Electrocardiogram-Based Emotion Recognition Systems and Their Applications in Healthcare—A Review

Affective computing is a field of study that integrates human affects and emotions with artificial intelligence into systems or devices. A system or device with affective computing is beneficial for the mental health and wellbeing of individuals that are stressed, anguished, or depressed. Emotion re...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 15; p. 5015
Main Authors Hasnul, Muhammad Anas, Aziz, Nor Azlina Ab, Alelyani, Salem, Mohana, Mohamed, Aziz, Azlan Abd
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 23.07.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Affective computing is a field of study that integrates human affects and emotions with artificial intelligence into systems or devices. A system or device with affective computing is beneficial for the mental health and wellbeing of individuals that are stressed, anguished, or depressed. Emotion recognition systems are an important technology that enables affective computing. Currently, there are a lot of ways to build an emotion recognition system using various techniques and algorithms. This review paper focuses on emotion recognition research that adopted electrocardiograms (ECGs) as a unimodal approach as well as part of a multimodal approach for emotion recognition systems. Critical observations of data collection, pre-processing, feature extraction, feature selection and dimensionality reduction, classification, and validation are conducted. This paper also highlights the architectures with accuracy of above 90%. The available ECG-inclusive affective databases are also reviewed, and a popularity analysis is presented. Additionally, the benefit of emotion recognition systems towards healthcare systems is also reviewed here. Based on the literature reviewed, a thorough discussion on the subject matter and future works is suggested and concluded. The findings presented here are beneficial for prospective researchers to look into the summary of previous works conducted in the field of ECG-based emotion recognition systems, and for identifying gaps in the area, as well as in developing and designing future applications of emotion recognition systems, especially in improving healthcare.
AbstractList Affective computing is a field of study that integrates human affects and emotions with artificial intelligence into systems or devices. A system or device with affective computing is beneficial for the mental health and wellbeing of individuals that are stressed, anguished, or depressed. Emotion recognition systems are an important technology that enables affective computing. Currently, there are a lot of ways to build an emotion recognition system using various techniques and algorithms. This review paper focuses on emotion recognition research that adopted electrocardiograms (ECGs) as a unimodal approach as well as part of a multimodal approach for emotion recognition systems. Critical observations of data collection, pre-processing, feature extraction, feature selection and dimensionality reduction, classification, and validation are conducted. This paper also highlights the architectures with accuracy of above 90%. The available ECG-inclusive affective databases are also reviewed, and a popularity analysis is presented. Additionally, the benefit of emotion recognition systems towards healthcare systems is also reviewed here. Based on the literature reviewed, a thorough discussion on the subject matter and future works is suggested and concluded. The findings presented here are beneficial for prospective researchers to look into the summary of previous works conducted in the field of ECG-based emotion recognition systems, and for identifying gaps in the area, as well as in developing and designing future applications of emotion recognition systems, especially in improving healthcare.
Affective computing is a field of study that integrates human affects and emotions with artificial intelligence into systems or devices. A system or device with affective computing is beneficial for the mental health and wellbeing of individuals that are stressed, anguished, or depressed. Emotion recognition systems are an important technology that enables affective computing. Currently, there are a lot of ways to build an emotion recognition system using various techniques and algorithms. This review paper focuses on emotion recognition research that adopted electrocardiograms (ECGs) as a unimodal approach as well as part of a multimodal approach for emotion recognition systems. Critical observations of data collection, pre-processing, feature extraction, feature selection and dimensionality reduction, classification, and validation are conducted. This paper also highlights the architectures with accuracy of above 90%. The available ECG-inclusive affective databases are also reviewed, and a popularity analysis is presented. Additionally, the benefit of emotion recognition systems towards healthcare systems is also reviewed here. Based on the literature reviewed, a thorough discussion on the subject matter and future works is suggested and concluded. The findings presented here are beneficial for prospective researchers to look into the summary of previous works conducted in the field of ECG-based emotion recognition systems, and for identifying gaps in the area, as well as in developing and designing future applications of emotion recognition systems, especially in improving healthcare.Affective computing is a field of study that integrates human affects and emotions with artificial intelligence into systems or devices. A system or device with affective computing is beneficial for the mental health and wellbeing of individuals that are stressed, anguished, or depressed. Emotion recognition systems are an important technology that enables affective computing. Currently, there are a lot of ways to build an emotion recognition system using various techniques and algorithms. This review paper focuses on emotion recognition research that adopted electrocardiograms (ECGs) as a unimodal approach as well as part of a multimodal approach for emotion recognition systems. Critical observations of data collection, pre-processing, feature extraction, feature selection and dimensionality reduction, classification, and validation are conducted. This paper also highlights the architectures with accuracy of above 90%. The available ECG-inclusive affective databases are also reviewed, and a popularity analysis is presented. Additionally, the benefit of emotion recognition systems towards healthcare systems is also reviewed here. Based on the literature reviewed, a thorough discussion on the subject matter and future works is suggested and concluded. The findings presented here are beneficial for prospective researchers to look into the summary of previous works conducted in the field of ECG-based emotion recognition systems, and for identifying gaps in the area, as well as in developing and designing future applications of emotion recognition systems, especially in improving healthcare.
Author Mohana, Mohamed
Aziz, Azlan Abd
Aziz, Nor Azlina Ab
Alelyani, Salem
Hasnul, Muhammad Anas
AuthorAffiliation 1 Faculty of Engineering and Technology, Multimedia University, Melaka 75450, Malaysia; 1141126389@student.mmu.edu.my (M.A.H.); azlan.abdaziz@mmu.edu.my (A.A.A.)
2 Center for Artificial Intelligence (CAI), King Khalid University, Abha 61421, Saudi Arabia; s.alelyani@kku.edu.sa (S.A.); mmuhanna@kku.edu.sa (M.M.)
3 College of Computer Science, King Khalid University, Abha 61421, Saudi Arabia
AuthorAffiliation_xml – name: 1 Faculty of Engineering and Technology, Multimedia University, Melaka 75450, Malaysia; 1141126389@student.mmu.edu.my (M.A.H.); azlan.abdaziz@mmu.edu.my (A.A.A.)
– name: 2 Center for Artificial Intelligence (CAI), King Khalid University, Abha 61421, Saudi Arabia; s.alelyani@kku.edu.sa (S.A.); mmuhanna@kku.edu.sa (M.M.)
– name: 3 College of Computer Science, King Khalid University, Abha 61421, Saudi Arabia
Author_xml – sequence: 1
  givenname: Muhammad Anas
  orcidid: 0000-0002-2765-3234
  surname: Hasnul
  fullname: Hasnul, Muhammad Anas
– sequence: 2
  givenname: Nor Azlina Ab
  orcidid: 0000-0002-2119-6191
  surname: Aziz
  fullname: Aziz, Nor Azlina Ab
– sequence: 3
  givenname: Salem
  orcidid: 0000-0002-4571-9073
  surname: Alelyani
  fullname: Alelyani, Salem
– sequence: 4
  givenname: Mohamed
  orcidid: 0000-0002-9485-8731
  surname: Mohana
  fullname: Mohana, Mohamed
– sequence: 5
  givenname: Azlan Abd
  surname: Aziz
  fullname: Aziz, Azlan Abd
BookMark eNplks1u1DAQxy1URD_gwBtE4gKHtP6IE-eCtK0WWqkSEuzdmtjjXa8Se7GzRb3xEDwhT0J2t0W0nDzy_P4_W6M5JUchBiTkLaPnQrT0InPGpKRMviAnrOJVqTinR__Ux-Q05zWlXAihXpFjUYmGc8lPiJn3aMYUDSTr4zLBUF5CRlvMhzj6GIqvaOIy-H397T6POOQCgi0WK_SpmG02vTew6-bCh-IaoR9Xkwx___w1m8J3Hn-8Ji8d9BnfPJxnZPFpvri6Lm-_fL65mt2WpqrqsZS0dp2UikOr6qYylorOoTOyQUNRoZSusk4oYSTQGhrlWKeMbVzTMeOsOCM3B62NsNab5AdI9zqC1_uLmJYa0uhNj1qAsLWzwBsjKkmbFrnETiB0HWupbCbXx4Nrs-0GtAbDmKB_In3aCX6ll_FOK1GpulWT4P2DIMXvW8yjHnw22PcQMG6z5rKmtKZtzSf03TN0HbcpTJOaKKlarhjbURcHyqSYc0KnjR_3g5_e971mVO92Qf_dhSnx4Vni8fv_s38AlOW2sA
CitedBy_id crossref_primary_10_3390_su16135546
crossref_primary_10_1016_j_bspc_2024_106891
crossref_primary_10_1155_2022_2114882
crossref_primary_10_1016_j_inffus_2024_102753
crossref_primary_10_1109_ACCESS_2023_3280071
crossref_primary_10_1109_TIM_2024_3420349
crossref_primary_10_3390_a16030130
crossref_primary_10_1016_j_ijcce_2024_05_003
crossref_primary_10_2478_prilozi_2025_0002
crossref_primary_10_1016_j_trf_2024_03_003
crossref_primary_10_3390_brainsci14121211
crossref_primary_10_32604_csse_2024_052710
crossref_primary_10_3390_s23052387
crossref_primary_10_1007_s12559_024_10327_8
crossref_primary_10_1016_j_icte_2023_09_001
crossref_primary_10_2196_47098
crossref_primary_10_3390_s22082980
crossref_primary_10_3390_sci6010010
crossref_primary_10_1109_JIOT_2023_3320269
crossref_primary_10_3390_app132111854
crossref_primary_10_3389_fpsyg_2024_1275142
crossref_primary_10_3390_s23208636
crossref_primary_10_1007_s00530_024_01302_2
crossref_primary_10_3390_s22239102
crossref_primary_10_1109_ACCESS_2024_3380847
crossref_primary_10_1016_j_jcmds_2024_100102
crossref_primary_10_1007_s10639_023_11619_6
crossref_primary_10_3390_electronics13204014
crossref_primary_10_1080_10255842_2023_2188988
crossref_primary_10_1109_ACCESS_2024_3412328
crossref_primary_10_3233_JIFS_219334
crossref_primary_10_1002_admt_202401800
crossref_primary_10_1016_j_trpro_2023_11_489
crossref_primary_10_1109_ACCESS_2024_3387562
crossref_primary_10_1007_s13369_022_07585_9
crossref_primary_10_2139_ssrn_4999642
crossref_primary_10_3390_bioengineering9110711
crossref_primary_10_1016_j_procs_2024_09_386
crossref_primary_10_3390_s23052455
crossref_primary_10_1002_widm_1563
crossref_primary_10_3390_app12136544
crossref_primary_10_1002_adma_202403411
crossref_primary_10_3390_s23125591
crossref_primary_10_1016_j_egyr_2023_04_297
crossref_primary_10_1016_j_eswa_2024_124371
crossref_primary_10_1016_j_inffus_2023_102019
crossref_primary_10_3390_biomedicines12081719
crossref_primary_10_1155_2022_3271074
crossref_primary_10_3233_JIFS_233791
crossref_primary_10_4236_wjns_2023_134012
crossref_primary_10_3389_fpsyt_2023_1189765
crossref_primary_10_1109_ACCESS_2024_3463746
crossref_primary_10_1016_j_medengphy_2025_104316
crossref_primary_10_3390_buildings14061730
crossref_primary_10_3390_bioengineering9080374
crossref_primary_10_1016_j_compbiomed_2023_106938
crossref_primary_10_1007_s12144_022_04038_2
crossref_primary_10_1007_s42600_023_00293_9
crossref_primary_10_3390_s22208052
crossref_primary_10_3390_s23010338
crossref_primary_10_1007_s11042_023_16933_2
crossref_primary_10_3390_data7090132
crossref_primary_10_3390_mti8060047
crossref_primary_10_1109_JBHI_2024_3482450
crossref_primary_10_3389_fpsyg_2022_1066317
crossref_primary_10_1016_j_bspc_2023_104928
crossref_primary_10_1109_ACCESS_2024_3417525
crossref_primary_10_3390_diagnostics13122097
crossref_primary_10_59400_cai_v2i1_1388
crossref_primary_10_1038_s41467_023_44673_2
crossref_primary_10_1016_j_eswa_2024_126018
crossref_primary_10_1016_j_bspc_2025_107594
crossref_primary_10_1145_3723005
crossref_primary_10_34133_icomputing_0090
crossref_primary_10_1109_JSEN_2023_3304422
crossref_primary_10_1016_j_bspc_2025_107632
crossref_primary_10_3390_s22103729
crossref_primary_10_1007_s10439_023_03341_8
crossref_primary_10_1109_JIOT_2023_3235356
crossref_primary_10_3390_app13127054
crossref_primary_10_1155_2022_1079097
crossref_primary_10_1007_s41870_024_01951_6
Cites_doi 10.1109/T-AFFC.2011.15
10.1111/j.1745-6916.2007.00044.x
10.1007/978-3-642-35197-6_22
10.1007/978-3-642-15184-2_8
10.1111/1467-8721.00165
10.1016/j.proeng.2011.08.452
10.1109/ACCESS.2019.2944001
10.1109/BIA48344.2019.8967457
10.1109/T-AFFC.2011.28
10.1080/02699939208411068
10.1038/s41597-020-00630-y
10.1109/TSMCA.2008.918624
10.1177/1754073917749016
10.1109/RCAR.2016.7784015
10.1109/ACCESS.2018.2883213
10.3389/fpubh.2017.00258
10.1109/ICBAKE.2013.43
10.1145/2750858.2807526
10.1109/DSR.2011.6026823
10.1109/ICCE-Taiwan49838.2020.9258341
10.1017/S0033291713000147
10.1037/t66667-000
10.1145/3242969.3242985
10.1007/978-3-319-58996-1_13
10.1109/ICMIC.2015.7409485
10.1093/oxfordjournals.eurheartj.a014868
10.1136/hrt.55.3.253
10.1109/ISSPIT.2009.5407547
10.1109/TPAMI.2008.26
10.3390/app10093314
10.1016/j.imu.2020.100363
10.1007/s13239-011-0065-3
10.1007/978-3-540-24842-2_4
10.1109/PERCOMW.2016.7457166
10.1186/1475-925X-12-44
10.1109/ACCESS.2019.2891579
10.1109/SSCI.2016.7850044
10.1145/3349341.3349422
10.1109/ICOSST51357.2020.9333021
10.1088/1742-6596/1678/1/012091
10.1109/CINC.2009.102
10.1109/IEMBS.2007.4353378
10.1016/j.imavis.2020.104044
10.1016/S0022-3999(99)00036-7
10.1109/MCOM.2012.6122530
10.1089/tmj.2014.0104
10.1038/srep04998
10.1016/0005-7916(94)90063-9
10.1109/ACII.2015.7344608
10.1146/annurev.psych.60.110707.163539
10.1109/MeMeA.2013.6549705
10.3390/bs7040066
10.1109/DISCOVER50404.2020.9278094
10.3390/s140611031
10.1038/s41598-019-42826-2
10.1002/0470013494.ch3
10.1111/exsy.12014
10.1016/j.ijpsycho.2005.10.024
10.1109/BIBE.2016.40
10.1109/TITS.2005.848368
10.1016/j.bj.2017.11.001
10.1145/2663204.2663257
10.1109/TAFFC.2015.2392932
10.1016/B978-0-08-097086-8.14131-5
10.1109/IJCNN.2018.8489125
10.1109/TAFFC.2014.2327617
10.1088/2057-1976/aadbd4
10.1016/S0735-1097(97)00554-8
10.1007/s11042-016-4203-7
10.1109/TAFFC.2016.2625250
10.3233/THC-174747
10.1016/S0167-8760(00)00150-1
10.1007/BF02229025
10.5057/ijae.IJAE-D-15-00036
10.1109/TBME.1985.325532
10.1038/s41597-019-0209-0
10.1109/IEMBS.2005.1615314
10.1037/h0077714
10.1109/CIBCB.2016.7758108
10.4108/ICST.PERVASIVEHEALTH2008.2511
10.1016/j.bspc.2018.06.004
10.20965/jaciii.2011.p0582
10.1007/978-3-030-30809-4_23
10.1155/2018/5296523
10.3390/s19204495
10.1016/j.ijhcs.2014.05.006
10.1007/s40670-021-01317-8
10.2174/1570159X1304150831150507
10.3390/s18124253
10.1007/978-3-319-08491-6
10.1016/B978-008045046-9.01991-4
10.1109/ICECENG.2011.6057832
10.1109/JBHI.2017.2688239
10.1109/T-AFFC.2011.25
10.1109/EMBC.2015.7319953
10.1098/rspa.1998.0193
10.1037/h0077722
10.3390/fib3040463
10.3389/fpsyg.2018.00467
10.5005/jp/books/11501
10.1016/j.procs.2017.05.025
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s21155015
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_3a3d6fda27c345079e25eb3eabb19057
PMC8348698
10_3390_s21155015
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c446t-506fb5582a98674cd03bfefc57ec0e8e55f4df383c5a06a78f1b8cd7f7b1cfd3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:32:18 EDT 2025
Thu Aug 21 13:55:56 EDT 2025
Tue Aug 05 09:49:52 EDT 2025
Fri Jul 25 20:47:50 EDT 2025
Thu Apr 24 22:55:56 EDT 2025
Tue Jul 01 03:56:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-506fb5582a98674cd03bfefc57ec0e8e55f4df383c5a06a78f1b8cd7f7b1cfd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-2765-3234
0000-0002-2119-6191
0000-0002-9485-8731
0000-0002-4571-9073
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s21155015
PMID 34372252
PQID 2558928112
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_3a3d6fda27c345079e25eb3eabb19057
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8348698
proquest_miscellaneous_2560060962
proquest_journals_2558928112
crossref_citationtrail_10_3390_s21155015
crossref_primary_10_3390_s21155015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210723
PublicationDateYYYYMMDD 2021-07-23
PublicationDate_xml – month: 7
  year: 2021
  text: 20210723
  day: 23
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_94
Katsis (ref_6) 2008; 38
ref_92
Wei (ref_41) 2018; 2018
ref_90
Ekman (ref_3) 1980; 39
ref_14
ref_13
Sharma (ref_67) 2019; 6
ref_12
Park (ref_51) 2020; 7
ref_11
ref_99
ref_10
ref_97
Mayer (ref_60) 1995; 19
Ferreira (ref_116) 2018; 9
ref_19
Selvaraj (ref_40) 2013; 12
ref_18
ref_16
Kanagaraj (ref_38) 2012; 330
Saeed (ref_28) 2014; 14
Russell (ref_43) 1980; 39
ref_125
ref_128
Ekman (ref_32) 1992; 6
ref_127
Agrafioti (ref_21) 2012; 3
Izard (ref_36) 2009; 60
ref_23
ref_120
Zhang (ref_104) 2020; 1678
ref_122
ref_121
ref_124
ref_123
Shin (ref_115) 2017; 76
ref_26
Abadi (ref_57) 2015; 6
ref_71
ref_70
Katsigiannis (ref_58) 2017; 22
Soleymani (ref_59) 2012; 3
ref_78
ref_73
Umetani (ref_96) 1998; 31
Tada (ref_29) 2015; 3
Xia (ref_88) 2018; 46
Wen (ref_107) 2014; 5
Altameem (ref_126) 2020; 103
Ghali (ref_9) 2018; 96
Tivatansakul (ref_47) 2016; 15
Baek (ref_95) 2015; 21
Goshvarpour (ref_20) 2017; 40
Xun (ref_86) 2013; 11
Valenza (ref_106) 2014; 4
Song (ref_31) 2019; 7
ref_82
ref_80
ref_89
ref_85
ref_84
Yang (ref_48) 2015; 13
Liu (ref_75) 2018; 26
Bota (ref_15) 2019; 7
Tecce (ref_17) 1996; 40
Abadi (ref_55) 2018; 12
Rattanyu (ref_24) 2011; 15
Koelstra (ref_45) 2011; 3
Malik (ref_93) 1996; 17
ref_54
ref_53
Nemati (ref_27) 2012; 50
Kim (ref_69) 2008; 30
Shaffer (ref_91) 2017; 5
ref_61
Prkachin (ref_64) 1999; 47
Huang (ref_98) 1998; 454
Izard (ref_35) 2007; 2
ref_68
ref_66
Anusha (ref_77) 2018; 4
ref_63
Siedlecka (ref_50) 2019; 11
ref_114
Guo (ref_102) 2011; 15
ref_117
Minhad (ref_37) 2017; 12
Subramanian (ref_56) 2018; 9
ref_119
ref_118
Siddharth (ref_108) 2019; 1
ref_34
ref_33
ref_111
Kathirvel (ref_83) 2011; 2
ref_30
Pan (ref_81) 1985; 32
ref_112
Xiefeng (ref_74) 2019; 9
ref_39
Jerritta (ref_76) 2014; 31
Krumhansl (ref_62) 2002; 11
Bexton (ref_25) 1986; 55
Bulagang (ref_22) 2020; 20
Chavan (ref_79) 2008; 2
Nayak (ref_72) 2009; 2
Mehrabian (ref_42) 1997; 19
Bradley (ref_65) 1994; 25
Kukolja (ref_110) 2014; 72
ref_103
ref_105
Gershon (ref_49) 2013; 43
ref_109
Rainville (ref_87) 2006; 61
ref_46
ref_44
Abdulhay (ref_113) 2019; 7
ref_100
Healey (ref_52) 2005; 6
ref_101
ref_1
ref_2
ref_8
ref_5
ref_4
ref_7
References_xml – volume: 3
  start-page: 18
  year: 2011
  ident: ref_45
  article-title: DEAP: A database for emotion analysis; Using physiological signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.15
– volume: 2
  start-page: 260
  year: 2007
  ident: ref_35
  article-title: Basic Emotions, Natural Kinds, Emotion Schemas, and a New Paradigm
  publication-title: Perspect. Psychol. Sci.
  doi: 10.1111/j.1745-6916.2007.00044.x
– ident: ref_39
  doi: 10.1007/978-3-642-35197-6_22
– ident: ref_12
  doi: 10.1007/978-3-642-15184-2_8
– volume: 11
  start-page: 45
  year: 2002
  ident: ref_62
  article-title: Music: A link between cognition and emotion
  publication-title: Curr. Dir. Psychol. Sci.
  doi: 10.1111/1467-8721.00165
– volume: 15
  start-page: 2408
  year: 2011
  ident: ref_102
  article-title: Study of emotion recognition based on electrocardiogram and RBF neural network
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2011.08.452
– volume: 7
  start-page: 140990
  year: 2019
  ident: ref_15
  article-title: A Review, Current Challenges, and Future Possibilities on Emotion Recognition Using Machine Learning and Physiological Signals
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2944001
– ident: ref_68
  doi: 10.1109/BIA48344.2019.8967457
– volume: 3
  start-page: 102
  year: 2012
  ident: ref_21
  article-title: ECG pattern analysis for emotion detection
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.28
– volume: 6
  start-page: 169
  year: 1992
  ident: ref_32
  article-title: An Argument for Basic Emotions
  publication-title: Cogn. Emot.
  doi: 10.1080/02699939208411068
– volume: 7
  start-page: 293
  year: 2020
  ident: ref_51
  article-title: K-EmoCon, a multimodal sensor dataset for continuous emotion recognition in naturalistic conversations
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-00630-y
– volume: 38
  start-page: 502
  year: 2008
  ident: ref_6
  article-title: Toward emotion recognition in car-racing drivers: A biosignal processing approach
  publication-title: IEEE Trans. Syst. Man Cybern. Part A Syst. Hum.
  doi: 10.1109/TSMCA.2008.918624
– ident: ref_16
– volume: 11
  start-page: 87
  year: 2019
  ident: ref_50
  article-title: Experimental Methods for Inducing Basic Emotions: A Qualitative Review
  publication-title: Emot. Rev.
  doi: 10.1177/1754073917749016
– ident: ref_100
  doi: 10.1109/RCAR.2016.7784015
– volume: 7
  start-page: 57
  year: 2019
  ident: ref_113
  article-title: Using Deep Convolutional Neural Network for Emotion Detection on a Physiological Signals Dataset (AMIGOS)
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2883213
– volume: 5
  start-page: 258
  year: 2017
  ident: ref_91
  article-title: An Overview of Heart Rate Variability Metrics and Norms
  publication-title: Front. Public Health
  doi: 10.3389/fpubh.2017.00258
– ident: ref_1
– ident: ref_7
  doi: 10.1109/ICBAKE.2013.43
– ident: ref_117
  doi: 10.1145/2750858.2807526
– ident: ref_122
  doi: 10.1109/DSR.2011.6026823
– ident: ref_118
  doi: 10.1109/ICCE-Taiwan49838.2020.9258341
– ident: ref_114
– ident: ref_4
– volume: 43
  start-page: 2583
  year: 2013
  ident: ref_49
  article-title: Chronic stressors and trauma: Prospective influences on the course of bipolar disorder
  publication-title: Psychol. Med.
  doi: 10.1017/S0033291713000147
– ident: ref_61
  doi: 10.1037/t66667-000
– ident: ref_71
  doi: 10.1145/3242969.3242985
– ident: ref_23
  doi: 10.1007/978-3-319-58996-1_13
– ident: ref_10
– volume: 12
  start-page: 479
  year: 2018
  ident: ref_55
  article-title: AMIGOS: A Dataset for Affect, Personality and Mood Research on Individuals and Groups
  publication-title: IEEE Trans. Affect. Comput.
– ident: ref_101
  doi: 10.1109/ICMIC.2015.7409485
– volume: 17
  start-page: 1043
  year: 1996
  ident: ref_93
  article-title: Heart rate variability. Standards of measurement, physiological interpretation, and clinical use
  publication-title: Eur. Heart J.
  doi: 10.1093/oxfordjournals.eurheartj.a014868
– ident: ref_13
– volume: 55
  start-page: 253
  year: 1986
  ident: ref_25
  article-title: Diurnal variation of the QT interval—Influence of the autonomic nervous system
  publication-title: Br. Heart J.
  doi: 10.1136/hrt.55.3.253
– ident: ref_99
  doi: 10.1109/ISSPIT.2009.5407547
– ident: ref_103
– volume: 30
  start-page: 2067
  year: 2008
  ident: ref_69
  article-title: Emotion recognition based on physiological changes in music listening
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.26
– ident: ref_97
  doi: 10.3390/app10093314
– volume: 20
  start-page: 100363
  year: 2020
  ident: ref_22
  article-title: A review of recent approaches for emotion classification using electrocardiography and electrodermography signals
  publication-title: Inform. Med. Unlocked
  doi: 10.1016/j.imu.2020.100363
– volume: 2
  start-page: 408
  year: 2011
  ident: ref_83
  article-title: An Efficient R-peak Detection Based on New Nonlinear Transformation and First-Order Gaussian Differentiator
  publication-title: Cardiovasc. Eng. Technol.
  doi: 10.1007/s13239-011-0065-3
– ident: ref_78
  doi: 10.1007/978-3-540-24842-2_4
– ident: ref_30
– ident: ref_105
  doi: 10.1109/PERCOMW.2016.7457166
– volume: 12
  start-page: 44
  year: 2013
  ident: ref_40
  article-title: Classification of emotional states from electrocardiogram signals: A non-linear approach based on hurst
  publication-title: BioMed. Eng. Online
  doi: 10.1186/1475-925X-12-44
– volume: 7
  start-page: 12177
  year: 2019
  ident: ref_31
  article-title: MPED: A multi-modal physiological emotion database for discrete emotion recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2891579
– ident: ref_124
  doi: 10.1109/SSCI.2016.7850044
– ident: ref_89
  doi: 10.1145/3349341.3349422
– ident: ref_54
  doi: 10.1109/ICOSST51357.2020.9333021
– volume: 1678
  start-page: 012091
  year: 2020
  ident: ref_104
  article-title: Research on emotion recognition based on ECG signal
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1678/1/012091
– ident: ref_84
  doi: 10.1109/CINC.2009.102
– ident: ref_94
  doi: 10.1109/IEMBS.2007.4353378
– volume: 103
  start-page: 104044
  year: 2020
  ident: ref_126
  article-title: Facial expression recognition using human machine interaction and multi-modal visualization analysis for healthcare applications
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2020.104044
– volume: 47
  start-page: 255
  year: 1999
  ident: ref_64
  article-title: Cardiovascular changes during induced emotion: An application of Lang’s theory of emotional imagery
  publication-title: J. Psychosom. Res.
  doi: 10.1016/S0022-3999(99)00036-7
– ident: ref_14
– volume: 50
  start-page: 36
  year: 2012
  ident: ref_27
  article-title: A wireless wearable ECG sensor for long-term applications
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2012.6122530
– volume: 21
  start-page: 404
  year: 2015
  ident: ref_95
  article-title: Reliability of ultra-short-term analysis as a surrogate of standard 5-min analysis of heart rate variability
  publication-title: Telemed. E Health
  doi: 10.1089/tmj.2014.0104
– volume: 4
  start-page: 4998
  year: 2014
  ident: ref_106
  article-title: Revealing Real-Time Emotional Responses: A Personalized Assessment based on Heartbeat Dynamics
  publication-title: Sci. Rep.
  doi: 10.1038/srep04998
– ident: ref_73
– volume: 25
  start-page: 49
  year: 1994
  ident: ref_65
  article-title: Measuring emotion: The self-assessment manikin and the semantic differential
  publication-title: J. Behav. Ther. Exp. Psychiatry
  doi: 10.1016/0005-7916(94)90063-9
– ident: ref_46
  doi: 10.1109/ACII.2015.7344608
– volume: 60
  start-page: 1
  year: 2009
  ident: ref_36
  article-title: Emotion theory and research: Highlights, unanswered questions, and emerging issues
  publication-title: Annu. Rev. Psychol.
  doi: 10.1146/annurev.psych.60.110707.163539
– ident: ref_121
  doi: 10.1109/MeMeA.2013.6549705
– ident: ref_44
  doi: 10.3390/bs7040066
– ident: ref_128
  doi: 10.1109/DISCOVER50404.2020.9278094
– volume: 14
  start-page: 11031
  year: 2014
  ident: ref_28
  article-title: A mobile device system for early warning of ECG anomalies
  publication-title: Sensors
  doi: 10.3390/s140611031
– ident: ref_33
– ident: ref_112
– volume: 9
  start-page: 1
  year: 2019
  ident: ref_74
  article-title: Heart sound signals can be used for emotion recognition
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-42826-2
– ident: ref_34
  doi: 10.1002/0470013494.ch3
– volume: 31
  start-page: 110
  year: 2014
  ident: ref_76
  article-title: Electrocardiogram-based emotion recognition system using empirical mode decomposition and discrete Fourier transform
  publication-title: Expert Syst.
  doi: 10.1111/exsy.12014
– volume: 61
  start-page: 5
  year: 2006
  ident: ref_87
  article-title: Basic emotions are associated with distinct patterns of cardiorespiratory activity
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2005.10.024
– ident: ref_111
  doi: 10.1109/BIBE.2016.40
– volume: 11
  start-page: 1363
  year: 2013
  ident: ref_86
  article-title: ECG Signal Feature Selection for Emotion Recognition
  publication-title: TELKOMNIKA Indones. J. Electr. Eng.
– volume: 6
  start-page: 156
  year: 2005
  ident: ref_52
  article-title: Detecting stress during real-world driving tasks using physiological sensors
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2005.848368
– volume: 12
  start-page: 3102
  year: 2017
  ident: ref_37
  article-title: A design framework for human emotion recognition using electrocardiogram and skin conductance response signals
  publication-title: J. Eng. Sci. Technol.
– volume: 19
  start-page: 151
  year: 1995
  ident: ref_60
  article-title: Mood inductions for four specific moods: A procedure employing guided imagery vignettes with music
  publication-title: J. Ment. Imag.
– volume: 40
  start-page: 355
  year: 2017
  ident: ref_20
  article-title: An accurate emotion recognition system using ECG and GSR signals and matching pursuit method
  publication-title: Biomed. J.
  doi: 10.1016/j.bj.2017.11.001
– ident: ref_70
  doi: 10.1145/2663204.2663257
– ident: ref_5
– volume: 6
  start-page: 209
  year: 2015
  ident: ref_57
  article-title: DECAF: MEG-Based Multimodal Database for Decoding Affective Physiological Responses
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2015.2392932
– ident: ref_120
  doi: 10.1016/B978-0-08-097086-8.14131-5
– ident: ref_53
  doi: 10.1109/IJCNN.2018.8489125
– volume: 2
  start-page: 356
  year: 2008
  ident: ref_79
  article-title: Suppression Of Baseline Wander And Power Line Interference in ECG Using Digital IIR Filter
  publication-title: Int. J. Circuits Syst. Signal Process.
– volume: 5
  start-page: 126
  year: 2014
  ident: ref_107
  article-title: Emotion recognition based on multi-variant correlation of physiological signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2014.2327617
– volume: 4
  start-page: 6
  year: 2018
  ident: ref_77
  article-title: Physiological signal based work stress detection using unobtrusive sensors
  publication-title: BioMed. Phys. Eng. Express
  doi: 10.1088/2057-1976/aadbd4
– volume: 31
  start-page: 593
  year: 1998
  ident: ref_96
  article-title: Twenty-four hour time domain heart rate variability and heart rate: Relations to age and gender over nine decades
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/S0735-1097(97)00554-8
– volume: 76
  start-page: 11449
  year: 2017
  ident: ref_115
  article-title: Development of emotion recognition interface using complex EEG/ECG bio-signal for interactive contents
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-016-4203-7
– volume: 9
  start-page: 147
  year: 2018
  ident: ref_56
  article-title: Ascertain: Emotion and personality recognition using commercial sensors
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2016.2625250
– volume: 26
  start-page: 459
  year: 2018
  ident: ref_75
  article-title: Human emotion classification based on multiple physiological signals by wearable system
  publication-title: Technol. Health Care
  doi: 10.3233/THC-174747
– volume: 40
  start-page: 89
  year: 1996
  ident: ref_17
  article-title: Psychophysiology: Human behavior and physiological response
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/S0167-8760(00)00150-1
– volume: 19
  start-page: 331
  year: 1997
  ident: ref_42
  article-title: Comparison of the PAD and PANAS as models for describing emotions and for differentiating anxiety from depression
  publication-title: J. Psychopathol. Behav. Assess.
  doi: 10.1007/BF02229025
– volume: 15
  start-page: 51
  year: 2016
  ident: ref_47
  article-title: Emotion Recognition using ECG Signals with Local Pattern Description Methods
  publication-title: Int. J. Affect. Eng.
  doi: 10.5057/ijae.IJAE-D-15-00036
– volume: 32
  start-page: 230
  year: 1985
  ident: ref_81
  article-title: A Real-Time QRS Detection Algorithm
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1985.325532
– volume: 6
  start-page: 1
  year: 2019
  ident: ref_67
  article-title: A dataset of continuous affect annotations and physiological signals for emotion analysis
  publication-title: Sci. Data
  doi: 10.1038/s41597-019-0209-0
– ident: ref_80
  doi: 10.1109/IEMBS.2005.1615314
– volume: 39
  start-page: 1161
  year: 1980
  ident: ref_43
  article-title: A circumplex model of affect
  publication-title: J. Personal. Soc. Psychol.
  doi: 10.1037/h0077714
– ident: ref_90
  doi: 10.1109/CIBCB.2016.7758108
– ident: ref_127
  doi: 10.4108/ICST.PERVASIVEHEALTH2008.2511
– ident: ref_66
– volume: 96
  start-page: 6117
  year: 2018
  ident: ref_9
  article-title: Emotion Recognition Using Facial Expression Analysis
  publication-title: J. Theor. Appl. Inf. Technol.
– volume: 1
  start-page: 99
  year: 2019
  ident: ref_108
  article-title: Utilizing Deep Learning Towards Multi-modal Bio-sensing and Vision-based Affective Computing
  publication-title: IEEE Trans. Affect. Comput.
– volume: 46
  start-page: 18
  year: 2018
  ident: ref_88
  article-title: A physiological signal-based method for early mental-stress detection
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2018.06.004
– volume: 15
  start-page: 582
  year: 2011
  ident: ref_24
  article-title: Emotion recognition based on ecg signals for service robots in the intelligent space during daily life
  publication-title: J. Adv. Comput. Intell. Intell. Inform.
  doi: 10.20965/jaciii.2011.p0582
– ident: ref_82
– ident: ref_123
  doi: 10.1007/978-3-030-30809-4_23
– volume: 2018
  start-page: 5296523
  year: 2018
  ident: ref_41
  article-title: Emotion Recognition Based on Weighted Fusion Strategy of Multichannel Physiological Signals
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2018/5296523
– ident: ref_26
  doi: 10.3390/s19204495
– volume: 72
  start-page: 717
  year: 2014
  ident: ref_110
  article-title: Comparative analysis of emotion estimation methods based on physiological measurements for real-time applications
  publication-title: Int. J. Hum. Comput. Stud.
  doi: 10.1016/j.ijhcs.2014.05.006
– ident: ref_63
– volume: 2
  start-page: 671
  year: 2009
  ident: ref_72
  article-title: Filtering Techniques for Ecg Signal Processing
  publication-title: Int. J. Res. Eng. Appl. Sci.
– ident: ref_125
  doi: 10.1007/s40670-021-01317-8
– volume: 13
  start-page: 494
  year: 2015
  ident: ref_48
  article-title: The Effects of Psychological Stress on Depression
  publication-title: Curr. Neuropharmacol.
  doi: 10.2174/1570159X1304150831150507
– ident: ref_109
  doi: 10.3390/s18124253
– ident: ref_8
  doi: 10.1007/978-3-319-08491-6
– ident: ref_92
  doi: 10.1016/B978-008045046-9.01991-4
– ident: ref_119
  doi: 10.1109/ICECENG.2011.6057832
– volume: 22
  start-page: 98
  year: 2017
  ident: ref_58
  article-title: DREAMER: A Database for Emotion Recognition Through EEG and ECG Signals from Wireless Low-cost Off-the-Shelf Devices
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2017.2688239
– volume: 3
  start-page: 42
  year: 2012
  ident: ref_59
  article-title: A multimodal database for affect recognition and implicit tagging
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.25
– ident: ref_2
– ident: ref_18
  doi: 10.1109/EMBC.2015.7319953
– ident: ref_85
– volume: 454
  start-page: 903
  year: 1998
  ident: ref_98
  article-title: Empirical Mode Decomposition and Hilbert Spectral Analysis
  publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci.
  doi: 10.1098/rspa.1998.0193
– volume: 39
  start-page: 1125
  year: 1980
  ident: ref_3
  article-title: Facial Sign Of Emotional Experience
  publication-title: J. Personal. Soc. Psychol.
  doi: 10.1037/h0077722
– volume: 3
  start-page: 463
  year: 2015
  ident: ref_29
  article-title: A smart shirt made with conductive ink and conductive foam for the measurement of electrocardiogram signals with unipolar precordial leads
  publication-title: Fibers
  doi: 10.3390/fib3040463
– volume: 330
  start-page: 198
  year: 2012
  ident: ref_38
  article-title: Trends in Intelligent Robotics, Automation, and Manufacturing
  publication-title: Commun. Comput. Inf. Sci.
– volume: 9
  start-page: 467
  year: 2018
  ident: ref_116
  article-title: Biometric and emotion identification: An ECG compression based method
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2018.00467
– ident: ref_19
  doi: 10.5005/jp/books/11501
– ident: ref_11
  doi: 10.1016/j.procs.2017.05.025
SSID ssj0023338
Score 2.6420002
SecondaryResourceType review_article
Snippet Affective computing is a field of study that integrates human affects and emotions with artificial intelligence into systems or devices. A system or device...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 5015
SubjectTerms affective computing
Biosensors
electrocardiogram (ECG)
Electrocardiography
emotion recognition system
Emotions
healthcare
Heart rate
Influence
Nervous system
Physiology
Review
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07S8RAEF7kKi3EJ54vVrGwWS7JPlOecnIIWsgJdmGfeCA50bP3R_gL_SXOJrmQgGBjF5IpNjuzmfmYL98gdBEgrWspDAngYcIcEySnWhDj4ZMpVC58Rca8uxfTR3b7xJ86o74iJ6yWB643bkQ1dSI4nUlLGRQvuc84AECvjYFcxqv_yCHnrcBUA7UoIK9aR4gCqB-9A8yBUjzOvu1kn0qkv1dZ9nmRnURzs4U2mwoRj-uVbaM1X-6gjY5u4C6yk3p4ja3IpJFfRa4gGzk8qYfy4IcVLQiuG01yrEuHZ7EtgMedpjWel3jacsC-P7_GuG4X7KHZzWR2PSXNtARiAdItCU9EMJyrTOdKSGZdQk3wwXLpbeKV5zwwFwCQWq4ToaUKqVHWySBNaoOj-2hQLkp_gDDTwSiTaAvVHXOCmdQYnmobcsdTpdMhulxtYmEbJfE40OKlAEQR97to93uIzlvT11o-4zejq-iJ1iAqXlc3IA6KJg6Kv-JgiI5XfiyaY_heAF5Seaagphyis_YxHKDYFdGlX3xEGxFFaXIBNrLn_96C-k_K-XMlxa0oUyJXh__xBkdoPYuEmUSSjB6jwfLtw59AxbM0p1Vw_wDUHQQA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYoXOgB8VQXKHIRBy4WSfzMCS3VbleV4IAWiVvkJ0WqspRd7vyI_kJ-CePEGzZS1VsUj5TIY3u-8Xz6BqGzAGFdS2FIAA8T5pggJdWCGA9HplCl8A0Z8_pGTO7Yz3t-ny7c5olWuTwTm4PazWy8I78A6KvKQgE8uHz6Q2LXqFhdTS00PqGNHCJNpHSp8Y8u4aKQf7VqQhRS-4s5JDsAyGMH3JUY1Ej19_Blnx25Em7G22gr4UQ8bB27g9Z8vYs-r6gH7iE7alvY2IZSGllW5ApiksOjtjUPvl2Sg-A5KZNjXTs8jcUBPFwpXePHGk86Jtjb698hbosG-2g6Hk2_T0jqmUAsJHYLwjMRDExVoUslJLMuoyb4YLn0NvPKcx6YC5CWWq4zoaUKuVHWySBNboOjB2i9ntX-C8JMB6NMpi1gPOYEM7kxPNc2lI7nSucDdL6cxMomPfHY1uJ3BXlFnO-qm-8BOu1Mn1oRjX8ZXUVPdAZR97p5MXt-qNI2qqimTgSnC2kpAyhb-oJ7Q702BpANlwN0vPRjlTbjvPpYOgP0rRuGbRRrI7r2s5doI6I0TSnARvb83_uh_kj9-KsR5FaUKVGqw_9__AhtFpEQk0lS0GO0vnh-8V8B0SzMSbNs3wFEIPsL
  priority: 102
  providerName: ProQuest
Title Electrocardiogram-Based Emotion Recognition Systems and Their Applications in Healthcare—A Review
URI https://www.proquest.com/docview/2558928112
https://www.proquest.com/docview/2560060962
https://pubmed.ncbi.nlm.nih.gov/PMC8348698
https://doaj.org/article/3a3d6fda27c345079e25eb3eabb19057
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEB7S5NIeSp_UbWq2pYde1Erapw6h2MWuKSSU4IBvYp9pIMit40B7y4_IL-wvyaxeWJBjL0Jo5yDt7Gq-TzP6BuBDwLCupTBJQA8nzDGRFFSLxHh8ZQpVCF8XYx6fiMUZ-77iqz3oemy2E3h1L7WL_aTONpef_vz--wU3_FFknEjZP18hiUGgHX81P8CAJGMjg2PWJxNyijSsERUamg9CUa3YP4CZwyLJnagzfwKPW7hIJo1_n8Ker57Box0RwedgZ00nG1tXlsZiq2SKocmRWdOhh5x2NUJ43gqUE105sow5AjLZyWCTi4os-oKwfze3E9LkDl7Acj5bfl0kbeuExCK_2yY8FcFwrnJdKCGZdSk1wQfLpbepV57zwFxAdmq5ToWWKmRGWSeDNJkNjr6E_Wpd-VdAmA5GmVRbhHrMCWYyY3imbSgcz5TORvCxm8TStrLisbvFZYn0Is532c_3CN73pr8aLY37jKbRE71BlL-uL6w352W7m0qqqRPB6VxayhDRFj7n3lCvjUGAw-UIDjs_lt2SKpE8qSJXCDBH8K4fxt0UUyS68uvraCOiQk0h0EYO_D-4oeFIdfGz1uVWlClRqNf_4wnewMM8Vs-kMsnpIexvN9f-LcKfrRnDA7mSeFTzb2M4mM5OfpyO608J43rZ3wH89Q4L
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEG2FcAAOiFWZEKBBIHFpxXavPiA0gRkmZDmgQcqt1StEQp4kMxHixkfwG_wUX0K1N8YS4pab5S7ZVi1dr1zVVQi9iODWjRSWRJAwYZ4JUlIjiA2wZQpVilAXYx4di9kn9uGEn2ygX91ZmFRW2e2J9UbtFy79I98F6KvKQgE8eHN2TtLUqJRd7UZoNGpxEL5_g5Bt-Xr_Hcj3ZVFMJ_O3M9JOFSAOQp8V4ZmIFh5WmFIJyZzPqI0hOi6Dy4IKnEfmIwRujptMGKlibpXzMkqbu-gpPPYaus4oOPJ0MH36vo_vKIR7TfMiWMx2lxBbAf5PA3fXXF49GWAAZ4fFmGvebXoH3W5hKR43enQXbYTqHrq11qzwPnKTZmKOqytYU1EX2QMX6PGkmQSEP3a1SHDdNkLHpvJ4nnIReLyWKcenFZ71hWe_f_wc4yZH8QDNr4KZD9FmtajCFsLMRKtsZhxASuYFs7m1PDculp7nyuQj9KpjonZt-_I0ReOrhjAm8Vv3_B6h5z3pWdOz419Ee0kSPUFqs13fWFx81q3VamqoF9GbQjrKADmXoeDB0mCsBSDF5QjtdHLUre0v9V9NHaFn_TJYbUrFmCosLhONSJ1wSgE0ciD_wQcNV6rTL3X_b0WZEqXa_v_Ln6Ibs_nRoT7cPz54hG4WqRYnk6SgO2hzdXEZHgOYWtkntQpjpK_YZP4ArcE5bA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEG7iBkQP4pOsRm1FwUuzM9PPOYjsml02RpcQVsht6KcGZDZmN4g3f4R_xr_jL7F6Xu6AeMttmC56hq6u6vqmvqlC6EWAY11LYUgADRPmmCA51YIYDy5TqFz4ioz5YSHmH9m7U366g361_8JEWmXrEytH7VY2fiMfQeir8kxBeDAKDS3i-GD25vwriR2kYqa1badRb5Ej__0bwLf168MD0PXLLJtNl2_npOkwQCzAoA3hiQgGJs50roRk1iXUBB8sl94mXnnOA3MBQJzlOhFaqpAaZZ0M0qQ2OArTXkO7MoKiAdqdTBfHJx3aowD-6lJGlObJaA1IC9BAbL-7dQBWfQJ6wW2fmrl11s1uo1tNkIrH9a66g3Z8eRfd3CpdeA_Zad0_x1Z81kjxIhM4EB2e1n2B8EnLTILrpiw61qXDy5iZwOOtvDk-K_G8o6H9_vFzjOuMxX20vIrlfIAG5ar0ewgzHYwyibYQYDInmEmN4am2IXc8VTodolftIha2KWYee2p8KQDUxPUuuvUeoued6HldweNfQpOoiU4gFt2ubqwuPhWNDRdUUyeC05m0lEEcnfuMe0O9NgbCKi6HaL_VY9F4gnXxd98O0bNuGGw4JmZ06VeXUUbEuji5ABnZ03_vhfoj5dnnqhq4okyJXD38_8OfoutgLsX7w8XRI3Qji8ScRJKM7qPB5uLSP4bIamOeNHsYo-KKreYP6n0-_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrocardiogram-Based+Emotion+Recognition+Systems+and+Their+Applications+in+Healthcare%E2%80%94A+Review&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Muhammad+Anas+Hasnul&rft.au=Nor+Azlina+Ab.+Aziz&rft.au=Salem+Alelyani&rft.au=Mohamed+Mohana&rft.date=2021-07-23&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=15&rft.spage=5015&rft_id=info:doi/10.3390%2Fs21155015&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3a3d6fda27c345079e25eb3eabb19057
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon