
crossref_primary_10_3390_computers13010013
crossref_primary_10_1109_ACCESS_2020_3040199
crossref_primary_10_1109_ACCESS_2023_3252004
crossref_primary_10_1109_ACCESS_2024_3355115
crossref_primary_10_3390_app13105834
crossref_primary_10_1049_bme2_12026
crossref_primary_10_3390_computers11080125
crossref_primary_10_3390_brainsci13081143
crossref_primary_10_3390_healthcare10040729
crossref_primary_10_1109_ACCESS_2024_3387279
crossref_primary_10_1109_ACCESS_2023_3344776
crossref_primary_10_3390_signals4040048
crossref_primary_10_3390_rs15112758
Cites_doi 10.1016/j.dsp.2015.11.009
10.1162/neco.2007.19.10.2780
10.1016/0013-4694(73)90260-5
10.1109/TITB.2012.2188299
10.1016/j.patrec.2016.02.010
10.1016/j.patrec.2017.05.003
10.1016/j.patrec.2018.03.009
10.1162/NECO_a_00766
10.1145/3306128
10.1016/j.bspc.2013.12.003
10.1016/j.inffus.2019.05.001
10.1109/TPAMI.2018.2798607
10.1162/neco_a_01169
10.1016/j.patrec.2014.11.007
10.1093/arclin/acq098
10.1109/ACCESS.2018.2813079
10.1162/NECO_a_00445
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier Science Ltd. Aug 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Aug 2020
DBID AAYXX
CITATION
7SC
7TK
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.patrec.2020.05.014
DatabaseName CrossRef
Computer and Information Systems Abstracts
Neurosciences Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Neurosciences Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-7344
EndPage 55
ExternalDocumentID 10_1016_j_patrec_2020_05_014
S0167865520301860
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WH7
WUQ
XFK
XPP
Y6R
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7TK
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c446t-5b8924c333f01583652f0e4366c27b8825c44940b5826fe24f0c60d95f2185fc3
IEDL.DBID .~1
ISSN 0167-8655
IngestDate Fri Jul 25 04:46:12 EDT 2025
Thu Apr 24 23:00:08 EDT 2025
Tue Jul 01 02:40:41 EDT 2025
Fri Feb 23 02:47:10 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-5b8924c333f01583652f0e4366c27b8825c44940b5826fe24f0c60d95f2185fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5849-5104
0000-0002-2401-1594
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0167865520301860
PQID 2447010215
PQPubID 2047552
PageCount 8
ParticipantIDs proquest_journals_2447010215
crossref_citationtrail_10_1016_j_patrec_2020_05_014
crossref_primary_10_1016_j_patrec_2020_05_014
elsevier_sciencedirect_doi_10_1016_j_patrec_2020_05_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
20200801
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Pattern recognition letters
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Hjorth (bib0021) 1973; 34
Nocedal, Wright (bib0019) 2006
Thoma, Thalhammer, Harth, Studer (bib0006) 2019; 13
Jouirou, Baâzaoui, Barhoumi (bib0002) 2019; 52
Ringeval, Eyben, Kroupi, Yuce, Thiran, Ebrahimi, Lalanne, Schuller (bib0004) 2015; 66
Park, Ahn, Lee (bib0007) 2018; 2018
Safont, Salazar, Vergara (bib0015) 2019; 31
Choi, Choi, Katake, Choe (bib0016) 2010
Salazar, Safont, Vergara (bib0025) 2018
Soriano, Vergara, Ahmed, Salazar (bib0014) 2015; 27
Sturari, Liciotti, Pierdicca, Frontoni, Mancini, Contigiani, Zingaretti (bib0005) 2016; 81
Xie, Minn (bib0023) 2012; 16
Wang, Hua, Hao, Xie (bib0024) 2017; 2017
Baltrusaitis, Ahuja, Morency (bib0001) 2019; 41
Bharath-Bhushan, Danti (bib0011) 2017; 94
Amari (bib0012) 2007; 19
Danelljan, Bhat, Gladh, Khan, Felsberg (bib0003) 2019; 124
C. Heneghan. (2011) Physionet. [Online].
Mohandes, Deriche, Aliyu (bib0008) 2018; 6
Amari (bib0013) 2016
Choi, Choi, Choe (bib0017) 2013; 25
Vergara, Soriano, Safont, Salazar (bib0027) 2016; 50
Motamedi-Fakhr, Moshrefi-Torbati, Hill, Hill, White (bib0022) 2014; 10
Zhao (bib0010) 2019; 9
Quintana (bib0018) 2010; 26
Sagi, Rokach (bib0009) 2018; 8
A. Salazar, G. Safont, and L. Vergara, “Surrogate techniques for testing fraud detection algorithms in credit card operations,” in Proceedings of the 48th IEEE International Carnahan Conference on Security Technology ICCST 2014, Article no. 6986987, 2014, pp. 124-129.
Quintana (10.1016/j.patrec.2020.05.014_bib0018) 2010; 26
Xie (10.1016/j.patrec.2020.05.014_bib0023) 2012; 16
Jouirou (10.1016/j.patrec.2020.05.014_bib0002) 2019; 52
Mohandes (10.1016/j.patrec.2020.05.014_bib0008) 2018; 6
Choi (10.1016/j.patrec.2020.05.014_bib0017) 2013; 25
Park (10.1016/j.patrec.2020.05.014_bib0007) 2018; 2018
Amari (10.1016/j.patrec.2020.05.014_bib0012) 2007; 19
Ringeval (10.1016/j.patrec.2020.05.014_bib0004) 2015; 66
Salazar (10.1016/j.patrec.2020.05.014_bib0025) 2018
Danelljan (10.1016/j.patrec.2020.05.014_bib0003) 2019; 124
Zhao (10.1016/j.patrec.2020.05.014_bib0010) 2019; 9
Bharath-Bhushan (10.1016/j.patrec.2020.05.014_bib0011) 2017; 94
Thoma (10.1016/j.patrec.2020.05.014_bib0006) 2019; 13
Vergara (10.1016/j.patrec.2020.05.014_bib0027) 2016; 50
Safont (10.1016/j.patrec.2020.05.014_bib0015) 2019; 31
Baltrusaitis (10.1016/j.patrec.2020.05.014_bib0001) 2019; 41
Wang (10.1016/j.patrec.2020.05.014_bib0024) 2017; 2017
Motamedi-Fakhr (10.1016/j.patrec.2020.05.014_bib0022) 2014; 10
Nocedal (10.1016/j.patrec.2020.05.014_bib0019) 2006
Soriano (10.1016/j.patrec.2020.05.014_bib0014) 2015; 27
Hjorth (10.1016/j.patrec.2020.05.014_bib0021) 1973; 34
10.1016/j.patrec.2020.05.014_bib0020
Choi (10.1016/j.patrec.2020.05.014_bib0016) 2010
10.1016/j.patrec.2020.05.014_bib0026
Amari (10.1016/j.patrec.2020.05.014_bib0013) 2016
Sturari (10.1016/j.patrec.2020.05.014_bib0005) 2016; 81
Sagi (10.1016/j.patrec.2020.05.014_bib0009) 2018; 8
References_xml – volume: 9
  start-page: 1
  year: 2019
  end-page: 10
  ident: bib0010
  article-title: Learning from longitudinal data in electronic health record and genetic data to improve cardiovascular event prediction
  publication-title: Sci. Rep.
– reference: C. Heneghan. (2011) Physionet. [Online].
– volume: 41
  start-page: 423
  year: 2019
  end-page: 443
  ident: bib0001
  article-title: Multimodal machine learning: a survey and taxonomy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 26
  start-page: 144
  year: 2010
  end-page: 157
  ident: bib0018
  article-title: Spanish multicenter normative studies (Neuronorma project): norms for the abbreviated Barcelona Test
  publication-title: Arch. Clin. Neuropsychol.
– volume: 19
  start-page: 2796
  year: 2007
  ident: bib0012
  article-title: Integration of stochastic models by minimizing α-divergence
  publication-title: Neural. Comput.
– volume: 124
  start-page: 74
  year: 2019
  end-page: 81
  ident: bib0003
  article-title: Deep motion and appearance cues for visual tracking
  publication-title: Pattern. Recognit. Lett.
– volume: 10
  start-page: 21
  year: 2014
  end-page: 33
  ident: bib0022
  article-title: Signal processing techniques applied to human sleep EEG signals – a review
  publication-title: Biomed. Signal Process. Control
– volume: 34
  start-page: 321
  year: 1973
  end-page: 325
  ident: bib0021
  article-title: The physical significance of time domain descriptors in EEG analysis
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– year: 2016
  ident: bib0013
  article-title: Information Geometry and its Applications
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 7
  ident: bib0024
  article-title: A cycle deep belief network model for multivariate time series classification
  publication-title: Math. Probl. Eng.
– volume: 50
  start-page: 24
  year: 2016
  end-page: 33
  ident: bib0027
  article-title: On the fusion of non-independent detectors
  publication-title: Digital Signal Process.
– volume: 13
  year: 2019
  ident: bib0006
  article-title: FusE: entity-centric data fusion on linked data
  publication-title: ACM Trans. Web
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 15
  ident: bib0007
  article-title: Development of data fusion method based on topological relationships using indoorGML core module
  publication-title: J. Sens.
– volume: 66
  start-page: 22
  year: 2015
  end-page: 30
  ident: bib0004
  article-title: Prediction of asynchronous dimensional emotion ratings from audiovisual and physiological data
  publication-title: Pattern. Recognit. Lett.
– volume: 52
  start-page: 308
  year: 2019
  end-page: 321
  ident: bib0002
  article-title: Multi-view information fusion in mammograms: a comprehensive overview
  publication-title: Inf. Fusion
– volume: 81
  start-page: 30
  year: 2016
  end-page: 40
  ident: bib0005
  article-title: Robust and affordable retail customer profiling by vision and radio beacon sensor fusion
  publication-title: Pattern. Recognit. Lett.
– start-page: 2058
  year: 2010
  end-page: 2061
  ident: bib0016
  article-title: Learning α-integration with partially-labeled data
  publication-title: Proceedings of the IEEE International Conference on Acoustic, Speech, and Signal Processing (ICASSP)
– volume: 25
  start-page: 1585
  year: 2013
  end-page: 1604
  ident: bib0017
  article-title: Parameter learning for alpha integration
  publication-title: Neural. Comput.
– start-page: 4976
  year: 2018
  end-page: 4982
  ident: bib0025
  article-title: Semi-supervised learning for imbalanced classification of credit card transaction
  publication-title: Proceedings of the IEEE International Joint Conference on Neural Networks IJCNN 2018
– reference: A. Salazar, G. Safont, and L. Vergara, “Surrogate techniques for testing fraud detection algorithms in credit card operations,” in Proceedings of the 48th IEEE International Carnahan Conference on Security Technology ICCST 2014, Article no. 6986987, 2014, pp. 124-129.
– volume: 16
  start-page: 469
  year: 2012
  end-page: 477
  ident: bib0023
  article-title: Real-time sleep apnea detection by classifier combination
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 27
  start-page: 1983
  year: 2015
  end-page: 2010
  ident: bib0014
  article-title: Fusion of scores in a detection context based on alpha integration
  publication-title: Neural. Comput.
– year: 2006
  ident: bib0019
  article-title: Numerical Optimization
– volume: 6
  start-page: 19626
  year: 2018
  end-page: 19639
  ident: bib0008
  article-title: Classifiers combination techniques: a comprehensive review
  publication-title: IEEE Access
– volume: 8
  start-page: 1
  year: 2018
  end-page: 18
  ident: bib0009
  article-title: Ensemble learning: a survey
  publication-title: Wiley Interdisciplinary Rev.: Data Min. Knowl. Discov.
– volume: 94
  start-page: 118
  year: 2017
  end-page: 126
  ident: bib0011
  article-title: Classification of text documents based on score level fusion approach
  publication-title: Pattern Recognit. Lett.
– volume: 31
  start-page: 806
  year: 2019
  end-page: 825
  ident: bib0015
  article-title: Multiclass alpha integration of scores from multiple classifiers
  publication-title: Neural. Comput.
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.patrec.2020.05.014_bib0010
  article-title: Learning from longitudinal data in electronic health record and genetic data to improve cardiovascular event prediction
  publication-title: Sci. Rep.
– volume: 50
  start-page: 24
  year: 2016
  ident: 10.1016/j.patrec.2020.05.014_bib0027
  article-title: On the fusion of non-independent detectors
  publication-title: Digital Signal Process.
  doi: 10.1016/j.dsp.2015.11.009
– volume: 19
  start-page: 2796
  issue: 10
  year: 2007
  ident: 10.1016/j.patrec.2020.05.014_bib0012
  article-title: Integration of stochastic models by minimizing α-divergence
  publication-title: Neural. Comput.
  doi: 10.1162/neco.2007.19.10.2780
– volume: 34
  start-page: 321
  issue: 3
  year: 1973
  ident: 10.1016/j.patrec.2020.05.014_bib0021
  article-title: The physical significance of time domain descriptors in EEG analysis
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(73)90260-5
– volume: 2018
  start-page: 1
  issue: 4094235
  year: 2018
  ident: 10.1016/j.patrec.2020.05.014_bib0007
  article-title: Development of data fusion method based on topological relationships using indoorGML core module
  publication-title: J. Sens.
– volume: 16
  start-page: 469
  issue: 3
  year: 2012
  ident: 10.1016/j.patrec.2020.05.014_bib0023
  article-title: Real-time sleep apnea detection by classifier combination
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2012.2188299
– start-page: 4976
  year: 2018
  ident: 10.1016/j.patrec.2020.05.014_bib0025
  article-title: Semi-supervised learning for imbalanced classification of credit card transaction
– volume: 81
  start-page: 30
  year: 2016
  ident: 10.1016/j.patrec.2020.05.014_bib0005
  article-title: Robust and affordable retail customer profiling by vision and radio beacon sensor fusion
  publication-title: Pattern. Recognit. Lett.
  doi: 10.1016/j.patrec.2016.02.010
– volume: 94
  start-page: 118
  year: 2017
  ident: 10.1016/j.patrec.2020.05.014_bib0011
  article-title: Classification of text documents based on score level fusion approach
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2017.05.003
– start-page: 2058
  year: 2010
  ident: 10.1016/j.patrec.2020.05.014_bib0016
  article-title: Learning α-integration with partially-labeled data
– volume: 124
  start-page: 74
  year: 2019
  ident: 10.1016/j.patrec.2020.05.014_bib0003
  article-title: Deep motion and appearance cues for visual tracking
  publication-title: Pattern. Recognit. Lett.
  doi: 10.1016/j.patrec.2018.03.009
– volume: 2017
  start-page: 1
  year: 2017
  ident: 10.1016/j.patrec.2020.05.014_bib0024
  article-title: A cycle deep belief network model for multivariate time series classification
  publication-title: Math. Probl. Eng.
– year: 2016
  ident: 10.1016/j.patrec.2020.05.014_bib0013
– volume: 27
  start-page: 1983
  issue: 9
  year: 2015
  ident: 10.1016/j.patrec.2020.05.014_bib0014
  article-title: Fusion of scores in a detection context based on alpha integration
  publication-title: Neural. Comput.
  doi: 10.1162/NECO_a_00766
– volume: 13
  issue: 2
  year: 2019
  ident: 10.1016/j.patrec.2020.05.014_bib0006
  article-title: FusE: entity-centric data fusion on linked data
  publication-title: ACM Trans. Web
  doi: 10.1145/3306128
– volume: 10
  start-page: 21
  year: 2014
  ident: 10.1016/j.patrec.2020.05.014_bib0022
  article-title: Signal processing techniques applied to human sleep EEG signals – a review
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2013.12.003
– year: 2006
  ident: 10.1016/j.patrec.2020.05.014_bib0019
– volume: 52
  start-page: 308
  year: 2019
  ident: 10.1016/j.patrec.2020.05.014_bib0002
  article-title: Multi-view information fusion in mammograms: a comprehensive overview
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.05.001
– volume: 41
  start-page: 423
  issue: 2
  year: 2019
  ident: 10.1016/j.patrec.2020.05.014_bib0001
  article-title: Multimodal machine learning: a survey and taxonomy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2798607
– volume: 31
  start-page: 806
  issue: 4
  year: 2019
  ident: 10.1016/j.patrec.2020.05.014_bib0015
  article-title: Multiclass alpha integration of scores from multiple classifiers
  publication-title: Neural. Comput.
  doi: 10.1162/neco_a_01169
– volume: 66
  start-page: 22
  year: 2015
  ident: 10.1016/j.patrec.2020.05.014_bib0004
  article-title: Prediction of asynchronous dimensional emotion ratings from audiovisual and physiological data
  publication-title: Pattern. Recognit. Lett.
  doi: 10.1016/j.patrec.2014.11.007
– volume: 8
  start-page: 1
  issue: 4
  year: 2018
  ident: 10.1016/j.patrec.2020.05.014_bib0009
  article-title: Ensemble learning: a survey
  publication-title: Wiley Interdisciplinary Rev.: Data Min. Knowl. Discov.
– volume: 26
  start-page: 144
  issue: 2
  year: 2010
  ident: 10.1016/j.patrec.2020.05.014_bib0018
  article-title: Spanish multicenter normative studies (Neuronorma project): norms for the abbreviated Barcelona Test
  publication-title: Arch. Clin. Neuropsychol.
  doi: 10.1093/arclin/acq098
– volume: 6
  start-page: 19626
  year: 2018
  ident: 10.1016/j.patrec.2020.05.014_bib0008
  article-title: Classifiers combination techniques: a comprehensive review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2813079
– ident: 10.1016/j.patrec.2020.05.014_bib0026
– volume: 25
  start-page: 1585
  issue: 6
  year: 2013
  ident: 10.1016/j.patrec.2020.05.014_bib0017
  article-title: Parameter learning for alpha integration
  publication-title: Neural. Comput.
  doi: 10.1162/NECO_a_00445
– ident: 10.1016/j.patrec.2020.05.014_bib0020
SSID ssj0006398
Score 2.4343028
Snippet •Alpha integration encompasses many classic fusion operators.•This paper proposes vector score integration (VSI), a new alpha integration method.•The...
Alpha integration is a family of integrators that encompasses many classic fusion operators (e.g., mean, product, minimum, maximum) as particular cases. This...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 48
SubjectTerms Apnea
Bayesian analysis
Classification
Classifiers
Discriminant analysis
EEG
Epilepsy
Integration
Integrators
Optimization
Sleep
Sleep disorders
Title Vector score alpha integration for classifier late fusion
URI https://dx.doi.org/10.1016/j.patrec.2020.05.014
https://www.proquest.com/docview/2447010215
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mcYEDjwFiMKYcuJaF5tHmOE1MA6RdYGi3qE0TaWgaE9uu_HbstuEloUkcWyVp5ST2Z8v-TMiVygsmvHORdl5FgjsWpWmmMW6lnNPKy6zM8h2r0UTcT-W0QQahFgbTKmvdX-n0UlvXb3q1NHvL2az3iAn0WFYZI6pPFfrtQiR4yq_fv9I8wAKngd8bR4fyuTLHC-PNDokMY1bxd4q_zNMvRV1an-Eh2a9hI-1Xf3ZEGm7RIgehJQOtb2iL7H3jFzwm-rmMydMVclXSsqyWBn4I2A8KgJVahM8zD5-nc8Cd1G8wfnZCJsPbp8EoqnslRBYcunUk8xQ8Kcs592DgQdAy9swJrpSNkxxgtIRxWrBcgj_hXSw8s4oVWnqw8dJbfkqai9eFOyNUci99HosMq1StBtdbqczdeK6LIuY6bxMeRGRsTSSO_SzmJmSMvZhKsAYFa5g0INg2iT5nLSsijS3jkyB98-NAGND1W2Z2wmaZ-kKuDKCYpGxjLs__vfAF2cWnKv2vQ5rrt427BEiyzrvlmeuSnf7dw2j8ASgI3xw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT8IwEL4QeFAf_IEaUdQ--Low17Wsj4RIQJAXwfDWbF2bYAgSgf_f69YSNTEkvm5tt1zbu-8ud98BPPAsD2OjdSC04UFMdRgkSSps3IprLbhhaZHlO-b9afw8Y7MKdH0tjE2rdLq_1OmFtnZPWk6ardV83nq1CfS2rDKyqD7h6LfXLDsVq0KtMxj2xzuFjEY48RTfdoKvoCvSvGzIWVsuwygsKTzjvyzUL11dGKDeKRw75Eg65c-dQUUv63DiuzIQd0nrcPSNYvAcxFsRlidrS1dJispa4ikicEsIYlaiLIKeG_w8WSD0JGZrQ2gXMO09Tbr9wLVLCBT6dJuAZQk6U4pSatDGo6xZZEIdU85V1M4QSTMcJ-IwY-hSGB3FJlQ8zAUzaOaZUfQSqsuPpb4CwqhhJovi1BaqKoHeN-epfjRU5HlERdYA6kUkleMSty0tFtInjb3LUrDSClaGTKJgGxDsZq1KLo0949te-vLHmZCo7vfMbPrNku5OriUCmXbRyZxd_3vhezjoT15GcjQYD2_g0L4pswGbUN18bvUtIpRNdudO4Bfbb-HN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vector+score+alpha+integration+for+classifier+late+fusion&rft.jtitle=Pattern+recognition+letters&rft.au=Safont%2C+Gonzalo&rft.au=Salazar%2C+Addisson&rft.au=Vergara%2C+Luis&rft.date=2020-08-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0167-8655&rft.eissn=1872-7344&rft.volume=136&rft.spage=48&rft_id=info:doi/10.1016%2Fj.patrec.2020.05.014&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon