cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING

Cytosolic DNA induces type I interferon via activation of STING; the immediate STING activator is produced by the recently identified DNA sensor cGAS and is shown here to be an unorthodox cyclic dinucleotide harbouring a 2′-5′ linkage between guanosine and adenosine. DNA sensing by cGAS The mechanis...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 498; no. 7454; pp. 380 - 384
Main Authors Ablasser, Andrea, Goldeck, Marion, Cavlar, Taner, Deimling, Tobias, Witte, Gregor, Röhl, Ingo, Hopfner, Karl-Peter, Ludwig, Janos, Hornung, Veit
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 20.06.2013
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cytosolic DNA induces type I interferon via activation of STING; the immediate STING activator is produced by the recently identified DNA sensor cGAS and is shown here to be an unorthodox cyclic dinucleotide harbouring a 2′-5′ linkage between guanosine and adenosine. DNA sensing by cGAS The mechanism of sensing and signalling of cytosolic DNA by the innate immune system is a topic of intense research interest as it is the means by which invading bacteria and viruses are detected. Cytosolic DNA is known to induce type I interferon through activation of the DNA sensor cyclic-GMP-AMP synthetase (cGAS), which catalyses the synthesis of a cyclic dinucleotide which in turn activates a protein known as STING (stimulator of interferon genes). Karl-Peter Hopfner and co-workers present the crystal structures of a C-terminal fragment of cGAS alone, in complex with UTP, and as a DNA–ATP–GTP complex. In a complementary paper [in this issue], Veit Hornung and coworkers show that the product of cGAS is distinct from previously characterized cyclic dinucleotides. Rather it is an unorthodox cyclic dinucleotide with a 2′–5′ linkage between guanosine and adenosine. This two-step synthesis of cGAMP(2′–5′) could be a focus for the development of specific inhibitors for the treatment of autoimmune diseases that engage the cGAS–STING axis. Detection of cytoplasmic DNA represents one of the most fundamental mechanisms of the innate immune system to sense the presence of microbial pathogens 1 . Moreover, erroneous detection of endogenous DNA by the same sensing mechanisms has an important pathophysiological role in certain sterile inflammatory conditions 2 , 3 . The endoplasmic-reticulum-resident protein STING is critically required for the initiation of type I interferon signalling upon detection of cytosolic DNA of both exogenous and endogenous origin 4 , 5 , 6 , 7 , 8 . Next to its pivotal role in DNA sensing, STING also serves as a direct receptor for the detection of cyclic dinucleotides, which function as second messenger molecules in bacteria 9 , 10 , 11 , 12 , 13 . DNA recognition, however, is triggered in an indirect fashion that depends on a recently characterized cytoplasmic nucleotidyl transferase, termed cGAMP synthase (cGAS), which upon interaction with DNA synthesizes a dinucleotide molecule that in turn binds to and activates STING 14 , 15 . We here show in vivo and in vitro that the cGAS-catalysed reaction product is distinct from previously characterized cyclic dinucleotides. Using a combinatorial approach based on mass spectrometry, enzymatic digestion, NMR analysis and chemical synthesis we demonstrate that cGAS produces a cyclic GMP-AMP dinucleotide, which comprises a 2′-5′ and a 3′-5′ phosphodiester linkage >Gp(2′-5′)Ap(3′-5′)>. We found that the presence of this 2′-5′ linkage was required to exert potent activation of human STING. Moreover, we show that cGAS first catalyses the synthesis of a linear 2′-5′-linked dinucleotide, which is then subject to cGAS-dependent cyclization in a second step through a 3′-5′ phosphodiester linkage. This 13-membered ring structure defines a novel class of second messenger molecules, extending the family of 2′-5′-linked antiviral biomolecules.
AbstractList Detection of cytoplasmic DNA represents one of the most fundamental mechanisms of the innate immune system to sense the presence of microbial pathogens^sup 1^. Moreover, erroneous detection of endogenous DNA by the same sensing mechanisms has an important pathophysiological role in certain sterile inflammatory conditions^sup 2,3^. The endoplasmic-reticulum-resident protein STING is critically required for the initiation of type I interferon signalling upon detection of cytosolic DNA of both exogenous and endogenous origin^sup 4-8^. Next to its pivotal role in DNA sensing, STING also serves as a direct receptor for the detection of cyclic dinucleotides, which function as second messenger molecules in bacteria^sup 9-13^. DNA recognition, however, is triggered in an indirect fashion that depends on a recently characterized cytoplasmic nucleotidyl transferase, termed cGAMP synthase (cGAS), which upon interaction withDNAsynthesizes a dinucleotide molecule that in turn binds to and activates STING^sup 14,15^. We here showin vivo and in vitro that the cGAS-catalysed reaction product is distinct from previously characterized cyclic dinucleotides.Using a combinatorial approach based on mass spectrometry, enzymatic digestion,NMRanalysis and chemical synthesis we demonstrate that cGAS produces a cyclic GMP-AMP dinucleotide, which comprises a 2'-5' and a 3'-5' phosphodiester linkage >Gp(2'-5')Ap(3'-5')>. We found that the presence of this 2'-5' linkage was required to exert potent activation of human STING. Moreover, we show that cGAS first catalyses the synthesis of a linear 2'-5'-linked dinucleotide, which is then subject to cGASdependent cyclization in a second step through a 3'-5' phosphodiester linkage. This 13-membered ring structure defines a novel class of second messengermolecules, extending the family of 2'-5'-linked antiviral biomolecules. [PUBLICATION ABSTRACT]
Detection of cytoplasmic DNA represents one of the most fundamental mechanisms of the innate immune system to sense the presence of microbial pathogens. Moreover, erroneous detection of endogenous DNA by the same sensing mechanisms has an important pathophysiological role in certain sterile inflammatory conditions. The endoplasmic-reticulum-resident protein STING is critically required for the initiation of type I interferon signalling upon detection of cytosolic DNA of both exogenous and endogenous origin. Next to its pivotal role in DNA sensing, STING also serves as a direct receptor for the detection of cyclic dinucleotides, which function as second messenger molecules in bacteria. DNA recognition, however, is triggered in an indirect fashion that depends on a recently characterized cytoplasmic nucleotidyl transferase, termed cGAMP synthase (cGAS), which upon interaction with DNA synthesizes a dinucleotide molecule that in turn binds to and activates STING. We here show in vivo and in vitro that the cGAS-catalysed reaction product is distinct from previously characterized cyclic dinucleotides. Using a combinatorial approach based on mass spectrometry, enzymatic digestion, NMR analysis and chemical synthesis we demonstrate that cGAS produces a cyclic GMP-AMP dinucleotide, which comprises a 2'-5' and a 3'-5' phosphodiester linkage >Gp(2'-5')Ap(3'-5')>. We found that the presence of this 2'-5' linkage was required to exert potent activation of human STING. Moreover, we show that cGAS first catalyses the synthesis of a linear 2'-5'-linked dinucleotide, which is then subject to cGAS-dependent cyclization in a second step through a 3'-5' phosphodiester linkage. This 13-membered ring structure defines a novel class of second messenger molecules, extending the family of 2'-5'-linked antiviral biomolecules.Detection of cytoplasmic DNA represents one of the most fundamental mechanisms of the innate immune system to sense the presence of microbial pathogens. Moreover, erroneous detection of endogenous DNA by the same sensing mechanisms has an important pathophysiological role in certain sterile inflammatory conditions. The endoplasmic-reticulum-resident protein STING is critically required for the initiation of type I interferon signalling upon detection of cytosolic DNA of both exogenous and endogenous origin. Next to its pivotal role in DNA sensing, STING also serves as a direct receptor for the detection of cyclic dinucleotides, which function as second messenger molecules in bacteria. DNA recognition, however, is triggered in an indirect fashion that depends on a recently characterized cytoplasmic nucleotidyl transferase, termed cGAMP synthase (cGAS), which upon interaction with DNA synthesizes a dinucleotide molecule that in turn binds to and activates STING. We here show in vivo and in vitro that the cGAS-catalysed reaction product is distinct from previously characterized cyclic dinucleotides. Using a combinatorial approach based on mass spectrometry, enzymatic digestion, NMR analysis and chemical synthesis we demonstrate that cGAS produces a cyclic GMP-AMP dinucleotide, which comprises a 2'-5' and a 3'-5' phosphodiester linkage >Gp(2'-5')Ap(3'-5')>. We found that the presence of this 2'-5' linkage was required to exert potent activation of human STING. Moreover, we show that cGAS first catalyses the synthesis of a linear 2'-5'-linked dinucleotide, which is then subject to cGAS-dependent cyclization in a second step through a 3'-5' phosphodiester linkage. This 13-membered ring structure defines a novel class of second messenger molecules, extending the family of 2'-5'-linked antiviral biomolecules.
Detection of cytoplasmic DNA represents one of the most fundamental mechanisms of the innate immune system to sense the presence of microbial pathogens 1 . Moreover, erroneous detection of endogenous DNA by the same sensing mechanisms has an important pathophysiological role in certain sterile inflammatory conditions 2 , 3 . The endoplasmic-reticulum-resident protein STING is critically required for the initiation of type I interferon signalling upon detection of cytosolic DNA of both exogenous and endogenous origin 4 , 5 , 6 , 7 , 8 . Next to its pivotal role in DNA sensing, STING also serves as a direct receptor for the detection of cyclic dinucleotides, which function as second messenger molecules in bacteria 9 , 10 , 11 , 12 , 13 . DNA recognition, however, is triggered in an indirect fashion that depends on a recently characterized cytoplasmic nucleotidyl transferase, termed cGAMP synthase (cGAS), which upon interaction with DNA synthesizes a dinucleotide molecule that in turn binds to and activates STING 14 , 15 . We here show in vivo and in vitro that the cGAS-catalysed reaction product is distinct from previously characterized cyclic dinucleotides. Using a combinatorial approach based on mass spectrometry, enzymatic digestion, NMR analysis and chemical synthesis we demonstrate that cGAS produces a cyclic GMP-AMP dinucleotide, which comprises a 2′-5′ and a 3′-5′ phosphodiester linkage >Gp(2′-5′)Ap(3′-5′)>. We found that the presence of this 2′-5′ linkage was required to exert potent activation of human STING. Moreover, we show that cGAS first catalyses the synthesis of a linear 2′-5′-linked dinucleotide, which is then subject to cGAS-dependent cyclization in a second step through a 3′-5′ phosphodiester linkage. This 13-membered ring structure defines a novel class of second messenger molecules, extending the family of 2′-5′-linked antiviral biomolecules.
Detection of cytoplasmic DNA represents one of the most fundamental mechanisms of the innate immune system to sense the presence of microbial pathogens. Moreover, erroneous detection of endogenous DNA by the same sensing mechanisms has an important pathophysiological role in certain sterile inflammatory conditions. The endoplasmic-reticulum-resident protein STING is critically required for the initiation of type I interferon signalling upon detection of cytosolic DNA of both exogenous and endogenous origin. Next to its pivotal role in DNA sensing, STING also serves as a direct receptor for the detection of cyclic dinucleotides, which function as second messenger molecules in bacteria. DNA recognition, however, is triggered in an indirect fashion that depends on a recently characterized cytoplasmic nucleotidyl transferase, termed cGAMP synthase (cGAS), which upon interaction with DNA synthesizes a dinucleotide molecule that in turn binds to and activates STING. We here show in vivo and in vitro that the cGAS-catalysed reaction product is distinct from previously characterized cyclic dinucleotides. Using a combinatorial approach based on mass spectrometry, enzymatic digestion, NMR analysis and chemical synthesis we demonstrate that cGAS produces a cyclic GMP-AMP dinucleotide, which comprises a 2'-5' and a 3'-5' phosphodiester linkage >Gp(2'-5')Ap(3'-5')>. We found that the presence of this 2'-5' linkage was required to exert potent activation of human STING. Moreover, we show that cGAS first catalyses the synthesis of a linear 2'-5'-linked dinucleotide, which is then subject to cGAS-dependent cyclization in a second step through a 3'-5' phosphodiester linkage. This 13-membered ring structure defines a novel class of second messenger molecules, extending the family of 2'-5'-linked antiviral biomolecules.
Cytosolic DNA induces type I interferon via activation of STING; the immediate STING activator is produced by the recently identified DNA sensor cGAS and is shown here to be an unorthodox cyclic dinucleotide harbouring a 2′-5′ linkage between guanosine and adenosine. DNA sensing by cGAS The mechanism of sensing and signalling of cytosolic DNA by the innate immune system is a topic of intense research interest as it is the means by which invading bacteria and viruses are detected. Cytosolic DNA is known to induce type I interferon through activation of the DNA sensor cyclic-GMP-AMP synthetase (cGAS), which catalyses the synthesis of a cyclic dinucleotide which in turn activates a protein known as STING (stimulator of interferon genes). Karl-Peter Hopfner and co-workers present the crystal structures of a C-terminal fragment of cGAS alone, in complex with UTP, and as a DNA–ATP–GTP complex. In a complementary paper [in this issue], Veit Hornung and coworkers show that the product of cGAS is distinct from previously characterized cyclic dinucleotides. Rather it is an unorthodox cyclic dinucleotide with a 2′–5′ linkage between guanosine and adenosine. This two-step synthesis of cGAMP(2′–5′) could be a focus for the development of specific inhibitors for the treatment of autoimmune diseases that engage the cGAS–STING axis. Detection of cytoplasmic DNA represents one of the most fundamental mechanisms of the innate immune system to sense the presence of microbial pathogens 1 . Moreover, erroneous detection of endogenous DNA by the same sensing mechanisms has an important pathophysiological role in certain sterile inflammatory conditions 2 , 3 . The endoplasmic-reticulum-resident protein STING is critically required for the initiation of type I interferon signalling upon detection of cytosolic DNA of both exogenous and endogenous origin 4 , 5 , 6 , 7 , 8 . Next to its pivotal role in DNA sensing, STING also serves as a direct receptor for the detection of cyclic dinucleotides, which function as second messenger molecules in bacteria 9 , 10 , 11 , 12 , 13 . DNA recognition, however, is triggered in an indirect fashion that depends on a recently characterized cytoplasmic nucleotidyl transferase, termed cGAMP synthase (cGAS), which upon interaction with DNA synthesizes a dinucleotide molecule that in turn binds to and activates STING 14 , 15 . We here show in vivo and in vitro that the cGAS-catalysed reaction product is distinct from previously characterized cyclic dinucleotides. Using a combinatorial approach based on mass spectrometry, enzymatic digestion, NMR analysis and chemical synthesis we demonstrate that cGAS produces a cyclic GMP-AMP dinucleotide, which comprises a 2′-5′ and a 3′-5′ phosphodiester linkage >Gp(2′-5′)Ap(3′-5′)>. We found that the presence of this 2′-5′ linkage was required to exert potent activation of human STING. Moreover, we show that cGAS first catalyses the synthesis of a linear 2′-5′-linked dinucleotide, which is then subject to cGAS-dependent cyclization in a second step through a 3′-5′ phosphodiester linkage. This 13-membered ring structure defines a novel class of second messenger molecules, extending the family of 2′-5′-linked antiviral biomolecules.
Author Ablasser, Andrea
Witte, Gregor
Goldeck, Marion
Ludwig, Janos
Röhl, Ingo
Deimling, Tobias
Hopfner, Karl-Peter
Hornung, Veit
Cavlar, Taner
AuthorAffiliation 4 Center for Integrated Protein Sciences, Munich, Germany
2 Department of Biochemistry and Gene Center, Ludwig-Maximilians-University, Munich, Germany
3 Axolabs GmbH, Kulmbach, Germany
1 Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Germany
AuthorAffiliation_xml – name: 4 Center for Integrated Protein Sciences, Munich, Germany
– name: 3 Axolabs GmbH, Kulmbach, Germany
– name: 1 Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Germany
– name: 2 Department of Biochemistry and Gene Center, Ludwig-Maximilians-University, Munich, Germany
Author_xml – sequence: 1
  givenname: Andrea
  surname: Ablasser
  fullname: Ablasser, Andrea
  email: andrea.ablasser@uni-bonn.de
  organization: Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, 53127 Bonn, Germany
– sequence: 2
  givenname: Marion
  surname: Goldeck
  fullname: Goldeck, Marion
  organization: Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, 53127 Bonn, Germany
– sequence: 3
  givenname: Taner
  surname: Cavlar
  fullname: Cavlar, Taner
  organization: Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, 53127 Bonn, Germany
– sequence: 4
  givenname: Tobias
  surname: Deimling
  fullname: Deimling, Tobias
  organization: Department of Biochemistry and Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany
– sequence: 5
  givenname: Gregor
  surname: Witte
  fullname: Witte, Gregor
  organization: Department of Biochemistry and Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany
– sequence: 6
  givenname: Ingo
  surname: Röhl
  fullname: Röhl, Ingo
  organization: Axolabs GmbH, 95326 Kulmbach, Germany
– sequence: 7
  givenname: Karl-Peter
  surname: Hopfner
  fullname: Hopfner, Karl-Peter
  organization: Department of Biochemistry and Gene Center, Ludwig-Maximilians-University, 81377 Munich, Germany, Center for Integrated Protein Sciences, 81377 Munich, Germany
– sequence: 8
  givenname: Janos
  surname: Ludwig
  fullname: Ludwig, Janos
  organization: Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, 53127 Bonn, Germany
– sequence: 9
  givenname: Veit
  surname: Hornung
  fullname: Hornung, Veit
  email: veit.hornung@uni-bonn.de
  organization: Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, 53127 Bonn, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23722158$$D View this record in MEDLINE/PubMed
BookMark eNptkc9qVDEUxoNU7LS6ci8X3Ah69eT_vRuhFB0LRRetGzchk3umTb2TTJPcQnc-k4_kk5hhWhlLNzmE_M53vpzvgOyFGJCQlxTeU-Ddh2DLlJAyDuoJmVGhVStUp_fIDIB1LXRc7ZODnK8AQFItnpF9xjVjVHYz8sPNj86adYrD5DA3tmF_fv1u5eYYffiJQ-Nu3ehdM_gwuRFj8QM2GV0MQ7PCnDFcYGrKpS2NdcXf2FJlzs5Pvs6fk6dLO2Z8cVcPyffPn86Pv7Sn3-Ynx0enrRNClZYxVNzJbgELIWVfb1pzjVZLWKpeDSDtAnregeylAikUEx3ruVQd1xwE8EPycau7nhYrHByGkuxo1smvbLo10Xrz_0vwl-Yi3hhBBZeCVoE3dwIpXk-Yi1n57HAcbcA4ZUO5BlUHqs2s1w_QqzilUL9Xqb46or3ilXq16-iflfu1V4BuAZdizgmXxvlii48bg340FMwmWrMTbe15-6DnXvZx-t2WzpXaRLRj9BH8L9JxtGQ
CODEN NATUAS
CitedBy_id crossref_primary_10_3390_cells9102230
crossref_primary_10_5802_crbiol_110
crossref_primary_10_1371_journal_ppat_1008387
crossref_primary_10_1016_j_canlet_2025_217615
crossref_primary_10_1016_j_ejmech_2022_115053
crossref_primary_10_1126_sciadv_aax3333
crossref_primary_10_3389_fphar_2022_1033982
crossref_primary_10_1038_srep19049
crossref_primary_10_1016_j_celrep_2020_03_056
crossref_primary_10_1093_abbs_gmaa051
crossref_primary_10_1038_cr_2016_125
crossref_primary_10_1128_JVI_01913_17
crossref_primary_10_1128_JVI_02608_14
crossref_primary_10_1128_JVI_00748_16
crossref_primary_10_1002_anie_202305837
crossref_primary_10_1007_s11427_024_2703_6
crossref_primary_10_1038_nchembio_1521
crossref_primary_10_3390_pharmaceutics14071466
crossref_primary_10_1016_j_cytogfr_2016_02_009
crossref_primary_10_1002_adfm_202204589
crossref_primary_10_1002_cjp2_271
crossref_primary_10_1002_anie_202416353
crossref_primary_10_1158_0008_5472_CAN_23_1788
crossref_primary_10_1038_s41467_017_00833_9
crossref_primary_10_3389_fimmu_2020_624597
crossref_primary_10_1002_1878_0261_12573
crossref_primary_10_1002_mog2_49
crossref_primary_10_1016_j_bbadis_2023_166997
crossref_primary_10_1080_21645515_2020_1765621
crossref_primary_10_1080_1040841X_2018_1553848
crossref_primary_10_4103_NRR_NRR_D_24_00015
crossref_primary_10_1016_j_addr_2022_114136
crossref_primary_10_1016_j_jim_2020_112751
crossref_primary_10_1158_2159_8290_CD_23_1073
crossref_primary_10_1159_000492972
crossref_primary_10_1038_ncomms14654
crossref_primary_10_1016_j_stemcr_2020_12_010
crossref_primary_10_3390_cells8080922
crossref_primary_10_1016_j_tips_2014_10_013
crossref_primary_10_1016_j_bbi_2019_07_004
crossref_primary_10_1007_s11901_020_00538_6
crossref_primary_10_3389_fmicb_2016_00313
crossref_primary_10_3390_cells11213483
crossref_primary_10_1158_2159_8290_CD_17_0226
crossref_primary_10_3324_haematol_2020_274480
crossref_primary_10_1242_dmm_049251
crossref_primary_10_2174_1389450124666230831160820
crossref_primary_10_1128_mbio_03395_24
crossref_primary_10_1038_s41576_023_00663_0
crossref_primary_10_1021_acs_jpcb_3c02377
crossref_primary_10_1016_j_psj_2022_102291
crossref_primary_10_1161_CIRCULATIONAHA_123_065547
crossref_primary_10_1007_s40674_023_00211_1
crossref_primary_10_1016_j_intimp_2024_111641
crossref_primary_10_1016_j_molcel_2022_11_006
crossref_primary_10_1007_s11426_019_9662_5
crossref_primary_10_1073_pnas_1503831112
crossref_primary_10_1002_anie_202407641
crossref_primary_10_3390_cells13131157
crossref_primary_10_1016_j_molcel_2022_12_034
crossref_primary_10_1038_s41590_019_0556_1
crossref_primary_10_3389_fimmu_2024_1344272
crossref_primary_10_1002_anie_202207175
crossref_primary_10_1016_j_str_2015_04_011
crossref_primary_10_3389_fimmu_2022_929230
crossref_primary_10_1016_j_dci_2014_07_020
crossref_primary_10_1111_cns_14671
crossref_primary_10_1039_D2QO02033E
crossref_primary_10_1016_j_immuni_2020_01_014
crossref_primary_10_12677_ACM_2022_126739
crossref_primary_10_1146_annurev_virology_111821_115636
crossref_primary_10_3389_fimmu_2017_00312
crossref_primary_10_1016_j_semcancer_2021_04_012
crossref_primary_10_1002_bies_201400019
crossref_primary_10_1038_s41568_018_0084_6
crossref_primary_10_1371_journal_pone_0305962
crossref_primary_10_1021_acsnano_4c00925
crossref_primary_10_4049_jimmunol_1700699
crossref_primary_10_3389_fcell_2021_717610
crossref_primary_10_3390_v13010094
crossref_primary_10_1016_j_coi_2022_01_002
crossref_primary_10_1021_acs_biomac_3c00196
crossref_primary_10_1021_acs_chemrev_1c00716
crossref_primary_10_1007_s40588_016_0043_5
crossref_primary_10_1016_j_virol_2015_02_051
crossref_primary_10_1038_s41586_020_2748_0
crossref_primary_10_1016_j_canlet_2017_05_026
crossref_primary_10_1016_j_coi_2022_01_004
crossref_primary_10_1038_s41551_020_0597_7
crossref_primary_10_1021_acsomega_0c01942
crossref_primary_10_1038_ncomms15534
crossref_primary_10_1111_febs_16298
crossref_primary_10_15212_AMM_2023_0011
crossref_primary_10_1016_j_biopha_2020_110945
crossref_primary_10_1038_scibx_2013_1117
crossref_primary_10_1186_s13578_021_00724_z
crossref_primary_10_1261_rna_044024_113
crossref_primary_10_1016_j_intimp_2024_112556
crossref_primary_10_1039_D2CS00968D
crossref_primary_10_3389_fimmu_2020_00793
crossref_primary_10_3389_fimmu_2020_00554
crossref_primary_10_1002_cbic_202200005
crossref_primary_10_1021_acs_jmedchem_1c00398
crossref_primary_10_1016_j_molcel_2025_01_027
crossref_primary_10_3389_fimmu_2022_874605
crossref_primary_10_3389_fcvm_2022_965726
crossref_primary_10_3390_jcm9103323
crossref_primary_10_1016_j_jmb_2015_02_016
crossref_primary_10_3390_v11080758
crossref_primary_10_1016_j_isci_2019_11_001
crossref_primary_10_1016_j_chom_2014_01_009
crossref_primary_10_3389_fimmu_2020_613039
crossref_primary_10_2147_OTT_S298958
crossref_primary_10_1371_journal_ppat_1006156
crossref_primary_10_3389_fimmu_2021_715723
crossref_primary_10_1042_BST20220838
crossref_primary_10_1126_sciadv_abb4565
crossref_primary_10_1038_s42003_024_07116_2
crossref_primary_10_3389_fimmu_2020_01637
crossref_primary_10_1002_advs_202104126
crossref_primary_10_1016_j_dnarep_2020_102894
crossref_primary_10_3389_fimmu_2023_1170321
crossref_primary_10_1126_science_abd0237
crossref_primary_10_3390_pharmaceutics14122710
crossref_primary_10_4049_jimmunol_1402794
crossref_primary_10_1021_acs_jmedchem_9b01567
crossref_primary_10_3389_fphar_2021_762334
crossref_primary_10_1038_s41564_019_0585_4
crossref_primary_10_1016_j_jare_2022_05_006
crossref_primary_10_1073_pnas_2207240119
crossref_primary_10_1038_s41421_022_00481_4
crossref_primary_10_1038_s41418_022_01041_9
crossref_primary_10_1007_s10753_023_01812_7
crossref_primary_10_3389_fcimb_2014_00140
crossref_primary_10_1186_s40659_022_00390_6
crossref_primary_10_2478_rir_2021_0023
crossref_primary_10_1021_acs_biochem_1c00692
crossref_primary_10_1038_s41586_023_06743_9
crossref_primary_10_3390_cancers12030739
crossref_primary_10_1517_14728222_2015_1067303
crossref_primary_10_18632_oncotarget_27673
crossref_primary_10_1016_j_tcb_2020_01_010
crossref_primary_10_1016_j_chom_2015_08_012
crossref_primary_10_1021_acs_jmedchem_4c02200
crossref_primary_10_2147_OTT_S272563
crossref_primary_10_1016_j_neuroscience_2023_01_015
crossref_primary_10_1111_cmi_12358
crossref_primary_10_3389_fcimb_2022_820273
crossref_primary_10_3389_fimmu_2023_1239142
crossref_primary_10_1016_j_molcel_2013_07_004
crossref_primary_10_1128_IAI_00407_20
crossref_primary_10_1016_j_bcp_2022_114935
crossref_primary_10_1016_j_bcp_2022_114934
crossref_primary_10_1016_j_dnarep_2022_103406
crossref_primary_10_1080_21505594_2021_1982373
crossref_primary_10_1038_s41598_020_72393_w
crossref_primary_10_15252_embr_201744017
crossref_primary_10_1038_s41467_019_10863_0
crossref_primary_10_1016_j_intimp_2024_113212
crossref_primary_10_15252_embr_202153932
crossref_primary_10_1016_j_dnarep_2022_103409
crossref_primary_10_3389_fimmu_2020_01458
crossref_primary_10_1099_jgv_0_000647
crossref_primary_10_1038_nri_2016_78
crossref_primary_10_1016_j_bbadis_2024_167061
crossref_primary_10_1016_j_cej_2024_156729
crossref_primary_10_1016_j_tet_2021_132096
crossref_primary_10_1080_08830185_2020_1811859
crossref_primary_10_1007_s12272_023_01429_2
crossref_primary_10_1093_burnst_tkad050
crossref_primary_10_1038_ni_3558
crossref_primary_10_3390_ijms241713316
crossref_primary_10_1016_j_intimp_2024_113205
crossref_primary_10_1021_acs_chemrev_1c00750
crossref_primary_10_1038_s41556_019_0416_0
crossref_primary_10_1016_j_molcel_2020_10_021
crossref_primary_10_1038_s41594_023_00933_9
crossref_primary_10_3390_biom11040590
crossref_primary_10_1111_bph_16347
crossref_primary_10_1016_j_aac_2024_09_002
crossref_primary_10_1073_pnas_2413018121
crossref_primary_10_1016_j_ijbiomac_2020_01_015
crossref_primary_10_1039_D2SC06860E
crossref_primary_10_1038_cr_2014_123
crossref_primary_10_3389_fphar_2020_00088
crossref_primary_10_1016_j_chom_2015_07_015
crossref_primary_10_1016_j_smim_2018_09_001
crossref_primary_10_1038_s41423_021_00668_x
crossref_primary_10_1136_jitc_2022_005839
crossref_primary_10_1371_journal_ppat_1007435
crossref_primary_10_3389_fimmu_2020_01430
crossref_primary_10_1021_acs_jmedchem_1c00301
crossref_primary_10_3390_cells13171426
crossref_primary_10_1038_s41598_024_64651_y
crossref_primary_10_1016_j_mib_2015_03_001
crossref_primary_10_1016_j_bbamcr_2022_119385
crossref_primary_10_1016_j_tcb_2022_11_001
crossref_primary_10_1093_nar_gky186
crossref_primary_10_1016_j_phrs_2022_106577
crossref_primary_10_1002_eji_202049116
crossref_primary_10_1016_j_bcp_2022_114988
crossref_primary_10_3390_cells9010070
crossref_primary_10_15252_embr_201846293
crossref_primary_10_3390_ijms21228877
crossref_primary_10_1096_fj_202101199R
crossref_primary_10_3390_ijms222413360
crossref_primary_10_1080_08923973_2023_2215405
crossref_primary_10_2147_IJN_S503780
crossref_primary_10_1126_scisignal_aaw4673
crossref_primary_10_1128_mBio_00944_17
crossref_primary_10_1039_D4CY00147H
crossref_primary_10_1038_s41467_018_05559_w
crossref_primary_10_3389_fimmu_2017_01246
crossref_primary_10_1016_j_chom_2016_06_003
crossref_primary_10_1128_JVI_02966_15
crossref_primary_10_1038_s41586_019_1593_5
crossref_primary_10_1016_j_ejmech_2020_113113
crossref_primary_10_1038_s41418_023_01116_1
crossref_primary_10_1093_hmg_ddae187
crossref_primary_10_1038_s41467_022_34775_8
crossref_primary_10_1038_s41586_019_1605_5
crossref_primary_10_1126_science_aaw6421
crossref_primary_10_1016_j_tibs_2022_07_002
crossref_primary_10_1091_mbc_E23_04_0118
crossref_primary_10_3389_fimmu_2021_635738
crossref_primary_10_1016_j_neulet_2017_08_039
crossref_primary_10_4049_jimmunol_1601370
crossref_primary_10_7554_eLife_59753
crossref_primary_10_1021_jacs_9b05642
crossref_primary_10_1002_eji_201545911
crossref_primary_10_15252_embr_202255536
crossref_primary_10_4049_jimmunol_1300798
crossref_primary_10_1038_s41586_023_06373_1
crossref_primary_10_1096_fj_202001607R
crossref_primary_10_1038_ni_3356
crossref_primary_10_1146_annurev_cellbio_020520_120627
crossref_primary_10_1161_CIRCULATIONAHA_119_041460
crossref_primary_10_1002_cpz1_372
crossref_primary_10_3389_fimmu_2021_795401
crossref_primary_10_1016_j_jmb_2018_10_010
crossref_primary_10_3389_fimmu_2019_01519
crossref_primary_10_1097_COH_0000000000000129
crossref_primary_10_1158_1535_7163_MCT_21_0791
crossref_primary_10_1038_nchembio_1318
crossref_primary_10_1080_13543776_2022_2144220
crossref_primary_10_1002_1873_3468_14838
crossref_primary_10_3389_fmicb_2020_00124
crossref_primary_10_1016_j_jep_2024_119251
crossref_primary_10_1021_acs_jpcb_5b11531
crossref_primary_10_1016_j_actbio_2024_01_008
crossref_primary_10_3390_cells10020342
crossref_primary_10_1371_journal_pone_0086096
crossref_primary_10_3389_fmicb_2022_1065945
crossref_primary_10_1128_JVI_00841_18
crossref_primary_10_1016_j_str_2015_03_012
crossref_primary_10_1158_0008_5472_CAN_18_1003
crossref_primary_10_1016_j_it_2016_12_004
crossref_primary_10_3389_fimmu_2021_818267
crossref_primary_10_1093_infdis_jiz116
crossref_primary_10_3389_fonc_2022_851795
crossref_primary_10_1038_s41467_018_04759_8
crossref_primary_10_3390_ijms20030611
crossref_primary_10_3390_ijms241210115
crossref_primary_10_1016_j_fsi_2021_08_016
crossref_primary_10_1038_s43587_022_00337_2
crossref_primary_10_4049_jimmunol_1601145
crossref_primary_10_1016_j_immuni_2017_02_011
crossref_primary_10_1016_j_molcel_2014_03_040
crossref_primary_10_3389_fimmu_2021_781032
crossref_primary_10_1016_j_intimp_2022_109471
crossref_primary_10_1021_acs_jmedchem_2c01305
crossref_primary_10_1053_j_gastro_2018_10_032
crossref_primary_10_1038_ni_2872
crossref_primary_10_1007_s12026_024_09525_1
crossref_primary_10_1126_science_abc5386
crossref_primary_10_15252_embr_202152447
crossref_primary_10_1093_nar_gku569
crossref_primary_10_1002_cmdc_202100068
crossref_primary_10_1016_j_celrep_2014_08_010
crossref_primary_10_3390_cancers10030085
crossref_primary_10_3390_genes11070730
crossref_primary_10_1016_j_celrep_2021_109537
crossref_primary_10_1038_jid_2014_490
crossref_primary_10_1073_pnas_2002481117
crossref_primary_10_1111_febs_15962
crossref_primary_10_1128_JVI_02145_17
crossref_primary_10_1016_j_molcel_2023_09_009
crossref_primary_10_1038_s44319_025_00394_9
crossref_primary_10_1016_j_cmet_2021_12_007
crossref_primary_10_1016_j_jdermsci_2019_11_008
crossref_primary_10_1016_j_cell_2013_09_049
crossref_primary_10_1016_j_celrep_2024_113870
crossref_primary_10_3389_fcell_2022_903781
crossref_primary_10_1016_j_preteyeres_2024_101288
crossref_primary_10_1021_acs_jmedchem_3c02288
crossref_primary_10_1038_s41577_021_00524_z
crossref_primary_10_2174_1568026619666191010155903
crossref_primary_10_1016_j_jhepr_2021_100324
crossref_primary_10_3390_cancers13040612
crossref_primary_10_4049_jimmunol_2300669
crossref_primary_10_14348_molcells_2016_0232
crossref_primary_10_1007_s11427_024_2808_3
crossref_primary_10_1007_s00216_021_03628_6
crossref_primary_10_1073_pnas_1311669110
crossref_primary_10_1016_j_coi_2020_10_013
crossref_primary_10_1098_rsob_210030
crossref_primary_10_1016_j_molcel_2020_12_024
crossref_primary_10_1073_pnas_1905013116
crossref_primary_10_4049_jimmunol_1402705
crossref_primary_10_1021_acs_jpcb_7b12276
crossref_primary_10_1371_journal_ppat_1005546
crossref_primary_10_1111_jfb_12960
crossref_primary_10_1038_s41586_020_2750_6
crossref_primary_10_1038_s43018_022_00468_w
crossref_primary_10_1038_s41598_024_82525_1
crossref_primary_10_1093_jnci_djw199
crossref_primary_10_26508_lsa_202302211
crossref_primary_10_1016_j_molcel_2021_05_002
crossref_primary_10_1126_science_aat8657
crossref_primary_10_1016_j_cell_2013_08_014
crossref_primary_10_1016_j_immuni_2020_05_013
crossref_primary_10_1016_j_prp_2023_154525
crossref_primary_10_1128_MCB_00857_13
crossref_primary_10_1016_j_celrep_2017_08_085
crossref_primary_10_1186_s13014_023_02335_z
crossref_primary_10_3389_fimmu_2022_887054
crossref_primary_10_4049_jimmunol_1400737
crossref_primary_10_1016_j_virol_2024_110317
crossref_primary_10_1002_ctm2_228
crossref_primary_10_1038_nri3921
crossref_primary_10_3389_fimmu_2020_598884
crossref_primary_10_1002_mco2_683
crossref_primary_10_1016_j_ebiom_2016_05_039
crossref_primary_10_1128_JVI_01049_15
crossref_primary_10_1016_j_immuni_2023_10_001
crossref_primary_10_3389_fimmu_2024_1287940
crossref_primary_10_3390_cells12192341
crossref_primary_10_1002_ange_201508678
crossref_primary_10_3390_ijms25042099
crossref_primary_10_1016_j_ejmech_2022_114796
crossref_primary_10_1159_000533602
crossref_primary_10_3389_fimmu_2020_622511
crossref_primary_10_1016_j_ejmech_2022_114791
crossref_primary_10_1038_s41586_021_03743_5
crossref_primary_10_1016_j_celrep_2015_03_004
crossref_primary_10_1016_j_jmb_2013_10_022
crossref_primary_10_1126_science_aab3632
crossref_primary_10_1002_cbic_202000433
crossref_primary_10_1039_D3MH00748K
crossref_primary_10_3389_fimmu_2024_1458884
crossref_primary_10_1016_j_chembiol_2021_08_006
crossref_primary_10_1186_s12943_020_01247_w
crossref_primary_10_1016_j_jep_2023_116427
crossref_primary_10_1016_j_dci_2022_104402
crossref_primary_10_4049_jimmunol_2400123
crossref_primary_10_1016_j_lfs_2021_120263
crossref_primary_10_1186_s12985_023_02187_9
crossref_primary_10_1002_eji_201344127
crossref_primary_10_1021_acsnano_4c02425
crossref_primary_10_1002_adhm_201801243
crossref_primary_10_1093_abbs_gmw078
crossref_primary_10_4049_jimmunol_1502458
crossref_primary_10_31083_j_rcm2504135
crossref_primary_10_1038_s41392_024_01868_3
crossref_primary_10_1073_pnas_2413965122
crossref_primary_10_1016_j_intimp_2024_113091
crossref_primary_10_1126_science_aab3628
crossref_primary_10_1128_JVI_00022_20
crossref_primary_10_3389_fimmu_2024_1338096
crossref_primary_10_1016_j_intimp_2024_111904
crossref_primary_10_7554_eLife_70436
crossref_primary_10_1016_j_molcel_2021_07_040
crossref_primary_10_3390_v13030395
crossref_primary_10_1016_j_cyto_2016_10_003
crossref_primary_10_4049_jimmunol_2100075
crossref_primary_10_1073_pnas_2118819119
crossref_primary_10_1016_j_ceb_2019_12_004
crossref_primary_10_3390_ph16121675
crossref_primary_10_1016_j_drudis_2023_103694
crossref_primary_10_1128_jvi_01574_23
crossref_primary_10_1016_j_bmcl_2024_129820
crossref_primary_10_1016_j_pmatsci_2023_101230
crossref_primary_10_1111_cas_15913
crossref_primary_10_3389_fimmu_2023_1121864
crossref_primary_10_1016_j_sbi_2019_08_003
crossref_primary_10_1158_2326_6066_CIR_17_0263
crossref_primary_10_1186_s13567_024_01338_2
crossref_primary_10_1016_j_molcel_2021_06_004
crossref_primary_10_1016_j_molcel_2021_06_007
crossref_primary_10_1016_j_pestbp_2023_105700
crossref_primary_10_1038_s41467_022_29946_6
crossref_primary_10_1084_jem_20180139
crossref_primary_10_1038_nri3719
crossref_primary_10_3389_fmicb_2017_01854
crossref_primary_10_3389_fphar_2021_711238
crossref_primary_10_1016_j_molcel_2015_07_022
crossref_primary_10_3390_cancers13123058
crossref_primary_10_1038_s41392_024_01979_x
crossref_primary_10_1080_2162402X_2020_1777624
crossref_primary_10_3390_cells11071159
crossref_primary_10_1016_j_celrep_2020_108586
crossref_primary_10_1007_s40005_018_0399_z
crossref_primary_10_1128_mBio_00368_17
crossref_primary_10_1016_j_molcel_2020_12_037
crossref_primary_10_1099_jgv_0_001755
crossref_primary_10_1016_j_copbio_2017_04_004
crossref_primary_10_3389_fimmu_2021_771744
crossref_primary_10_1002_hep_30834
crossref_primary_10_1016_j_cytogfr_2018_03_001
crossref_primary_10_1038_nature12640
crossref_primary_10_1111_mmi_13991
crossref_primary_10_1021_acs_joc_1c00784
crossref_primary_10_1073_pnas_2109022118
crossref_primary_10_1126_scitranslmed_aaa4306
crossref_primary_10_1002_mabi_202100133
crossref_primary_10_1038_s41392_025_02174_2
crossref_primary_10_1126_science_1244040
crossref_primary_10_1016_j_isci_2023_108760
crossref_primary_10_1007_s13238_021_00839_6
crossref_primary_10_1146_annurev_biochem_061516_044813
crossref_primary_10_1161_CIRCRESAHA_122_321587
crossref_primary_10_3389_fphar_2021_779425
crossref_primary_10_1016_j_ijrobp_2023_05_029
crossref_primary_10_1002_advs_202403782
crossref_primary_10_4049_jimmunol_1900293
crossref_primary_10_1016_j_ejmech_2019_111591
crossref_primary_10_1038_s41419_023_05732_0
crossref_primary_10_1016_j_biocel_2023_106477
crossref_primary_10_1016_j_immuni_2020_04_004
crossref_primary_10_1074_jbc_RA119_010734
crossref_primary_10_1038_s41467_021_26738_2
crossref_primary_10_3389_fonc_2021_667920
crossref_primary_10_1158_1078_0432_CCR_19_3529
crossref_primary_10_1016_j_celrep_2023_112278
crossref_primary_10_1038_s41586_019_1553_0
crossref_primary_10_1158_1535_7163_MCT_21_0136
crossref_primary_10_1016_j_ejmech_2021_114087
crossref_primary_10_1002_ajoc_202200597
crossref_primary_10_1016_j_dci_2022_104444
crossref_primary_10_1186_s43556_020_00006_z
crossref_primary_10_3390_ijms20184624
crossref_primary_10_1074_jbc_RA117_000194
crossref_primary_10_1021_acscentsci_1c00440
crossref_primary_10_1172_JCI148274
crossref_primary_10_1021_acs_biochem_0c00257
crossref_primary_10_1038_s41565_023_01447_7
crossref_primary_10_1126_science_1240933
crossref_primary_10_1016_j_celrep_2022_111738
crossref_primary_10_1016_j_gene_2021_145469
crossref_primary_10_1016_j_cell_2024_07_057
crossref_primary_10_1146_annurev_biochem_040320_101629
crossref_primary_10_1002_wsbm_1597
crossref_primary_10_1111_imm_12561
crossref_primary_10_3389_fendo_2020_568305
crossref_primary_10_3390_cells10092258
crossref_primary_10_1128_JVI_00545_17
crossref_primary_10_3389_fcimb_2024_1370414
crossref_primary_10_1146_annurev_immunol_093019_010426
crossref_primary_10_3390_ph15101241
crossref_primary_10_1038_s41423_019_0205_5
crossref_primary_10_1002_adtp_202000083
crossref_primary_10_1002_med_22016
crossref_primary_10_1093_eurheartj_ehab249
crossref_primary_10_1016_j_cyto_2025_156873
crossref_primary_10_3390_ijms22031301
crossref_primary_10_1016_j_phymed_2024_155404
crossref_primary_10_1016_j_chom_2014_09_015
crossref_primary_10_1016_j_celrep_2015_01_039
crossref_primary_10_1111_cas_14197
crossref_primary_10_1111_imcb_12555
crossref_primary_10_1016_j_cell_2013_07_023
crossref_primary_10_1038_s41467_023_38443_3
crossref_primary_10_1016_j_cell_2018_06_053
crossref_primary_10_1016_j_cub_2022_05_027
crossref_primary_10_3389_fimmu_2022_895961
crossref_primary_10_1038_srep38405
crossref_primary_10_1074_jbc_RA119_011400
crossref_primary_10_3389_fcimb_2022_1026293
crossref_primary_10_3390_ijms241813840
crossref_primary_10_1016_j_jbc_2023_105213
crossref_primary_10_3389_fgene_2022_982030
crossref_primary_10_3390_v14030547
crossref_primary_10_1038_s41586_019_1228_x
crossref_primary_10_1158_1541_7786_MCR_17_0743
crossref_primary_10_3389_fcimb_2014_00050
crossref_primary_10_1038_s41423_020_0462_3
crossref_primary_10_1042_BST20200687
crossref_primary_10_1016_j_bmcl_2024_130007
crossref_primary_10_1158_2326_6066_CIR_22_0140
crossref_primary_10_1016_j_molcel_2022_03_034
crossref_primary_10_1146_annurev_immunol_051116_052331
crossref_primary_10_1016_j_immuni_2018_09_016
crossref_primary_10_1016_j_mib_2017_11_007
crossref_primary_10_1371_journal_ppat_1003989
crossref_primary_10_1016_j_virol_2015_02_033
crossref_primary_10_1016_j_virusres_2015_11_024
crossref_primary_10_15252_embr_202153166
crossref_primary_10_1038_nrmicro_2016_45
crossref_primary_10_15252_embj_2019102718
crossref_primary_10_4103_NRR_NRR_D_23_01684
crossref_primary_10_1038_s41586_018_0287_8
crossref_primary_10_3389_fimmu_2024_1428232
crossref_primary_10_1016_j_apsb_2021_05_011
crossref_primary_10_1016_j_celrep_2019_09_050
crossref_primary_10_3389_fcell_2023_1278461
crossref_primary_10_1002_prca_201900109
crossref_primary_10_1016_j_biocel_2022_106300
crossref_primary_10_1080_2162402X_2022_2044103
crossref_primary_10_1152_physrev_00026_2016
crossref_primary_10_1016_j_celrep_2015_02_066
crossref_primary_10_1136_jitc_2022_005026
crossref_primary_10_1016_j_immuni_2020_03_016
crossref_primary_10_1016_j_meegid_2018_02_014
crossref_primary_10_1021_acsinfecdis_0c00444
crossref_primary_10_37349_edd_2024_00057
crossref_primary_10_3389_fonc_2021_703802
crossref_primary_10_4049_jimmunol_1601909
crossref_primary_10_1128_mBio_01553_16
crossref_primary_10_1038_s41423_020_00552_0
crossref_primary_10_1152_physiol_00022_2019
crossref_primary_10_1038_s41577_021_00613_z
crossref_primary_10_1016_j_molcel_2024_06_004
crossref_primary_10_1038_s41467_024_51780_1
crossref_primary_10_1242_jcs_259060
crossref_primary_10_1590_1678_9199_jvatitd_2020_0183
crossref_primary_10_1002_humu_24218
crossref_primary_10_1126_science_aau6019
crossref_primary_10_3390_v16040574
crossref_primary_10_1016_j_jid_2021_04_037
crossref_primary_10_1016_j_celrep_2019_09_065
crossref_primary_10_1038_s41467_023_41892_5
crossref_primary_10_1167_iovs_64_3_19
crossref_primary_10_1038_s41467_018_02936_3
crossref_primary_10_1021_acscentsci_3c01122
crossref_primary_10_1042_BST20221525
crossref_primary_10_1016_j_nantod_2024_102445
crossref_primary_10_1016_j_coviro_2015_01_012
crossref_primary_10_1016_j_critrevonc_2022_103780
crossref_primary_10_1007_s00705_023_05824_4
crossref_primary_10_1016_j_bmcl_2024_129677
crossref_primary_10_1016_j_cell_2018_06_026
crossref_primary_10_1111_cns_14689
crossref_primary_10_1016_j_molimm_2017_12_001
crossref_primary_10_3390_antiox13060679
crossref_primary_10_1093_pnasnexus_pgac109
crossref_primary_10_1016_j_cell_2019_01_049
crossref_primary_10_3389_fmicb_2023_1211793
crossref_primary_10_1021_jacs_7b06141
crossref_primary_10_1097_BOR_0000000000000087
crossref_primary_10_1002_rmv_1931
crossref_primary_10_1002_cssc_202201629
crossref_primary_10_3389_fcell_2019_00073
crossref_primary_10_5802_crbiol_110_fr
crossref_primary_10_1038_s41418_020_00624_8
crossref_primary_10_1016_j_bbamcr_2018_01_011
crossref_primary_10_1021_acsnano_4c15115
crossref_primary_10_1038_s41467_019_08620_4
crossref_primary_10_3389_fcell_2021_748485
crossref_primary_10_1371_journal_pone_0077846
crossref_primary_10_1016_j_dci_2017_12_013
crossref_primary_10_1007_s12274_022_5002_2
crossref_primary_10_1021_acs_jmedchem_2c02046
crossref_primary_10_1016_j_jid_2021_05_007
crossref_primary_10_1038_nature13590
crossref_primary_10_1002_cmdc_202100671
crossref_primary_10_1186_s13045_020_00916_z
crossref_primary_10_1172_JCI73945
crossref_primary_10_1007_s12026_024_09587_1
crossref_primary_10_58502_DTT_23_0018
crossref_primary_10_3389_fimmu_2023_1130172
crossref_primary_10_1093_intimm_dxae052
crossref_primary_10_1128_JVI_01720_15
crossref_primary_10_3389_fendo_2023_1145392
crossref_primary_10_1002_hep_32604
crossref_primary_10_1016_j_cell_2024_07_023
crossref_primary_10_1016_j_toxlet_2022_11_002
crossref_primary_10_1016_j_immuni_2016_04_002
crossref_primary_10_1128_mBio_02492_18
crossref_primary_10_1002_advs_202307541
crossref_primary_10_3390_molecules26030573
crossref_primary_10_1128_mSphere_00658_21
crossref_primary_10_1074_jbc_R115_652289
crossref_primary_10_1016_j_heliyon_2024_e33093
crossref_primary_10_3390_molecules29133121
crossref_primary_10_3390_ijms232113356
crossref_primary_10_1038_s41564_022_01247_0
crossref_primary_10_1016_j_bbadis_2023_166789
crossref_primary_10_1038_s41467_022_33301_0
crossref_primary_10_4049_jimmunol_1401869
crossref_primary_10_1080_1061186X_2022_2070173
crossref_primary_10_1016_j_immuni_2020_02_002
crossref_primary_10_1016_j_jconrel_2017_03_033
crossref_primary_10_1038_s41422_023_00788_1
crossref_primary_10_1073_pnas_1516812113
crossref_primary_10_1146_annurev_med_042320_025136
crossref_primary_10_1002_JLB_2MIR0917_383R
crossref_primary_10_1002_ajoc_201700260
crossref_primary_10_3390_ijms22020477
crossref_primary_10_1016_j_it_2023_10_001
crossref_primary_10_23922_jarc_2020_064
crossref_primary_10_3389_fimmu_2023_1254915
crossref_primary_10_1021_acs_nanolett_1c03996
crossref_primary_10_1038_s41418_020_0519_y
crossref_primary_10_1007_s13238_016_0320_3
crossref_primary_10_1016_j_ymthe_2024_11_008
crossref_primary_10_1016_j_imbio_2019_08_001
crossref_primary_10_3389_fimmu_2023_1164187
crossref_primary_10_1371_journal_pone_0076983
crossref_primary_10_1093_nar_gkac823
crossref_primary_10_1016_j_chembiol_2016_10_014
crossref_primary_10_1128_JVI_00760_21
crossref_primary_10_1074_jbc_M115_649301
crossref_primary_10_1016_j_fsi_2018_10_043
crossref_primary_10_1111_febs_16137
crossref_primary_10_1186_s12943_021_01489_2
crossref_primary_10_3390_ijms21239249
crossref_primary_10_1016_j_immuni_2018_03_017
crossref_primary_10_1016_j_immuni_2018_03_016
crossref_primary_10_3390_genes11040409
crossref_primary_10_1016_j_fct_2023_114427
crossref_primary_10_1016_j_colsurfb_2025_114573
crossref_primary_10_1039_D4BM01532K
crossref_primary_10_3390_ijms232314601
crossref_primary_10_1016_j_mattod_2024_07_004
crossref_primary_10_3389_fnmol_2022_1081288
crossref_primary_10_1016_j_csbj_2022_08_001
crossref_primary_10_1016_j_it_2015_12_003
crossref_primary_10_1038_s41573_019_0043_2
crossref_primary_10_1016_j_radmp_2022_05_002
crossref_primary_10_3389_fimmu_2022_794776
crossref_primary_10_1080_09553002_2018_1434323
crossref_primary_10_1038_ncb3586
crossref_primary_10_3389_fimmu_2017_01541
crossref_primary_10_3389_fonc_2022_1093240
crossref_primary_10_1097_HEP_0000000000000910
crossref_primary_10_3389_fimmu_2024_1510628
crossref_primary_10_1021_jacs_1c12106
crossref_primary_10_1016_j_actbio_2015_10_025
crossref_primary_10_3390_jcm10215124
crossref_primary_10_3390_app14072840
crossref_primary_10_12688_f1000research_125163_1
crossref_primary_10_1007_s10753_023_01946_8
crossref_primary_10_1007_s00281_014_0445_5
crossref_primary_10_1016_j_cytogfr_2014_06_004
crossref_primary_10_3389_fimmu_2020_578038
crossref_primary_10_3762_bjoc_20_192
crossref_primary_10_3389_fimmu_2019_00778
crossref_primary_10_1016_j_cytogfr_2014_06_006
crossref_primary_10_1073_pnas_2313693120
crossref_primary_10_1038_s41565_019_0380_7
crossref_primary_10_1073_pnas_1621363114
crossref_primary_10_3390_ijms23126847
crossref_primary_10_3389_fimmu_2024_1356369
crossref_primary_10_1016_j_coph_2018_05_003
crossref_primary_10_1038_s42003_021_02983_5
crossref_primary_10_4049_jimmunol_2100685
crossref_primary_10_3389_fimmu_2020_00615
crossref_primary_10_1146_annurev_cancerbio_030518_055552
crossref_primary_10_1073_pnas_1516465112
crossref_primary_10_1371_journal_ppat_1011641
crossref_primary_10_1073_pnas_2305420120
crossref_primary_10_1021_acs_accounts_7b00056
crossref_primary_10_1016_j_ccell_2020_05_020
crossref_primary_10_1021_acs_molpharmaceut_3c00840
crossref_primary_10_1038_s41467_018_06922_7
crossref_primary_10_1080_19490976_2021_1959839
crossref_primary_10_1002_eji_202048777
crossref_primary_10_1016_j_chembiol_2024_04_004
crossref_primary_10_4049_jimmunol_1002795
crossref_primary_10_1038_s41467_017_00573_w
crossref_primary_10_1016_j_jmb_2013_12_003
crossref_primary_10_3389_fimmu_2020_568412
crossref_primary_10_1002_iub_1566
crossref_primary_10_1016_j_celrep_2021_109178
crossref_primary_10_1016_j_isci_2024_110693
crossref_primary_10_3390_biom14030350
crossref_primary_10_1136_jitc_2020_001372
crossref_primary_10_1016_j_intimp_2024_112446
crossref_primary_10_1158_0008_5472_CAN_18_1972
crossref_primary_10_36401_JIPO_22_15
crossref_primary_10_1016_j_jep_2024_118660
crossref_primary_10_1016_j_exphem_2015_11_008
crossref_primary_10_1038_srep18035
crossref_primary_10_1038_nchembio_1606
crossref_primary_10_1038_nrmicro_2016_190
crossref_primary_10_1038_s41590_024_01966_y
crossref_primary_10_1093_jmcb_mjac005
crossref_primary_10_1016_j_bbcan_2024_189183
crossref_primary_10_4049_jimmunol_2100627
crossref_primary_10_1038_s41586_020_2749_z
crossref_primary_10_1002_1873_3468_12598
crossref_primary_10_1038_s41419_023_06247_4
crossref_primary_10_1073_pnas_2214956120
crossref_primary_10_1007_s00262_020_02846_8
crossref_primary_10_1073_pnas_1806239115
crossref_primary_10_1038_s41467_023_35898_2
crossref_primary_10_1016_j_it_2013_10_010
crossref_primary_10_1007_s00005_017_0481_7
crossref_primary_10_3390_ijms22179535
crossref_primary_10_1007_s10147_020_01666_1
crossref_primary_10_1371_journal_pgen_1005203
crossref_primary_10_3390_cells12141862
crossref_primary_10_1073_pnas_1419328112
crossref_primary_10_3389_fimmu_2022_973089
crossref_primary_10_1038_s41420_024_02208_8
crossref_primary_10_1101_gad_348314_121
crossref_primary_10_12677_hjbm_2024_143056
crossref_primary_10_1016_j_bmcl_2019_126640
crossref_primary_10_1016_j_cytogfr_2014_05_003
crossref_primary_10_1038_s41586_022_04559_7
crossref_primary_10_3390_jpm14070736
crossref_primary_10_1038_s41401_022_01002_5
crossref_primary_10_1016_j_tim_2017_05_008
crossref_primary_10_1128_JVI_00784_19
crossref_primary_10_4049_jimmunol_1701405
crossref_primary_10_1016_j_molcel_2023_12_005
crossref_primary_10_1042_BSR20240269
crossref_primary_10_1073_pnas_1911870117
crossref_primary_10_1016_j_cej_2024_157037
crossref_primary_10_1093_femspd_ftw028
crossref_primary_10_1099_jgv_0_002057
crossref_primary_10_1136_ijgc_2022_003704
crossref_primary_10_3389_fimmu_2024_1462496
crossref_primary_10_1038_s12276_021_00691_y
crossref_primary_10_1073_pnas_2014940117
crossref_primary_10_1016_j_imbio_2018_10_005
crossref_primary_10_1038_s41598_017_05884_y
crossref_primary_10_1016_j_jaut_2018_02_007
crossref_primary_10_1016_j_celrep_2017_11_101
crossref_primary_10_1186_s12974_025_03391_w
crossref_primary_10_1016_j_coviro_2016_11_012
crossref_primary_10_1016_j_biopha_2022_113680
crossref_primary_10_1371_journal_pbio_3002436
crossref_primary_10_1126_science_adu2262
crossref_primary_10_1038_s41392_020_0198_7
crossref_primary_10_1016_j_coviro_2024_101411
crossref_primary_10_1038_s41392_024_02070_1
crossref_primary_10_3390_ijms22147503
crossref_primary_10_1016_j_cell_2014_07_028
crossref_primary_10_1136_annrheumdis_2018_212988
crossref_primary_10_1016_j_chom_2016_09_003
crossref_primary_10_1016_j_celrep_2023_112306
crossref_primary_10_3390_ijms25031828
crossref_primary_10_1016_j_celrep_2023_112309
crossref_primary_10_1038_s41467_018_05861_7
crossref_primary_10_1016_j_coviro_2015_07_002
crossref_primary_10_1371_journal_ppat_1008429
crossref_primary_10_1021_acs_jmedchem_9b01062
crossref_primary_10_1360_SSV_2024_0146
crossref_primary_10_1016_j_jconrel_2014_04_004
crossref_primary_10_17650_1726_9776_2021_17_3_85_94
crossref_primary_10_3389_fimmu_2022_808607
crossref_primary_10_1111_imr_13318
crossref_primary_10_1002_nadc_201490086
crossref_primary_10_1038_nchembio_2337
crossref_primary_10_1038_s12276_019_0333_0
crossref_primary_10_1074_jbc_M117_804005
crossref_primary_10_1002_jmv_28220
crossref_primary_10_1158_0008_5472_CAN_15_1885
crossref_primary_10_1038_s41422_020_00422_4
crossref_primary_10_1186_s12951_025_03186_4
crossref_primary_10_1074_jbc_RA119_012170
crossref_primary_10_1038_ni_3433
crossref_primary_10_1016_j_immuni_2013_11_012
crossref_primary_10_1016_j_cbpa_2022_102170
crossref_primary_10_1016_j_isci_2024_109814
crossref_primary_10_1172_JCI86892
crossref_primary_10_3390_cancers12061502
crossref_primary_10_3389_fmicb_2021_771292
crossref_primary_10_1111_joim_12782
crossref_primary_10_1159_000519573
crossref_primary_10_3390_ijms21217842
crossref_primary_10_1128_jvi_01476_22
crossref_primary_10_1016_j_immuni_2020_06_014
crossref_primary_10_3389_fimmu_2017_01389
crossref_primary_10_1146_annurev_immunol_070119_115052
crossref_primary_10_1071_CH16021
crossref_primary_10_1371_journal_ppat_1010725
crossref_primary_10_1002_ange_202416353
crossref_primary_10_1016_j_critrevonc_2020_103204
crossref_primary_10_1021_acs_biochem_0c00949
crossref_primary_10_1016_j_dmpk_2021_100432
crossref_primary_10_1002_cbic_201900051
crossref_primary_10_1093_hmg_ddae089
crossref_primary_10_14336_AD_2021_0304
crossref_primary_10_1002_adtp_202300255
crossref_primary_10_1002_ange_202407641
crossref_primary_10_1038_s41467_024_50999_2
crossref_primary_10_1002_ijch_202200084
crossref_primary_10_1038_s41556_018_0249_2
crossref_primary_10_1172_JCI79915
crossref_primary_10_1038_s12276_019_0299_y
crossref_primary_10_15252_embj_201488029
crossref_primary_10_1073_pnas_1512832112
crossref_primary_10_3389_fimmu_2023_1130423
crossref_primary_10_1073_pnas_1718426115
crossref_primary_10_1038_ncomms14391
crossref_primary_10_1038_s41388_021_02037_4
crossref_primary_10_1016_j_it_2021_12_005
crossref_primary_10_3390_biomedicines13030571
crossref_primary_10_1038_ncomms14392
crossref_primary_10_1002_bkcs_12646
crossref_primary_10_1038_s41564_023_01546_0
crossref_primary_10_3389_fcell_2022_816517
crossref_primary_10_1021_acs_jmedchem_1c01986
crossref_primary_10_1016_j_chembiol_2023_07_002
crossref_primary_10_21769_BioProtoc_3055
crossref_primary_10_1016_j_metabol_2017_09_010
crossref_primary_10_1038_s41586_024_07112_w
crossref_primary_10_1098_rsos_202333
crossref_primary_10_1016_j_semcancer_2019_08_018
crossref_primary_10_3389_fimmu_2022_954129
crossref_primary_10_1002_anie_201508678
crossref_primary_10_3389_fmicb_2018_01621
crossref_primary_10_1002_jmv_28253
crossref_primary_10_1111_febs_17278
crossref_primary_10_1016_j_virol_2019_11_012
crossref_primary_10_1002_chem_201805409
crossref_primary_10_1016_j_bioorg_2020_103958
crossref_primary_10_1038_s41467_020_17228_y
crossref_primary_10_1073_pnas_2015919117
crossref_primary_10_1371_journal_pone_0115354
crossref_primary_10_15252_msb_20145808
crossref_primary_10_1016_j_it_2017_07_013
crossref_primary_10_3390_biom10101437
crossref_primary_10_1146_annurev_micro_102215_095605
crossref_primary_10_1021_acs_jcim_0c00171
crossref_primary_10_1038_s41423_018_0035_x
crossref_primary_10_1038_s41467_023_41381_9
crossref_primary_10_1126_scitranslmed_aaz6606
crossref_primary_10_1002_ange_202207175
crossref_primary_10_1038_s42003_020_01436_9
crossref_primary_10_1096_fj_201902833R
crossref_primary_10_1128_JVI_00025_17
crossref_primary_10_1097_COH_0000000000000233
crossref_primary_10_3389_fcimb_2021_647992
crossref_primary_10_1186_s12977_024_00643_0
crossref_primary_10_1016_j_celrep_2015_04_031
crossref_primary_10_1089_jir_2019_0037
crossref_primary_10_1080_19490976_2019_1707015
crossref_primary_10_3390_ijms24044068
crossref_primary_10_1002_adtp_202300088
crossref_primary_10_1016_j_molcel_2021_05_018
crossref_primary_10_1038_s41392_022_01252_z
crossref_primary_10_4049_jimmunol_1402066
crossref_primary_10_1007_s11684_023_1026_6
crossref_primary_10_1038_s41467_024_48423_w
crossref_primary_10_3389_fphar_2024_1369563
crossref_primary_10_1093_gbe_evv046
crossref_primary_10_3390_foods11111622
crossref_primary_10_1016_j_aqrep_2024_102238
crossref_primary_10_1038_s41580_020_0244_x
crossref_primary_10_1177_1179670716685085
crossref_primary_10_1002_ange_202305837
crossref_primary_10_1186_s40104_023_00878_5
crossref_primary_10_3389_fimmu_2017_00259
crossref_primary_10_1016_j_immuni_2013_10_019
crossref_primary_10_1016_j_ijbiomac_2025_140050
crossref_primary_10_1038_s41392_022_01287_2
crossref_primary_10_1186_s13024_023_00672_x
crossref_primary_10_1016_j_celrep_2023_112328
crossref_primary_10_1038_s41586_024_07992_y
crossref_primary_10_1038_nchembio_1661
crossref_primary_10_1038_ni_3267
crossref_primary_10_3389_fmed_2022_939594
crossref_primary_10_1016_j_celrep_2020_107771
crossref_primary_10_1016_j_chom_2015_05_003
crossref_primary_10_3389_fcell_2021_828657
crossref_primary_10_3389_fimmu_2018_01327
crossref_primary_10_1016_j_tibs_2021_05_011
crossref_primary_10_1136_jitc_2021_002569
crossref_primary_10_4049_jimmunol_1500530
crossref_primary_10_1093_femspd_fty048
crossref_primary_10_1186_s13046_022_02262_z
crossref_primary_10_1016_j_it_2023_08_009
crossref_primary_10_1128_mbio_03632_21
crossref_primary_10_1038_nrmicro3069
crossref_primary_10_1038_s41577_024_01112_7
crossref_primary_10_1111_cmi_13175
crossref_primary_10_3389_fcell_2022_800393
crossref_primary_10_1021_acs_orglett_3c03908
crossref_primary_10_1016_j_micinf_2014_09_010
crossref_primary_10_1128_JVI_02702_13
crossref_primary_10_1007_s00535_021_01803_1
crossref_primary_10_1002_cbdv_202401253
crossref_primary_10_1021_acsptsci_4c00310
crossref_primary_10_1074_jbc_RA120_014323
crossref_primary_10_1016_j_neuroscience_2021_11_031
crossref_primary_10_3389_fimmu_2024_1447719
crossref_primary_10_1111_all_13788
crossref_primary_10_1002_hep4_1179
crossref_primary_10_1021_acs_jmedchem_9b01039
crossref_primary_10_1038_cmi_2017_44
crossref_primary_10_1186_s13045_019_0721_x
crossref_primary_10_1111_cas_14570
crossref_primary_10_1016_j_cell_2020_05_019
crossref_primary_10_1016_j_molimm_2024_10_002
crossref_primary_10_1371_journal_ppat_1005324
crossref_primary_10_1016_j_intimp_2022_108637
crossref_primary_10_1016_j_micinf_2016_03_008
crossref_primary_10_1038_nmeth_3590
crossref_primary_10_1021_acsnano_4c10673
crossref_primary_10_1038_s41388_024_03248_1
crossref_primary_10_18632_oncotarget_19531
crossref_primary_10_1016_j_tim_2022_06_005
crossref_primary_10_3390_cells11121958
crossref_primary_10_1002_eji_202350386
crossref_primary_10_1002_jmv_70038
crossref_primary_10_3389_fimmu_2021_660184
crossref_primary_10_1038_s41586_019_0928_6
crossref_primary_10_1002_cbic_202400321
crossref_primary_10_1038_s41388_022_02195_z
crossref_primary_10_1016_j_ccell_2018_03_027
crossref_primary_10_1093_cvr_cvae117
crossref_primary_10_4049_jimmunol_1800656
crossref_primary_10_1186_s13567_025_01474_3
crossref_primary_10_3390_ijms18020404
crossref_primary_10_1007_s00109_016_1423_2
crossref_primary_10_1016_j_ijpharm_2022_122161
crossref_primary_10_3389_fimmu_2021_637399
crossref_primary_10_1111_imr_13272
crossref_primary_10_1016_j_bbrc_2020_03_034
crossref_primary_10_1016_j_coviro_2022_101206
crossref_primary_10_1016_j_febslet_2014_11_022
crossref_primary_10_1001_jamasurg_2018_1804
crossref_primary_10_1016_j_celrep_2020_108053
crossref_primary_10_1146_annurev_immunol_032414_112258
crossref_primary_10_1016_j_celrep_2020_108297
crossref_primary_10_1016_j_chembiol_2020_07_007
crossref_primary_10_1093_nar_gkw878
crossref_primary_10_2222_jsv_64_83
crossref_primary_10_3390_biom13111568
crossref_primary_10_3389_fimmu_2024_1352479
crossref_primary_10_3390_pathogens12030437
crossref_primary_10_1097_PPO_0000000000000620
crossref_primary_10_1038_cmi_2016_51
crossref_primary_10_1096_fj_202301987RR
crossref_primary_10_1172_JCI130445
crossref_primary_10_1016_j_bbrc_2022_07_028
crossref_primary_10_1186_s12964_024_01755_y
crossref_primary_10_1002_eji_201747338
crossref_primary_10_1016_j_cell_2019_05_035
crossref_primary_10_1016_j_immuni_2024_12_002
crossref_primary_10_1016_j_cell_2019_05_036
crossref_primary_10_1016_j_it_2015_01_004
crossref_primary_10_15252_embr_202357496
crossref_primary_10_1016_j_cell_2024_01_008
crossref_primary_10_3389_fgene_2023_1121018
crossref_primary_10_1158_2767_9764_CRC_23_0507
crossref_primary_10_3390_v14071361
crossref_primary_10_1016_j_celrep_2014_01_003
crossref_primary_10_3390_v12090979
crossref_primary_10_1016_j_ceca_2020_102308
crossref_primary_10_1016_j_micinf_2014_08_008
crossref_primary_10_2139_ssrn_3366988
crossref_primary_10_3389_fimmu_2023_1166214
crossref_primary_10_1007_s10753_024_02132_0
crossref_primary_10_1128_JVI_01083_16
crossref_primary_10_3390_v16040601
crossref_primary_10_1007_s15010_024_02429_0
crossref_primary_10_1073_pnas_1603269113
crossref_primary_10_1016_j_bbadis_2024_167443
crossref_primary_10_1038_srep27498
crossref_primary_10_3389_fimmu_2023_1231057
crossref_primary_10_1080_25785826_2024_2372918
crossref_primary_10_1111_all_16173
crossref_primary_10_1016_j_vetmic_2018_10_027
crossref_primary_10_1161_HYPERTENSIONAHA_122_20004
crossref_primary_10_1016_j_semnephrol_2016_03_004
crossref_primary_10_3389_fimmu_2021_814709
crossref_primary_10_1016_j_fmre_2021_08_015
crossref_primary_10_1371_journal_pone_0095728
crossref_primary_10_1080_1744666X_2023_2248391
crossref_primary_10_1186_s12943_024_02217_2
crossref_primary_10_3389_fmolb_2020_00205
crossref_primary_10_1093_nar_gkaa084
crossref_primary_10_1073_pnas_1507317112
crossref_primary_10_1126_scisignal_abc4537
crossref_primary_10_1038_s41392_022_01076_x
crossref_primary_10_1016_j_cellimm_2021_104384
crossref_primary_10_1007_s12250_015_3604_5
crossref_primary_10_1186_s40364_024_00606_9
crossref_primary_10_1126_sciimmunol_adj3945
crossref_primary_10_1016_j_chom_2016_01_010
crossref_primary_10_1038_s44318_025_00370_y
crossref_primary_10_12677_AMS_2017_42009
crossref_primary_10_1073_pnas_2105465118
crossref_primary_10_1038_nature12305
crossref_primary_10_1096_fj_201601093R
crossref_primary_10_1111_febs_15640
crossref_primary_10_1152_physiol_00031_2022
crossref_primary_10_1016_j_pharmthera_2024_108653
crossref_primary_10_1016_j_molcel_2019_09_023
crossref_primary_10_1016_j_actbio_2024_08_045
crossref_primary_10_1158_2326_6066_CIR_23_1093
crossref_primary_10_1074_jbc_M116_771964
crossref_primary_10_3390_ijms25021019
crossref_primary_10_3389_fimmu_2024_1343325
crossref_primary_10_1038_s41419_020_2546_5
crossref_primary_10_1146_annurev_immunol_032713_120156
crossref_primary_10_1038_d41586_022_01127_x
crossref_primary_10_1098_rsob_200148
crossref_primary_10_1165_rcmb_2023_0308OC
crossref_primary_10_1016_j_jep_2025_119364
crossref_primary_10_1016_j_biochi_2013_10_015
crossref_primary_10_1007_s00109_022_02253_9
crossref_primary_10_1038_s41575_019_0126_x
crossref_primary_10_1038_s41467_024_48988_6
crossref_primary_10_1093_braincomms_fcac133
crossref_primary_10_1016_j_intimp_2022_109304
crossref_primary_10_1038_s41577_022_00705_4
crossref_primary_10_1371_journal_pone_0207358
crossref_primary_10_1155_2022_5095176
crossref_primary_10_1126_science_aau0810
crossref_primary_10_3389_fimmu_2023_1092824
crossref_primary_10_3389_fphar_2024_1409683
crossref_primary_10_3390_cells10123300
crossref_primary_10_1128_jvi_01815_23
crossref_primary_10_1007_s10495_020_01614_4
crossref_primary_10_1038_s44319_024_00354_9
crossref_primary_10_1002_med_21649
crossref_primary_10_3389_fimmu_2023_1224341
crossref_primary_10_3390_ijms222312761
crossref_primary_10_3389_fimmu_2021_695056
crossref_primary_10_1016_j_jaci_2020_06_032
crossref_primary_10_3389_fimmu_2021_655637
crossref_primary_10_1016_j_molmed_2019_06_004
crossref_primary_10_1080_15384101_2022_2109899
crossref_primary_10_1016_j_cytogfr_2022_09_003
crossref_primary_10_1126_scisignal_aae0435
crossref_primary_10_1016_j_molimm_2018_01_008
crossref_primary_10_1016_j_str_2015_01_023
crossref_primary_10_1016_j_jbc_2023_104866
crossref_primary_10_1039_D3CB00096F
crossref_primary_10_1084_jem_20220759
crossref_primary_10_1016_j_it_2015_02_004
crossref_primary_10_1016_j_hlife_2024_11_005
crossref_primary_10_1016_j_celrep_2024_114209
crossref_primary_10_1016_j_dci_2022_104567
crossref_primary_10_1042_EBC20220241
crossref_primary_10_1021_acs_joc_4c01055
crossref_primary_10_1007_s00430_019_00582_0
crossref_primary_10_1016_j_ejmech_2022_114482
crossref_primary_10_1038_s44319_025_00423_7
crossref_primary_10_1158_2326_6066_CIR_21_0754
crossref_primary_10_1002_adbi_202400174
crossref_primary_10_1038_s41586_022_05354_0
crossref_primary_10_2147_JIR_S465978
crossref_primary_10_1016_j_biomaterials_2025_123260
crossref_primary_10_1371_journal_ppat_1003649
crossref_primary_10_3390_biom13091332
crossref_primary_10_15252_embr_202051345
crossref_primary_10_1038_s41586_022_04422_9
crossref_primary_10_1126_sciimmunol_aaz2738
crossref_primary_10_32604_or_2022_03529
crossref_primary_10_1128_jvi_01567_24
crossref_primary_10_1084_jem_20161387
crossref_primary_10_15252_embj_201488726
crossref_primary_10_3389_fcimb_2024_1393432
crossref_primary_10_3389_fimmu_2020_575818
crossref_primary_10_1038_nnano_2015_180
crossref_primary_10_1016_j_cytogfr_2014_07_004
crossref_primary_10_1016_j_celrep_2019_04_110
crossref_primary_10_1016_j_molimm_2017_07_013
crossref_primary_10_1016_j_prp_2024_155405
crossref_primary_10_1177_2051013613501988
crossref_primary_10_1371_journal_pone_0110150
crossref_primary_10_1016_j_molcel_2022_10_026
crossref_primary_10_1093_nar_gkv389
crossref_primary_10_1158_2159_8290_CD_19_0761
crossref_primary_10_1016_j_molcel_2014_08_001
crossref_primary_10_3390_cells8101228
crossref_primary_10_3390_vetsci6010005
crossref_primary_10_1016_j_it_2019_06_001
crossref_primary_10_3389_fimmu_2020_613079
crossref_primary_10_1098_rstb_2016_0267
crossref_primary_10_3389_fendo_2024_1393111
crossref_primary_10_4049_jimmunol_1401337
crossref_primary_10_1016_j_celrep_2022_111868
crossref_primary_10_1007_s10549_022_06780_4
crossref_primary_10_1038_s41581_021_00394_7
crossref_primary_10_1002_wrna_1690
crossref_primary_10_1074_mcp_RA120_001981
crossref_primary_10_1128_JVI_00041_16
crossref_primary_10_36233_0507_4088_275
crossref_primary_10_1186_s12931_024_02915_x
crossref_primary_10_1039_C9MD00076C
crossref_primary_10_1161_ATVBAHA_117_309017
crossref_primary_10_1016_j_lfs_2022_121336
crossref_primary_10_1038_s41586_022_05452_z
crossref_primary_10_1016_j_molcel_2021_01_024
crossref_primary_10_1038_s41467_024_48365_3
crossref_primary_10_1038_s41565_018_0342_5
crossref_primary_10_1016_j_molimm_2021_05_012
crossref_primary_10_1039_D1MD00114K
crossref_primary_10_3389_fphar_2024_1383000
crossref_primary_10_1128_jvi_01022_22
crossref_primary_10_1128_JVI_02298_18
crossref_primary_10_3389_fmed_2021_692436
crossref_primary_10_15252_embj_2021108293
crossref_primary_10_3389_fimmu_2022_901913
crossref_primary_10_1038_s41556_022_00950_8
crossref_primary_10_1177_0022034518760855
crossref_primary_10_1186_s12885_024_13379_z
crossref_primary_10_1128_JVI_01763_14
crossref_primary_10_1016_j_antiviral_2024_105989
crossref_primary_10_1016_j_coi_2020_04_002
crossref_primary_10_1073_pnas_1515287113
crossref_primary_10_1016_j_dci_2017_07_001
crossref_primary_10_1016_j_bioactmat_2021_08_003
crossref_primary_10_3390_biomedicines10061416
crossref_primary_10_1016_j_celrep_2023_113040
crossref_primary_10_1016_j_cell_2023_05_038
crossref_primary_10_1038_s41586_021_03800_z
crossref_primary_10_1002_eji_202048810
crossref_primary_10_1038_s41421_018_0010_9
crossref_primary_10_1016_j_celrep_2024_114678
crossref_primary_10_1002_wcms_1397
crossref_primary_10_1016_j_mib_2023_102295
crossref_primary_10_4049_jimmunol_1700294
crossref_primary_10_1186_s12985_024_02359_1
crossref_primary_10_1039_C6CC03439J
crossref_primary_10_1667_RR14941_1
crossref_primary_10_1098_rstb_2015_0503
crossref_primary_10_1073_pnas_2119189119
crossref_primary_10_1172_jci_insight_167270
crossref_primary_10_1016_j_molimm_2015_02_002
crossref_primary_10_1172_JCI78280
crossref_primary_10_3390_ijms21145150
crossref_primary_10_1016_j_it_2014_07_006
crossref_primary_10_1021_ol403154w
crossref_primary_10_1038_nature23449
crossref_primary_10_1039_D4BM00665H
crossref_primary_10_1007_s10157_023_02448_5
crossref_primary_10_1124_pr_114_009928
crossref_primary_10_3389_fonc_2019_00156
crossref_primary_10_3390_ijms25074120
crossref_primary_10_1016_j_mad_2016_06_004
crossref_primary_10_1021_acs_jmedchem_6b01300
crossref_primary_10_1007_s00018_017_2477_1
crossref_primary_10_1002_dvdy_560
crossref_primary_10_1038_s41598_020_64348_y
crossref_primary_10_1038_s41590_017_0026_6
crossref_primary_10_15430_JCP_2023_28_4_143
crossref_primary_10_1074_jbc_M116_763268
crossref_primary_10_7555_JBR_37_20230224
crossref_primary_10_1016_j_cytogfr_2014_08_006
crossref_primary_10_3389_fmicb_2021_779012
crossref_primary_10_1002_pmic_201700403
crossref_primary_10_3390_v14040666
crossref_primary_10_1016_j_celrep_2021_109205
crossref_primary_10_1016_j_molcel_2023_03_029
crossref_primary_10_1007_s12275_020_9577_6
crossref_primary_10_1002_adma_202008094
crossref_primary_10_1002_advs_202306336
crossref_primary_10_1038_s42003_019_0701_2
crossref_primary_10_1073_pnas_1319118110
crossref_primary_10_1128_MMBR_00061_14
crossref_primary_10_3390_cells11010074
crossref_primary_10_1016_j_jconrel_2021_09_033
crossref_primary_10_1016_j_celrep_2015_09_007
crossref_primary_10_1371_journal_ppat_1004930
crossref_primary_10_1016_j_trsl_2018_07_014
crossref_primary_10_3389_fcell_2021_645593
crossref_primary_10_1016_j_semcdb_2020_06_009
crossref_primary_10_1002_dvdy_312
crossref_primary_10_3389_fcvm_2022_949538
crossref_primary_10_1016_j_dci_2021_104266
crossref_primary_10_3892_ijmm_2014_2039
crossref_primary_10_1016_j_micinf_2020_05_004
crossref_primary_10_1016_j_actbio_2024_06_025
crossref_primary_10_1021_acs_molpharmaceut_2c00520
crossref_primary_10_3390_v13071390
crossref_primary_10_1016_j_celrep_2018_05_029
crossref_primary_10_1158_2767_9764_CRC_22_0302
crossref_primary_10_1016_j_omto_2019_02_002
crossref_primary_10_1038_s41467_023_36132_9
crossref_primary_10_1038_s41576_019_0151_1
crossref_primary_10_1038_s41430_022_01173_8
crossref_primary_10_1186_s41232_023_00259_5
crossref_primary_10_1371_journal_ppat_1009372
crossref_primary_10_3390_cells12212555
crossref_primary_10_1089_aid_2013_0199
crossref_primary_10_1038_cr_2015_40
crossref_primary_10_1016_j_imbio_2013_07_007
crossref_primary_10_1016_j_it_2023_04_006
crossref_primary_10_1002_eji_201546113
crossref_primary_10_1158_0008_5472_CAN_20_2370
crossref_primary_10_1080_17435390_2022_2147460
crossref_primary_10_7554_eLife_06670
crossref_primary_10_1038_s41467_020_17156_x
crossref_primary_10_1089_hum_2014_001
crossref_primary_10_1016_j_it_2017_03_004
crossref_primary_10_15252_embr_201846935
crossref_primary_10_1016_j_addr_2024_115204
crossref_primary_10_1038_s41467_022_32055_z
crossref_primary_10_1038_s12276_023_00965_7
crossref_primary_10_1038_s41594_022_00862_z
crossref_primary_10_15252_embj_2019103958
crossref_primary_10_3390_genes14020329
Cites_doi 10.1016/j.cell.2012.01.053
10.1073/pnas.1215006109
10.4049/jimmunol.1300097
10.1038/nsmb.2331
10.1016/j.immuni.2011.11.018
10.1038/nature08476
10.1038/nsmb.2333
10.1038/nsmb.2332
10.1126/science.1232458
10.1089/jir.2010.0107
10.1038/nri2690
10.1016/j.immuni.2008.09.003
10.1073/pnas.0900850106
10.1038/emboj.2013.86
10.1021/ol101236b
10.1126/science.1229963
10.1038/nature07317
10.1016/j.cell.2013.04.046
10.1128/MCB.00640-08
10.1038/nature10429
10.1093/nar/18.17.5322
10.1016/j.immuni.2012.03.019
10.1016/j.ab.2009.03.031
10.1016/j.celrep.2013.05.009
ContentType Journal Article
Copyright Springer Nature Limited 2013
Copyright Nature Publishing Group Jun 20, 2013
Copyright_xml – notice: Springer Nature Limited 2013
– notice: Copyright Nature Publishing Group Jun 20, 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
5PM
DOI 10.1038/nature12306
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database (ProQuest)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database (ProQuest)
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database (ProQuest)
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database
MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 384
ExternalDocumentID PMC4143541
3013796901
23722158
10_1038_nature12306
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: European Research Council
  grantid: 243046
– fundername: European Research Council
  grantid: 322869
– fundername: NIAID NIH HHS
  grantid: U19AI083025
– fundername: NIAID NIH HHS
  grantid: U19 AI083025
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
00M
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
4.4
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABAWZ
ABDBF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACUHS
ACWUS
ADBBV
ADFRT
ADUKH
ADYSU
ADZCM
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCU
BDKGC
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
ZKB
~02
~7V
~88
~8M
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADGHP
ADXHL
AETEA
AEZWR
AFANA
AIXLP
ALPWD
ATHPR
CITATION
PEA
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c446t-22e63c58b0b45592e67737ea750f696d05ab09380595605462482935683730403
IEDL.DBID 7X7
ISSN 0028-0836
1476-4687
IngestDate Thu Aug 21 14:09:17 EDT 2025
Mon Jul 21 10:24:38 EDT 2025
Sat Aug 23 12:55:19 EDT 2025
Mon Jul 21 06:05:05 EDT 2025
Thu Apr 24 22:57:16 EDT 2025
Tue Jul 01 02:57:01 EDT 2025
Fri Feb 21 02:37:34 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7454
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-22e63c58b0b45592e67737ea750f696d05ab09380595605462482935683730403
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author Contributions: A.A., M.G., T.C., G.W., T.D., I.R., J.L., K.-P.H. and V.H. designed experiments and analysed the data. A.A., M.G., T.C., G.W., T.D. and I.R. performed experiments. A.A. and V.H. wrote the manuscript. V.H. supervised the project.
OpenAccessLink https://infoscience.epfl.ch/handle/20.500.14299/103365
PMID 23722158
PQID 1398371963
PQPubID 40569
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4143541
proquest_miscellaneous_1370635660
proquest_journals_1398371963
pubmed_primary_23722158
crossref_citationtrail_10_1038_nature12306
crossref_primary_10_1038_nature12306
springer_journals_10_1038_nature12306
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-06-20
PublicationDateYYYYMMDD 2013-06-20
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-20
  day: 20
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2013
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Jin (CR6) 2008; 28
Shu, Yi, Watts, Kao, Li (CR13) 2012; 19
Davies, Bogard, Young, Mekalanos (CR18) 2012; 149
Wu (CR14) 2013; 339
Gall (CR2) 2012; 36
Ishikawa, Barber (CR4) 2008; 455
Sun, Wu, Du, Chen, Chen (CR15) 2013; 339
Mizushima, Nagata (CR23) 1990; 18
Gaffney, Veliath, Zhao, Jones (CR24) 2010; 12
Shang (CR12) 2012; 19
Hornung, Latz (CR1) 2010; 10
Rao (CR17) 2009; 389
Huang, Liu, Du, Jiang, Su (CR10) 2012; 19
Zhong (CR5) 2008; 29
Conlon (CR19) 2013; 190
Kristiansen, Gad, Eskildsen-Larsen, Despres, Hartmann (CR20) 2011; 31
Ishikawa, Ma, Barber (CR8) 2009; 461
Cavlar, Deimling, Ablasser, Hopfner, Hornung (CR16) 2013; 32
Burdette (CR9) 2011; 478
Ouyang (CR11) 2012; 36
Gao (CR21) 2013; 153
Sun (CR7) 2009; 106
Diner (CR22) 2013; 3
Ahn, Gutman, Saijo, Barber (CR3) 2012; 109
W Sun (BFnature12306_CR7) 2009; 106
P Gao (BFnature12306_CR21) 2013; 153
J Conlon (BFnature12306_CR19) 2013; 190
B Zhong (BFnature12306_CR5) 2008; 29
H Kristiansen (BFnature12306_CR20) 2011; 31
C Shu (BFnature12306_CR13) 2012; 19
DL Burdette (BFnature12306_CR9) 2011; 478
EJ Diner (BFnature12306_CR22) 2013; 3
G Shang (BFnature12306_CR12) 2012; 19
H Ishikawa (BFnature12306_CR8) 2009; 461
L Sun (BFnature12306_CR15) 2013; 339
V Hornung (BFnature12306_CR1) 2010; 10
YH Huang (BFnature12306_CR10) 2012; 19
S Mizushima (BFnature12306_CR23) 1990; 18
J Ahn (BFnature12306_CR3) 2012; 109
T Cavlar (BFnature12306_CR16) 2013; 32
F Rao (BFnature12306_CR17) 2009; 389
A Gall (BFnature12306_CR2) 2012; 36
BW Davies (BFnature12306_CR18) 2012; 149
J Wu (BFnature12306_CR14) 2013; 339
H Ishikawa (BFnature12306_CR4) 2008; 455
BL Gaffney (BFnature12306_CR24) 2010; 12
S Ouyang (BFnature12306_CR11) 2012; 36
L Jin (BFnature12306_CR6) 2008; 28
References_xml – volume: 149
  start-page: 358
  year: 2012
  end-page: 370
  ident: CR18
  article-title: Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for virulence
  publication-title: Cell
  doi: 10.1016/j.cell.2012.01.053
– volume: 109
  start-page: 19386
  year: 2012
  end-page: 19391
  ident: CR3
  article-title: STING manifests self DNA-dependent inflammatory disease
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1215006109
– volume: 190
  start-page: 5216
  year: 2013
  end-page: 5225
  ident: CR19
  article-title: Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1300097
– volume: 19
  start-page: 722
  year: 2012
  end-page: 724
  ident: CR13
  article-title: Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system
  publication-title: Nature Struct. Mol. Biol.
  doi: 10.1038/nsmb.2331
– volume: 36
  start-page: 120
  year: 2012
  end-page: 131
  ident: CR2
  article-title: Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.11.018
– volume: 461
  start-page: 788
  year: 2009
  end-page: 792
  ident: CR8
  article-title: STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity
  publication-title: Nature
  doi: 10.1038/nature08476
– volume: 19
  start-page: 728
  year: 2012
  end-page: 730
  ident: CR10
  article-title: The structural basis for the sensing and binding of cyclic di-GMP by STING
  publication-title: Nature Struct. Mol. Biol.
  doi: 10.1038/nsmb.2333
– volume: 19
  start-page: 725
  year: 2012
  end-page: 727
  ident: CR12
  article-title: Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP
  publication-title: Nature Struct. Mol. Biol.
  doi: 10.1038/nsmb.2332
– volume: 339
  start-page: 786
  year: 2013
  end-page: 791
  ident: CR15
  article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway
  publication-title: Science
  doi: 10.1126/science.1232458
– volume: 31
  start-page: 41
  year: 2011
  end-page: 47
  ident: CR20
  article-title: The oligoadenylate synthetase family: an ancient protein family with multiple antiviral activities
  publication-title: J. Interferon Cytokine Res.
  doi: 10.1089/jir.2010.0107
– volume: 10
  start-page: 123
  year: 2010
  end-page: 130
  ident: CR1
  article-title: Intracellular DNA recognition
  publication-title: Nature Rev. Immunol.
  doi: 10.1038/nri2690
– volume: 29
  start-page: 538
  year: 2008
  end-page: 550
  ident: CR5
  article-title: The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2008.09.003
– volume: 106
  start-page: 8653
  year: 2009
  end-page: 8658
  ident: CR7
  article-title: ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0900850106
– volume: 32
  start-page: 1440
  year: 2013
  end-page: 1450
  ident: CR16
  article-title: Species-specific detection of the antiviral small-molecule compound CMA by STING
  publication-title: EMBO J.
  doi: 10.1038/emboj.2013.86
– volume: 12
  start-page: 3269
  year: 2010
  end-page: 3271
  ident: CR24
  article-title: One-flask syntheses of c-di-GMP and the [ , ] and [ , ] thiophosphate analogues
  publication-title: Org. Lett.
  doi: 10.1021/ol101236b
– volume: 339
  start-page: 826
  year: 2013
  end-page: 830
  ident: CR14
  article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA
  publication-title: Science
  doi: 10.1126/science.1229963
– volume: 455
  start-page: 674
  year: 2008
  end-page: 678
  ident: CR4
  article-title: STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling
  publication-title: Nature
  doi: 10.1038/nature07317
– volume: 153
  start-page: 1094
  year: 2013
  end-page: 1107
  ident: CR21
  article-title: Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.046
– volume: 28
  start-page: 5014
  year: 2008
  end-page: 5026
  ident: CR6
  article-title: MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00640-08
– volume: 478
  start-page: 515
  year: 2011
  end-page: 518
  ident: CR9
  article-title: STING is a direct innate immune sensor of cyclic di-GMP
  publication-title: Nature
  doi: 10.1038/nature10429
– volume: 18
  start-page: 5322
  year: 1990
  ident: CR23
  article-title: pEF-BOS, a powerful mammalian expression vector
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/18.17.5322
– volume: 36
  start-page: 1073
  year: 2012
  end-page: 1086
  ident: CR11
  article-title: Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.03.019
– volume: 389
  start-page: 138
  year: 2009
  end-page: 142
  ident: CR17
  article-title: Enzymatic synthesis of c-di-GMP using a thermophilic diguanylate cyclase
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2009.03.031
– volume: 3
  start-page: 1355
  year: 2013
  end-page: 1361
  ident: CR22
  article-title: The innate immune DNA sensory cGAS produces a noncanonical cyclic dinucleotide that activates human STING
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.05.009
– volume: 10
  start-page: 123
  year: 2010
  ident: BFnature12306_CR1
  publication-title: Nature Rev. Immunol.
  doi: 10.1038/nri2690
– volume: 339
  start-page: 826
  year: 2013
  ident: BFnature12306_CR14
  publication-title: Science
  doi: 10.1126/science.1229963
– volume: 36
  start-page: 120
  year: 2012
  ident: BFnature12306_CR2
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.11.018
– volume: 109
  start-page: 19386
  year: 2012
  ident: BFnature12306_CR3
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1215006109
– volume: 190
  start-page: 5216
  year: 2013
  ident: BFnature12306_CR19
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1300097
– volume: 28
  start-page: 5014
  year: 2008
  ident: BFnature12306_CR6
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00640-08
– volume: 18
  start-page: 5322
  year: 1990
  ident: BFnature12306_CR23
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/18.17.5322
– volume: 3
  start-page: 1355
  year: 2013
  ident: BFnature12306_CR22
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.05.009
– volume: 153
  start-page: 1094
  year: 2013
  ident: BFnature12306_CR21
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.046
– volume: 36
  start-page: 1073
  year: 2012
  ident: BFnature12306_CR11
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.03.019
– volume: 19
  start-page: 725
  year: 2012
  ident: BFnature12306_CR12
  publication-title: Nature Struct. Mol. Biol.
  doi: 10.1038/nsmb.2332
– volume: 31
  start-page: 41
  year: 2011
  ident: BFnature12306_CR20
  publication-title: J. Interferon Cytokine Res.
  doi: 10.1089/jir.2010.0107
– volume: 106
  start-page: 8653
  year: 2009
  ident: BFnature12306_CR7
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0900850106
– volume: 455
  start-page: 674
  year: 2008
  ident: BFnature12306_CR4
  publication-title: Nature
  doi: 10.1038/nature07317
– volume: 389
  start-page: 138
  year: 2009
  ident: BFnature12306_CR17
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2009.03.031
– volume: 12
  start-page: 3269
  year: 2010
  ident: BFnature12306_CR24
  publication-title: Org. Lett.
  doi: 10.1021/ol101236b
– volume: 32
  start-page: 1440
  year: 2013
  ident: BFnature12306_CR16
  publication-title: EMBO J.
  doi: 10.1038/emboj.2013.86
– volume: 478
  start-page: 515
  year: 2011
  ident: BFnature12306_CR9
  publication-title: Nature
  doi: 10.1038/nature10429
– volume: 461
  start-page: 788
  year: 2009
  ident: BFnature12306_CR8
  publication-title: Nature
  doi: 10.1038/nature08476
– volume: 19
  start-page: 722
  year: 2012
  ident: BFnature12306_CR13
  publication-title: Nature Struct. Mol. Biol.
  doi: 10.1038/nsmb.2331
– volume: 149
  start-page: 358
  year: 2012
  ident: BFnature12306_CR18
  publication-title: Cell
  doi: 10.1016/j.cell.2012.01.053
– volume: 29
  start-page: 538
  year: 2008
  ident: BFnature12306_CR5
  publication-title: Immunity
  doi: 10.1016/j.immuni.2008.09.003
– volume: 19
  start-page: 728
  year: 2012
  ident: BFnature12306_CR10
  publication-title: Nature Struct. Mol. Biol.
  doi: 10.1038/nsmb.2333
– volume: 339
  start-page: 786
  year: 2013
  ident: BFnature12306_CR15
  publication-title: Science
  doi: 10.1126/science.1232458
SSID ssj0005174
Score 2.6297238
Snippet Cytosolic DNA induces type I interferon via activation of STING; the immediate STING activator is produced by the recently identified DNA sensor cGAS and is...
Detection of cytoplasmic DNA represents one of the most fundamental mechanisms of the innate immune system to sense the presence of microbial pathogens....
Detection of cytoplasmic DNA represents one of the most fundamental mechanisms of the innate immune system to sense the presence of microbial pathogens^sup 1^....
Detection of cytoplasmic DNA represents one of the most fundamental mechanisms of the innate immune system to sense the presence of microbial pathogens 1 ....
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 380
SubjectTerms 631/250/256
631/250/262
631/250/516
Adenosine Monophosphate - chemistry
Animals
Autoimmune diseases
Biocatalysis
Cell Line
Chromatography
Crystal structure
Cyclic GMP - chemistry
Cyclization
Deoxyribonucleic acid
DNA
Enzymes
HEK293 Cells
Humanities and Social Sciences
Humans
Immune system
letter
Magnetic Resonance Spectroscopy
Mass spectrometry
Membrane Proteins - metabolism
Mice
Models, Molecular
Molecular Structure
multidisciplinary
Nucleotidyltransferases - genetics
Nucleotidyltransferases - metabolism
Oligoribonucleotides - biosynthesis
Oligoribonucleotides - chemistry
Oligoribonucleotides - metabolism
Science
Second Messenger Systems - physiology
Title cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING
URI https://link.springer.com/article/10.1038/nature12306
https://www.ncbi.nlm.nih.gov/pubmed/23722158
https://www.proquest.com/docview/1398371963
https://www.proquest.com/docview/1370635660
https://pubmed.ncbi.nlm.nih.gov/PMC4143541
Volume 498
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEB-0RfBFbP3aWkuESlUI3cvX5p6klt5VHw6xrdzbks3m6EHdO7tbwf_emd3ctdcTXwJLBnbITJJfMpPfAOyrIlhXas-Ji4srbT0vfBm4LRCLOOHExLdsnyNzeqG-jvU4XrjVMa1ysSa2C3U583RHfohIBc9S5C-f5r84VY2i6GosofEQNom6jFK6snF2m-Jxj4U5vs9LpT3saDN7BMBXd6Q1mLmeLXkvZNruRIOn8CRCSHbU2XwLHoRqGx61qZy-3oatOF1r9j5ySn94Bj_88OiMzVt6V-xxTBxwfcApfBtK5v_4q6lnuI0Ru_GsmZaB1XRSLtlP4hYnLVhz6RpGzyB-EzxlZ-dfRsPncDE4OT8-5bGkAvd47mu4EMFIr22RFgrPEviVZTILDnHDxPRNmWpXpH1pEXQhFNLKCGUREGiDYy9xvssXsFHNqvAKmA4iTHr0mD5o5UzpNMlLibZPje3bBD4uhjX3kW-cyl5c5W3cW9r8jg0S2F8KzzuajX-L7S7sk8e5Vue3npHA22U3zhIKfbgqzG5IJkuJic-kCbzszLn8j5CZQOCDCmcrhl4KEAP3ak81vWyZuBWhTdVL4N3CJe6ota7-zv_Vfw2PRVdsA9euXdhorm_CG4Q8TbHX-jW29rhH7WC4B5ufT0bfvv8FQ1IBow
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQQviI2vjAFG2jSYZC11bMd7QGgCtpaNvqxDfQuO42qVtrSQDLR_ir-Ru3x064p422PkU3zKnX2_y9m_A9iQqTc2U44TFxeXyjieusxzkyIWscKKkavYPvu6eyK_DNVwCf60d2HoWGW7J1YbdTZx9I98B5EK5lLkLx-mPzh1jaLqattCo3aLQ3_5G1O24n3vE9p3U4j9z4OPXd50FeAOU5-SC-F15JRJw1QinManOI5ibzF0jvSuzkJlU0zzDeIORANKaiENxkSlcXrM_cMI33sH7mLgDWlFxcP46kjJDdbn5j5gGJmdmqazQ4B_PgIuwNrF05k3SrRV5Nt_BA8byMr2ah9bgSWfr8K96uioK1ZhpdkeCva24bB-9xi-uYO9Yzat6GRxxDKxxdUWp3Kxz5i7dGdjxzBsEpvypBxnnhWUmWfsnLjMSQtWntqS0bWLXwSH2fGg1z94Aie38rGfwnI-yf1zYMoLP-rQ5X2vpNWZVSQfRehroTa7JoDt9rMmruE3pzYbZ0lVZ49Mcs0GAWzMhKc1rce_xdZb-yTN2i6SK08M4M1sGFcllVps7icXJBOHxPynwwCe1eaczSOiWCDQQoXjOUPPBIjxe34kH59WzN-S0K3sBLDZusQ1tRbVX_u_-q_hfnfw9Sg56vUPX8ADUTf6wH1zHZbLnxf-JcKtMn1V-TiD77e9qP4C45Q2PQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIRAviI2vjAFG2jSYZDW1Y8d7QGhidCtDFdI21LfgOK5WaUsLyUD71_jruMtHt66Itz1GPrWn3J3vd7nzzwAbUeqNzZTjxMXFI2UcT13muUkRi1hhxchVbJ8DfXASfR6q4RL8ac_C0FhluydWG3U2cfSNvINIBWsp8pfOqBmL-LrX-zD9wekGKeq0ttdp1C5y6C9_Y_lWvO_voa03heh9Ov54wJsbBrjDMqjkQngtnTJpmEYIrfEpjmXsLabRkd7RWahsiiW_QQyCyEBFWkQG86PSqIpE95f4u3fgbixVl2IsHsZX4yU3GKCbs4GhNJ2asrNL4H8-Gy5A3MVJzRvt2ioL9h7Bwwa-st3a31ZgyeercK8aI3XFKqw0W0XB3jZ81u8ewze3v3vEphW1LK5YJra42uLUOvYZc5fubOwYplBiVp6U48yzgqr0jJ0TrzlpwcpTWzI6gvGLoDE7Ou4P9p_Aya287KewnE9y_xyY8sKPunSQ36vI6swqkpcS_S7UZscEsN2-1sQ1XOd05cZZUvXcpUmu2SCAjZnwtKb4-LfYemufpInzIrnyygDezJYxQqntYnM_uSCZOCQWQB0G8Kw25-x_hIwFgi5UOJ4z9EyA2L_nV_LxacUCHhHSjboBbLYucU2tRfXX_q_-a7iP4ZR86Q8OX8ADUd_5gVvoOiyXPy_8S0ReZfqqcnEG3287pv4CnB06cw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=cGAS+produces+a+2%E2%80%B2-5%E2%80%B2-linked+cyclic+dinucleotide+second+messenger+that+activates+STING&rft.jtitle=Nature+%28London%29&rft.au=Ablasser%2C+Andrea&rft.au=Goldeck%2C+Marion&rft.au=Cavlar%2C+Taner&rft.au=Deimling%2C+Tobias&rft.date=2013-06-20&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=498&rft.issue=7454&rft.spage=380&rft.epage=384&rft_id=info:doi/10.1038%2Fnature12306&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_nature12306
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon