Exciton Liquid in Coupled Quantum Wells

Excitons in semiconductors may form correlated phases at low temperatures. We report the observation of an exciton liquid in gallium arsenide/aluminum gallium arsenide–coupled quantum wells. Above a critical density and below a critical temperature, the photogenerated electrons and holes separate in...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 343; no. 6166; pp. 55 - 57
Main Authors Stern, Michael, Umansky, Vladimir, Bar-Joseph, Israel
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science 03.01.2014
The American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Excitons in semiconductors may form correlated phases at low temperatures. We report the observation of an exciton liquid in gallium arsenide/aluminum gallium arsenide–coupled quantum wells. Above a critical density and below a critical temperature, the photogenerated electrons and holes separate into two phases: an electron-hole plasma and an exciton liquid, with a clear sharp boundary between them. The two phases are characterized by distinct photoluminescence spectra and by different electrical conductance. The liquid phase is formed by the repulsive interaction between the dipolar excitons and exhibits a short-range order, which is manifested in the photoluminescence line shape.
AbstractList Exciton Liquid Excitons, bound states of electrons and holes (states “vacated” by electrons), can be found in semiconductors and have long been predicted to form correlated phases at sufficiently large densities and low temperatures. Stern et al. (p. 55) studied the behavior of spatially indirect excitons, which consist of electrons and holes residing in spatially separated, but coupled, quantum wells. The excitons were created through a combination of photoexcitation and electric gating. At high enough laser power and low enough temperatures, a new phase with a distinct photoluminescence signature appeared with behavior consistent with that of a classical liquid of excitons.
Excitons in semiconductors may form correlated phases at low temperatures. We report the observation of an exciton liquid in gallium arsenide/aluminum gallium arsenide-coupled quantum wells. Above a critical density and below a critical temperature, the photogenerated electrons and holes separate into two phases: an electron-hole plasma and an exciton liquid, with a clear sharp boundary between them. The two phases are characterized by distinct photoluminescence spectra and by different electrical conductance. The liquid phase is formed by the repulsive interaction between the dipolar excitons and exhibits a short-range order, which is manifested in the photoluminescence line shape.
Excitons, bound states of electrons and holes (states “vacated” by electrons), can be found in semiconductors and have long been predicted to form correlated phases at sufficiently large densities and low temperatures. Stern et al. (p. 55 ) studied the behavior of spatially indirect excitons, which consist of electrons and holes residing in spatially separated, but coupled, quantum wells. The excitons were created through a combination of photoexcitation and electric gating. At high enough laser power and low enough temperatures, a new phase with a distinct photoluminescence signature appeared with behavior consistent with that of a classical liquid of excitons. Photoluminescence and transport measurements indicate the formation of a classically correlated phase of excitons. Excitons in semiconductors may form correlated phases at low temperatures. We report the observation of an exciton liquid in gallium arsenide/aluminum gallium arsenide–coupled quantum wells. Above a critical density and below a critical temperature, the photogenerated electrons and holes separate into two phases: an electron-hole plasma and an exciton liquid, with a clear sharp boundary between them. The two phases are characterized by distinct photoluminescence spectra and by different electrical conductance. The liquid phase is formed by the repulsive interaction between the dipolar excitons and exhibits a short-range order, which is manifested in the photoluminescence line shape.
Excitons in semiconductors may form correlated phases at low temperatures. We report the observation of an exciton liquid in gallium arsenide/aluminum gallium arsenide-coupled quantum wells. Above a critical density and below a critical temperature, the photogenerated electrons and holes separate into two phases: an electron-hole plasma and an exciton liquid, with a clear sharp boundary between them. The two phases are characterized by distinct photoluminescence spectra and by different electrical conductance. The liquid phase is formed by the repulsive interaction between the dipolar excitons and exhibits a short-range order, which is manifested in the photoluminescence line shape.Excitons in semiconductors may form correlated phases at low temperatures. We report the observation of an exciton liquid in gallium arsenide/aluminum gallium arsenide-coupled quantum wells. Above a critical density and below a critical temperature, the photogenerated electrons and holes separate into two phases: an electron-hole plasma and an exciton liquid, with a clear sharp boundary between them. The two phases are characterized by distinct photoluminescence spectra and by different electrical conductance. The liquid phase is formed by the repulsive interaction between the dipolar excitons and exhibits a short-range order, which is manifested in the photoluminescence line shape.
Excitons, bound states of electrons and holes (states "vacated" by electrons), can be found in semiconductors and have long been predicted to form correlated phases at sufficiently large densities and low temperatures. Stern et al. (p. 55) studied the behavior of spatially indirect excitons, which consist of electrons and holes residing in spatially separated, but coupled, quantum wells. The excitons were created through a combination of photoexcitation and electric gating. At high enough laser power and low enough temperatures, a new phase with a distinct photoluminescence signature appeared with behavior consistent with that of a classical liquid of excitons. Excitons in semiconductors may form correlated phases at low temperatures. We report the observation of an exciton liquid in gallium arsenide/aluminum gallium arsenide-coupled quantum wells. Above a critical density and below a critical temperature, the photogenerated electrons and holes separate into two phases: an electron-hole plasma and an exciton liquid, with a clear sharp boundary between them. The two phases are characterized by distinct photoluminescence spectra and by different electrical conductance. The liquid phase is formed by the repulsive interaction between the dipolar excitons and exhibits a short-range order, which is manifested in the photoluminescence line shape. [PUBLICATION ABSTRACT]
Author Umansky, Vladimir
Bar-Joseph, Israel
Stern, Michael
Author_xml – sequence: 1
  givenname: Michael
  surname: Stern
  fullname: Stern, Michael
– sequence: 2
  givenname: Vladimir
  surname: Umansky
  fullname: Umansky, Vladimir
– sequence: 3
  givenname: Israel
  surname: Bar-Joseph
  fullname: Bar-Joseph, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24385625$$D View this record in MEDLINE/PubMed
BookMark eNqF0c1LwzAYBvAgE_ehZ09KwYNeur35bHOUMT9gIILiMbRpChldsjUt6H9vZJuHgXjKIb_nIXnfMRo47wxClximGBMxC9oap80UE0YZyBM0wiB5KgnQARoBUJHmkPEhGoewAoh3kp6hYdQ5F4SP0O3iU9vOu2Rpt72tEuuSue83jamS175wXb9OPkzThHN0WhdNMBf7c4LeHxZv86d0-fL4PL9fppox0aWMacx4IWoQBIAbWkpCclJlYDhokWEijciphhJrQkFCVWtRclOV2FSy5nSC7na9m9ZvexM6tbZBxxcUzvg-qNgKlBNOs38pZhIymlNMIr05oivfty5-JKpocpYDjep6r_pybSq1ae26aL_UYVoR8B3QrQ-hNbWKsys6613XFrZRGNTPVtR-K2q_lZibHeUO1X8nrnaJVeh8-8sZkZjwLKffveSWPA
CODEN SCIEAS
CitedBy_id crossref_primary_10_1002_adma_202404371
crossref_primary_10_3131_jvsj2_57_317
crossref_primary_10_1103_PhysRevLett_122_117402
crossref_primary_10_1103_PhysRevX_9_021026
crossref_primary_10_1038_s41565_020_0728_z
crossref_primary_10_1126_sciadv_aax0145
crossref_primary_10_1088_1367_2630_aad30a
crossref_primary_10_1103_PhysRevB_110_195435
crossref_primary_10_1073_pnas_2203531119
crossref_primary_10_1021_acs_chemrev_3c00627
crossref_primary_10_1021_acs_nanolett_3c00678
crossref_primary_10_31857_S0044451024070034
crossref_primary_10_1038_s42005_021_00625_0
crossref_primary_10_1103_PhysRevLett_120_047402
crossref_primary_10_1038_s41586_022_05193_z
crossref_primary_10_1038_s41567_023_02096_2
crossref_primary_10_1088_1367_2630_ab1c89
crossref_primary_10_1209_0295_5075_123_67001
crossref_primary_10_1103_PhysRevLett_130_057001
crossref_primary_10_1126_sciadv_ado8763
crossref_primary_10_1002_ctpp_201700107
crossref_primary_10_1007_s10909_017_1753_7
crossref_primary_10_1557_s43577_024_00772_z
crossref_primary_10_3390_e25020372
crossref_primary_10_3367_UFNr_2017_08_038194
crossref_primary_10_1103_PhysRevB_94_245401
crossref_primary_10_1103_PhysRevLett_114_090401
crossref_primary_10_1134_S1063776118060092
crossref_primary_10_1103_PhysRevLett_125_067402
crossref_primary_10_1126_science_adq2977
crossref_primary_10_1021_acs_nanolett_9b00914
crossref_primary_10_1021_acsnano_3c01365
crossref_primary_10_1073_pnas_1903374116
crossref_primary_10_3367_UFNr_2019_10_038663
crossref_primary_10_1063_10_0001057
crossref_primary_10_1016_j_physleta_2019_126185
crossref_primary_10_1103_PhysRevLett_131_036902
crossref_primary_10_1103_PhysRevB_95_085312
crossref_primary_10_1134_S1063776116030201
crossref_primary_10_1103_PhysRevB_103_184503
crossref_primary_10_1021_acsnano_2c06947
crossref_primary_10_1016_j_cplett_2021_138848
crossref_primary_10_1103_PhysRevB_95_245430
crossref_primary_10_1103_PhysRevB_108_L121102
crossref_primary_10_1103_PhysRevB_98_075312
crossref_primary_10_1103_PhysRevB_91_245302
crossref_primary_10_15407_ujpe70_2_118
crossref_primary_10_1103_PhysRevLett_125_255301
crossref_primary_10_3367_UFNe_2017_08_038194
crossref_primary_10_1038_s41467_022_28117_x
crossref_primary_10_1016_j_spmi_2017_01_022
crossref_primary_10_1016_j_spmi_2017_01_023
crossref_primary_10_1038_s42254_024_00721_4
crossref_primary_10_1103_PhysRevLett_118_127402
crossref_primary_10_1103_PhysRevB_94_165304
crossref_primary_10_1016_j_spmi_2016_12_035
crossref_primary_10_1103_PhysRevB_93_235310
crossref_primary_10_1103_PhysRevB_91_085302
crossref_primary_10_1016_j_physb_2015_11_024
crossref_primary_10_1126_sciadv_aat8880
crossref_primary_10_3367_UFNe_2019_10_038663
crossref_primary_10_1134_S1063776116030110
crossref_primary_10_1103_PhysRevB_96_085404
crossref_primary_10_1134_S1063776116030031
crossref_primary_10_1103_PhysRevResearch_2_042044
crossref_primary_10_1038_s41565_023_01438_8
crossref_primary_10_1103_PhysRevB_102_045307
crossref_primary_10_1103_PhysRevB_90_165430
crossref_primary_10_1063_1_4904222
crossref_primary_10_1103_PhysRevB_95_155302
crossref_primary_10_1021_acsnano_9b04124
crossref_primary_10_1021_acs_nanolett_6b01061
crossref_primary_10_1103_PhysRevB_106_035429
crossref_primary_10_1103_PhysRevB_91_125437
crossref_primary_10_1021_acs_jpclett_1c00507
Cites_doi 10.1103/PhysRevLett.100.256402
10.1016/0038-1098(77)90568-3
10.1103/PhysRevLett.103.016403
10.1103/PhysRevLett.74.1633
10.1103/PhysRevLett.99.176403
10.1038/nature05131
10.1103/PhysRevB.42.9225
10.1038/nature10903
10.1103/PhysRevLett.92.117405
10.1134/1.567264
10.1103/PhysRevB.80.195313
10.1103/PhysRevB.32.8027
10.1134/S0021364012140056
10.1103/PhysRevLett.110.127403
ContentType Journal Article
Copyright Copyright © 2014 American Association for the Advancement of Science
Copyright © 2014, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2014 American Association for the Advancement of Science
– notice: Copyright © 2014, American Association for the Advancement of Science
DBID AAYXX
CITATION
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1126/science.1243409
DatabaseName CrossRef
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
PubMed
CrossRef

MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 57
ExternalDocumentID 3172085041
24385625
10_1126_science_1243409
42912578
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
.HR
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
4.4
4R4
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAJYS
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADQXQ
ADUKH
ADULT
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFCHL
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AQVQM
ASPBG
AVWKF
BKF
BLC
C45
C51
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
J9C
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QJJ
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~KM
~ZZ
AAYXX
ABCQX
CITATION
K-O
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c446t-44c145a6f062005e3b92282d70e50c67129e683c0b1c23090dfc6b5edb1ed9f53
ISSN 0036-8075
1095-9203
IngestDate Sun Aug 24 03:40:35 EDT 2025
Tue Aug 05 09:05:31 EDT 2025
Fri Jul 25 10:36:19 EDT 2025
Mon Jul 21 06:01:51 EDT 2025
Tue Jul 01 04:10:06 EDT 2025
Thu Apr 24 22:55:17 EDT 2025
Thu Jul 03 22:44:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6166
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c446t-44c145a6f062005e3b92282d70e50c67129e683c0b1c23090dfc6b5edb1ed9f53
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 24385625
PQID 1473884803
PQPubID 1256
PageCount 3
ParticipantIDs proquest_miscellaneous_2000352537
proquest_miscellaneous_1490738312
proquest_journals_1473884803
pubmed_primary_24385625
crossref_citationtrail_10_1126_science_1243409
crossref_primary_10_1126_science_1243409
jstor_primary_42912578
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-03
PublicationDateYYYYMMDD 2014-01-03
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2014
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References Keldysh L. V. (e_1_3_2_2_2) 1968; 27
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_14_2
References_xml – ident: e_1_3_2_6_2
  doi: 10.1103/PhysRevLett.100.256402
– ident: e_1_3_2_15_2
– ident: e_1_3_2_18_2
  doi: 10.1016/0038-1098(77)90568-3
– ident: e_1_3_2_14_2
  doi: 10.1103/PhysRevLett.103.016403
– ident: e_1_3_2_3_2
  doi: 10.1103/PhysRevLett.74.1633
– ident: e_1_3_2_16_2
  doi: 10.1103/PhysRevLett.99.176403
– ident: e_1_3_2_9_2
– ident: e_1_3_2_19_2
  doi: 10.1038/nature05131
– ident: e_1_3_2_11_2
  doi: 10.1103/PhysRevB.42.9225
– ident: e_1_3_2_8_2
  doi: 10.1038/nature10903
– ident: e_1_3_2_17_2
  doi: 10.1103/PhysRevLett.92.117405
– volume: 27
  start-page: 521
  year: 1968
  ident: e_1_3_2_2_2
  publication-title: Sov. Phys. JETP
– ident: e_1_3_2_4_2
  doi: 10.1134/1.567264
– ident: e_1_3_2_5_2
  doi: 10.1103/PhysRevB.80.195313
– ident: e_1_3_2_13_2
  doi: 10.1103/PhysRevB.32.8027
– ident: e_1_3_2_7_2
  doi: 10.1134/S0021364012140056
– ident: e_1_3_2_12_2
  doi: 10.1103/PhysRevLett.110.127403
SSID ssj0009593
Score 2.4400327
Snippet Excitons in semiconductors may form correlated phases at low temperatures. We report the observation of an exciton liquid in gallium arsenide/aluminum gallium...
Excitons, bound states of electrons and holes (states “vacated” by electrons), can be found in semiconductors and have long been predicted to form correlated...
Excitons, bound states of electrons and holes (states "vacated" by electrons), can be found in semiconductors and have long been predicted to form correlated...
Exciton Liquid Excitons, bound states of electrons and holes (states “vacated” by electrons), can be found in semiconductors and have long been predicted to...
SourceID proquest
pubmed
crossref
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 55
SubjectTerms Aluminum
Density
Electrical phases
Electrical resistivity
Electrons
Excitons
Gallium
Laser power
Line spectra
Liquids
Low temperature
Luminescence
Mesas
Photoluminescence
Power lines
Quantum physics
Quantum theory
Quantum wells
semiconductors
Studies
temperature
Wells
Title Exciton Liquid in Coupled Quantum Wells
URI https://www.jstor.org/stable/42912578
https://www.ncbi.nlm.nih.gov/pubmed/24385625
https://www.proquest.com/docview/1473884803
https://www.proquest.com/docview/1490738312
https://www.proquest.com/docview/2000352537
Volume 343
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1da9RAcDlbBF_EVqvRKhEEK5Jjk91sksc7bSmigtjTvoXsZgOBXFrvLtD6A_zdzmYnufgRsL6EY283WWZm52vng5AXUiqQKzTzwljHHlcshDPHtMdiwHjBlUyEyUb-8FGcLvi78_B8MvkxiFpqNnKqvv81r-R_sApjgFeTJXsDzPYvhQH4DfiFJ2AYnv-E4-MrVZqyGO_Lb02Z2wS-5rICHfJTAxBrlq-_6qpaDxXQ7iyDYtlf1gxQ1EcdzmxsQBcqgMsGfoPPxpP4e-A9jC-WIPysQ_ZLleXlsuzDf-fZyrM3Di1nWq-6Zeh18HnrdWBbOrn5DodcGIsgWxlkGS81PSMD_ARyZmYrOCEJCl8MWW0YDoS2LXL9pzgYNLDUU1BlGKfJVvL18YgglH3Du26R3QDMDeCXu7P52_nJaPlmLBI1SL_q3v6LfmNDXMeNl1aJObtH7qL14c4sKe2Ria73yW3bj_R6n-whENfuEZYjf3WfvEQqcy2VuWXtIpW5SGVuS2UPyOLk-OzNqYftNTzFudh4nCufh5koqDCuRc1kEoABnkdUh1SJCDRBLWKmqPQVGKoJzQslZKhz6es8KUJ2QHbqi1o_Ii43GdYy0XkkCh74POO0UOZKOkpkIArtkGkHlFRh7XnTAqVKWxs0EClCMUUoOuSoX3Bpy66MTz1oodzP65DpkMMO7Cke2jVYuhGLYx5T5pDn_d_AUs09WVbri8bMSUDwxcwPxucE1FYSZpFDHlqU9huAfcXGr_B4bGdPyJ3tmTokO5tVo5-CbruRz5DwfgJUNKI0
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exciton+Liquid+in+Coupled+Quantum+Wells&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Stern%2C+Michael&rft.au=Umansky%2C+Vladimir&rft.au=Bar-Joseph%2C+Israel&rft.date=2014-01-03&rft.pub=American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=343&rft.issue=6166&rft.spage=55&rft.epage=57&rft_id=info:doi/10.1126%2Fscience.1243409&rft.externalDocID=42912578
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon