cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING
Cytosolic DNA induces type I interferon via activation of STING; the immediate STING activator is produced by the recently identified DNA sensor cGAS and is shown here to be an unorthodox cyclic dinucleotide harbouring a 2′-5′ linkage between guanosine and adenosine. DNA sensing by cGAS The mechanis...
Saved in:
Published in | Nature (London) Vol. 498; no. 7454; pp. 380 - 384 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
20.06.2013
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cytosolic DNA induces type I interferon via activation of STING; the immediate STING activator is produced by the recently identified DNA sensor cGAS and is shown here to be an unorthodox cyclic dinucleotide harbouring a 2′-5′ linkage between guanosine and adenosine.
DNA sensing by cGAS
The mechanism of sensing and signalling of cytosolic DNA by the innate immune system is a topic of intense research interest as it is the means by which invading bacteria and viruses are detected. Cytosolic DNA is known to induce type I interferon through activation of the DNA sensor cyclic-GMP-AMP synthetase (cGAS), which catalyses the synthesis of a cyclic dinucleotide which in turn activates a protein known as STING (stimulator of interferon genes). Karl-Peter Hopfner and co-workers present the crystal structures of a C-terminal fragment of cGAS alone, in complex with UTP, and as a DNA–ATP–GTP complex. In a complementary paper [in this issue], Veit Hornung and coworkers show that the product of cGAS is distinct from previously characterized cyclic dinucleotides. Rather it is an unorthodox cyclic dinucleotide with a 2′–5′ linkage between guanosine and adenosine. This two-step synthesis of cGAMP(2′–5′) could be a focus for the development of specific inhibitors for the treatment of autoimmune diseases that engage the cGAS–STING axis.
Detection of cytoplasmic DNA represents one of the most fundamental mechanisms of the innate immune system to sense the presence of microbial pathogens
1
. Moreover, erroneous detection of endogenous DNA by the same sensing mechanisms has an important pathophysiological role in certain sterile inflammatory conditions
2
,
3
. The endoplasmic-reticulum-resident protein STING is critically required for the initiation of type I interferon signalling upon detection of cytosolic DNA of both exogenous and endogenous origin
4
,
5
,
6
,
7
,
8
. Next to its pivotal role in DNA sensing, STING also serves as a direct receptor for the detection of cyclic dinucleotides, which function as second messenger molecules in bacteria
9
,
10
,
11
,
12
,
13
. DNA recognition, however, is triggered in an indirect fashion that depends on a recently characterized cytoplasmic nucleotidyl transferase, termed cGAMP synthase (cGAS), which upon interaction with DNA synthesizes a dinucleotide molecule that in turn binds to and activates STING
14
,
15
. We here show
in vivo
and
in vitro
that the cGAS-catalysed reaction product is distinct from previously characterized cyclic dinucleotides. Using a combinatorial approach based on mass spectrometry, enzymatic digestion, NMR analysis and chemical synthesis we demonstrate that cGAS produces a cyclic GMP-AMP dinucleotide, which comprises a 2′-5′ and a 3′-5′ phosphodiester linkage >Gp(2′-5′)Ap(3′-5′)>. We found that the presence of this 2′-5′ linkage was required to exert potent activation of human STING. Moreover, we show that cGAS first catalyses the synthesis of a linear 2′-5′-linked dinucleotide, which is then subject to cGAS-dependent cyclization in a second step through a 3′-5′ phosphodiester linkage. This 13-membered ring structure defines a novel class of second messenger molecules, extending the family of 2′-5′-linked antiviral biomolecules. |
---|---|
AbstractList | Detection of cytoplasmic DNA represents one of the most fundamental mechanisms of the innate immune system to sense the presence of microbial pathogens^sup 1^. Moreover, erroneous detection of endogenous DNA by the same sensing mechanisms has an important pathophysiological role in certain sterile inflammatory conditions^sup 2,3^. The endoplasmic-reticulum-resident protein STING is critically required for the initiation of type I interferon signalling upon detection of cytosolic DNA of both exogenous and endogenous origin^sup 4-8^. Next to its pivotal role in DNA sensing, STING also serves as a direct receptor for the detection of cyclic dinucleotides, which function as second messenger molecules in bacteria^sup 9-13^. DNA recognition, however, is triggered in an indirect fashion that depends on a recently characterized cytoplasmic nucleotidyl transferase, termed cGAMP synthase (cGAS), which upon interaction withDNAsynthesizes a dinucleotide molecule that in turn binds to and activates STING^sup 14,15^. We here showin vivo and in vitro that the cGAS-catalysed reaction product is distinct from previously characterized cyclic dinucleotides.Using a combinatorial approach based on mass spectrometry, enzymatic digestion,NMRanalysis and chemical synthesis we demonstrate that cGAS produces a cyclic GMP-AMP dinucleotide, which comprises a 2'-5' and a 3'-5' phosphodiester linkage >Gp(2'-5')Ap(3'-5')>. We found that the presence of this 2'-5' linkage was required to exert potent activation of human STING. Moreover, we show that cGAS first catalyses the synthesis of a linear 2'-5'-linked dinucleotide, which is then subject to cGASdependent cyclization in a second step through a 3'-5' phosphodiester linkage. This 13-membered ring structure defines a novel class of second messengermolecules, extending the family of 2'-5'-linked antiviral biomolecules. [PUBLICATION ABSTRACT] Detection of cytoplasmic DNA represents one of the most fundamental mechanisms of the innate immune system to sense the presence of microbial pathogens. Moreover, erroneous detection of endogenous DNA by the same sensing mechanisms has an important pathophysiological role in certain sterile inflammatory conditions. The endoplasmic-reticulum-resident protein STING is critically required for the initiation of type I interferon signalling upon detection of cytosolic DNA of both exogenous and endogenous origin. Next to its pivotal role in DNA sensing, STING also serves as a direct receptor for the detection of cyclic dinucleotides, which function as second messenger molecules in bacteria. DNA recognition, however, is triggered in an indirect fashion that depends on a recently characterized cytoplasmic nucleotidyl transferase, termed cGAMP synthase (cGAS), which upon interaction with DNA synthesizes a dinucleotide molecule that in turn binds to and activates STING. We here show in vivo and in vitro that the cGAS-catalysed reaction product is distinct from previously characterized cyclic dinucleotides. Using a combinatorial approach based on mass spectrometry, enzymatic digestion, NMR analysis and chemical synthesis we demonstrate that cGAS produces a cyclic GMP-AMP dinucleotide, which comprises a 2'-5' and a 3'-5' phosphodiester linkage >Gp(2'-5')Ap(3'-5')>. We found that the presence of this 2'-5' linkage was required to exert potent activation of human STING. Moreover, we show that cGAS first catalyses the synthesis of a linear 2'-5'-linked dinucleotide, which is then subject to cGAS-dependent cyclization in a second step through a 3'-5' phosphodiester linkage. This 13-membered ring structure defines a novel class of second messenger molecules, extending the family of 2'-5'-linked antiviral biomolecules.Detection of cytoplasmic DNA represents one of the most fundamental mechanisms of the innate immune system to sense the presence of microbial pathogens. Moreover, erroneous detection of endogenous DNA by the same sensing mechanisms has an important pathophysiological role in certain sterile inflammatory conditions. The endoplasmic-reticulum-resident protein STING is critically required for the initiation of type I interferon signalling upon detection of cytosolic DNA of both exogenous and endogenous origin. Next to its pivotal role in DNA sensing, STING also serves as a direct receptor for the detection of cyclic dinucleotides, which function as second messenger molecules in bacteria. DNA recognition, however, is triggered in an indirect fashion that depends on a recently characterized cytoplasmic nucleotidyl transferase, termed cGAMP synthase (cGAS), which upon interaction with DNA synthesizes a dinucleotide molecule that in turn binds to and activates STING. We here show in vivo and in vitro that the cGAS-catalysed reaction product is distinct from previously characterized cyclic dinucleotides. Using a combinatorial approach based on mass spectrometry, enzymatic digestion, NMR analysis and chemical synthesis we demonstrate that cGAS produces a cyclic GMP-AMP dinucleotide, which comprises a 2'-5' and a 3'-5' phosphodiester linkage >Gp(2'-5')Ap(3'-5')>. We found that the presence of this 2'-5' linkage was required to exert potent activation of human STING. Moreover, we show that cGAS first catalyses the synthesis of a linear 2'-5'-linked dinucleotide, which is then subject to cGAS-dependent cyclization in a second step through a 3'-5' phosphodiester linkage. This 13-membered ring structure defines a novel class of second messenger molecules, extending the family of 2'-5'-linked antiviral biomolecules. Detection of cytoplasmic DNA represents one of the most fundamental mechanisms of the innate immune system to sense the presence of microbial pathogens 1 . Moreover, erroneous detection of endogenous DNA by the same sensing mechanisms has an important pathophysiological role in certain sterile inflammatory conditions 2 , 3 . The endoplasmic-reticulum-resident protein STING is critically required for the initiation of type I interferon signalling upon detection of cytosolic DNA of both exogenous and endogenous origin 4 , 5 , 6 , 7 , 8 . Next to its pivotal role in DNA sensing, STING also serves as a direct receptor for the detection of cyclic dinucleotides, which function as second messenger molecules in bacteria 9 , 10 , 11 , 12 , 13 . DNA recognition, however, is triggered in an indirect fashion that depends on a recently characterized cytoplasmic nucleotidyl transferase, termed cGAMP synthase (cGAS), which upon interaction with DNA synthesizes a dinucleotide molecule that in turn binds to and activates STING 14 , 15 . We here show in vivo and in vitro that the cGAS-catalysed reaction product is distinct from previously characterized cyclic dinucleotides. Using a combinatorial approach based on mass spectrometry, enzymatic digestion, NMR analysis and chemical synthesis we demonstrate that cGAS produces a cyclic GMP-AMP dinucleotide, which comprises a 2′-5′ and a 3′-5′ phosphodiester linkage >Gp(2′-5′)Ap(3′-5′)>. We found that the presence of this 2′-5′ linkage was required to exert potent activation of human STING. Moreover, we show that cGAS first catalyses the synthesis of a linear 2′-5′-linked dinucleotide, which is then subject to cGAS-dependent cyclization in a second step through a 3′-5′ phosphodiester linkage. This 13-membered ring structure defines a novel class of second messenger molecules, extending the family of 2′-5′-linked antiviral biomolecules. Detection of cytoplasmic DNA represents one of the most fundamental mechanisms of the innate immune system to sense the presence of microbial pathogens. Moreover, erroneous detection of endogenous DNA by the same sensing mechanisms has an important pathophysiological role in certain sterile inflammatory conditions. The endoplasmic-reticulum-resident protein STING is critically required for the initiation of type I interferon signalling upon detection of cytosolic DNA of both exogenous and endogenous origin. Next to its pivotal role in DNA sensing, STING also serves as a direct receptor for the detection of cyclic dinucleotides, which function as second messenger molecules in bacteria. DNA recognition, however, is triggered in an indirect fashion that depends on a recently characterized cytoplasmic nucleotidyl transferase, termed cGAMP synthase (cGAS), which upon interaction with DNA synthesizes a dinucleotide molecule that in turn binds to and activates STING. We here show in vivo and in vitro that the cGAS-catalysed reaction product is distinct from previously characterized cyclic dinucleotides. Using a combinatorial approach based on mass spectrometry, enzymatic digestion, NMR analysis and chemical synthesis we demonstrate that cGAS produces a cyclic GMP-AMP dinucleotide, which comprises a 2'-5' and a 3'-5' phosphodiester linkage >Gp(2'-5')Ap(3'-5')>. We found that the presence of this 2'-5' linkage was required to exert potent activation of human STING. Moreover, we show that cGAS first catalyses the synthesis of a linear 2'-5'-linked dinucleotide, which is then subject to cGAS-dependent cyclization in a second step through a 3'-5' phosphodiester linkage. This 13-membered ring structure defines a novel class of second messenger molecules, extending the family of 2'-5'-linked antiviral biomolecules. Cytosolic DNA induces type I interferon via activation of STING; the immediate STING activator is produced by the recently identified DNA sensor cGAS and is shown here to be an unorthodox cyclic dinucleotide harbouring a 2′-5′ linkage between guanosine and adenosine. DNA sensing by cGAS The mechanism of sensing and signalling of cytosolic DNA by the innate immune system is a topic of intense research interest as it is the means by which invading bacteria and viruses are detected. Cytosolic DNA is known to induce type I interferon through activation of the DNA sensor cyclic-GMP-AMP synthetase (cGAS), which catalyses the synthesis of a cyclic dinucleotide which in turn activates a protein known as STING (stimulator of interferon genes). Karl-Peter Hopfner and co-workers present the crystal structures of a C-terminal fragment of cGAS alone, in complex with UTP, and as a DNA–ATP–GTP complex. In a complementary paper [in this issue], Veit Hornung and coworkers show that the product of cGAS is distinct from previously characterized cyclic dinucleotides. Rather it is an unorthodox cyclic dinucleotide with a 2′–5′ linkage between guanosine and adenosine. This two-step synthesis of cGAMP(2′–5′) could be a focus for the development of specific inhibitors for the treatment of autoimmune diseases that engage the cGAS–STING axis. Detection of cytoplasmic DNA represents one of the most fundamental mechanisms of the innate immune system to sense the presence of microbial pathogens 1 . Moreover, erroneous detection of endogenous DNA by the same sensing mechanisms has an important pathophysiological role in certain sterile inflammatory conditions 2 , 3 . The endoplasmic-reticulum-resident protein STING is critically required for the initiation of type I interferon signalling upon detection of cytosolic DNA of both exogenous and endogenous origin 4 , 5 , 6 , 7 , 8 . Next to its pivotal role in DNA sensing, STING also serves as a direct receptor for the detection of cyclic dinucleotides, which function as second messenger molecules in bacteria 9 , 10 , 11 , 12 , 13 . DNA recognition, however, is triggered in an indirect fashion that depends on a recently characterized cytoplasmic nucleotidyl transferase, termed cGAMP synthase (cGAS), which upon interaction with DNA synthesizes a dinucleotide molecule that in turn binds to and activates STING 14 , 15 . We here show in vivo and in vitro that the cGAS-catalysed reaction product is distinct from previously characterized cyclic dinucleotides. Using a combinatorial approach based on mass spectrometry, enzymatic digestion, NMR analysis and chemical synthesis we demonstrate that cGAS produces a cyclic GMP-AMP dinucleotide, which comprises a 2′-5′ and a 3′-5′ phosphodiester linkage >Gp(2′-5′)Ap(3′-5′)>. We found that the presence of this 2′-5′ linkage was required to exert potent activation of human STING. Moreover, we show that cGAS first catalyses the synthesis of a linear 2′-5′-linked dinucleotide, which is then subject to cGAS-dependent cyclization in a second step through a 3′-5′ phosphodiester linkage. This 13-membered ring structure defines a novel class of second messenger molecules, extending the family of 2′-5′-linked antiviral biomolecules. |
Author | Ablasser, Andrea Witte, Gregor Goldeck, Marion Ludwig, Janos Röhl, Ingo Deimling, Tobias Hopfner, Karl-Peter Hornung, Veit Cavlar, Taner |
AuthorAffiliation | 4 Center for Integrated Protein Sciences, Munich, Germany 2 Department of Biochemistry and Gene Center, Ludwig-Maximilians-University, Munich, Germany 3 Axolabs GmbH, Kulmbach, Germany 1 Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Germany |
AuthorAffiliation_xml | – name: 4 Center for Integrated Protein Sciences, Munich, Germany – name: 3 Axolabs GmbH, Kulmbach, Germany – name: 1 Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Germany – name: 2 Department of Biochemistry and Gene Center, Ludwig-Maximilians-University, Munich, Germany |
Author_xml | – sequence: 1 givenname: Andrea surname: Ablasser fullname: Ablasser, Andrea email: andrea.ablasser@uni-bonn.de organization: Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, 53127 Bonn, Germany – sequence: 2 givenname: Marion surname: Goldeck fullname: Goldeck, Marion organization: Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, 53127 Bonn, Germany – sequence: 3 givenname: Taner surname: Cavlar fullname: Cavlar, Taner organization: Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, 53127 Bonn, Germany – sequence: 4 givenname: Tobias surname: Deimling fullname: Deimling, Tobias organization: Department of Biochemistry and Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany – sequence: 5 givenname: Gregor surname: Witte fullname: Witte, Gregor organization: Department of Biochemistry and Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany – sequence: 6 givenname: Ingo surname: Röhl fullname: Röhl, Ingo organization: Axolabs GmbH, 95326 Kulmbach, Germany – sequence: 7 givenname: Karl-Peter surname: Hopfner fullname: Hopfner, Karl-Peter organization: Department of Biochemistry and Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany, Center for Integrated Protein Sciences, 81377 Munich, Germany – sequence: 8 givenname: Janos surname: Ludwig fullname: Ludwig, Janos organization: Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, 53127 Bonn, Germany – sequence: 9 givenname: Veit surname: Hornung fullname: Hornung, Veit email: veit.hornung@uni-bonn.de organization: Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, 53127 Bonn, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23722158$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc9qVDEUxoNU7LS6ci8X3Ah69eT_vRuhFB0LRRetGzchk3umTb2TTJPcQnc-k4_kk5hhWhlLNzmE_M53vpzvgOyFGJCQlxTeU-Ddh2DLlJAyDuoJmVGhVStUp_fIDIB1LXRc7ZODnK8AQFItnpF9xjVjVHYz8sPNj86adYrD5DA3tmF_fv1u5eYYffiJQ-Nu3ehdM_gwuRFj8QM2GV0MQ7PCnDFcYGrKpS2NdcXf2FJlzs5Pvs6fk6dLO2Z8cVcPyffPn86Pv7Sn3-Ynx0enrRNClZYxVNzJbgELIWVfb1pzjVZLWKpeDSDtAnregeylAikUEx3ruVQd1xwE8EPycau7nhYrHByGkuxo1smvbLo10Xrz_0vwl-Yi3hhBBZeCVoE3dwIpXk-Yi1n57HAcbcA4ZUO5BlUHqs2s1w_QqzilUL9Xqb46or3ilXq16-iflfu1V4BuAZdizgmXxvlii48bg340FMwmWrMTbe15-6DnXvZx-t2WzpXaRLRj9BH8L9JxtGQ |
CODEN | NATUAS |
CitedBy_id | crossref_primary_10_3390_cells9102230 crossref_primary_10_5802_crbiol_110 crossref_primary_10_1371_journal_ppat_1008387 crossref_primary_10_1016_j_canlet_2025_217615 crossref_primary_10_1016_j_ejmech_2022_115053 crossref_primary_10_1126_sciadv_aax3333 crossref_primary_10_3389_fphar_2022_1033982 crossref_primary_10_1038_srep19049 crossref_primary_10_1016_j_celrep_2020_03_056 crossref_primary_10_1093_abbs_gmaa051 crossref_primary_10_1038_cr_2016_125 crossref_primary_10_1128_JVI_01913_17 crossref_primary_10_1128_JVI_02608_14 crossref_primary_10_1128_JVI_00748_16 crossref_primary_10_1002_anie_202305837 crossref_primary_10_1007_s11427_024_2703_6 crossref_primary_10_1038_nchembio_1521 crossref_primary_10_3390_pharmaceutics14071466 crossref_primary_10_1016_j_cytogfr_2016_02_009 crossref_primary_10_1002_adfm_202204589 crossref_primary_10_1002_cjp2_271 crossref_primary_10_1002_anie_202416353 crossref_primary_10_1158_0008_5472_CAN_23_1788 crossref_primary_10_1038_s41467_017_00833_9 crossref_primary_10_3389_fimmu_2020_624597 crossref_primary_10_1002_1878_0261_12573 crossref_primary_10_1002_mog2_49 crossref_primary_10_1016_j_bbadis_2023_166997 crossref_primary_10_1080_21645515_2020_1765621 crossref_primary_10_1080_1040841X_2018_1553848 crossref_primary_10_4103_NRR_NRR_D_24_00015 crossref_primary_10_1016_j_addr_2022_114136 crossref_primary_10_1016_j_jim_2020_112751 crossref_primary_10_1158_2159_8290_CD_23_1073 crossref_primary_10_1159_000492972 crossref_primary_10_1038_ncomms14654 crossref_primary_10_1016_j_stemcr_2020_12_010 crossref_primary_10_3390_cells8080922 crossref_primary_10_1016_j_tips_2014_10_013 crossref_primary_10_1016_j_bbi_2019_07_004 crossref_primary_10_1007_s11901_020_00538_6 crossref_primary_10_3389_fmicb_2016_00313 crossref_primary_10_3390_cells11213483 crossref_primary_10_1158_2159_8290_CD_17_0226 crossref_primary_10_3324_haematol_2020_274480 crossref_primary_10_1242_dmm_049251 crossref_primary_10_2174_1389450124666230831160820 crossref_primary_10_1128_mbio_03395_24 crossref_primary_10_1038_s41576_023_00663_0 crossref_primary_10_1021_acs_jpcb_3c02377 crossref_primary_10_1016_j_psj_2022_102291 crossref_primary_10_1161_CIRCULATIONAHA_123_065547 crossref_primary_10_1007_s40674_023_00211_1 crossref_primary_10_1016_j_intimp_2024_111641 crossref_primary_10_1016_j_molcel_2022_11_006 crossref_primary_10_1007_s11426_019_9662_5 crossref_primary_10_1073_pnas_1503831112 crossref_primary_10_1002_anie_202407641 crossref_primary_10_3390_cells13131157 crossref_primary_10_1016_j_molcel_2022_12_034 crossref_primary_10_1038_s41590_019_0556_1 crossref_primary_10_3389_fimmu_2024_1344272 crossref_primary_10_1002_anie_202207175 crossref_primary_10_1016_j_str_2015_04_011 crossref_primary_10_3389_fimmu_2022_929230 crossref_primary_10_1016_j_dci_2014_07_020 crossref_primary_10_1111_cns_14671 crossref_primary_10_1039_D2QO02033E crossref_primary_10_1016_j_immuni_2020_01_014 crossref_primary_10_12677_ACM_2022_126739 crossref_primary_10_1146_annurev_virology_111821_115636 crossref_primary_10_3389_fimmu_2017_00312 crossref_primary_10_1016_j_semcancer_2021_04_012 crossref_primary_10_1002_bies_201400019 crossref_primary_10_1038_s41568_018_0084_6 crossref_primary_10_1371_journal_pone_0305962 crossref_primary_10_1021_acsnano_4c00925 crossref_primary_10_4049_jimmunol_1700699 crossref_primary_10_3389_fcell_2021_717610 crossref_primary_10_3390_v13010094 crossref_primary_10_1016_j_coi_2022_01_002 crossref_primary_10_1021_acs_biomac_3c00196 crossref_primary_10_1021_acs_chemrev_1c00716 crossref_primary_10_1007_s40588_016_0043_5 crossref_primary_10_1016_j_virol_2015_02_051 crossref_primary_10_1038_s41586_020_2748_0 crossref_primary_10_1016_j_canlet_2017_05_026 crossref_primary_10_1016_j_coi_2022_01_004 crossref_primary_10_1038_s41551_020_0597_7 crossref_primary_10_1021_acsomega_0c01942 crossref_primary_10_1038_ncomms15534 crossref_primary_10_1111_febs_16298 crossref_primary_10_15212_AMM_2023_0011 crossref_primary_10_1016_j_biopha_2020_110945 crossref_primary_10_1038_scibx_2013_1117 crossref_primary_10_1186_s13578_021_00724_z crossref_primary_10_1261_rna_044024_113 crossref_primary_10_1016_j_intimp_2024_112556 crossref_primary_10_1039_D2CS00968D crossref_primary_10_3389_fimmu_2020_00793 crossref_primary_10_3389_fimmu_2020_00554 crossref_primary_10_1002_cbic_202200005 crossref_primary_10_1021_acs_jmedchem_1c00398 crossref_primary_10_1016_j_molcel_2025_01_027 crossref_primary_10_3389_fimmu_2022_874605 crossref_primary_10_3389_fcvm_2022_965726 crossref_primary_10_3390_jcm9103323 crossref_primary_10_1016_j_jmb_2015_02_016 crossref_primary_10_3390_v11080758 crossref_primary_10_1016_j_isci_2019_11_001 crossref_primary_10_1016_j_chom_2014_01_009 crossref_primary_10_3389_fimmu_2020_613039 crossref_primary_10_2147_OTT_S298958 crossref_primary_10_1371_journal_ppat_1006156 crossref_primary_10_3389_fimmu_2021_715723 crossref_primary_10_1042_BST20220838 crossref_primary_10_1126_sciadv_abb4565 crossref_primary_10_1038_s42003_024_07116_2 crossref_primary_10_3389_fimmu_2020_01637 crossref_primary_10_1002_advs_202104126 crossref_primary_10_1016_j_dnarep_2020_102894 crossref_primary_10_3389_fimmu_2023_1170321 crossref_primary_10_1126_science_abd0237 crossref_primary_10_3390_pharmaceutics14122710 crossref_primary_10_4049_jimmunol_1402794 crossref_primary_10_1021_acs_jmedchem_9b01567 crossref_primary_10_3389_fphar_2021_762334 crossref_primary_10_1038_s41564_019_0585_4 crossref_primary_10_1016_j_jare_2022_05_006 crossref_primary_10_1073_pnas_2207240119 crossref_primary_10_1038_s41421_022_00481_4 crossref_primary_10_1038_s41418_022_01041_9 crossref_primary_10_1007_s10753_023_01812_7 crossref_primary_10_3389_fcimb_2014_00140 crossref_primary_10_1186_s40659_022_00390_6 crossref_primary_10_2478_rir_2021_0023 crossref_primary_10_1021_acs_biochem_1c00692 crossref_primary_10_1038_s41586_023_06743_9 crossref_primary_10_3390_cancers12030739 crossref_primary_10_1517_14728222_2015_1067303 crossref_primary_10_18632_oncotarget_27673 crossref_primary_10_1016_j_tcb_2020_01_010 crossref_primary_10_1016_j_chom_2015_08_012 crossref_primary_10_1021_acs_jmedchem_4c02200 crossref_primary_10_2147_OTT_S272563 crossref_primary_10_1016_j_neuroscience_2023_01_015 crossref_primary_10_1111_cmi_12358 crossref_primary_10_3389_fcimb_2022_820273 crossref_primary_10_3389_fimmu_2023_1239142 crossref_primary_10_1016_j_molcel_2013_07_004 crossref_primary_10_1128_IAI_00407_20 crossref_primary_10_1016_j_bcp_2022_114935 crossref_primary_10_1016_j_bcp_2022_114934 crossref_primary_10_1016_j_dnarep_2022_103406 crossref_primary_10_1080_21505594_2021_1982373 crossref_primary_10_1038_s41598_020_72393_w crossref_primary_10_15252_embr_201744017 crossref_primary_10_1038_s41467_019_10863_0 crossref_primary_10_1016_j_intimp_2024_113212 crossref_primary_10_15252_embr_202153932 crossref_primary_10_1016_j_dnarep_2022_103409 crossref_primary_10_3389_fimmu_2020_01458 crossref_primary_10_1099_jgv_0_000647 crossref_primary_10_1038_nri_2016_78 crossref_primary_10_1016_j_bbadis_2024_167061 crossref_primary_10_1016_j_cej_2024_156729 crossref_primary_10_1016_j_tet_2021_132096 crossref_primary_10_1080_08830185_2020_1811859 crossref_primary_10_1007_s12272_023_01429_2 crossref_primary_10_1093_burnst_tkad050 crossref_primary_10_1038_ni_3558 crossref_primary_10_3390_ijms241713316 crossref_primary_10_1016_j_intimp_2024_113205 crossref_primary_10_1021_acs_chemrev_1c00750 crossref_primary_10_1038_s41556_019_0416_0 crossref_primary_10_1016_j_molcel_2020_10_021 crossref_primary_10_1038_s41594_023_00933_9 crossref_primary_10_3390_biom11040590 crossref_primary_10_1111_bph_16347 crossref_primary_10_1016_j_aac_2024_09_002 crossref_primary_10_1073_pnas_2413018121 crossref_primary_10_1016_j_ijbiomac_2020_01_015 crossref_primary_10_1039_D2SC06860E crossref_primary_10_1038_cr_2014_123 crossref_primary_10_3389_fphar_2020_00088 crossref_primary_10_1016_j_chom_2015_07_015 crossref_primary_10_1016_j_smim_2018_09_001 crossref_primary_10_1038_s41423_021_00668_x crossref_primary_10_1136_jitc_2022_005839 crossref_primary_10_1371_journal_ppat_1007435 crossref_primary_10_3389_fimmu_2020_01430 crossref_primary_10_1021_acs_jmedchem_1c00301 crossref_primary_10_3390_cells13171426 crossref_primary_10_1038_s41598_024_64651_y crossref_primary_10_1016_j_mib_2015_03_001 crossref_primary_10_1016_j_bbamcr_2022_119385 crossref_primary_10_1016_j_tcb_2022_11_001 crossref_primary_10_1093_nar_gky186 crossref_primary_10_1016_j_phrs_2022_106577 crossref_primary_10_1002_eji_202049116 crossref_primary_10_1016_j_bcp_2022_114988 crossref_primary_10_3390_cells9010070 crossref_primary_10_15252_embr_201846293 crossref_primary_10_3390_ijms21228877 crossref_primary_10_1096_fj_202101199R crossref_primary_10_3390_ijms222413360 crossref_primary_10_1080_08923973_2023_2215405 crossref_primary_10_2147_IJN_S503780 crossref_primary_10_1126_scisignal_aaw4673 crossref_primary_10_1128_mBio_00944_17 crossref_primary_10_1039_D4CY00147H crossref_primary_10_1038_s41467_018_05559_w crossref_primary_10_3389_fimmu_2017_01246 crossref_primary_10_1016_j_chom_2016_06_003 crossref_primary_10_1128_JVI_02966_15 crossref_primary_10_1038_s41586_019_1593_5 crossref_primary_10_1016_j_ejmech_2020_113113 crossref_primary_10_1038_s41418_023_01116_1 crossref_primary_10_1093_hmg_ddae187 crossref_primary_10_1038_s41467_022_34775_8 crossref_primary_10_1038_s41586_019_1605_5 crossref_primary_10_1126_science_aaw6421 crossref_primary_10_1016_j_tibs_2022_07_002 crossref_primary_10_1091_mbc_E23_04_0118 crossref_primary_10_3389_fimmu_2021_635738 crossref_primary_10_1016_j_neulet_2017_08_039 crossref_primary_10_4049_jimmunol_1601370 crossref_primary_10_7554_eLife_59753 crossref_primary_10_1021_jacs_9b05642 crossref_primary_10_1002_eji_201545911 crossref_primary_10_15252_embr_202255536 crossref_primary_10_4049_jimmunol_1300798 crossref_primary_10_1038_s41586_023_06373_1 crossref_primary_10_1096_fj_202001607R crossref_primary_10_1038_ni_3356 crossref_primary_10_1146_annurev_cellbio_020520_120627 crossref_primary_10_1161_CIRCULATIONAHA_119_041460 crossref_primary_10_1002_cpz1_372 crossref_primary_10_3389_fimmu_2021_795401 crossref_primary_10_1016_j_jmb_2018_10_010 crossref_primary_10_3389_fimmu_2019_01519 crossref_primary_10_1097_COH_0000000000000129 crossref_primary_10_1158_1535_7163_MCT_21_0791 crossref_primary_10_1038_nchembio_1318 crossref_primary_10_1080_13543776_2022_2144220 crossref_primary_10_1002_1873_3468_14838 crossref_primary_10_3389_fmicb_2020_00124 crossref_primary_10_1016_j_jep_2024_119251 crossref_primary_10_1021_acs_jpcb_5b11531 crossref_primary_10_1016_j_actbio_2024_01_008 crossref_primary_10_3390_cells10020342 crossref_primary_10_1371_journal_pone_0086096 crossref_primary_10_3389_fmicb_2022_1065945 crossref_primary_10_1128_JVI_00841_18 crossref_primary_10_1016_j_str_2015_03_012 crossref_primary_10_1158_0008_5472_CAN_18_1003 crossref_primary_10_1016_j_it_2016_12_004 crossref_primary_10_3389_fimmu_2021_818267 crossref_primary_10_1093_infdis_jiz116 crossref_primary_10_3389_fonc_2022_851795 crossref_primary_10_1038_s41467_018_04759_8 crossref_primary_10_3390_ijms20030611 crossref_primary_10_3390_ijms241210115 crossref_primary_10_1016_j_fsi_2021_08_016 crossref_primary_10_1038_s43587_022_00337_2 crossref_primary_10_4049_jimmunol_1601145 crossref_primary_10_1016_j_immuni_2017_02_011 crossref_primary_10_1016_j_molcel_2014_03_040 crossref_primary_10_3389_fimmu_2021_781032 crossref_primary_10_1016_j_intimp_2022_109471 crossref_primary_10_1021_acs_jmedchem_2c01305 crossref_primary_10_1053_j_gastro_2018_10_032 crossref_primary_10_1038_ni_2872 crossref_primary_10_1007_s12026_024_09525_1 crossref_primary_10_1126_science_abc5386 crossref_primary_10_15252_embr_202152447 crossref_primary_10_1093_nar_gku569 crossref_primary_10_1002_cmdc_202100068 crossref_primary_10_1016_j_celrep_2014_08_010 crossref_primary_10_3390_cancers10030085 crossref_primary_10_3390_genes11070730 crossref_primary_10_1016_j_celrep_2021_109537 crossref_primary_10_1038_jid_2014_490 crossref_primary_10_1073_pnas_2002481117 crossref_primary_10_1111_febs_15962 crossref_primary_10_1128_JVI_02145_17 crossref_primary_10_1016_j_molcel_2023_09_009 crossref_primary_10_1038_s44319_025_00394_9 crossref_primary_10_1016_j_cmet_2021_12_007 crossref_primary_10_1016_j_jdermsci_2019_11_008 crossref_primary_10_1016_j_cell_2013_09_049 crossref_primary_10_1016_j_celrep_2024_113870 crossref_primary_10_3389_fcell_2022_903781 crossref_primary_10_1016_j_preteyeres_2024_101288 crossref_primary_10_1021_acs_jmedchem_3c02288 crossref_primary_10_1038_s41577_021_00524_z crossref_primary_10_2174_1568026619666191010155903 crossref_primary_10_1016_j_jhepr_2021_100324 crossref_primary_10_3390_cancers13040612 crossref_primary_10_4049_jimmunol_2300669 crossref_primary_10_14348_molcells_2016_0232 crossref_primary_10_1007_s11427_024_2808_3 crossref_primary_10_1007_s00216_021_03628_6 crossref_primary_10_1073_pnas_1311669110 crossref_primary_10_1016_j_coi_2020_10_013 crossref_primary_10_1098_rsob_210030 crossref_primary_10_1016_j_molcel_2020_12_024 crossref_primary_10_1073_pnas_1905013116 crossref_primary_10_4049_jimmunol_1402705 crossref_primary_10_1021_acs_jpcb_7b12276 crossref_primary_10_1371_journal_ppat_1005546 crossref_primary_10_1111_jfb_12960 crossref_primary_10_1038_s41586_020_2750_6 crossref_primary_10_1038_s43018_022_00468_w crossref_primary_10_1038_s41598_024_82525_1 crossref_primary_10_1093_jnci_djw199 crossref_primary_10_26508_lsa_202302211 crossref_primary_10_1016_j_molcel_2021_05_002 crossref_primary_10_1126_science_aat8657 crossref_primary_10_1016_j_cell_2013_08_014 crossref_primary_10_1016_j_immuni_2020_05_013 crossref_primary_10_1016_j_prp_2023_154525 crossref_primary_10_1128_MCB_00857_13 crossref_primary_10_1016_j_celrep_2017_08_085 crossref_primary_10_1186_s13014_023_02335_z crossref_primary_10_3389_fimmu_2022_887054 crossref_primary_10_4049_jimmunol_1400737 crossref_primary_10_1016_j_virol_2024_110317 crossref_primary_10_1002_ctm2_228 crossref_primary_10_1038_nri3921 crossref_primary_10_3389_fimmu_2020_598884 crossref_primary_10_1002_mco2_683 crossref_primary_10_1016_j_ebiom_2016_05_039 crossref_primary_10_1128_JVI_01049_15 crossref_primary_10_1016_j_immuni_2023_10_001 crossref_primary_10_3389_fimmu_2024_1287940 crossref_primary_10_3390_cells12192341 crossref_primary_10_1002_ange_201508678 crossref_primary_10_3390_ijms25042099 crossref_primary_10_1016_j_ejmech_2022_114796 crossref_primary_10_1159_000533602 crossref_primary_10_3389_fimmu_2020_622511 crossref_primary_10_1016_j_ejmech_2022_114791 crossref_primary_10_1038_s41586_021_03743_5 crossref_primary_10_1016_j_celrep_2015_03_004 crossref_primary_10_1016_j_jmb_2013_10_022 crossref_primary_10_1126_science_aab3632 crossref_primary_10_1002_cbic_202000433 crossref_primary_10_1039_D3MH00748K crossref_primary_10_3389_fimmu_2024_1458884 crossref_primary_10_1016_j_chembiol_2021_08_006 crossref_primary_10_1186_s12943_020_01247_w crossref_primary_10_1016_j_jep_2023_116427 crossref_primary_10_1016_j_dci_2022_104402 crossref_primary_10_4049_jimmunol_2400123 crossref_primary_10_1016_j_lfs_2021_120263 crossref_primary_10_1186_s12985_023_02187_9 crossref_primary_10_1002_eji_201344127 crossref_primary_10_1021_acsnano_4c02425 crossref_primary_10_1002_adhm_201801243 crossref_primary_10_1093_abbs_gmw078 crossref_primary_10_4049_jimmunol_1502458 crossref_primary_10_31083_j_rcm2504135 crossref_primary_10_1038_s41392_024_01868_3 crossref_primary_10_1073_pnas_2413965122 crossref_primary_10_1016_j_intimp_2024_113091 crossref_primary_10_1126_science_aab3628 crossref_primary_10_1128_JVI_00022_20 crossref_primary_10_3389_fimmu_2024_1338096 crossref_primary_10_1016_j_intimp_2024_111904 crossref_primary_10_7554_eLife_70436 crossref_primary_10_1016_j_molcel_2021_07_040 crossref_primary_10_3390_v13030395 crossref_primary_10_1016_j_cyto_2016_10_003 crossref_primary_10_4049_jimmunol_2100075 crossref_primary_10_1073_pnas_2118819119 crossref_primary_10_1016_j_ceb_2019_12_004 crossref_primary_10_3390_ph16121675 crossref_primary_10_1016_j_drudis_2023_103694 crossref_primary_10_1128_jvi_01574_23 crossref_primary_10_1016_j_bmcl_2024_129820 crossref_primary_10_1016_j_pmatsci_2023_101230 crossref_primary_10_1111_cas_15913 crossref_primary_10_3389_fimmu_2023_1121864 crossref_primary_10_1016_j_sbi_2019_08_003 crossref_primary_10_1158_2326_6066_CIR_17_0263 crossref_primary_10_1186_s13567_024_01338_2 crossref_primary_10_1016_j_molcel_2021_06_004 crossref_primary_10_1016_j_molcel_2021_06_007 crossref_primary_10_1016_j_pestbp_2023_105700 crossref_primary_10_1038_s41467_022_29946_6 crossref_primary_10_1084_jem_20180139 crossref_primary_10_1038_nri3719 crossref_primary_10_3389_fmicb_2017_01854 crossref_primary_10_3389_fphar_2021_711238 crossref_primary_10_1016_j_molcel_2015_07_022 crossref_primary_10_3390_cancers13123058 crossref_primary_10_1038_s41392_024_01979_x crossref_primary_10_1080_2162402X_2020_1777624 crossref_primary_10_3390_cells11071159 crossref_primary_10_1016_j_celrep_2020_108586 crossref_primary_10_1007_s40005_018_0399_z crossref_primary_10_1128_mBio_00368_17 crossref_primary_10_1016_j_molcel_2020_12_037 crossref_primary_10_1099_jgv_0_001755 crossref_primary_10_1016_j_copbio_2017_04_004 crossref_primary_10_3389_fimmu_2021_771744 crossref_primary_10_1002_hep_30834 crossref_primary_10_1016_j_cytogfr_2018_03_001 crossref_primary_10_1038_nature12640 crossref_primary_10_1111_mmi_13991 crossref_primary_10_1021_acs_joc_1c00784 crossref_primary_10_1073_pnas_2109022118 crossref_primary_10_1126_scitranslmed_aaa4306 crossref_primary_10_1002_mabi_202100133 crossref_primary_10_1038_s41392_025_02174_2 crossref_primary_10_1126_science_1244040 crossref_primary_10_1016_j_isci_2023_108760 crossref_primary_10_1007_s13238_021_00839_6 crossref_primary_10_1146_annurev_biochem_061516_044813 crossref_primary_10_1161_CIRCRESAHA_122_321587 crossref_primary_10_3389_fphar_2021_779425 crossref_primary_10_1016_j_ijrobp_2023_05_029 crossref_primary_10_1002_advs_202403782 crossref_primary_10_4049_jimmunol_1900293 crossref_primary_10_1016_j_ejmech_2019_111591 crossref_primary_10_1038_s41419_023_05732_0 crossref_primary_10_1016_j_biocel_2023_106477 crossref_primary_10_1016_j_immuni_2020_04_004 crossref_primary_10_1074_jbc_RA119_010734 crossref_primary_10_1038_s41467_021_26738_2 crossref_primary_10_3389_fonc_2021_667920 crossref_primary_10_1158_1078_0432_CCR_19_3529 crossref_primary_10_1016_j_celrep_2023_112278 crossref_primary_10_1038_s41586_019_1553_0 crossref_primary_10_1158_1535_7163_MCT_21_0136 crossref_primary_10_1016_j_ejmech_2021_114087 crossref_primary_10_1002_ajoc_202200597 crossref_primary_10_1016_j_dci_2022_104444 crossref_primary_10_1186_s43556_020_00006_z crossref_primary_10_3390_ijms20184624 crossref_primary_10_1074_jbc_RA117_000194 crossref_primary_10_1021_acscentsci_1c00440 crossref_primary_10_1172_JCI148274 crossref_primary_10_1021_acs_biochem_0c00257 crossref_primary_10_1038_s41565_023_01447_7 crossref_primary_10_1126_science_1240933 crossref_primary_10_1016_j_celrep_2022_111738 crossref_primary_10_1016_j_gene_2021_145469 crossref_primary_10_1016_j_cell_2024_07_057 crossref_primary_10_1146_annurev_biochem_040320_101629 crossref_primary_10_1002_wsbm_1597 crossref_primary_10_1111_imm_12561 crossref_primary_10_3389_fendo_2020_568305 crossref_primary_10_3390_cells10092258 crossref_primary_10_1128_JVI_00545_17 crossref_primary_10_3389_fcimb_2024_1370414 crossref_primary_10_1146_annurev_immunol_093019_010426 crossref_primary_10_3390_ph15101241 crossref_primary_10_1038_s41423_019_0205_5 crossref_primary_10_1002_adtp_202000083 crossref_primary_10_1002_med_22016 crossref_primary_10_1093_eurheartj_ehab249 crossref_primary_10_1016_j_cyto_2025_156873 crossref_primary_10_3390_ijms22031301 crossref_primary_10_1016_j_phymed_2024_155404 crossref_primary_10_1016_j_chom_2014_09_015 crossref_primary_10_1016_j_celrep_2015_01_039 crossref_primary_10_1111_cas_14197 crossref_primary_10_1111_imcb_12555 crossref_primary_10_1016_j_cell_2013_07_023 crossref_primary_10_1038_s41467_023_38443_3 crossref_primary_10_1016_j_cell_2018_06_053 crossref_primary_10_1016_j_cub_2022_05_027 crossref_primary_10_3389_fimmu_2022_895961 crossref_primary_10_1038_srep38405 crossref_primary_10_1074_jbc_RA119_011400 crossref_primary_10_3389_fcimb_2022_1026293 crossref_primary_10_3390_ijms241813840 crossref_primary_10_1016_j_jbc_2023_105213 crossref_primary_10_3389_fgene_2022_982030 crossref_primary_10_3390_v14030547 crossref_primary_10_1038_s41586_019_1228_x crossref_primary_10_1158_1541_7786_MCR_17_0743 crossref_primary_10_3389_fcimb_2014_00050 crossref_primary_10_1038_s41423_020_0462_3 crossref_primary_10_1042_BST20200687 crossref_primary_10_1016_j_bmcl_2024_130007 crossref_primary_10_1158_2326_6066_CIR_22_0140 crossref_primary_10_1016_j_molcel_2022_03_034 crossref_primary_10_1146_annurev_immunol_051116_052331 crossref_primary_10_1016_j_immuni_2018_09_016 crossref_primary_10_1016_j_mib_2017_11_007 crossref_primary_10_1371_journal_ppat_1003989 crossref_primary_10_1016_j_virol_2015_02_033 crossref_primary_10_1016_j_virusres_2015_11_024 crossref_primary_10_15252_embr_202153166 crossref_primary_10_1038_nrmicro_2016_45 crossref_primary_10_15252_embj_2019102718 crossref_primary_10_4103_NRR_NRR_D_23_01684 crossref_primary_10_1038_s41586_018_0287_8 crossref_primary_10_3389_fimmu_2024_1428232 crossref_primary_10_1016_j_apsb_2021_05_011 crossref_primary_10_1016_j_celrep_2019_09_050 crossref_primary_10_3389_fcell_2023_1278461 crossref_primary_10_1002_prca_201900109 crossref_primary_10_1016_j_biocel_2022_106300 crossref_primary_10_1080_2162402X_2022_2044103 crossref_primary_10_1152_physrev_00026_2016 crossref_primary_10_1016_j_celrep_2015_02_066 crossref_primary_10_1136_jitc_2022_005026 crossref_primary_10_1016_j_immuni_2020_03_016 crossref_primary_10_1016_j_meegid_2018_02_014 crossref_primary_10_1021_acsinfecdis_0c00444 crossref_primary_10_37349_edd_2024_00057 crossref_primary_10_3389_fonc_2021_703802 crossref_primary_10_4049_jimmunol_1601909 crossref_primary_10_1128_mBio_01553_16 crossref_primary_10_1038_s41423_020_00552_0 crossref_primary_10_1152_physiol_00022_2019 crossref_primary_10_1038_s41577_021_00613_z crossref_primary_10_1016_j_molcel_2024_06_004 crossref_primary_10_1038_s41467_024_51780_1 crossref_primary_10_1242_jcs_259060 crossref_primary_10_1590_1678_9199_jvatitd_2020_0183 crossref_primary_10_1002_humu_24218 crossref_primary_10_1126_science_aau6019 crossref_primary_10_3390_v16040574 crossref_primary_10_1016_j_jid_2021_04_037 crossref_primary_10_1016_j_celrep_2019_09_065 crossref_primary_10_1038_s41467_023_41892_5 crossref_primary_10_1167_iovs_64_3_19 crossref_primary_10_1038_s41467_018_02936_3 crossref_primary_10_1021_acscentsci_3c01122 crossref_primary_10_1042_BST20221525 crossref_primary_10_1016_j_nantod_2024_102445 crossref_primary_10_1016_j_coviro_2015_01_012 crossref_primary_10_1016_j_critrevonc_2022_103780 crossref_primary_10_1007_s00705_023_05824_4 crossref_primary_10_1016_j_bmcl_2024_129677 crossref_primary_10_1016_j_cell_2018_06_026 crossref_primary_10_1111_cns_14689 crossref_primary_10_1016_j_molimm_2017_12_001 crossref_primary_10_3390_antiox13060679 crossref_primary_10_1093_pnasnexus_pgac109 crossref_primary_10_1016_j_cell_2019_01_049 crossref_primary_10_3389_fmicb_2023_1211793 crossref_primary_10_1021_jacs_7b06141 crossref_primary_10_1097_BOR_0000000000000087 crossref_primary_10_1002_rmv_1931 crossref_primary_10_1002_cssc_202201629 crossref_primary_10_3389_fcell_2019_00073 crossref_primary_10_5802_crbiol_110_fr crossref_primary_10_1038_s41418_020_00624_8 crossref_primary_10_1016_j_bbamcr_2018_01_011 crossref_primary_10_1021_acsnano_4c15115 crossref_primary_10_1038_s41467_019_08620_4 crossref_primary_10_3389_fcell_2021_748485 crossref_primary_10_1371_journal_pone_0077846 crossref_primary_10_1016_j_dci_2017_12_013 crossref_primary_10_1007_s12274_022_5002_2 crossref_primary_10_1021_acs_jmedchem_2c02046 crossref_primary_10_1016_j_jid_2021_05_007 crossref_primary_10_1038_nature13590 crossref_primary_10_1002_cmdc_202100671 crossref_primary_10_1186_s13045_020_00916_z crossref_primary_10_1172_JCI73945 crossref_primary_10_1007_s12026_024_09587_1 crossref_primary_10_58502_DTT_23_0018 crossref_primary_10_3389_fimmu_2023_1130172 crossref_primary_10_1093_intimm_dxae052 crossref_primary_10_1128_JVI_01720_15 crossref_primary_10_3389_fendo_2023_1145392 crossref_primary_10_1002_hep_32604 crossref_primary_10_1016_j_cell_2024_07_023 crossref_primary_10_1016_j_toxlet_2022_11_002 crossref_primary_10_1016_j_immuni_2016_04_002 crossref_primary_10_1128_mBio_02492_18 crossref_primary_10_1002_advs_202307541 crossref_primary_10_3390_molecules26030573 crossref_primary_10_1128_mSphere_00658_21 crossref_primary_10_1074_jbc_R115_652289 crossref_primary_10_1016_j_heliyon_2024_e33093 crossref_primary_10_3390_molecules29133121 crossref_primary_10_3390_ijms232113356 crossref_primary_10_1038_s41564_022_01247_0 crossref_primary_10_1016_j_bbadis_2023_166789 crossref_primary_10_1038_s41467_022_33301_0 crossref_primary_10_4049_jimmunol_1401869 crossref_primary_10_1080_1061186X_2022_2070173 crossref_primary_10_1016_j_immuni_2020_02_002 crossref_primary_10_1016_j_jconrel_2017_03_033 crossref_primary_10_1038_s41422_023_00788_1 crossref_primary_10_1073_pnas_1516812113 crossref_primary_10_1146_annurev_med_042320_025136 crossref_primary_10_1002_JLB_2MIR0917_383R crossref_primary_10_1002_ajoc_201700260 crossref_primary_10_3390_ijms22020477 crossref_primary_10_1016_j_it_2023_10_001 crossref_primary_10_23922_jarc_2020_064 crossref_primary_10_3389_fimmu_2023_1254915 crossref_primary_10_1021_acs_nanolett_1c03996 crossref_primary_10_1038_s41418_020_0519_y crossref_primary_10_1007_s13238_016_0320_3 crossref_primary_10_1016_j_ymthe_2024_11_008 crossref_primary_10_1016_j_imbio_2019_08_001 crossref_primary_10_3389_fimmu_2023_1164187 crossref_primary_10_1371_journal_pone_0076983 crossref_primary_10_1093_nar_gkac823 crossref_primary_10_1016_j_chembiol_2016_10_014 crossref_primary_10_1128_JVI_00760_21 crossref_primary_10_1074_jbc_M115_649301 crossref_primary_10_1016_j_fsi_2018_10_043 crossref_primary_10_1111_febs_16137 crossref_primary_10_1186_s12943_021_01489_2 crossref_primary_10_3390_ijms21239249 crossref_primary_10_1016_j_immuni_2018_03_017 crossref_primary_10_1016_j_immuni_2018_03_016 crossref_primary_10_3390_genes11040409 crossref_primary_10_1016_j_fct_2023_114427 crossref_primary_10_1016_j_colsurfb_2025_114573 crossref_primary_10_1039_D4BM01532K crossref_primary_10_3390_ijms232314601 crossref_primary_10_1016_j_mattod_2024_07_004 crossref_primary_10_3389_fnmol_2022_1081288 crossref_primary_10_1016_j_csbj_2022_08_001 crossref_primary_10_1016_j_it_2015_12_003 crossref_primary_10_1038_s41573_019_0043_2 crossref_primary_10_1016_j_radmp_2022_05_002 crossref_primary_10_3389_fimmu_2022_794776 crossref_primary_10_1080_09553002_2018_1434323 crossref_primary_10_1038_ncb3586 crossref_primary_10_3389_fimmu_2017_01541 crossref_primary_10_3389_fonc_2022_1093240 crossref_primary_10_1097_HEP_0000000000000910 crossref_primary_10_3389_fimmu_2024_1510628 crossref_primary_10_1021_jacs_1c12106 crossref_primary_10_1016_j_actbio_2015_10_025 crossref_primary_10_3390_jcm10215124 crossref_primary_10_3390_app14072840 crossref_primary_10_12688_f1000research_125163_1 crossref_primary_10_1007_s10753_023_01946_8 crossref_primary_10_1007_s00281_014_0445_5 crossref_primary_10_1016_j_cytogfr_2014_06_004 crossref_primary_10_3389_fimmu_2020_578038 crossref_primary_10_3762_bjoc_20_192 crossref_primary_10_3389_fimmu_2019_00778 crossref_primary_10_1016_j_cytogfr_2014_06_006 crossref_primary_10_1073_pnas_2313693120 crossref_primary_10_1038_s41565_019_0380_7 crossref_primary_10_1073_pnas_1621363114 crossref_primary_10_3390_ijms23126847 crossref_primary_10_3389_fimmu_2024_1356369 crossref_primary_10_1016_j_coph_2018_05_003 crossref_primary_10_1038_s42003_021_02983_5 crossref_primary_10_4049_jimmunol_2100685 crossref_primary_10_3389_fimmu_2020_00615 crossref_primary_10_1146_annurev_cancerbio_030518_055552 crossref_primary_10_1073_pnas_1516465112 crossref_primary_10_1371_journal_ppat_1011641 crossref_primary_10_1073_pnas_2305420120 crossref_primary_10_1021_acs_accounts_7b00056 crossref_primary_10_1016_j_ccell_2020_05_020 crossref_primary_10_1021_acs_molpharmaceut_3c00840 crossref_primary_10_1038_s41467_018_06922_7 crossref_primary_10_1080_19490976_2021_1959839 crossref_primary_10_1002_eji_202048777 crossref_primary_10_1016_j_chembiol_2024_04_004 crossref_primary_10_4049_jimmunol_1002795 crossref_primary_10_1038_s41467_017_00573_w crossref_primary_10_1016_j_jmb_2013_12_003 crossref_primary_10_3389_fimmu_2020_568412 crossref_primary_10_1002_iub_1566 crossref_primary_10_1016_j_celrep_2021_109178 crossref_primary_10_1016_j_isci_2024_110693 crossref_primary_10_3390_biom14030350 crossref_primary_10_1136_jitc_2020_001372 crossref_primary_10_1016_j_intimp_2024_112446 crossref_primary_10_1158_0008_5472_CAN_18_1972 crossref_primary_10_36401_JIPO_22_15 crossref_primary_10_1016_j_jep_2024_118660 crossref_primary_10_1016_j_exphem_2015_11_008 crossref_primary_10_1038_srep18035 crossref_primary_10_1038_nchembio_1606 crossref_primary_10_1038_nrmicro_2016_190 crossref_primary_10_1038_s41590_024_01966_y crossref_primary_10_1093_jmcb_mjac005 crossref_primary_10_1016_j_bbcan_2024_189183 crossref_primary_10_4049_jimmunol_2100627 crossref_primary_10_1038_s41586_020_2749_z crossref_primary_10_1002_1873_3468_12598 crossref_primary_10_1038_s41419_023_06247_4 crossref_primary_10_1073_pnas_2214956120 crossref_primary_10_1007_s00262_020_02846_8 crossref_primary_10_1073_pnas_1806239115 crossref_primary_10_1038_s41467_023_35898_2 crossref_primary_10_1016_j_it_2013_10_010 crossref_primary_10_1007_s00005_017_0481_7 crossref_primary_10_3390_ijms22179535 crossref_primary_10_1007_s10147_020_01666_1 crossref_primary_10_1371_journal_pgen_1005203 crossref_primary_10_3390_cells12141862 crossref_primary_10_1073_pnas_1419328112 crossref_primary_10_3389_fimmu_2022_973089 crossref_primary_10_1038_s41420_024_02208_8 crossref_primary_10_1101_gad_348314_121 crossref_primary_10_12677_hjbm_2024_143056 crossref_primary_10_1016_j_bmcl_2019_126640 crossref_primary_10_1016_j_cytogfr_2014_05_003 crossref_primary_10_1038_s41586_022_04559_7 crossref_primary_10_3390_jpm14070736 crossref_primary_10_1038_s41401_022_01002_5 crossref_primary_10_1016_j_tim_2017_05_008 crossref_primary_10_1128_JVI_00784_19 crossref_primary_10_4049_jimmunol_1701405 crossref_primary_10_1016_j_molcel_2023_12_005 crossref_primary_10_1042_BSR20240269 crossref_primary_10_1073_pnas_1911870117 crossref_primary_10_1016_j_cej_2024_157037 crossref_primary_10_1093_femspd_ftw028 crossref_primary_10_1099_jgv_0_002057 crossref_primary_10_1136_ijgc_2022_003704 crossref_primary_10_3389_fimmu_2024_1462496 crossref_primary_10_1038_s12276_021_00691_y crossref_primary_10_1073_pnas_2014940117 crossref_primary_10_1016_j_imbio_2018_10_005 crossref_primary_10_1038_s41598_017_05884_y crossref_primary_10_1016_j_jaut_2018_02_007 crossref_primary_10_1016_j_celrep_2017_11_101 crossref_primary_10_1186_s12974_025_03391_w crossref_primary_10_1016_j_coviro_2016_11_012 crossref_primary_10_1016_j_biopha_2022_113680 crossref_primary_10_1371_journal_pbio_3002436 crossref_primary_10_1126_science_adu2262 crossref_primary_10_1038_s41392_020_0198_7 crossref_primary_10_1016_j_coviro_2024_101411 crossref_primary_10_1038_s41392_024_02070_1 crossref_primary_10_3390_ijms22147503 crossref_primary_10_1016_j_cell_2014_07_028 crossref_primary_10_1136_annrheumdis_2018_212988 crossref_primary_10_1016_j_chom_2016_09_003 crossref_primary_10_1016_j_celrep_2023_112306 crossref_primary_10_3390_ijms25031828 crossref_primary_10_1016_j_celrep_2023_112309 crossref_primary_10_1038_s41467_018_05861_7 crossref_primary_10_1016_j_coviro_2015_07_002 crossref_primary_10_1371_journal_ppat_1008429 crossref_primary_10_1021_acs_jmedchem_9b01062 crossref_primary_10_1360_SSV_2024_0146 crossref_primary_10_1016_j_jconrel_2014_04_004 crossref_primary_10_17650_1726_9776_2021_17_3_85_94 crossref_primary_10_3389_fimmu_2022_808607 crossref_primary_10_1111_imr_13318 crossref_primary_10_1002_nadc_201490086 crossref_primary_10_1038_nchembio_2337 crossref_primary_10_1038_s12276_019_0333_0 crossref_primary_10_1074_jbc_M117_804005 crossref_primary_10_1002_jmv_28220 crossref_primary_10_1158_0008_5472_CAN_15_1885 crossref_primary_10_1038_s41422_020_00422_4 crossref_primary_10_1186_s12951_025_03186_4 crossref_primary_10_1074_jbc_RA119_012170 crossref_primary_10_1038_ni_3433 crossref_primary_10_1016_j_immuni_2013_11_012 crossref_primary_10_1016_j_cbpa_2022_102170 crossref_primary_10_1016_j_isci_2024_109814 crossref_primary_10_1172_JCI86892 crossref_primary_10_3390_cancers12061502 crossref_primary_10_3389_fmicb_2021_771292 crossref_primary_10_1111_joim_12782 crossref_primary_10_1159_000519573 crossref_primary_10_3390_ijms21217842 crossref_primary_10_1128_jvi_01476_22 crossref_primary_10_1016_j_immuni_2020_06_014 crossref_primary_10_3389_fimmu_2017_01389 crossref_primary_10_1146_annurev_immunol_070119_115052 crossref_primary_10_1071_CH16021 crossref_primary_10_1371_journal_ppat_1010725 crossref_primary_10_1002_ange_202416353 crossref_primary_10_1016_j_critrevonc_2020_103204 crossref_primary_10_1021_acs_biochem_0c00949 crossref_primary_10_1016_j_dmpk_2021_100432 crossref_primary_10_1002_cbic_201900051 crossref_primary_10_1093_hmg_ddae089 crossref_primary_10_14336_AD_2021_0304 crossref_primary_10_1002_adtp_202300255 crossref_primary_10_1002_ange_202407641 crossref_primary_10_1038_s41467_024_50999_2 crossref_primary_10_1002_ijch_202200084 crossref_primary_10_1038_s41556_018_0249_2 crossref_primary_10_1172_JCI79915 crossref_primary_10_1038_s12276_019_0299_y crossref_primary_10_15252_embj_201488029 crossref_primary_10_1073_pnas_1512832112 crossref_primary_10_3389_fimmu_2023_1130423 crossref_primary_10_1073_pnas_1718426115 crossref_primary_10_1038_ncomms14391 crossref_primary_10_1038_s41388_021_02037_4 crossref_primary_10_1016_j_it_2021_12_005 crossref_primary_10_3390_biomedicines13030571 crossref_primary_10_1038_ncomms14392 crossref_primary_10_1002_bkcs_12646 crossref_primary_10_1038_s41564_023_01546_0 crossref_primary_10_3389_fcell_2022_816517 crossref_primary_10_1021_acs_jmedchem_1c01986 crossref_primary_10_1016_j_chembiol_2023_07_002 crossref_primary_10_21769_BioProtoc_3055 crossref_primary_10_1016_j_metabol_2017_09_010 crossref_primary_10_1038_s41586_024_07112_w crossref_primary_10_1098_rsos_202333 crossref_primary_10_1016_j_semcancer_2019_08_018 crossref_primary_10_3389_fimmu_2022_954129 crossref_primary_10_1002_anie_201508678 crossref_primary_10_3389_fmicb_2018_01621 crossref_primary_10_1002_jmv_28253 crossref_primary_10_1111_febs_17278 crossref_primary_10_1016_j_virol_2019_11_012 crossref_primary_10_1002_chem_201805409 crossref_primary_10_1016_j_bioorg_2020_103958 crossref_primary_10_1038_s41467_020_17228_y crossref_primary_10_1073_pnas_2015919117 crossref_primary_10_1371_journal_pone_0115354 crossref_primary_10_15252_msb_20145808 crossref_primary_10_1016_j_it_2017_07_013 crossref_primary_10_3390_biom10101437 crossref_primary_10_1146_annurev_micro_102215_095605 crossref_primary_10_1021_acs_jcim_0c00171 crossref_primary_10_1038_s41423_018_0035_x crossref_primary_10_1038_s41467_023_41381_9 crossref_primary_10_1126_scitranslmed_aaz6606 crossref_primary_10_1002_ange_202207175 crossref_primary_10_1038_s42003_020_01436_9 crossref_primary_10_1096_fj_201902833R crossref_primary_10_1128_JVI_00025_17 crossref_primary_10_1097_COH_0000000000000233 crossref_primary_10_3389_fcimb_2021_647992 crossref_primary_10_1186_s12977_024_00643_0 crossref_primary_10_1016_j_celrep_2015_04_031 crossref_primary_10_1089_jir_2019_0037 crossref_primary_10_1080_19490976_2019_1707015 crossref_primary_10_3390_ijms24044068 crossref_primary_10_1002_adtp_202300088 crossref_primary_10_1016_j_molcel_2021_05_018 crossref_primary_10_1038_s41392_022_01252_z crossref_primary_10_4049_jimmunol_1402066 crossref_primary_10_1007_s11684_023_1026_6 crossref_primary_10_1038_s41467_024_48423_w crossref_primary_10_3389_fphar_2024_1369563 crossref_primary_10_1093_gbe_evv046 crossref_primary_10_3390_foods11111622 crossref_primary_10_1016_j_aqrep_2024_102238 crossref_primary_10_1038_s41580_020_0244_x crossref_primary_10_1177_1179670716685085 crossref_primary_10_1002_ange_202305837 crossref_primary_10_1186_s40104_023_00878_5 crossref_primary_10_3389_fimmu_2017_00259 crossref_primary_10_1016_j_immuni_2013_10_019 crossref_primary_10_1016_j_ijbiomac_2025_140050 crossref_primary_10_1038_s41392_022_01287_2 crossref_primary_10_1186_s13024_023_00672_x crossref_primary_10_1016_j_celrep_2023_112328 crossref_primary_10_1038_s41586_024_07992_y crossref_primary_10_1038_nchembio_1661 crossref_primary_10_1038_ni_3267 crossref_primary_10_3389_fmed_2022_939594 crossref_primary_10_1016_j_celrep_2020_107771 crossref_primary_10_1016_j_chom_2015_05_003 crossref_primary_10_3389_fcell_2021_828657 crossref_primary_10_3389_fimmu_2018_01327 crossref_primary_10_1016_j_tibs_2021_05_011 crossref_primary_10_1136_jitc_2021_002569 crossref_primary_10_4049_jimmunol_1500530 crossref_primary_10_1093_femspd_fty048 crossref_primary_10_1186_s13046_022_02262_z crossref_primary_10_1016_j_it_2023_08_009 crossref_primary_10_1128_mbio_03632_21 crossref_primary_10_1038_nrmicro3069 crossref_primary_10_1038_s41577_024_01112_7 crossref_primary_10_1111_cmi_13175 crossref_primary_10_3389_fcell_2022_800393 crossref_primary_10_1021_acs_orglett_3c03908 crossref_primary_10_1016_j_micinf_2014_09_010 crossref_primary_10_1128_JVI_02702_13 crossref_primary_10_1007_s00535_021_01803_1 crossref_primary_10_1002_cbdv_202401253 crossref_primary_10_1021_acsptsci_4c00310 crossref_primary_10_1074_jbc_RA120_014323 crossref_primary_10_1016_j_neuroscience_2021_11_031 crossref_primary_10_3389_fimmu_2024_1447719 crossref_primary_10_1111_all_13788 crossref_primary_10_1002_hep4_1179 crossref_primary_10_1021_acs_jmedchem_9b01039 crossref_primary_10_1038_cmi_2017_44 crossref_primary_10_1186_s13045_019_0721_x crossref_primary_10_1111_cas_14570 crossref_primary_10_1016_j_cell_2020_05_019 crossref_primary_10_1016_j_molimm_2024_10_002 crossref_primary_10_1371_journal_ppat_1005324 crossref_primary_10_1016_j_intimp_2022_108637 crossref_primary_10_1016_j_micinf_2016_03_008 crossref_primary_10_1038_nmeth_3590 crossref_primary_10_1021_acsnano_4c10673 crossref_primary_10_1038_s41388_024_03248_1 crossref_primary_10_18632_oncotarget_19531 crossref_primary_10_1016_j_tim_2022_06_005 crossref_primary_10_3390_cells11121958 crossref_primary_10_1002_eji_202350386 crossref_primary_10_1002_jmv_70038 crossref_primary_10_3389_fimmu_2021_660184 crossref_primary_10_1038_s41586_019_0928_6 crossref_primary_10_1002_cbic_202400321 crossref_primary_10_1038_s41388_022_02195_z crossref_primary_10_1016_j_ccell_2018_03_027 crossref_primary_10_1093_cvr_cvae117 crossref_primary_10_4049_jimmunol_1800656 crossref_primary_10_1186_s13567_025_01474_3 crossref_primary_10_3390_ijms18020404 crossref_primary_10_1007_s00109_016_1423_2 crossref_primary_10_1016_j_ijpharm_2022_122161 crossref_primary_10_3389_fimmu_2021_637399 crossref_primary_10_1111_imr_13272 crossref_primary_10_1016_j_bbrc_2020_03_034 crossref_primary_10_1016_j_coviro_2022_101206 crossref_primary_10_1016_j_febslet_2014_11_022 crossref_primary_10_1001_jamasurg_2018_1804 crossref_primary_10_1016_j_celrep_2020_108053 crossref_primary_10_1146_annurev_immunol_032414_112258 crossref_primary_10_1016_j_celrep_2020_108297 crossref_primary_10_1016_j_chembiol_2020_07_007 crossref_primary_10_1093_nar_gkw878 crossref_primary_10_2222_jsv_64_83 crossref_primary_10_3390_biom13111568 crossref_primary_10_3389_fimmu_2024_1352479 crossref_primary_10_3390_pathogens12030437 crossref_primary_10_1097_PPO_0000000000000620 crossref_primary_10_1038_cmi_2016_51 crossref_primary_10_1096_fj_202301987RR crossref_primary_10_1172_JCI130445 crossref_primary_10_1016_j_bbrc_2022_07_028 crossref_primary_10_1186_s12964_024_01755_y crossref_primary_10_1002_eji_201747338 crossref_primary_10_1016_j_cell_2019_05_035 crossref_primary_10_1016_j_immuni_2024_12_002 crossref_primary_10_1016_j_cell_2019_05_036 crossref_primary_10_1016_j_it_2015_01_004 crossref_primary_10_15252_embr_202357496 crossref_primary_10_1016_j_cell_2024_01_008 crossref_primary_10_3389_fgene_2023_1121018 crossref_primary_10_1158_2767_9764_CRC_23_0507 crossref_primary_10_3390_v14071361 crossref_primary_10_1016_j_celrep_2014_01_003 crossref_primary_10_3390_v12090979 crossref_primary_10_1016_j_ceca_2020_102308 crossref_primary_10_1016_j_micinf_2014_08_008 crossref_primary_10_2139_ssrn_3366988 crossref_primary_10_3389_fimmu_2023_1166214 crossref_primary_10_1007_s10753_024_02132_0 crossref_primary_10_1128_JVI_01083_16 crossref_primary_10_3390_v16040601 crossref_primary_10_1007_s15010_024_02429_0 crossref_primary_10_1073_pnas_1603269113 crossref_primary_10_1016_j_bbadis_2024_167443 crossref_primary_10_1038_srep27498 crossref_primary_10_3389_fimmu_2023_1231057 crossref_primary_10_1080_25785826_2024_2372918 crossref_primary_10_1111_all_16173 crossref_primary_10_1016_j_vetmic_2018_10_027 crossref_primary_10_1161_HYPERTENSIONAHA_122_20004 crossref_primary_10_1016_j_semnephrol_2016_03_004 crossref_primary_10_3389_fimmu_2021_814709 crossref_primary_10_1016_j_fmre_2021_08_015 crossref_primary_10_1371_journal_pone_0095728 crossref_primary_10_1080_1744666X_2023_2248391 crossref_primary_10_1186_s12943_024_02217_2 crossref_primary_10_3389_fmolb_2020_00205 crossref_primary_10_1093_nar_gkaa084 crossref_primary_10_1073_pnas_1507317112 crossref_primary_10_1126_scisignal_abc4537 crossref_primary_10_1038_s41392_022_01076_x crossref_primary_10_1016_j_cellimm_2021_104384 crossref_primary_10_1007_s12250_015_3604_5 crossref_primary_10_1186_s40364_024_00606_9 crossref_primary_10_1126_sciimmunol_adj3945 crossref_primary_10_1016_j_chom_2016_01_010 crossref_primary_10_1038_s44318_025_00370_y crossref_primary_10_12677_AMS_2017_42009 crossref_primary_10_1073_pnas_2105465118 crossref_primary_10_1038_nature12305 crossref_primary_10_1096_fj_201601093R crossref_primary_10_1111_febs_15640 crossref_primary_10_1152_physiol_00031_2022 crossref_primary_10_1016_j_pharmthera_2024_108653 crossref_primary_10_1016_j_molcel_2019_09_023 crossref_primary_10_1016_j_actbio_2024_08_045 crossref_primary_10_1158_2326_6066_CIR_23_1093 crossref_primary_10_1074_jbc_M116_771964 crossref_primary_10_3390_ijms25021019 crossref_primary_10_3389_fimmu_2024_1343325 crossref_primary_10_1038_s41419_020_2546_5 crossref_primary_10_1146_annurev_immunol_032713_120156 crossref_primary_10_1038_d41586_022_01127_x crossref_primary_10_1098_rsob_200148 crossref_primary_10_1165_rcmb_2023_0308OC crossref_primary_10_1016_j_jep_2025_119364 crossref_primary_10_1016_j_biochi_2013_10_015 crossref_primary_10_1007_s00109_022_02253_9 crossref_primary_10_1038_s41575_019_0126_x crossref_primary_10_1038_s41467_024_48988_6 crossref_primary_10_1093_braincomms_fcac133 crossref_primary_10_1016_j_intimp_2022_109304 crossref_primary_10_1038_s41577_022_00705_4 crossref_primary_10_1371_journal_pone_0207358 crossref_primary_10_1155_2022_5095176 crossref_primary_10_1126_science_aau0810 crossref_primary_10_3389_fimmu_2023_1092824 crossref_primary_10_3389_fphar_2024_1409683 crossref_primary_10_3390_cells10123300 crossref_primary_10_1128_jvi_01815_23 crossref_primary_10_1007_s10495_020_01614_4 crossref_primary_10_1038_s44319_024_00354_9 crossref_primary_10_1002_med_21649 crossref_primary_10_3389_fimmu_2023_1224341 crossref_primary_10_3390_ijms222312761 crossref_primary_10_3389_fimmu_2021_695056 crossref_primary_10_1016_j_jaci_2020_06_032 crossref_primary_10_3389_fimmu_2021_655637 crossref_primary_10_1016_j_molmed_2019_06_004 crossref_primary_10_1080_15384101_2022_2109899 crossref_primary_10_1016_j_cytogfr_2022_09_003 crossref_primary_10_1126_scisignal_aae0435 crossref_primary_10_1016_j_molimm_2018_01_008 crossref_primary_10_1016_j_str_2015_01_023 crossref_primary_10_1016_j_jbc_2023_104866 crossref_primary_10_1039_D3CB00096F crossref_primary_10_1084_jem_20220759 crossref_primary_10_1016_j_it_2015_02_004 crossref_primary_10_1016_j_hlife_2024_11_005 crossref_primary_10_1016_j_celrep_2024_114209 crossref_primary_10_1016_j_dci_2022_104567 crossref_primary_10_1042_EBC20220241 crossref_primary_10_1021_acs_joc_4c01055 crossref_primary_10_1007_s00430_019_00582_0 crossref_primary_10_1016_j_ejmech_2022_114482 crossref_primary_10_1038_s44319_025_00423_7 crossref_primary_10_1158_2326_6066_CIR_21_0754 crossref_primary_10_1002_adbi_202400174 crossref_primary_10_1038_s41586_022_05354_0 crossref_primary_10_2147_JIR_S465978 crossref_primary_10_1016_j_biomaterials_2025_123260 crossref_primary_10_1371_journal_ppat_1003649 crossref_primary_10_3390_biom13091332 crossref_primary_10_15252_embr_202051345 crossref_primary_10_1038_s41586_022_04422_9 crossref_primary_10_1126_sciimmunol_aaz2738 crossref_primary_10_32604_or_2022_03529 crossref_primary_10_1128_jvi_01567_24 crossref_primary_10_1084_jem_20161387 crossref_primary_10_15252_embj_201488726 crossref_primary_10_3389_fcimb_2024_1393432 crossref_primary_10_3389_fimmu_2020_575818 crossref_primary_10_1038_nnano_2015_180 crossref_primary_10_1016_j_cytogfr_2014_07_004 crossref_primary_10_1016_j_celrep_2019_04_110 crossref_primary_10_1016_j_molimm_2017_07_013 crossref_primary_10_1016_j_prp_2024_155405 crossref_primary_10_1177_2051013613501988 crossref_primary_10_1371_journal_pone_0110150 crossref_primary_10_1016_j_molcel_2022_10_026 crossref_primary_10_1093_nar_gkv389 crossref_primary_10_1158_2159_8290_CD_19_0761 crossref_primary_10_1016_j_molcel_2014_08_001 crossref_primary_10_3390_cells8101228 crossref_primary_10_3390_vetsci6010005 crossref_primary_10_1016_j_it_2019_06_001 crossref_primary_10_3389_fimmu_2020_613079 crossref_primary_10_1098_rstb_2016_0267 crossref_primary_10_3389_fendo_2024_1393111 crossref_primary_10_4049_jimmunol_1401337 crossref_primary_10_1016_j_celrep_2022_111868 crossref_primary_10_1007_s10549_022_06780_4 crossref_primary_10_1038_s41581_021_00394_7 crossref_primary_10_1002_wrna_1690 crossref_primary_10_1074_mcp_RA120_001981 crossref_primary_10_1128_JVI_00041_16 crossref_primary_10_36233_0507_4088_275 crossref_primary_10_1186_s12931_024_02915_x crossref_primary_10_1039_C9MD00076C crossref_primary_10_1161_ATVBAHA_117_309017 crossref_primary_10_1016_j_lfs_2022_121336 crossref_primary_10_1038_s41586_022_05452_z crossref_primary_10_1016_j_molcel_2021_01_024 crossref_primary_10_1038_s41467_024_48365_3 crossref_primary_10_1038_s41565_018_0342_5 crossref_primary_10_1016_j_molimm_2021_05_012 crossref_primary_10_1039_D1MD00114K crossref_primary_10_3389_fphar_2024_1383000 crossref_primary_10_1128_jvi_01022_22 crossref_primary_10_1128_JVI_02298_18 crossref_primary_10_3389_fmed_2021_692436 crossref_primary_10_15252_embj_2021108293 crossref_primary_10_3389_fimmu_2022_901913 crossref_primary_10_1038_s41556_022_00950_8 crossref_primary_10_1177_0022034518760855 crossref_primary_10_1186_s12885_024_13379_z crossref_primary_10_1128_JVI_01763_14 crossref_primary_10_1016_j_antiviral_2024_105989 crossref_primary_10_1016_j_coi_2020_04_002 crossref_primary_10_1073_pnas_1515287113 crossref_primary_10_1016_j_dci_2017_07_001 crossref_primary_10_1016_j_bioactmat_2021_08_003 crossref_primary_10_3390_biomedicines10061416 crossref_primary_10_1016_j_celrep_2023_113040 crossref_primary_10_1016_j_cell_2023_05_038 crossref_primary_10_1038_s41586_021_03800_z crossref_primary_10_1002_eji_202048810 crossref_primary_10_1038_s41421_018_0010_9 crossref_primary_10_1016_j_celrep_2024_114678 crossref_primary_10_1002_wcms_1397 crossref_primary_10_1016_j_mib_2023_102295 crossref_primary_10_4049_jimmunol_1700294 crossref_primary_10_1186_s12985_024_02359_1 crossref_primary_10_1039_C6CC03439J crossref_primary_10_1667_RR14941_1 crossref_primary_10_1098_rstb_2015_0503 crossref_primary_10_1073_pnas_2119189119 crossref_primary_10_1172_jci_insight_167270 crossref_primary_10_1016_j_molimm_2015_02_002 crossref_primary_10_1172_JCI78280 crossref_primary_10_3390_ijms21145150 crossref_primary_10_1016_j_it_2014_07_006 crossref_primary_10_1021_ol403154w crossref_primary_10_1038_nature23449 crossref_primary_10_1039_D4BM00665H crossref_primary_10_1007_s10157_023_02448_5 crossref_primary_10_1124_pr_114_009928 crossref_primary_10_3389_fonc_2019_00156 crossref_primary_10_3390_ijms25074120 crossref_primary_10_1016_j_mad_2016_06_004 crossref_primary_10_1021_acs_jmedchem_6b01300 crossref_primary_10_1007_s00018_017_2477_1 crossref_primary_10_1002_dvdy_560 crossref_primary_10_1038_s41598_020_64348_y crossref_primary_10_1038_s41590_017_0026_6 crossref_primary_10_15430_JCP_2023_28_4_143 crossref_primary_10_1074_jbc_M116_763268 crossref_primary_10_7555_JBR_37_20230224 crossref_primary_10_1016_j_cytogfr_2014_08_006 crossref_primary_10_3389_fmicb_2021_779012 crossref_primary_10_1002_pmic_201700403 crossref_primary_10_3390_v14040666 crossref_primary_10_1016_j_celrep_2021_109205 crossref_primary_10_1016_j_molcel_2023_03_029 crossref_primary_10_1007_s12275_020_9577_6 crossref_primary_10_1002_adma_202008094 crossref_primary_10_1002_advs_202306336 crossref_primary_10_1038_s42003_019_0701_2 crossref_primary_10_1073_pnas_1319118110 crossref_primary_10_1128_MMBR_00061_14 crossref_primary_10_3390_cells11010074 crossref_primary_10_1016_j_jconrel_2021_09_033 crossref_primary_10_1016_j_celrep_2015_09_007 crossref_primary_10_1371_journal_ppat_1004930 crossref_primary_10_1016_j_trsl_2018_07_014 crossref_primary_10_3389_fcell_2021_645593 crossref_primary_10_1016_j_semcdb_2020_06_009 crossref_primary_10_1002_dvdy_312 crossref_primary_10_3389_fcvm_2022_949538 crossref_primary_10_1016_j_dci_2021_104266 crossref_primary_10_3892_ijmm_2014_2039 crossref_primary_10_1016_j_micinf_2020_05_004 crossref_primary_10_1016_j_actbio_2024_06_025 crossref_primary_10_1021_acs_molpharmaceut_2c00520 crossref_primary_10_3390_v13071390 crossref_primary_10_1016_j_celrep_2018_05_029 crossref_primary_10_1158_2767_9764_CRC_22_0302 crossref_primary_10_1016_j_omto_2019_02_002 crossref_primary_10_1038_s41467_023_36132_9 crossref_primary_10_1038_s41576_019_0151_1 crossref_primary_10_1038_s41430_022_01173_8 crossref_primary_10_1186_s41232_023_00259_5 crossref_primary_10_1371_journal_ppat_1009372 crossref_primary_10_3390_cells12212555 crossref_primary_10_1089_aid_2013_0199 crossref_primary_10_1038_cr_2015_40 crossref_primary_10_1016_j_imbio_2013_07_007 crossref_primary_10_1016_j_it_2023_04_006 crossref_primary_10_1002_eji_201546113 crossref_primary_10_1158_0008_5472_CAN_20_2370 crossref_primary_10_1080_17435390_2022_2147460 crossref_primary_10_7554_eLife_06670 crossref_primary_10_1038_s41467_020_17156_x crossref_primary_10_1089_hum_2014_001 crossref_primary_10_1016_j_it_2017_03_004 crossref_primary_10_15252_embr_201846935 crossref_primary_10_1016_j_addr_2024_115204 crossref_primary_10_1038_s41467_022_32055_z crossref_primary_10_1038_s12276_023_00965_7 crossref_primary_10_1038_s41594_022_00862_z crossref_primary_10_15252_embj_2019103958 crossref_primary_10_3390_genes14020329 |
Cites_doi | 10.1016/j.cell.2012.01.053 10.1073/pnas.1215006109 10.4049/jimmunol.1300097 10.1038/nsmb.2331 10.1016/j.immuni.2011.11.018 10.1038/nature08476 10.1038/nsmb.2333 10.1038/nsmb.2332 10.1126/science.1232458 10.1089/jir.2010.0107 10.1038/nri2690 10.1016/j.immuni.2008.09.003 10.1073/pnas.0900850106 10.1038/emboj.2013.86 10.1021/ol101236b 10.1126/science.1229963 10.1038/nature07317 10.1016/j.cell.2013.04.046 10.1128/MCB.00640-08 10.1038/nature10429 10.1093/nar/18.17.5322 10.1016/j.immuni.2012.03.019 10.1016/j.ab.2009.03.031 10.1016/j.celrep.2013.05.009 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2013 Copyright Nature Publishing Group Jun 20, 2013 |
Copyright_xml | – notice: Springer Nature Limited 2013 – notice: Copyright Nature Publishing Group Jun 20, 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 5PM |
DOI | 10.1038/nature12306 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database (ProQuest) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database (ProQuest) Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database (ProQuest) Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 384 |
ExternalDocumentID | PMC4143541 3013796901 23722158 10_1038_nature12306 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: European Research Council grantid: 243046 – fundername: European Research Council grantid: 322869 – fundername: NIAID NIH HHS grantid: U19AI083025 – fundername: NIAID NIH HHS grantid: U19 AI083025 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 00M 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 4.4 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAYZH AAZLF ABAWZ ABDBF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACUHS ACWUS ADBBV ADFRT ADUKH ADYSU ADZCM AENEX AEUYN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B0M BBNVY BCU BDKGC BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BLC BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PKN PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ZKB ~02 ~7V ~88 ~8M ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADGHP ADXHL AETEA AEZWR AFANA AIXLP ALPWD ATHPR CITATION PEA PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c446t-22e63c58b0b45592e67737ea750f696d05ab09380595605462482935683730403 |
IEDL.DBID | 7X7 |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 14:09:17 EDT 2025 Mon Jul 21 10:24:38 EDT 2025 Sat Aug 23 12:55:19 EDT 2025 Mon Jul 21 06:05:05 EDT 2025 Thu Apr 24 22:57:16 EDT 2025 Tue Jul 01 02:57:01 EDT 2025 Fri Feb 21 02:37:34 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7454 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-22e63c58b0b45592e67737ea750f696d05ab09380595605462482935683730403 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author Contributions: A.A., M.G., T.C., G.W., T.D., I.R., J.L., K.-P.H. and V.H. designed experiments and analysed the data. A.A., M.G., T.C., G.W., T.D. and I.R. performed experiments. A.A. and V.H. wrote the manuscript. V.H. supervised the project. |
OpenAccessLink | https://infoscience.epfl.ch/handle/20.500.14299/103365 |
PMID | 23722158 |
PQID | 1398371963 |
PQPubID | 40569 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4143541 proquest_miscellaneous_1370635660 proquest_journals_1398371963 pubmed_primary_23722158 crossref_citationtrail_10_1038_nature12306 crossref_primary_10_1038_nature12306 springer_journals_10_1038_nature12306 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-06-20 |
PublicationDateYYYYMMDD | 2013-06-20 |
PublicationDate_xml | – month: 06 year: 2013 text: 2013-06-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2013 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Jin (CR6) 2008; 28 Shu, Yi, Watts, Kao, Li (CR13) 2012; 19 Davies, Bogard, Young, Mekalanos (CR18) 2012; 149 Wu (CR14) 2013; 339 Gall (CR2) 2012; 36 Ishikawa, Barber (CR4) 2008; 455 Sun, Wu, Du, Chen, Chen (CR15) 2013; 339 Mizushima, Nagata (CR23) 1990; 18 Gaffney, Veliath, Zhao, Jones (CR24) 2010; 12 Shang (CR12) 2012; 19 Hornung, Latz (CR1) 2010; 10 Rao (CR17) 2009; 389 Huang, Liu, Du, Jiang, Su (CR10) 2012; 19 Zhong (CR5) 2008; 29 Conlon (CR19) 2013; 190 Kristiansen, Gad, Eskildsen-Larsen, Despres, Hartmann (CR20) 2011; 31 Ishikawa, Ma, Barber (CR8) 2009; 461 Cavlar, Deimling, Ablasser, Hopfner, Hornung (CR16) 2013; 32 Burdette (CR9) 2011; 478 Ouyang (CR11) 2012; 36 Gao (CR21) 2013; 153 Sun (CR7) 2009; 106 Diner (CR22) 2013; 3 Ahn, Gutman, Saijo, Barber (CR3) 2012; 109 W Sun (BFnature12306_CR7) 2009; 106 P Gao (BFnature12306_CR21) 2013; 153 J Conlon (BFnature12306_CR19) 2013; 190 B Zhong (BFnature12306_CR5) 2008; 29 H Kristiansen (BFnature12306_CR20) 2011; 31 C Shu (BFnature12306_CR13) 2012; 19 DL Burdette (BFnature12306_CR9) 2011; 478 EJ Diner (BFnature12306_CR22) 2013; 3 G Shang (BFnature12306_CR12) 2012; 19 H Ishikawa (BFnature12306_CR8) 2009; 461 L Sun (BFnature12306_CR15) 2013; 339 V Hornung (BFnature12306_CR1) 2010; 10 YH Huang (BFnature12306_CR10) 2012; 19 S Mizushima (BFnature12306_CR23) 1990; 18 J Ahn (BFnature12306_CR3) 2012; 109 T Cavlar (BFnature12306_CR16) 2013; 32 F Rao (BFnature12306_CR17) 2009; 389 A Gall (BFnature12306_CR2) 2012; 36 BW Davies (BFnature12306_CR18) 2012; 149 J Wu (BFnature12306_CR14) 2013; 339 H Ishikawa (BFnature12306_CR4) 2008; 455 BL Gaffney (BFnature12306_CR24) 2010; 12 S Ouyang (BFnature12306_CR11) 2012; 36 L Jin (BFnature12306_CR6) 2008; 28 |
References_xml | – volume: 149 start-page: 358 year: 2012 end-page: 370 ident: CR18 article-title: Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for virulence publication-title: Cell doi: 10.1016/j.cell.2012.01.053 – volume: 109 start-page: 19386 year: 2012 end-page: 19391 ident: CR3 article-title: STING manifests self DNA-dependent inflammatory disease publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1215006109 – volume: 190 start-page: 5216 year: 2013 end-page: 5225 ident: CR19 article-title: Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid publication-title: J. Immunol. doi: 10.4049/jimmunol.1300097 – volume: 19 start-page: 722 year: 2012 end-page: 724 ident: CR13 article-title: Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system publication-title: Nature Struct. Mol. Biol. doi: 10.1038/nsmb.2331 – volume: 36 start-page: 120 year: 2012 end-page: 131 ident: CR2 article-title: Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease publication-title: Immunity doi: 10.1016/j.immuni.2011.11.018 – volume: 461 start-page: 788 year: 2009 end-page: 792 ident: CR8 article-title: STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity publication-title: Nature doi: 10.1038/nature08476 – volume: 19 start-page: 728 year: 2012 end-page: 730 ident: CR10 article-title: The structural basis for the sensing and binding of cyclic di-GMP by STING publication-title: Nature Struct. Mol. Biol. doi: 10.1038/nsmb.2333 – volume: 19 start-page: 725 year: 2012 end-page: 727 ident: CR12 article-title: Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP publication-title: Nature Struct. Mol. Biol. doi: 10.1038/nsmb.2332 – volume: 339 start-page: 786 year: 2013 end-page: 791 ident: CR15 article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway publication-title: Science doi: 10.1126/science.1232458 – volume: 31 start-page: 41 year: 2011 end-page: 47 ident: CR20 article-title: The oligoadenylate synthetase family: an ancient protein family with multiple antiviral activities publication-title: J. Interferon Cytokine Res. doi: 10.1089/jir.2010.0107 – volume: 10 start-page: 123 year: 2010 end-page: 130 ident: CR1 article-title: Intracellular DNA recognition publication-title: Nature Rev. Immunol. doi: 10.1038/nri2690 – volume: 29 start-page: 538 year: 2008 end-page: 550 ident: CR5 article-title: The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation publication-title: Immunity doi: 10.1016/j.immuni.2008.09.003 – volume: 106 start-page: 8653 year: 2009 end-page: 8658 ident: CR7 article-title: ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0900850106 – volume: 32 start-page: 1440 year: 2013 end-page: 1450 ident: CR16 article-title: Species-specific detection of the antiviral small-molecule compound CMA by STING publication-title: EMBO J. doi: 10.1038/emboj.2013.86 – volume: 12 start-page: 3269 year: 2010 end-page: 3271 ident: CR24 article-title: One-flask syntheses of c-di-GMP and the [ , ] and [ , ] thiophosphate analogues publication-title: Org. Lett. doi: 10.1021/ol101236b – volume: 339 start-page: 826 year: 2013 end-page: 830 ident: CR14 article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA publication-title: Science doi: 10.1126/science.1229963 – volume: 455 start-page: 674 year: 2008 end-page: 678 ident: CR4 article-title: STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling publication-title: Nature doi: 10.1038/nature07317 – volume: 153 start-page: 1094 year: 2013 end-page: 1107 ident: CR21 article-title: Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase publication-title: Cell doi: 10.1016/j.cell.2013.04.046 – volume: 28 start-page: 5014 year: 2008 end-page: 5026 ident: CR6 article-title: MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00640-08 – volume: 478 start-page: 515 year: 2011 end-page: 518 ident: CR9 article-title: STING is a direct innate immune sensor of cyclic di-GMP publication-title: Nature doi: 10.1038/nature10429 – volume: 18 start-page: 5322 year: 1990 ident: CR23 article-title: pEF-BOS, a powerful mammalian expression vector publication-title: Nucleic Acids Res. doi: 10.1093/nar/18.17.5322 – volume: 36 start-page: 1073 year: 2012 end-page: 1086 ident: CR11 article-title: Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding publication-title: Immunity doi: 10.1016/j.immuni.2012.03.019 – volume: 389 start-page: 138 year: 2009 end-page: 142 ident: CR17 article-title: Enzymatic synthesis of c-di-GMP using a thermophilic diguanylate cyclase publication-title: Anal. Biochem. doi: 10.1016/j.ab.2009.03.031 – volume: 3 start-page: 1355 year: 2013 end-page: 1361 ident: CR22 article-title: The innate immune DNA sensory cGAS produces a noncanonical cyclic dinucleotide that activates human STING publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.05.009 – volume: 10 start-page: 123 year: 2010 ident: BFnature12306_CR1 publication-title: Nature Rev. Immunol. doi: 10.1038/nri2690 – volume: 339 start-page: 826 year: 2013 ident: BFnature12306_CR14 publication-title: Science doi: 10.1126/science.1229963 – volume: 36 start-page: 120 year: 2012 ident: BFnature12306_CR2 publication-title: Immunity doi: 10.1016/j.immuni.2011.11.018 – volume: 109 start-page: 19386 year: 2012 ident: BFnature12306_CR3 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1215006109 – volume: 190 start-page: 5216 year: 2013 ident: BFnature12306_CR19 publication-title: J. Immunol. doi: 10.4049/jimmunol.1300097 – volume: 28 start-page: 5014 year: 2008 ident: BFnature12306_CR6 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00640-08 – volume: 18 start-page: 5322 year: 1990 ident: BFnature12306_CR23 publication-title: Nucleic Acids Res. doi: 10.1093/nar/18.17.5322 – volume: 3 start-page: 1355 year: 2013 ident: BFnature12306_CR22 publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.05.009 – volume: 153 start-page: 1094 year: 2013 ident: BFnature12306_CR21 publication-title: Cell doi: 10.1016/j.cell.2013.04.046 – volume: 36 start-page: 1073 year: 2012 ident: BFnature12306_CR11 publication-title: Immunity doi: 10.1016/j.immuni.2012.03.019 – volume: 19 start-page: 725 year: 2012 ident: BFnature12306_CR12 publication-title: Nature Struct. Mol. Biol. doi: 10.1038/nsmb.2332 – volume: 31 start-page: 41 year: 2011 ident: BFnature12306_CR20 publication-title: J. Interferon Cytokine Res. doi: 10.1089/jir.2010.0107 – volume: 106 start-page: 8653 year: 2009 ident: BFnature12306_CR7 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0900850106 – volume: 455 start-page: 674 year: 2008 ident: BFnature12306_CR4 publication-title: Nature doi: 10.1038/nature07317 – volume: 389 start-page: 138 year: 2009 ident: BFnature12306_CR17 publication-title: Anal. Biochem. doi: 10.1016/j.ab.2009.03.031 – volume: 12 start-page: 3269 year: 2010 ident: BFnature12306_CR24 publication-title: Org. Lett. doi: 10.1021/ol101236b – volume: 32 start-page: 1440 year: 2013 ident: BFnature12306_CR16 publication-title: EMBO J. doi: 10.1038/emboj.2013.86 – volume: 478 start-page: 515 year: 2011 ident: BFnature12306_CR9 publication-title: Nature doi: 10.1038/nature10429 – volume: 461 start-page: 788 year: 2009 ident: BFnature12306_CR8 publication-title: Nature doi: 10.1038/nature08476 – volume: 19 start-page: 722 year: 2012 ident: BFnature12306_CR13 publication-title: Nature Struct. Mol. Biol. doi: 10.1038/nsmb.2331 – volume: 149 start-page: 358 year: 2012 ident: BFnature12306_CR18 publication-title: Cell doi: 10.1016/j.cell.2012.01.053 – volume: 29 start-page: 538 year: 2008 ident: BFnature12306_CR5 publication-title: Immunity doi: 10.1016/j.immuni.2008.09.003 – volume: 19 start-page: 728 year: 2012 ident: BFnature12306_CR10 publication-title: Nature Struct. Mol. Biol. doi: 10.1038/nsmb.2333 – volume: 339 start-page: 786 year: 2013 ident: BFnature12306_CR15 publication-title: Science doi: 10.1126/science.1232458 |
SSID | ssj0005174 |
Score | 2.6297238 |
Snippet | Cytosolic DNA induces type I interferon via activation of STING; the immediate STING activator is produced by the recently identified DNA sensor cGAS and is... Detection of cytoplasmic DNA represents one of the most fundamental mechanisms of the innate immune system to sense the presence of microbial pathogens.... Detection of cytoplasmic DNA represents one of the most fundamental mechanisms of the innate immune system to sense the presence of microbial pathogens^sup 1^.... Detection of cytoplasmic DNA represents one of the most fundamental mechanisms of the innate immune system to sense the presence of microbial pathogens 1 .... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 380 |
SubjectTerms | 631/250/256 631/250/262 631/250/516 Adenosine Monophosphate - chemistry Animals Autoimmune diseases Biocatalysis Cell Line Chromatography Crystal structure Cyclic GMP - chemistry Cyclization Deoxyribonucleic acid DNA Enzymes HEK293 Cells Humanities and Social Sciences Humans Immune system letter Magnetic Resonance Spectroscopy Mass spectrometry Membrane Proteins - metabolism Mice Models, Molecular Molecular Structure multidisciplinary Nucleotidyltransferases - genetics Nucleotidyltransferases - metabolism Oligoribonucleotides - biosynthesis Oligoribonucleotides - chemistry Oligoribonucleotides - metabolism Science Second Messenger Systems - physiology |
Title | cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING |
URI | https://link.springer.com/article/10.1038/nature12306 https://www.ncbi.nlm.nih.gov/pubmed/23722158 https://www.proquest.com/docview/1398371963 https://www.proquest.com/docview/1370635660 https://pubmed.ncbi.nlm.nih.gov/PMC4143541 |
Volume | 498 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB-0RfBFbP3aWkuESlUI3cvX5p6klt5VHw6xrdzbks3m6EHdO7tbwf_emd3ctdcTXwJLBnbITJJfMpPfAOyrIlhXas-Ji4srbT0vfBm4LRCLOOHExLdsnyNzeqG-jvU4XrjVMa1ysSa2C3U583RHfohIBc9S5C-f5r84VY2i6GosofEQNom6jFK6snF2m-Jxj4U5vs9LpT3saDN7BMBXd6Q1mLmeLXkvZNruRIOn8CRCSHbU2XwLHoRqGx61qZy-3oatOF1r9j5ySn94Bj_88OiMzVt6V-xxTBxwfcApfBtK5v_4q6lnuI0Ru_GsmZaB1XRSLtlP4hYnLVhz6RpGzyB-EzxlZ-dfRsPncDE4OT8-5bGkAvd47mu4EMFIr22RFgrPEviVZTILDnHDxPRNmWpXpH1pEXQhFNLKCGUREGiDYy9xvssXsFHNqvAKmA4iTHr0mD5o5UzpNMlLibZPje3bBD4uhjX3kW-cyl5c5W3cW9r8jg0S2F8KzzuajX-L7S7sk8e5Vue3npHA22U3zhIKfbgqzG5IJkuJic-kCbzszLn8j5CZQOCDCmcrhl4KEAP3ak81vWyZuBWhTdVL4N3CJe6ota7-zv_Vfw2PRVdsA9euXdhorm_CG4Q8TbHX-jW29rhH7WC4B5ufT0bfvv8FQ1IBow |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQQviI2vjAFG2jSYZC11bMd7QGgCtpaNvqxDfQuO42qVtrSQDLR_ir-Ru3x064p422PkU3zKnX2_y9m_A9iQqTc2U44TFxeXyjieusxzkyIWscKKkavYPvu6eyK_DNVwCf60d2HoWGW7J1YbdTZx9I98B5EK5lLkLx-mPzh1jaLqattCo3aLQ3_5G1O24n3vE9p3U4j9z4OPXd50FeAOU5-SC-F15JRJw1QinManOI5ibzF0jvSuzkJlU0zzDeIORANKaiENxkSlcXrM_cMI33sH7mLgDWlFxcP46kjJDdbn5j5gGJmdmqazQ4B_PgIuwNrF05k3SrRV5Nt_BA8byMr2ah9bgSWfr8K96uioK1ZhpdkeCva24bB-9xi-uYO9Yzat6GRxxDKxxdUWp3Kxz5i7dGdjxzBsEpvypBxnnhWUmWfsnLjMSQtWntqS0bWLXwSH2fGg1z94Aie38rGfwnI-yf1zYMoLP-rQ5X2vpNWZVSQfRehroTa7JoDt9rMmruE3pzYbZ0lVZ49Mcs0GAWzMhKc1rce_xdZb-yTN2i6SK08M4M1sGFcllVps7icXJBOHxPynwwCe1eaczSOiWCDQQoXjOUPPBIjxe34kH59WzN-S0K3sBLDZusQ1tRbVX_u_-q_hfnfw9Sg56vUPX8ADUTf6wH1zHZbLnxf-JcKtMn1V-TiD77e9qP4C45Q2PQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIRAviI2vjAFG2jSYZDW1Y8d7QGhidCtDFdI21LfgOK5WaUsLyUD71_jruMtHt66Itz1GPrWn3J3vd7nzzwAbUeqNzZTjxMXFI2UcT13muUkRi1hhxchVbJ8DfXASfR6q4RL8ac_C0FhluydWG3U2cfSNvINIBWsp8pfOqBmL-LrX-zD9wekGKeq0ttdp1C5y6C9_Y_lWvO_voa03heh9Ov54wJsbBrjDMqjkQngtnTJpmEYIrfEpjmXsLabRkd7RWahsiiW_QQyCyEBFWkQG86PSqIpE95f4u3fgbixVl2IsHsZX4yU3GKCbs4GhNJ2asrNL4H8-Gy5A3MVJzRvt2ioL9h7Bwwa-st3a31ZgyeercK8aI3XFKqw0W0XB3jZ81u8ewze3v3vEphW1LK5YJra42uLUOvYZc5fubOwYplBiVp6U48yzgqr0jJ0TrzlpwcpTWzI6gvGLoDE7Ou4P9p_Aya287KewnE9y_xyY8sKPunSQ36vI6swqkpcS_S7UZscEsN2-1sQ1XOd05cZZUvXcpUmu2SCAjZnwtKb4-LfYemufpInzIrnyygDezJYxQqntYnM_uSCZOCQWQB0G8Kw25-x_hIwFgi5UOJ4z9EyA2L_nV_LxacUCHhHSjboBbLYucU2tRfXX_q_-a7iP4ZR86Q8OX8ADUd_5gVvoOiyXPy_8S0ReZfqqcnEG3287pv4CnB06cw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=cGAS+produces+a+2%E2%80%B2-5%E2%80%B2-linked+cyclic+dinucleotide+second+messenger+that+activates+STING&rft.jtitle=Nature+%28London%29&rft.au=Ablasser%2C+Andrea&rft.au=Goldeck%2C+Marion&rft.au=Cavlar%2C+Taner&rft.au=Deimling%2C+Tobias&rft.date=2013-06-20&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=498&rft.issue=7454&rft.spage=380&rft.epage=384&rft_id=info:doi/10.1038%2Fnature12306&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_nature12306 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |