Exciton Liquid in Coupled Quantum Wells
Excitons in semiconductors may form correlated phases at low temperatures. We report the observation of an exciton liquid in gallium arsenide/aluminum gallium arsenide–coupled quantum wells. Above a critical density and below a critical temperature, the photogenerated electrons and holes separate in...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 343; no. 6166; pp. 55 - 57 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
03.01.2014
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Excitons in semiconductors may form correlated phases at low temperatures. We report the observation of an exciton liquid in gallium arsenide/aluminum gallium arsenide–coupled quantum wells. Above a critical density and below a critical temperature, the photogenerated electrons and holes separate into two phases: an electron-hole plasma and an exciton liquid, with a clear sharp boundary between them. The two phases are characterized by distinct photoluminescence spectra and by different electrical conductance. The liquid phase is formed by the repulsive interaction between the dipolar excitons and exhibits a short-range order, which is manifested in the photoluminescence line shape. |
---|---|
AbstractList | Exciton Liquid Excitons, bound states of electrons and holes (states “vacated” by electrons), can be found in semiconductors and have long been predicted to form correlated phases at sufficiently large densities and low temperatures. Stern et al. (p. 55) studied the behavior of spatially indirect excitons, which consist of electrons and holes residing in spatially separated, but coupled, quantum wells. The excitons were created through a combination of photoexcitation and electric gating. At high enough laser power and low enough temperatures, a new phase with a distinct photoluminescence signature appeared with behavior consistent with that of a classical liquid of excitons. Excitons in semiconductors may form correlated phases at low temperatures. We report the observation of an exciton liquid in gallium arsenide/aluminum gallium arsenide-coupled quantum wells. Above a critical density and below a critical temperature, the photogenerated electrons and holes separate into two phases: an electron-hole plasma and an exciton liquid, with a clear sharp boundary between them. The two phases are characterized by distinct photoluminescence spectra and by different electrical conductance. The liquid phase is formed by the repulsive interaction between the dipolar excitons and exhibits a short-range order, which is manifested in the photoluminescence line shape. Excitons, bound states of electrons and holes (states “vacated” by electrons), can be found in semiconductors and have long been predicted to form correlated phases at sufficiently large densities and low temperatures. Stern et al. (p. 55 ) studied the behavior of spatially indirect excitons, which consist of electrons and holes residing in spatially separated, but coupled, quantum wells. The excitons were created through a combination of photoexcitation and electric gating. At high enough laser power and low enough temperatures, a new phase with a distinct photoluminescence signature appeared with behavior consistent with that of a classical liquid of excitons. Photoluminescence and transport measurements indicate the formation of a classically correlated phase of excitons. Excitons in semiconductors may form correlated phases at low temperatures. We report the observation of an exciton liquid in gallium arsenide/aluminum gallium arsenide–coupled quantum wells. Above a critical density and below a critical temperature, the photogenerated electrons and holes separate into two phases: an electron-hole plasma and an exciton liquid, with a clear sharp boundary between them. The two phases are characterized by distinct photoluminescence spectra and by different electrical conductance. The liquid phase is formed by the repulsive interaction between the dipolar excitons and exhibits a short-range order, which is manifested in the photoluminescence line shape. Excitons in semiconductors may form correlated phases at low temperatures. We report the observation of an exciton liquid in gallium arsenide/aluminum gallium arsenide-coupled quantum wells. Above a critical density and below a critical temperature, the photogenerated electrons and holes separate into two phases: an electron-hole plasma and an exciton liquid, with a clear sharp boundary between them. The two phases are characterized by distinct photoluminescence spectra and by different electrical conductance. The liquid phase is formed by the repulsive interaction between the dipolar excitons and exhibits a short-range order, which is manifested in the photoluminescence line shape.Excitons in semiconductors may form correlated phases at low temperatures. We report the observation of an exciton liquid in gallium arsenide/aluminum gallium arsenide-coupled quantum wells. Above a critical density and below a critical temperature, the photogenerated electrons and holes separate into two phases: an electron-hole plasma and an exciton liquid, with a clear sharp boundary between them. The two phases are characterized by distinct photoluminescence spectra and by different electrical conductance. The liquid phase is formed by the repulsive interaction between the dipolar excitons and exhibits a short-range order, which is manifested in the photoluminescence line shape. Excitons, bound states of electrons and holes (states "vacated" by electrons), can be found in semiconductors and have long been predicted to form correlated phases at sufficiently large densities and low temperatures. Stern et al. (p. 55) studied the behavior of spatially indirect excitons, which consist of electrons and holes residing in spatially separated, but coupled, quantum wells. The excitons were created through a combination of photoexcitation and electric gating. At high enough laser power and low enough temperatures, a new phase with a distinct photoluminescence signature appeared with behavior consistent with that of a classical liquid of excitons. Excitons in semiconductors may form correlated phases at low temperatures. We report the observation of an exciton liquid in gallium arsenide/aluminum gallium arsenide-coupled quantum wells. Above a critical density and below a critical temperature, the photogenerated electrons and holes separate into two phases: an electron-hole plasma and an exciton liquid, with a clear sharp boundary between them. The two phases are characterized by distinct photoluminescence spectra and by different electrical conductance. The liquid phase is formed by the repulsive interaction between the dipolar excitons and exhibits a short-range order, which is manifested in the photoluminescence line shape. [PUBLICATION ABSTRACT] |
Author | Umansky, Vladimir Bar-Joseph, Israel Stern, Michael |
Author_xml | – sequence: 1 givenname: Michael surname: Stern fullname: Stern, Michael – sequence: 2 givenname: Vladimir surname: Umansky fullname: Umansky, Vladimir – sequence: 3 givenname: Israel surname: Bar-Joseph fullname: Bar-Joseph, Israel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24385625$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0c1LwzAYBvAgE_ehZ09KwYNeur35bHOUMT9gIILiMbRpChldsjUt6H9vZJuHgXjKIb_nIXnfMRo47wxClximGBMxC9oap80UE0YZyBM0wiB5KgnQARoBUJHmkPEhGoewAoh3kp6hYdQ5F4SP0O3iU9vOu2Rpt72tEuuSue83jamS175wXb9OPkzThHN0WhdNMBf7c4LeHxZv86d0-fL4PL9fppox0aWMacx4IWoQBIAbWkpCclJlYDhokWEijciphhJrQkFCVWtRclOV2FSy5nSC7na9m9ZvexM6tbZBxxcUzvg-qNgKlBNOs38pZhIymlNMIr05oivfty5-JKpocpYDjep6r_pybSq1ae26aL_UYVoR8B3QrQ-hNbWKsys6613XFrZRGNTPVtR-K2q_lZibHeUO1X8nrnaJVeh8-8sZkZjwLKffveSWPA |
CODEN | SCIEAS |
CitedBy_id | crossref_primary_10_1002_adma_202404371 crossref_primary_10_3131_jvsj2_57_317 crossref_primary_10_1103_PhysRevLett_122_117402 crossref_primary_10_1103_PhysRevX_9_021026 crossref_primary_10_1038_s41565_020_0728_z crossref_primary_10_1126_sciadv_aax0145 crossref_primary_10_1088_1367_2630_aad30a crossref_primary_10_1103_PhysRevB_110_195435 crossref_primary_10_1073_pnas_2203531119 crossref_primary_10_1021_acs_chemrev_3c00627 crossref_primary_10_1021_acs_nanolett_3c00678 crossref_primary_10_31857_S0044451024070034 crossref_primary_10_1038_s42005_021_00625_0 crossref_primary_10_1103_PhysRevLett_120_047402 crossref_primary_10_1038_s41586_022_05193_z crossref_primary_10_1038_s41567_023_02096_2 crossref_primary_10_1088_1367_2630_ab1c89 crossref_primary_10_1209_0295_5075_123_67001 crossref_primary_10_1103_PhysRevLett_130_057001 crossref_primary_10_1126_sciadv_ado8763 crossref_primary_10_1002_ctpp_201700107 crossref_primary_10_1007_s10909_017_1753_7 crossref_primary_10_1557_s43577_024_00772_z crossref_primary_10_3390_e25020372 crossref_primary_10_3367_UFNr_2017_08_038194 crossref_primary_10_1103_PhysRevB_94_245401 crossref_primary_10_1103_PhysRevLett_114_090401 crossref_primary_10_1134_S1063776118060092 crossref_primary_10_1103_PhysRevLett_125_067402 crossref_primary_10_1126_science_adq2977 crossref_primary_10_1021_acs_nanolett_9b00914 crossref_primary_10_1021_acsnano_3c01365 crossref_primary_10_1073_pnas_1903374116 crossref_primary_10_3367_UFNr_2019_10_038663 crossref_primary_10_1063_10_0001057 crossref_primary_10_1016_j_physleta_2019_126185 crossref_primary_10_1103_PhysRevLett_131_036902 crossref_primary_10_1103_PhysRevB_95_085312 crossref_primary_10_1134_S1063776116030201 crossref_primary_10_1103_PhysRevB_103_184503 crossref_primary_10_1021_acsnano_2c06947 crossref_primary_10_1016_j_cplett_2021_138848 crossref_primary_10_1103_PhysRevB_95_245430 crossref_primary_10_1103_PhysRevB_108_L121102 crossref_primary_10_1103_PhysRevB_98_075312 crossref_primary_10_1103_PhysRevB_91_245302 crossref_primary_10_15407_ujpe70_2_118 crossref_primary_10_1103_PhysRevLett_125_255301 crossref_primary_10_3367_UFNe_2017_08_038194 crossref_primary_10_1038_s41467_022_28117_x crossref_primary_10_1016_j_spmi_2017_01_022 crossref_primary_10_1016_j_spmi_2017_01_023 crossref_primary_10_1038_s42254_024_00721_4 crossref_primary_10_1103_PhysRevLett_118_127402 crossref_primary_10_1103_PhysRevB_94_165304 crossref_primary_10_1016_j_spmi_2016_12_035 crossref_primary_10_1103_PhysRevB_93_235310 crossref_primary_10_1103_PhysRevB_91_085302 crossref_primary_10_1016_j_physb_2015_11_024 crossref_primary_10_1126_sciadv_aat8880 crossref_primary_10_3367_UFNe_2019_10_038663 crossref_primary_10_1134_S1063776116030110 crossref_primary_10_1103_PhysRevB_96_085404 crossref_primary_10_1134_S1063776116030031 crossref_primary_10_1103_PhysRevResearch_2_042044 crossref_primary_10_1038_s41565_023_01438_8 crossref_primary_10_1103_PhysRevB_102_045307 crossref_primary_10_1103_PhysRevB_90_165430 crossref_primary_10_1063_1_4904222 crossref_primary_10_1103_PhysRevB_95_155302 crossref_primary_10_1021_acsnano_9b04124 crossref_primary_10_1021_acs_nanolett_6b01061 crossref_primary_10_1103_PhysRevB_106_035429 crossref_primary_10_1103_PhysRevB_91_125437 crossref_primary_10_1021_acs_jpclett_1c00507 |
Cites_doi | 10.1103/PhysRevLett.100.256402 10.1016/0038-1098(77)90568-3 10.1103/PhysRevLett.103.016403 10.1103/PhysRevLett.74.1633 10.1103/PhysRevLett.99.176403 10.1038/nature05131 10.1103/PhysRevB.42.9225 10.1038/nature10903 10.1103/PhysRevLett.92.117405 10.1134/1.567264 10.1103/PhysRevB.80.195313 10.1103/PhysRevB.32.8027 10.1134/S0021364012140056 10.1103/PhysRevLett.110.127403 |
ContentType | Journal Article |
Copyright | Copyright © 2014 American Association for the Advancement of Science Copyright © 2014, American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2014 American Association for the Advancement of Science – notice: Copyright © 2014, American Association for the Advancement of Science |
DBID | AAYXX CITATION NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1126/science.1243409 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed CrossRef MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 57 |
ExternalDocumentID | 3172085041 24385625 10_1126_science_1243409 42912578 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC .HR 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 4.4 4R4 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAJYS AAMNW AANCE AAWTO AAYJJ ABBHK ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPMR ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACHIC ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADQXQ ADUKH ADULT ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFCHL AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AQVQM ASPBG AVWKF BKF BLC C45 C51 CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE J9C JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QJJ RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~KM ~ZZ AAYXX ABCQX CITATION K-O NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c446t-44c145a6f062005e3b92282d70e50c67129e683c0b1c23090dfc6b5edb1ed9f53 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Sun Aug 24 03:40:35 EDT 2025 Tue Aug 05 09:05:31 EDT 2025 Fri Jul 25 10:36:19 EDT 2025 Mon Jul 21 06:01:51 EDT 2025 Tue Jul 01 04:10:06 EDT 2025 Thu Apr 24 22:55:17 EDT 2025 Thu Jul 03 22:44:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6166 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c446t-44c145a6f062005e3b92282d70e50c67129e683c0b1c23090dfc6b5edb1ed9f53 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 24385625 |
PQID | 1473884803 |
PQPubID | 1256 |
PageCount | 3 |
ParticipantIDs | proquest_miscellaneous_2000352537 proquest_miscellaneous_1490738312 proquest_journals_1473884803 pubmed_primary_24385625 crossref_citationtrail_10_1126_science_1243409 crossref_primary_10_1126_science_1243409 jstor_primary_42912578 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-01-03 |
PublicationDateYYYYMMDD | 2014-01-03 |
PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2014 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | Keldysh L. V. (e_1_3_2_2_2) 1968; 27 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_14_2 |
References_xml | – ident: e_1_3_2_6_2 doi: 10.1103/PhysRevLett.100.256402 – ident: e_1_3_2_15_2 – ident: e_1_3_2_18_2 doi: 10.1016/0038-1098(77)90568-3 – ident: e_1_3_2_14_2 doi: 10.1103/PhysRevLett.103.016403 – ident: e_1_3_2_3_2 doi: 10.1103/PhysRevLett.74.1633 – ident: e_1_3_2_16_2 doi: 10.1103/PhysRevLett.99.176403 – ident: e_1_3_2_9_2 – ident: e_1_3_2_19_2 doi: 10.1038/nature05131 – ident: e_1_3_2_11_2 doi: 10.1103/PhysRevB.42.9225 – ident: e_1_3_2_8_2 doi: 10.1038/nature10903 – ident: e_1_3_2_17_2 doi: 10.1103/PhysRevLett.92.117405 – volume: 27 start-page: 521 year: 1968 ident: e_1_3_2_2_2 publication-title: Sov. Phys. JETP – ident: e_1_3_2_4_2 doi: 10.1134/1.567264 – ident: e_1_3_2_5_2 doi: 10.1103/PhysRevB.80.195313 – ident: e_1_3_2_13_2 doi: 10.1103/PhysRevB.32.8027 – ident: e_1_3_2_7_2 doi: 10.1134/S0021364012140056 – ident: e_1_3_2_12_2 doi: 10.1103/PhysRevLett.110.127403 |
SSID | ssj0009593 |
Score | 2.4400327 |
Snippet | Excitons in semiconductors may form correlated phases at low temperatures. We report the observation of an exciton liquid in gallium arsenide/aluminum gallium... Excitons, bound states of electrons and holes (states “vacated” by electrons), can be found in semiconductors and have long been predicted to form correlated... Excitons, bound states of electrons and holes (states "vacated" by electrons), can be found in semiconductors and have long been predicted to form correlated... Exciton Liquid Excitons, bound states of electrons and holes (states “vacated” by electrons), can be found in semiconductors and have long been predicted to... |
SourceID | proquest pubmed crossref jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 55 |
SubjectTerms | Aluminum Density Electrical phases Electrical resistivity Electrons Excitons Gallium Laser power Line spectra Liquids Low temperature Luminescence Mesas Photoluminescence Power lines Quantum physics Quantum theory Quantum wells semiconductors Studies temperature Wells |
Title | Exciton Liquid in Coupled Quantum Wells |
URI | https://www.jstor.org/stable/42912578 https://www.ncbi.nlm.nih.gov/pubmed/24385625 https://www.proquest.com/docview/1473884803 https://www.proquest.com/docview/1490738312 https://www.proquest.com/docview/2000352537 |
Volume | 343 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1da9RAcDlbBF_EVqvRKhEEK5Jjk91sksc7bSmigtjTvoXsZgOBXFrvLtD6A_zdzmYnufgRsL6EY283WWZm52vng5AXUiqQKzTzwljHHlcshDPHtMdiwHjBlUyEyUb-8FGcLvi78_B8MvkxiFpqNnKqvv81r-R_sApjgFeTJXsDzPYvhQH4DfiFJ2AYnv-E4-MrVZqyGO_Lb02Z2wS-5rICHfJTAxBrlq-_6qpaDxXQ7iyDYtlf1gxQ1EcdzmxsQBcqgMsGfoPPxpP4e-A9jC-WIPysQ_ZLleXlsuzDf-fZyrM3Di1nWq-6Zeh18HnrdWBbOrn5DodcGIsgWxlkGS81PSMD_ARyZmYrOCEJCl8MWW0YDoS2LXL9pzgYNLDUU1BlGKfJVvL18YgglH3Du26R3QDMDeCXu7P52_nJaPlmLBI1SL_q3v6LfmNDXMeNl1aJObtH7qL14c4sKe2Ria73yW3bj_R6n-whENfuEZYjf3WfvEQqcy2VuWXtIpW5SGVuS2UPyOLk-OzNqYftNTzFudh4nCufh5koqDCuRc1kEoABnkdUh1SJCDRBLWKmqPQVGKoJzQslZKhz6es8KUJ2QHbqi1o_Ii43GdYy0XkkCh74POO0UOZKOkpkIArtkGkHlFRh7XnTAqVKWxs0EClCMUUoOuSoX3Bpy66MTz1oodzP65DpkMMO7Cke2jVYuhGLYx5T5pDn_d_AUs09WVbri8bMSUDwxcwPxucE1FYSZpFDHlqU9huAfcXGr_B4bGdPyJ3tmTokO5tVo5-CbruRz5DwfgJUNKI0 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exciton+Liquid+in+Coupled+Quantum+Wells&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Stern%2C+Michael&rft.au=Umansky%2C+Vladimir&rft.au=Bar-Joseph%2C+Israel&rft.date=2014-01-03&rft.pub=American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=343&rft.issue=6166&rft.spage=55&rft.epage=57&rft_id=info:doi/10.1126%2Fscience.1243409&rft.externalDocID=42912578 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |