Electrocardiogram-Based Emotion Recognition Systems and Their Applications in Healthcare—A Review
Affective computing is a field of study that integrates human affects and emotions with artificial intelligence into systems or devices. A system or device with affective computing is beneficial for the mental health and wellbeing of individuals that are stressed, anguished, or depressed. Emotion re...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 21; no. 15; p. 5015 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
23.07.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Affective computing is a field of study that integrates human affects and emotions with artificial intelligence into systems or devices. A system or device with affective computing is beneficial for the mental health and wellbeing of individuals that are stressed, anguished, or depressed. Emotion recognition systems are an important technology that enables affective computing. Currently, there are a lot of ways to build an emotion recognition system using various techniques and algorithms. This review paper focuses on emotion recognition research that adopted electrocardiograms (ECGs) as a unimodal approach as well as part of a multimodal approach for emotion recognition systems. Critical observations of data collection, pre-processing, feature extraction, feature selection and dimensionality reduction, classification, and validation are conducted. This paper also highlights the architectures with accuracy of above 90%. The available ECG-inclusive affective databases are also reviewed, and a popularity analysis is presented. Additionally, the benefit of emotion recognition systems towards healthcare systems is also reviewed here. Based on the literature reviewed, a thorough discussion on the subject matter and future works is suggested and concluded. The findings presented here are beneficial for prospective researchers to look into the summary of previous works conducted in the field of ECG-based emotion recognition systems, and for identifying gaps in the area, as well as in developing and designing future applications of emotion recognition systems, especially in improving healthcare. |
---|---|
AbstractList | Affective computing is a field of study that integrates human affects and emotions with artificial intelligence into systems or devices. A system or device with affective computing is beneficial for the mental health and wellbeing of individuals that are stressed, anguished, or depressed. Emotion recognition systems are an important technology that enables affective computing. Currently, there are a lot of ways to build an emotion recognition system using various techniques and algorithms. This review paper focuses on emotion recognition research that adopted electrocardiograms (ECGs) as a unimodal approach as well as part of a multimodal approach for emotion recognition systems. Critical observations of data collection, pre-processing, feature extraction, feature selection and dimensionality reduction, classification, and validation are conducted. This paper also highlights the architectures with accuracy of above 90%. The available ECG-inclusive affective databases are also reviewed, and a popularity analysis is presented. Additionally, the benefit of emotion recognition systems towards healthcare systems is also reviewed here. Based on the literature reviewed, a thorough discussion on the subject matter and future works is suggested and concluded. The findings presented here are beneficial for prospective researchers to look into the summary of previous works conducted in the field of ECG-based emotion recognition systems, and for identifying gaps in the area, as well as in developing and designing future applications of emotion recognition systems, especially in improving healthcare. Affective computing is a field of study that integrates human affects and emotions with artificial intelligence into systems or devices. A system or device with affective computing is beneficial for the mental health and wellbeing of individuals that are stressed, anguished, or depressed. Emotion recognition systems are an important technology that enables affective computing. Currently, there are a lot of ways to build an emotion recognition system using various techniques and algorithms. This review paper focuses on emotion recognition research that adopted electrocardiograms (ECGs) as a unimodal approach as well as part of a multimodal approach for emotion recognition systems. Critical observations of data collection, pre-processing, feature extraction, feature selection and dimensionality reduction, classification, and validation are conducted. This paper also highlights the architectures with accuracy of above 90%. The available ECG-inclusive affective databases are also reviewed, and a popularity analysis is presented. Additionally, the benefit of emotion recognition systems towards healthcare systems is also reviewed here. Based on the literature reviewed, a thorough discussion on the subject matter and future works is suggested and concluded. The findings presented here are beneficial for prospective researchers to look into the summary of previous works conducted in the field of ECG-based emotion recognition systems, and for identifying gaps in the area, as well as in developing and designing future applications of emotion recognition systems, especially in improving healthcare.Affective computing is a field of study that integrates human affects and emotions with artificial intelligence into systems or devices. A system or device with affective computing is beneficial for the mental health and wellbeing of individuals that are stressed, anguished, or depressed. Emotion recognition systems are an important technology that enables affective computing. Currently, there are a lot of ways to build an emotion recognition system using various techniques and algorithms. This review paper focuses on emotion recognition research that adopted electrocardiograms (ECGs) as a unimodal approach as well as part of a multimodal approach for emotion recognition systems. Critical observations of data collection, pre-processing, feature extraction, feature selection and dimensionality reduction, classification, and validation are conducted. This paper also highlights the architectures with accuracy of above 90%. The available ECG-inclusive affective databases are also reviewed, and a popularity analysis is presented. Additionally, the benefit of emotion recognition systems towards healthcare systems is also reviewed here. Based on the literature reviewed, a thorough discussion on the subject matter and future works is suggested and concluded. The findings presented here are beneficial for prospective researchers to look into the summary of previous works conducted in the field of ECG-based emotion recognition systems, and for identifying gaps in the area, as well as in developing and designing future applications of emotion recognition systems, especially in improving healthcare. |
Author | Mohana, Mohamed Aziz, Azlan Abd Aziz, Nor Azlina Ab Alelyani, Salem Hasnul, Muhammad Anas |
AuthorAffiliation | 1 Faculty of Engineering and Technology, Multimedia University, Melaka 75450, Malaysia; 1141126389@student.mmu.edu.my (M.A.H.); azlan.abdaziz@mmu.edu.my (A.A.A.) 2 Center for Artificial Intelligence (CAI), King Khalid University, Abha 61421, Saudi Arabia; s.alelyani@kku.edu.sa (S.A.); mmuhanna@kku.edu.sa (M.M.) 3 College of Computer Science, King Khalid University, Abha 61421, Saudi Arabia |
AuthorAffiliation_xml | – name: 1 Faculty of Engineering and Technology, Multimedia University, Melaka 75450, Malaysia; 1141126389@student.mmu.edu.my (M.A.H.); azlan.abdaziz@mmu.edu.my (A.A.A.) – name: 2 Center for Artificial Intelligence (CAI), King Khalid University, Abha 61421, Saudi Arabia; s.alelyani@kku.edu.sa (S.A.); mmuhanna@kku.edu.sa (M.M.) – name: 3 College of Computer Science, King Khalid University, Abha 61421, Saudi Arabia |
Author_xml | – sequence: 1 givenname: Muhammad Anas orcidid: 0000-0002-2765-3234 surname: Hasnul fullname: Hasnul, Muhammad Anas – sequence: 2 givenname: Nor Azlina Ab orcidid: 0000-0002-2119-6191 surname: Aziz fullname: Aziz, Nor Azlina Ab – sequence: 3 givenname: Salem orcidid: 0000-0002-4571-9073 surname: Alelyani fullname: Alelyani, Salem – sequence: 4 givenname: Mohamed orcidid: 0000-0002-9485-8731 surname: Mohana fullname: Mohana, Mohamed – sequence: 5 givenname: Azlan Abd surname: Aziz fullname: Aziz, Azlan Abd |
BookMark | eNplks1u1DAQxy1URD_gwBtE4gKHtP6IE-eCtK0WWqkSEuzdmtjjXa8Se7GzRb3xEDwhT0J2t0W0nDzy_P4_W6M5JUchBiTkLaPnQrT0InPGpKRMviAnrOJVqTinR__Ux-Q05zWlXAihXpFjUYmGc8lPiJn3aMYUDSTr4zLBUF5CRlvMhzj6GIqvaOIy-H397T6POOQCgi0WK_SpmG02vTew6-bCh-IaoR9Xkwx___w1m8J3Hn-8Ji8d9BnfPJxnZPFpvri6Lm-_fL65mt2WpqrqsZS0dp2UikOr6qYylorOoTOyQUNRoZSusk4oYSTQGhrlWKeMbVzTMeOsOCM3B62NsNab5AdI9zqC1_uLmJYa0uhNj1qAsLWzwBsjKkmbFrnETiB0HWupbCbXx4Nrs-0GtAbDmKB_In3aCX6ll_FOK1GpulWT4P2DIMXvW8yjHnw22PcQMG6z5rKmtKZtzSf03TN0HbcpTJOaKKlarhjbURcHyqSYc0KnjR_3g5_e971mVO92Qf_dhSnx4Vni8fv_s38AlOW2sA |
CitedBy_id | crossref_primary_10_3390_su16135546 crossref_primary_10_1016_j_bspc_2024_106891 crossref_primary_10_1155_2022_2114882 crossref_primary_10_1016_j_inffus_2024_102753 crossref_primary_10_1109_ACCESS_2023_3280071 crossref_primary_10_1109_TIM_2024_3420349 crossref_primary_10_3390_a16030130 crossref_primary_10_1016_j_ijcce_2024_05_003 crossref_primary_10_2478_prilozi_2025_0002 crossref_primary_10_1016_j_trf_2024_03_003 crossref_primary_10_3390_brainsci14121211 crossref_primary_10_32604_csse_2024_052710 crossref_primary_10_3390_s23052387 crossref_primary_10_1007_s12559_024_10327_8 crossref_primary_10_1016_j_icte_2023_09_001 crossref_primary_10_2196_47098 crossref_primary_10_3390_s22082980 crossref_primary_10_3390_sci6010010 crossref_primary_10_1109_JIOT_2023_3320269 crossref_primary_10_3390_app132111854 crossref_primary_10_3389_fpsyg_2024_1275142 crossref_primary_10_3390_s23208636 crossref_primary_10_1007_s00530_024_01302_2 crossref_primary_10_3390_s22239102 crossref_primary_10_1109_ACCESS_2024_3380847 crossref_primary_10_1016_j_jcmds_2024_100102 crossref_primary_10_1007_s10639_023_11619_6 crossref_primary_10_3390_electronics13204014 crossref_primary_10_1080_10255842_2023_2188988 crossref_primary_10_1109_ACCESS_2024_3412328 crossref_primary_10_3233_JIFS_219334 crossref_primary_10_1002_admt_202401800 crossref_primary_10_1016_j_trpro_2023_11_489 crossref_primary_10_1109_ACCESS_2024_3387562 crossref_primary_10_1007_s13369_022_07585_9 crossref_primary_10_2139_ssrn_4999642 crossref_primary_10_3390_bioengineering9110711 crossref_primary_10_1016_j_procs_2024_09_386 crossref_primary_10_3390_s23052455 crossref_primary_10_1002_widm_1563 crossref_primary_10_3390_app12136544 crossref_primary_10_1002_adma_202403411 crossref_primary_10_3390_s23125591 crossref_primary_10_1016_j_egyr_2023_04_297 crossref_primary_10_1016_j_eswa_2024_124371 crossref_primary_10_1016_j_inffus_2023_102019 crossref_primary_10_3390_biomedicines12081719 crossref_primary_10_1155_2022_3271074 crossref_primary_10_3233_JIFS_233791 crossref_primary_10_4236_wjns_2023_134012 crossref_primary_10_3389_fpsyt_2023_1189765 crossref_primary_10_1109_ACCESS_2024_3463746 crossref_primary_10_1016_j_medengphy_2025_104316 crossref_primary_10_3390_buildings14061730 crossref_primary_10_3390_bioengineering9080374 crossref_primary_10_1016_j_compbiomed_2023_106938 crossref_primary_10_1007_s12144_022_04038_2 crossref_primary_10_1007_s42600_023_00293_9 crossref_primary_10_3390_s22208052 crossref_primary_10_3390_s23010338 crossref_primary_10_1007_s11042_023_16933_2 crossref_primary_10_3390_data7090132 crossref_primary_10_3390_mti8060047 crossref_primary_10_1109_JBHI_2024_3482450 crossref_primary_10_3389_fpsyg_2022_1066317 crossref_primary_10_1016_j_bspc_2023_104928 crossref_primary_10_1109_ACCESS_2024_3417525 crossref_primary_10_3390_diagnostics13122097 crossref_primary_10_59400_cai_v2i1_1388 crossref_primary_10_1038_s41467_023_44673_2 crossref_primary_10_1016_j_eswa_2024_126018 crossref_primary_10_1016_j_bspc_2025_107594 crossref_primary_10_1145_3723005 crossref_primary_10_34133_icomputing_0090 crossref_primary_10_1109_JSEN_2023_3304422 crossref_primary_10_1016_j_bspc_2025_107632 crossref_primary_10_3390_s22103729 crossref_primary_10_1007_s10439_023_03341_8 crossref_primary_10_1109_JIOT_2023_3235356 crossref_primary_10_3390_app13127054 crossref_primary_10_1155_2022_1079097 crossref_primary_10_1007_s41870_024_01951_6 |
Cites_doi | 10.1109/T-AFFC.2011.15 10.1111/j.1745-6916.2007.00044.x 10.1007/978-3-642-35197-6_22 10.1007/978-3-642-15184-2_8 10.1111/1467-8721.00165 10.1016/j.proeng.2011.08.452 10.1109/ACCESS.2019.2944001 10.1109/BIA48344.2019.8967457 10.1109/T-AFFC.2011.28 10.1080/02699939208411068 10.1038/s41597-020-00630-y 10.1109/TSMCA.2008.918624 10.1177/1754073917749016 10.1109/RCAR.2016.7784015 10.1109/ACCESS.2018.2883213 10.3389/fpubh.2017.00258 10.1109/ICBAKE.2013.43 10.1145/2750858.2807526 10.1109/DSR.2011.6026823 10.1109/ICCE-Taiwan49838.2020.9258341 10.1017/S0033291713000147 10.1037/t66667-000 10.1145/3242969.3242985 10.1007/978-3-319-58996-1_13 10.1109/ICMIC.2015.7409485 10.1093/oxfordjournals.eurheartj.a014868 10.1136/hrt.55.3.253 10.1109/ISSPIT.2009.5407547 10.1109/TPAMI.2008.26 10.3390/app10093314 10.1016/j.imu.2020.100363 10.1007/s13239-011-0065-3 10.1007/978-3-540-24842-2_4 10.1109/PERCOMW.2016.7457166 10.1186/1475-925X-12-44 10.1109/ACCESS.2019.2891579 10.1109/SSCI.2016.7850044 10.1145/3349341.3349422 10.1109/ICOSST51357.2020.9333021 10.1088/1742-6596/1678/1/012091 10.1109/CINC.2009.102 10.1109/IEMBS.2007.4353378 10.1016/j.imavis.2020.104044 10.1016/S0022-3999(99)00036-7 10.1109/MCOM.2012.6122530 10.1089/tmj.2014.0104 10.1038/srep04998 10.1016/0005-7916(94)90063-9 10.1109/ACII.2015.7344608 10.1146/annurev.psych.60.110707.163539 10.1109/MeMeA.2013.6549705 10.3390/bs7040066 10.1109/DISCOVER50404.2020.9278094 10.3390/s140611031 10.1038/s41598-019-42826-2 10.1002/0470013494.ch3 10.1111/exsy.12014 10.1016/j.ijpsycho.2005.10.024 10.1109/BIBE.2016.40 10.1109/TITS.2005.848368 10.1016/j.bj.2017.11.001 10.1145/2663204.2663257 10.1109/TAFFC.2015.2392932 10.1016/B978-0-08-097086-8.14131-5 10.1109/IJCNN.2018.8489125 10.1109/TAFFC.2014.2327617 10.1088/2057-1976/aadbd4 10.1016/S0735-1097(97)00554-8 10.1007/s11042-016-4203-7 10.1109/TAFFC.2016.2625250 10.3233/THC-174747 10.1016/S0167-8760(00)00150-1 10.1007/BF02229025 10.5057/ijae.IJAE-D-15-00036 10.1109/TBME.1985.325532 10.1038/s41597-019-0209-0 10.1109/IEMBS.2005.1615314 10.1037/h0077714 10.1109/CIBCB.2016.7758108 10.4108/ICST.PERVASIVEHEALTH2008.2511 10.1016/j.bspc.2018.06.004 10.20965/jaciii.2011.p0582 10.1007/978-3-030-30809-4_23 10.1155/2018/5296523 10.3390/s19204495 10.1016/j.ijhcs.2014.05.006 10.1007/s40670-021-01317-8 10.2174/1570159X1304150831150507 10.3390/s18124253 10.1007/978-3-319-08491-6 10.1016/B978-008045046-9.01991-4 10.1109/ICECENG.2011.6057832 10.1109/JBHI.2017.2688239 10.1109/T-AFFC.2011.25 10.1109/EMBC.2015.7319953 10.1098/rspa.1998.0193 10.1037/h0077722 10.3390/fib3040463 10.3389/fpsyg.2018.00467 10.5005/jp/books/11501 10.1016/j.procs.2017.05.025 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s21155015 |
DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_3a3d6fda27c345079e25eb3eabb19057 PMC8348698 10_3390_s21155015 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC COVID DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c446t-506fb5582a98674cd03bfefc57ec0e8e55f4df383c5a06a78f1b8cd7f7b1cfd3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:32:18 EDT 2025 Thu Aug 21 13:55:56 EDT 2025 Tue Aug 05 09:49:52 EDT 2025 Fri Jul 25 20:47:50 EDT 2025 Thu Apr 24 22:55:56 EDT 2025 Tue Jul 01 03:56:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-506fb5582a98674cd03bfefc57ec0e8e55f4df383c5a06a78f1b8cd7f7b1cfd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-2765-3234 0000-0002-2119-6191 0000-0002-9485-8731 0000-0002-4571-9073 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21155015 |
PMID | 34372252 |
PQID | 2558928112 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3a3d6fda27c345079e25eb3eabb19057 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8348698 proquest_miscellaneous_2560060962 proquest_journals_2558928112 crossref_citationtrail_10_3390_s21155015 crossref_primary_10_3390_s21155015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210723 |
PublicationDateYYYYMMDD | 2021-07-23 |
PublicationDate_xml | – month: 7 year: 2021 text: 20210723 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_94 Katsis (ref_6) 2008; 38 ref_92 Wei (ref_41) 2018; 2018 ref_90 Ekman (ref_3) 1980; 39 ref_14 ref_13 Sharma (ref_67) 2019; 6 ref_12 Park (ref_51) 2020; 7 ref_11 ref_99 ref_10 ref_97 Mayer (ref_60) 1995; 19 Ferreira (ref_116) 2018; 9 ref_19 Selvaraj (ref_40) 2013; 12 ref_18 ref_16 Kanagaraj (ref_38) 2012; 330 Saeed (ref_28) 2014; 14 Russell (ref_43) 1980; 39 ref_125 ref_128 Ekman (ref_32) 1992; 6 ref_127 Agrafioti (ref_21) 2012; 3 Izard (ref_36) 2009; 60 ref_23 ref_120 Zhang (ref_104) 2020; 1678 ref_122 ref_121 ref_124 ref_123 Shin (ref_115) 2017; 76 ref_26 Abadi (ref_57) 2015; 6 ref_71 ref_70 Katsigiannis (ref_58) 2017; 22 Soleymani (ref_59) 2012; 3 ref_78 ref_73 Umetani (ref_96) 1998; 31 Tada (ref_29) 2015; 3 Xia (ref_88) 2018; 46 Wen (ref_107) 2014; 5 Altameem (ref_126) 2020; 103 Ghali (ref_9) 2018; 96 Tivatansakul (ref_47) 2016; 15 Baek (ref_95) 2015; 21 Goshvarpour (ref_20) 2017; 40 Xun (ref_86) 2013; 11 Valenza (ref_106) 2014; 4 Song (ref_31) 2019; 7 ref_82 ref_80 ref_89 ref_85 ref_84 Yang (ref_48) 2015; 13 Liu (ref_75) 2018; 26 Bota (ref_15) 2019; 7 Tecce (ref_17) 1996; 40 Abadi (ref_55) 2018; 12 Rattanyu (ref_24) 2011; 15 Koelstra (ref_45) 2011; 3 Malik (ref_93) 1996; 17 ref_54 ref_53 Nemati (ref_27) 2012; 50 Kim (ref_69) 2008; 30 Shaffer (ref_91) 2017; 5 ref_61 Prkachin (ref_64) 1999; 47 Huang (ref_98) 1998; 454 Izard (ref_35) 2007; 2 ref_68 ref_66 Anusha (ref_77) 2018; 4 ref_63 Siedlecka (ref_50) 2019; 11 ref_114 Guo (ref_102) 2011; 15 ref_117 Minhad (ref_37) 2017; 12 Subramanian (ref_56) 2018; 9 ref_119 ref_118 Siddharth (ref_108) 2019; 1 ref_34 ref_33 ref_111 Kathirvel (ref_83) 2011; 2 ref_30 Pan (ref_81) 1985; 32 ref_112 Xiefeng (ref_74) 2019; 9 ref_39 Jerritta (ref_76) 2014; 31 Krumhansl (ref_62) 2002; 11 Bexton (ref_25) 1986; 55 Bulagang (ref_22) 2020; 20 Chavan (ref_79) 2008; 2 Nayak (ref_72) 2009; 2 Mehrabian (ref_42) 1997; 19 Bradley (ref_65) 1994; 25 Kukolja (ref_110) 2014; 72 ref_103 ref_105 Gershon (ref_49) 2013; 43 ref_109 Rainville (ref_87) 2006; 61 ref_46 ref_44 Abdulhay (ref_113) 2019; 7 ref_100 Healey (ref_52) 2005; 6 ref_101 ref_1 ref_2 ref_8 ref_5 ref_4 ref_7 |
References_xml | – volume: 3 start-page: 18 year: 2011 ident: ref_45 article-title: DEAP: A database for emotion analysis; Using physiological signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.15 – volume: 2 start-page: 260 year: 2007 ident: ref_35 article-title: Basic Emotions, Natural Kinds, Emotion Schemas, and a New Paradigm publication-title: Perspect. Psychol. Sci. doi: 10.1111/j.1745-6916.2007.00044.x – ident: ref_39 doi: 10.1007/978-3-642-35197-6_22 – ident: ref_12 doi: 10.1007/978-3-642-15184-2_8 – volume: 11 start-page: 45 year: 2002 ident: ref_62 article-title: Music: A link between cognition and emotion publication-title: Curr. Dir. Psychol. Sci. doi: 10.1111/1467-8721.00165 – volume: 15 start-page: 2408 year: 2011 ident: ref_102 article-title: Study of emotion recognition based on electrocardiogram and RBF neural network publication-title: Procedia Eng. doi: 10.1016/j.proeng.2011.08.452 – volume: 7 start-page: 140990 year: 2019 ident: ref_15 article-title: A Review, Current Challenges, and Future Possibilities on Emotion Recognition Using Machine Learning and Physiological Signals publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2944001 – ident: ref_68 doi: 10.1109/BIA48344.2019.8967457 – volume: 3 start-page: 102 year: 2012 ident: ref_21 article-title: ECG pattern analysis for emotion detection publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.28 – volume: 6 start-page: 169 year: 1992 ident: ref_32 article-title: An Argument for Basic Emotions publication-title: Cogn. Emot. doi: 10.1080/02699939208411068 – volume: 7 start-page: 293 year: 2020 ident: ref_51 article-title: K-EmoCon, a multimodal sensor dataset for continuous emotion recognition in naturalistic conversations publication-title: Sci. Data doi: 10.1038/s41597-020-00630-y – volume: 38 start-page: 502 year: 2008 ident: ref_6 article-title: Toward emotion recognition in car-racing drivers: A biosignal processing approach publication-title: IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. doi: 10.1109/TSMCA.2008.918624 – ident: ref_16 – volume: 11 start-page: 87 year: 2019 ident: ref_50 article-title: Experimental Methods for Inducing Basic Emotions: A Qualitative Review publication-title: Emot. Rev. doi: 10.1177/1754073917749016 – ident: ref_100 doi: 10.1109/RCAR.2016.7784015 – volume: 7 start-page: 57 year: 2019 ident: ref_113 article-title: Using Deep Convolutional Neural Network for Emotion Detection on a Physiological Signals Dataset (AMIGOS) publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2883213 – volume: 5 start-page: 258 year: 2017 ident: ref_91 article-title: An Overview of Heart Rate Variability Metrics and Norms publication-title: Front. Public Health doi: 10.3389/fpubh.2017.00258 – ident: ref_1 – ident: ref_7 doi: 10.1109/ICBAKE.2013.43 – ident: ref_117 doi: 10.1145/2750858.2807526 – ident: ref_122 doi: 10.1109/DSR.2011.6026823 – ident: ref_118 doi: 10.1109/ICCE-Taiwan49838.2020.9258341 – ident: ref_114 – ident: ref_4 – volume: 43 start-page: 2583 year: 2013 ident: ref_49 article-title: Chronic stressors and trauma: Prospective influences on the course of bipolar disorder publication-title: Psychol. Med. doi: 10.1017/S0033291713000147 – ident: ref_61 doi: 10.1037/t66667-000 – ident: ref_71 doi: 10.1145/3242969.3242985 – ident: ref_23 doi: 10.1007/978-3-319-58996-1_13 – ident: ref_10 – volume: 12 start-page: 479 year: 2018 ident: ref_55 article-title: AMIGOS: A Dataset for Affect, Personality and Mood Research on Individuals and Groups publication-title: IEEE Trans. Affect. Comput. – ident: ref_101 doi: 10.1109/ICMIC.2015.7409485 – volume: 17 start-page: 1043 year: 1996 ident: ref_93 article-title: Heart rate variability. Standards of measurement, physiological interpretation, and clinical use publication-title: Eur. Heart J. doi: 10.1093/oxfordjournals.eurheartj.a014868 – ident: ref_13 – volume: 55 start-page: 253 year: 1986 ident: ref_25 article-title: Diurnal variation of the QT interval—Influence of the autonomic nervous system publication-title: Br. Heart J. doi: 10.1136/hrt.55.3.253 – ident: ref_99 doi: 10.1109/ISSPIT.2009.5407547 – ident: ref_103 – volume: 30 start-page: 2067 year: 2008 ident: ref_69 article-title: Emotion recognition based on physiological changes in music listening publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.26 – ident: ref_97 doi: 10.3390/app10093314 – volume: 20 start-page: 100363 year: 2020 ident: ref_22 article-title: A review of recent approaches for emotion classification using electrocardiography and electrodermography signals publication-title: Inform. Med. Unlocked doi: 10.1016/j.imu.2020.100363 – volume: 2 start-page: 408 year: 2011 ident: ref_83 article-title: An Efficient R-peak Detection Based on New Nonlinear Transformation and First-Order Gaussian Differentiator publication-title: Cardiovasc. Eng. Technol. doi: 10.1007/s13239-011-0065-3 – ident: ref_78 doi: 10.1007/978-3-540-24842-2_4 – ident: ref_30 – ident: ref_105 doi: 10.1109/PERCOMW.2016.7457166 – volume: 12 start-page: 44 year: 2013 ident: ref_40 article-title: Classification of emotional states from electrocardiogram signals: A non-linear approach based on hurst publication-title: BioMed. Eng. Online doi: 10.1186/1475-925X-12-44 – volume: 7 start-page: 12177 year: 2019 ident: ref_31 article-title: MPED: A multi-modal physiological emotion database for discrete emotion recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2891579 – ident: ref_124 doi: 10.1109/SSCI.2016.7850044 – ident: ref_89 doi: 10.1145/3349341.3349422 – ident: ref_54 doi: 10.1109/ICOSST51357.2020.9333021 – volume: 1678 start-page: 012091 year: 2020 ident: ref_104 article-title: Research on emotion recognition based on ECG signal publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1678/1/012091 – ident: ref_84 doi: 10.1109/CINC.2009.102 – ident: ref_94 doi: 10.1109/IEMBS.2007.4353378 – volume: 103 start-page: 104044 year: 2020 ident: ref_126 article-title: Facial expression recognition using human machine interaction and multi-modal visualization analysis for healthcare applications publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2020.104044 – volume: 47 start-page: 255 year: 1999 ident: ref_64 article-title: Cardiovascular changes during induced emotion: An application of Lang’s theory of emotional imagery publication-title: J. Psychosom. Res. doi: 10.1016/S0022-3999(99)00036-7 – ident: ref_14 – volume: 50 start-page: 36 year: 2012 ident: ref_27 article-title: A wireless wearable ECG sensor for long-term applications publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2012.6122530 – volume: 21 start-page: 404 year: 2015 ident: ref_95 article-title: Reliability of ultra-short-term analysis as a surrogate of standard 5-min analysis of heart rate variability publication-title: Telemed. E Health doi: 10.1089/tmj.2014.0104 – volume: 4 start-page: 4998 year: 2014 ident: ref_106 article-title: Revealing Real-Time Emotional Responses: A Personalized Assessment based on Heartbeat Dynamics publication-title: Sci. Rep. doi: 10.1038/srep04998 – ident: ref_73 – volume: 25 start-page: 49 year: 1994 ident: ref_65 article-title: Measuring emotion: The self-assessment manikin and the semantic differential publication-title: J. Behav. Ther. Exp. Psychiatry doi: 10.1016/0005-7916(94)90063-9 – ident: ref_46 doi: 10.1109/ACII.2015.7344608 – volume: 60 start-page: 1 year: 2009 ident: ref_36 article-title: Emotion theory and research: Highlights, unanswered questions, and emerging issues publication-title: Annu. Rev. Psychol. doi: 10.1146/annurev.psych.60.110707.163539 – ident: ref_121 doi: 10.1109/MeMeA.2013.6549705 – ident: ref_44 doi: 10.3390/bs7040066 – ident: ref_128 doi: 10.1109/DISCOVER50404.2020.9278094 – volume: 14 start-page: 11031 year: 2014 ident: ref_28 article-title: A mobile device system for early warning of ECG anomalies publication-title: Sensors doi: 10.3390/s140611031 – ident: ref_33 – ident: ref_112 – volume: 9 start-page: 1 year: 2019 ident: ref_74 article-title: Heart sound signals can be used for emotion recognition publication-title: Sci. Rep. doi: 10.1038/s41598-019-42826-2 – ident: ref_34 doi: 10.1002/0470013494.ch3 – volume: 31 start-page: 110 year: 2014 ident: ref_76 article-title: Electrocardiogram-based emotion recognition system using empirical mode decomposition and discrete Fourier transform publication-title: Expert Syst. doi: 10.1111/exsy.12014 – volume: 61 start-page: 5 year: 2006 ident: ref_87 article-title: Basic emotions are associated with distinct patterns of cardiorespiratory activity publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2005.10.024 – ident: ref_111 doi: 10.1109/BIBE.2016.40 – volume: 11 start-page: 1363 year: 2013 ident: ref_86 article-title: ECG Signal Feature Selection for Emotion Recognition publication-title: TELKOMNIKA Indones. J. Electr. Eng. – volume: 6 start-page: 156 year: 2005 ident: ref_52 article-title: Detecting stress during real-world driving tasks using physiological sensors publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2005.848368 – volume: 12 start-page: 3102 year: 2017 ident: ref_37 article-title: A design framework for human emotion recognition using electrocardiogram and skin conductance response signals publication-title: J. Eng. Sci. Technol. – volume: 19 start-page: 151 year: 1995 ident: ref_60 article-title: Mood inductions for four specific moods: A procedure employing guided imagery vignettes with music publication-title: J. Ment. Imag. – volume: 40 start-page: 355 year: 2017 ident: ref_20 article-title: An accurate emotion recognition system using ECG and GSR signals and matching pursuit method publication-title: Biomed. J. doi: 10.1016/j.bj.2017.11.001 – ident: ref_70 doi: 10.1145/2663204.2663257 – ident: ref_5 – volume: 6 start-page: 209 year: 2015 ident: ref_57 article-title: DECAF: MEG-Based Multimodal Database for Decoding Affective Physiological Responses publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2015.2392932 – ident: ref_120 doi: 10.1016/B978-0-08-097086-8.14131-5 – ident: ref_53 doi: 10.1109/IJCNN.2018.8489125 – volume: 2 start-page: 356 year: 2008 ident: ref_79 article-title: Suppression Of Baseline Wander And Power Line Interference in ECG Using Digital IIR Filter publication-title: Int. J. Circuits Syst. Signal Process. – volume: 5 start-page: 126 year: 2014 ident: ref_107 article-title: Emotion recognition based on multi-variant correlation of physiological signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2014.2327617 – volume: 4 start-page: 6 year: 2018 ident: ref_77 article-title: Physiological signal based work stress detection using unobtrusive sensors publication-title: BioMed. Phys. Eng. Express doi: 10.1088/2057-1976/aadbd4 – volume: 31 start-page: 593 year: 1998 ident: ref_96 article-title: Twenty-four hour time domain heart rate variability and heart rate: Relations to age and gender over nine decades publication-title: J. Am. Coll. Cardiol. doi: 10.1016/S0735-1097(97)00554-8 – volume: 76 start-page: 11449 year: 2017 ident: ref_115 article-title: Development of emotion recognition interface using complex EEG/ECG bio-signal for interactive contents publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-016-4203-7 – volume: 9 start-page: 147 year: 2018 ident: ref_56 article-title: Ascertain: Emotion and personality recognition using commercial sensors publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2016.2625250 – volume: 26 start-page: 459 year: 2018 ident: ref_75 article-title: Human emotion classification based on multiple physiological signals by wearable system publication-title: Technol. Health Care doi: 10.3233/THC-174747 – volume: 40 start-page: 89 year: 1996 ident: ref_17 article-title: Psychophysiology: Human behavior and physiological response publication-title: Int. J. Psychophysiol. doi: 10.1016/S0167-8760(00)00150-1 – volume: 19 start-page: 331 year: 1997 ident: ref_42 article-title: Comparison of the PAD and PANAS as models for describing emotions and for differentiating anxiety from depression publication-title: J. Psychopathol. Behav. Assess. doi: 10.1007/BF02229025 – volume: 15 start-page: 51 year: 2016 ident: ref_47 article-title: Emotion Recognition using ECG Signals with Local Pattern Description Methods publication-title: Int. J. Affect. Eng. doi: 10.5057/ijae.IJAE-D-15-00036 – volume: 32 start-page: 230 year: 1985 ident: ref_81 article-title: A Real-Time QRS Detection Algorithm publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.1985.325532 – volume: 6 start-page: 1 year: 2019 ident: ref_67 article-title: A dataset of continuous affect annotations and physiological signals for emotion analysis publication-title: Sci. Data doi: 10.1038/s41597-019-0209-0 – ident: ref_80 doi: 10.1109/IEMBS.2005.1615314 – volume: 39 start-page: 1161 year: 1980 ident: ref_43 article-title: A circumplex model of affect publication-title: J. Personal. Soc. Psychol. doi: 10.1037/h0077714 – ident: ref_90 doi: 10.1109/CIBCB.2016.7758108 – ident: ref_127 doi: 10.4108/ICST.PERVASIVEHEALTH2008.2511 – ident: ref_66 – volume: 96 start-page: 6117 year: 2018 ident: ref_9 article-title: Emotion Recognition Using Facial Expression Analysis publication-title: J. Theor. Appl. Inf. Technol. – volume: 1 start-page: 99 year: 2019 ident: ref_108 article-title: Utilizing Deep Learning Towards Multi-modal Bio-sensing and Vision-based Affective Computing publication-title: IEEE Trans. Affect. Comput. – volume: 46 start-page: 18 year: 2018 ident: ref_88 article-title: A physiological signal-based method for early mental-stress detection publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2018.06.004 – volume: 15 start-page: 582 year: 2011 ident: ref_24 article-title: Emotion recognition based on ecg signals for service robots in the intelligent space during daily life publication-title: J. Adv. Comput. Intell. Intell. Inform. doi: 10.20965/jaciii.2011.p0582 – ident: ref_82 – ident: ref_123 doi: 10.1007/978-3-030-30809-4_23 – volume: 2018 start-page: 5296523 year: 2018 ident: ref_41 article-title: Emotion Recognition Based on Weighted Fusion Strategy of Multichannel Physiological Signals publication-title: Comput. Intell. Neurosci. doi: 10.1155/2018/5296523 – ident: ref_26 doi: 10.3390/s19204495 – volume: 72 start-page: 717 year: 2014 ident: ref_110 article-title: Comparative analysis of emotion estimation methods based on physiological measurements for real-time applications publication-title: Int. J. Hum. Comput. Stud. doi: 10.1016/j.ijhcs.2014.05.006 – ident: ref_63 – volume: 2 start-page: 671 year: 2009 ident: ref_72 article-title: Filtering Techniques for Ecg Signal Processing publication-title: Int. J. Res. Eng. Appl. Sci. – ident: ref_125 doi: 10.1007/s40670-021-01317-8 – volume: 13 start-page: 494 year: 2015 ident: ref_48 article-title: The Effects of Psychological Stress on Depression publication-title: Curr. Neuropharmacol. doi: 10.2174/1570159X1304150831150507 – ident: ref_109 doi: 10.3390/s18124253 – ident: ref_8 doi: 10.1007/978-3-319-08491-6 – ident: ref_92 doi: 10.1016/B978-008045046-9.01991-4 – ident: ref_119 doi: 10.1109/ICECENG.2011.6057832 – volume: 22 start-page: 98 year: 2017 ident: ref_58 article-title: DREAMER: A Database for Emotion Recognition Through EEG and ECG Signals from Wireless Low-cost Off-the-Shelf Devices publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2017.2688239 – volume: 3 start-page: 42 year: 2012 ident: ref_59 article-title: A multimodal database for affect recognition and implicit tagging publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.25 – ident: ref_2 – ident: ref_18 doi: 10.1109/EMBC.2015.7319953 – ident: ref_85 – volume: 454 start-page: 903 year: 1998 ident: ref_98 article-title: Empirical Mode Decomposition and Hilbert Spectral Analysis publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. doi: 10.1098/rspa.1998.0193 – volume: 39 start-page: 1125 year: 1980 ident: ref_3 article-title: Facial Sign Of Emotional Experience publication-title: J. Personal. Soc. Psychol. doi: 10.1037/h0077722 – volume: 3 start-page: 463 year: 2015 ident: ref_29 article-title: A smart shirt made with conductive ink and conductive foam for the measurement of electrocardiogram signals with unipolar precordial leads publication-title: Fibers doi: 10.3390/fib3040463 – volume: 330 start-page: 198 year: 2012 ident: ref_38 article-title: Trends in Intelligent Robotics, Automation, and Manufacturing publication-title: Commun. Comput. Inf. Sci. – volume: 9 start-page: 467 year: 2018 ident: ref_116 article-title: Biometric and emotion identification: An ECG compression based method publication-title: Front. Psychol. doi: 10.3389/fpsyg.2018.00467 – ident: ref_19 doi: 10.5005/jp/books/11501 – ident: ref_11 doi: 10.1016/j.procs.2017.05.025 |
SSID | ssj0023338 |
Score | 2.6420002 |
SecondaryResourceType | review_article |
Snippet | Affective computing is a field of study that integrates human affects and emotions with artificial intelligence into systems or devices. A system or device... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 5015 |
SubjectTerms | affective computing Biosensors electrocardiogram (ECG) Electrocardiography emotion recognition system Emotions healthcare Heart rate Influence Nervous system Physiology Review |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07S8RAEF7kKi3EJ54vVrGwWS7JPlOecnIIWsgJdmGfeCA50bP3R_gL_SXOJrmQgGBjF5IpNjuzmfmYL98gdBEgrWspDAngYcIcEySnWhDj4ZMpVC58Rca8uxfTR3b7xJ86o74iJ6yWB643bkQ1dSI4nUlLGRQvuc84AECvjYFcxqv_yCHnrcBUA7UoIK9aR4gCqB-9A8yBUjzOvu1kn0qkv1dZ9nmRnURzs4U2mwoRj-uVbaM1X-6gjY5u4C6yk3p4ja3IpJFfRa4gGzk8qYfy4IcVLQiuG01yrEuHZ7EtgMedpjWel3jacsC-P7_GuG4X7KHZzWR2PSXNtARiAdItCU9EMJyrTOdKSGZdQk3wwXLpbeKV5zwwFwCQWq4ToaUKqVHWySBNaoOj-2hQLkp_gDDTwSiTaAvVHXOCmdQYnmobcsdTpdMhulxtYmEbJfE40OKlAEQR97to93uIzlvT11o-4zejq-iJ1iAqXlc3IA6KJg6Kv-JgiI5XfiyaY_heAF5Seaagphyis_YxHKDYFdGlX3xEGxFFaXIBNrLn_96C-k_K-XMlxa0oUyJXh__xBkdoPYuEmUSSjB6jwfLtw59AxbM0p1Vw_wDUHQQA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYoXOgB8VQXKHIRBy4WSfzMCS3VbleV4IAWiVvkJ0WqspRd7vyI_kJ-CePEGzZS1VsUj5TIY3u-8Xz6BqGzAGFdS2FIAA8T5pggJdWCGA9HplCl8A0Z8_pGTO7Yz3t-ny7c5olWuTwTm4PazWy8I78A6KvKQgE8uHz6Q2LXqFhdTS00PqGNHCJNpHSp8Y8u4aKQf7VqQhRS-4s5JDsAyGMH3JUY1Ej19_Blnx25Em7G22gr4UQ8bB27g9Z8vYs-r6gH7iE7alvY2IZSGllW5ApiksOjtjUPvl2Sg-A5KZNjXTs8jcUBPFwpXePHGk86Jtjb698hbosG-2g6Hk2_T0jqmUAsJHYLwjMRDExVoUslJLMuoyb4YLn0NvPKcx6YC5CWWq4zoaUKuVHWySBNboOjB2i9ntX-C8JMB6NMpi1gPOYEM7kxPNc2lI7nSucDdL6cxMomPfHY1uJ3BXlFnO-qm-8BOu1Mn1oRjX8ZXUVPdAZR97p5MXt-qNI2qqimTgSnC2kpAyhb-oJ7Q702BpANlwN0vPRjlTbjvPpYOgP0rRuGbRRrI7r2s5doI6I0TSnARvb83_uh_kj9-KsR5FaUKVGqw_9__AhtFpEQk0lS0GO0vnh-8V8B0SzMSbNs3wFEIPsL priority: 102 providerName: ProQuest |
Title | Electrocardiogram-Based Emotion Recognition Systems and Their Applications in Healthcare—A Review |
URI | https://www.proquest.com/docview/2558928112 https://www.proquest.com/docview/2560060962 https://pubmed.ncbi.nlm.nih.gov/PMC8348698 https://doaj.org/article/3a3d6fda27c345079e25eb3eabb19057 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEB7S5NIeSp_UbWq2pYde1Erapw6h2MWuKSSU4IBvYp9pIMit40B7y4_IL-wvyaxeWJBjL0Jo5yDt7Gq-TzP6BuBDwLCupTBJQA8nzDGRFFSLxHh8ZQpVCF8XYx6fiMUZ-77iqz3oemy2E3h1L7WL_aTONpef_vz--wU3_FFknEjZP18hiUGgHX81P8CAJGMjg2PWJxNyijSsERUamg9CUa3YP4CZwyLJnagzfwKPW7hIJo1_n8Ker57Box0RwedgZ00nG1tXlsZiq2SKocmRWdOhh5x2NUJ43gqUE105sow5AjLZyWCTi4os-oKwfze3E9LkDl7Acj5bfl0kbeuExCK_2yY8FcFwrnJdKCGZdSk1wQfLpbepV57zwFxAdmq5ToWWKmRGWSeDNJkNjr6E_Wpd-VdAmA5GmVRbhHrMCWYyY3imbSgcz5TORvCxm8TStrLisbvFZYn0Is532c_3CN73pr8aLY37jKbRE71BlL-uL6w352W7m0qqqRPB6VxayhDRFj7n3lCvjUGAw-UIDjs_lt2SKpE8qSJXCDBH8K4fxt0UUyS68uvraCOiQk0h0EYO_D-4oeFIdfGz1uVWlClRqNf_4wnewMM8Vs-kMsnpIexvN9f-LcKfrRnDA7mSeFTzb2M4mM5OfpyO608J43rZ3wH89Q4L |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEG2FcAAOiFWZEKBBIHFpxXavPiA0gRkmZDmgQcqt1StEQp4kMxHixkfwG_wUX0K1N8YS4pab5S7ZVi1dr1zVVQi9iODWjRSWRJAwYZ4JUlIjiA2wZQpVilAXYx4di9kn9uGEn2ygX91ZmFRW2e2J9UbtFy79I98F6KvKQgE8eHN2TtLUqJRd7UZoNGpxEL5_g5Bt-Xr_Hcj3ZVFMJ_O3M9JOFSAOQp8V4ZmIFh5WmFIJyZzPqI0hOi6Dy4IKnEfmIwRujptMGKlibpXzMkqbu-gpPPYaus4oOPJ0MH36vo_vKIR7TfMiWMx2lxBbAf5PA3fXXF49GWAAZ4fFmGvebXoH3W5hKR43enQXbYTqHrq11qzwPnKTZmKOqytYU1EX2QMX6PGkmQSEP3a1SHDdNkLHpvJ4nnIReLyWKcenFZ71hWe_f_wc4yZH8QDNr4KZD9FmtajCFsLMRKtsZhxASuYFs7m1PDculp7nyuQj9KpjonZt-_I0ReOrhjAm8Vv3_B6h5z3pWdOz419Ee0kSPUFqs13fWFx81q3VamqoF9GbQjrKADmXoeDB0mCsBSDF5QjtdHLUre0v9V9NHaFn_TJYbUrFmCosLhONSJ1wSgE0ciD_wQcNV6rTL3X_b0WZEqXa_v_Ln6Ibs_nRoT7cPz54hG4WqRYnk6SgO2hzdXEZHgOYWtkntQpjpK_YZP4ArcE5bA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEG7iBkQP4pOsRm1FwUuzM9PPOYjsml02RpcQVsht6KcGZDZmN4g3f4R_xr_jL7F6Xu6AeMttmC56hq6u6vqmvqlC6EWAY11LYUgADRPmmCA51YIYDy5TqFz4ioz5YSHmH9m7U366g361_8JEWmXrEytH7VY2fiMfQeir8kxBeDAKDS3i-GD25vwriR2kYqa1badRb5Ej__0bwLf168MD0PXLLJtNl2_npOkwQCzAoA3hiQgGJs50roRk1iXUBB8sl94mXnnOA3MBQJzlOhFaqpAaZZ0M0qQ2OArTXkO7MoKiAdqdTBfHJx3aowD-6lJGlObJaA1IC9BAbL-7dQBWfQJ6wW2fmrl11s1uo1tNkIrH9a66g3Z8eRfd3CpdeA_Zad0_x1Z81kjxIhM4EB2e1n2B8EnLTILrpiw61qXDy5iZwOOtvDk-K_G8o6H9_vFzjOuMxX20vIrlfIAG5ar0ewgzHYwyibYQYDInmEmN4am2IXc8VTodolftIha2KWYee2p8KQDUxPUuuvUeoued6HldweNfQpOoiU4gFt2ubqwuPhWNDRdUUyeC05m0lEEcnfuMe0O9NgbCKi6HaL_VY9F4gnXxd98O0bNuGGw4JmZ06VeXUUbEuji5ABnZ03_vhfoj5dnnqhq4okyJXD38_8OfoutgLsX7w8XRI3Qji8ScRJKM7qPB5uLSP4bIamOeNHsYo-KKreYP6n0-_g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrocardiogram-Based+Emotion+Recognition+Systems+and+Their+Applications+in+Healthcare%E2%80%94A+Review&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Muhammad+Anas+Hasnul&rft.au=Nor+Azlina+Ab.+Aziz&rft.au=Salem+Alelyani&rft.au=Mohamed+Mohana&rft.date=2021-07-23&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=15&rft.spage=5015&rft_id=info:doi/10.3390%2Fs21155015&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3a3d6fda27c345079e25eb3eabb19057 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |