The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation
Saccharomyces cerevisiae contains two structural genes, ACS1 and ACS2, each encoding an active acetyl-coenzyme A synthetase. Characterization of enzyme activities in cell-free extracts from strains expressing either of the two genes revealed differences in the catalytic properties of the two enzymes...
Saved in:
Published in | The Journal of biological chemistry Vol. 271; no. 46; pp. 28953 - 28959 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Biochemistry and Molecular Biology
15.11.1996
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Saccharomyces cerevisiae contains two structural genes, ACS1 and ACS2, each encoding an active acetyl-coenzyme A synthetase. Characterization of enzyme activities in cell-free extracts from strains expressing either of the two genes revealed differences in the catalytic properties of the two enzymes. The Km for acetate of Acs1p was about 30-fold lower than that of Acs2p and Acs1p, but not Acs2p, could use propionate as a substrate. Enzyme activity measurements and mRNA analyses showed that ACS1 and ACS2 were both expressed during carbon-limited growth on glucose, ethanol, and acetate in aerobic chemostat cultures. In anaerobic glucose-limited cultures, only the ACS2 gene was expressed. Based on these facts, the products of the ACS1 and ACS2 genes were identified as the previously described "aerobic" and "non-aerobic" forms of acetyl-coenzyme A synthetase, respectively. Batch and glucose-pulse experiments revealed that transcription of ACS1 is subject to glucose repression. A mutant strain lacking Acs2p was unable to grow on glucose in batch cultures, but grew readily in aerobic glucose-limited chemostat cultures, in which the low residual glucose concentration alleviated glucose repression. Experiments in which ethanol was pulsed to aerobic ethanol-limited chemostat cultures indicated that, in addition to glucose, ethanol also repressed ACS1 transcription, although to a lesser extent. In contrast, transcription of ACS2 was slightly induced by ethanol and glucose. Absence of ACS2 prevented complete glucose repression of ACS1, indicating that ACS2 (in)directly is involved in the transcriptional regulation of ACS1 |
---|---|
AbstractList | Saccharomyces cerevisiae contains two structural genes, ACS1 and ACS2, each encoding an active acetyl-coenzyme A synthetase. Characterization of enzyme activities in cell-free extracts from strains expressing either of the two genes revealed differences in the catalytic properties of the two enzymes. The Km for acetate of Acs1p was about 30-fold lower than that of Acs2p and Acs1p, but not Acs2p, could use propionate as a substrate. Enzyme activity measurements and mRNA analyses showed that ACS1 and ACS2 were both expressed during carbon-limited growth on glucose, ethanol, and acetate in aerobic chemostat cultures. In anaerobic glucose-limited cultures, only the ACS2 gene was expressed. Based on these facts, the products of the ACS1 and ACS2 genes were identified as the previously described "aerobic" and "non-aerobic" forms of acetyl-coenzyme A synthetase, respectively. Batch and glucose-pulse experiments revealed that transcription of ACS1 is subject to glucose repression. A mutant strain lacking Acs2p was unable to grow on glucose in batch cultures, but grew readily in aerobic glucose-limited chemostat cultures, in which the low residual glucose concentration alleviated glucose repression. Experiments in which ethanol was pulsed to aerobic ethanol-limited chemostat cultures indicated that, in addition to glucose, ethanol also repressed ACS1 transcription, although to a lesser extent. In contrast, transcription of ACS2 was slightly induced by ethanol and glucose. Absence of ACS2 prevented complete glucose repression of ACS1, indicating that ACS2 (in)directly is involved in the transcriptional regulation of ACS1 Saccharomyces cerevisiae contains two structural genes, ACS1 and ACS2, each encoding an active acetyl-coenzyme A synthetase. Characterization of enzyme activities in cell-free extracts from strains expressing either of the two genes revealed differences in the catalytic properties of the two enzymes. The K sub(m) for acetate of Acs1p was about 30-fold lower than that of Acs2p and Acs1p, but not Acs2p, could use propionate as a substrate. Enzyme activity measurements and mRNA analyses showed that ACS1 and ACS2 were both expressed during carbon-limited growth on glucose, ethanol, and acetate in aerobic chemostat cultures. In anaerobic glucose-limited cultures, only the ACS2 gene was expressed. Based on these facts, the products of the ACS1 and ACS2 genes were identified as the previously described "aerobic" and "non-aerobic" forms of acetyl-coenzyme A synthetase, respectively. Batch and glucose-pulse experiments revealed that transcription of ACS1 is subject to glucose repression. A mutant strain lacking Acs2p was unable to grow on glucose in batch cultures, but grew readily in aerobic glucose-limited chemostat cultures, in which the low residual glucose concentration alleviated glucose repression. Experiments in which ethanol was pulsed to aerobic ethanol-limited chemostat cultures indicated that, in addition to glucose, ethanol also repressed ACS1 transcription, although to a lesser extent. In contrast, transcription of ACS2 was slightly induced by ethanol and glucose. Absence of ACS2 prevented complete glucose repression of ACS1, indicating that ACS2 (in)directly is involved in the transcriptional regulation of ACS1. Saccharomyces cerevisiae contains two structural genes, ACS1 and ACS2, each encoding an active acetyl-coenzyme A synthetase. Characterization of enzyme activities in cell-free extracts from strains expressing either of the two genes revealed differences in the catalytic properties of the two enzymes. The Km for acetate of Acs1p was about 30-fold lower than that of Acs2p and Acs1p, but not Acs2p, could use propionate as a substrate. Enzyme activity measurements and mRNA analyses showed that ACS1 and ACS2 were both expressed during carbon-limited growth on glucose, ethanol, and acetate in aerobic chemostat cultures. In anaerobic glucose-limited cultures, only the ACS2 gene was expressed. Based on these facts, the products of the ACS1 and ACS2 genes were identified as the previously described "aerobic" and "non-aerobic" forms of acetyl-coenzyme A synthetase, respectively. Batch and glucose-pulse experiments revealed that transcription of ACS1 is subject to glucose repression. A mutant strain lacking Acs2p was unable to grow on glucose in batch cultures, but grew readily in aerobic glucose-limited chemostat cultures, in which the low residual glucose concentration alleviated glucose repression. Experiments in which ethanol was pulsed to aerobic ethanol-limited chemostat cultures indicated that, in addition to glucose, ethanol also repressed ACS1 transcription, although to a lesser extent. In contrast, transcription of ACS2 was slightly induced by ethanol and glucose. Absence of ACS2 prevented complete glucose repression of ACS1, indicating that ACS2 (in)directly is involved in the transcriptional regulation of ACS1.Saccharomyces cerevisiae contains two structural genes, ACS1 and ACS2, each encoding an active acetyl-coenzyme A synthetase. Characterization of enzyme activities in cell-free extracts from strains expressing either of the two genes revealed differences in the catalytic properties of the two enzymes. The Km for acetate of Acs1p was about 30-fold lower than that of Acs2p and Acs1p, but not Acs2p, could use propionate as a substrate. Enzyme activity measurements and mRNA analyses showed that ACS1 and ACS2 were both expressed during carbon-limited growth on glucose, ethanol, and acetate in aerobic chemostat cultures. In anaerobic glucose-limited cultures, only the ACS2 gene was expressed. Based on these facts, the products of the ACS1 and ACS2 genes were identified as the previously described "aerobic" and "non-aerobic" forms of acetyl-coenzyme A synthetase, respectively. Batch and glucose-pulse experiments revealed that transcription of ACS1 is subject to glucose repression. A mutant strain lacking Acs2p was unable to grow on glucose in batch cultures, but grew readily in aerobic glucose-limited chemostat cultures, in which the low residual glucose concentration alleviated glucose repression. Experiments in which ethanol was pulsed to aerobic ethanol-limited chemostat cultures indicated that, in addition to glucose, ethanol also repressed ACS1 transcription, although to a lesser extent. In contrast, transcription of ACS2 was slightly induced by ethanol and glucose. Absence of ACS2 prevented complete glucose repression of ACS1, indicating that ACS2 (in)directly is involved in the transcriptional regulation of ACS1. Saccharomyces cerevisiae contains two structural genes, ACS1 and ACS2 , each encoding an active acetyl-coenzyme A synthetase. Characterization of enzyme activities in cell-free extracts from strains expressing either of the two genes revealed differences in the catalytic properties of the two enzymes. The K m for acetate of Acs1p was about 30-fold lower than that of Acs2p and Acs1p, but not Acs2p, could use propionate as a substrate. Enzyme activity measurements and mRNA analyses showed that ACS1 and ACS2 were both expressed during carbon-limited growth on glucose, ethanol, and acetate in aerobic chemostat cultures. In anaerobic glucose-limited cultures, only the ACS2 gene was expressed. Based on these facts, the products of the ACS1 and ACS2 genes were identified as the previously described âaerobicâ and ânon-aerobicâ forms of acetyl-coenzyme A synthetase, respectively. Batch and glucose-pulse experiments revealed that transcription of ACS1 is subject to glucose repression. A mutant strain lacking Acs2p was unable to grow on glucose in batch cultures, but grew readily in aerobic glucose-limited chemostat cultures, in which the low residual glucose concentration alleviated glucose repression. Experiments in which ethanol was pulsed to aerobic ethanol-limited chemostat cultures indicated that, in addition to glucose, ethanol also repressed ACS1 transcription, although to a lesser extent. In contrast, transcription of ACS2 was slightly induced by ethanol and glucose. Absence of ACS2 prevented complete glucose repression of ACS1 , indicating that ACS2 (in)directly is involved in the transcriptional regulation of ACS1 . Saccharomyces cerevisiae contains two structural genes, ACS1 and ACS2, each encoding an active acetyl-coenzyme A synthetase. Characterization of enzyme activities in cell-free extracts from strains expressing either of the two genes revealed differences in the catalytic properties of the two enzymes. The Km for acetate of Acs1p was about 30-fold lower than that of Acs2p and Acs1p, but not Acs2p, could use propionate as a substrate. Enzyme activity measurements and mRNA analyses showed that ACS1 and ACS2 were both expressed during carbon-limited growth on glucose, ethanol, and acetate in aerobic chemostat cultures. In anaerobic glucose-limited cultures, only the ACS2 gene was expressed. Based on these facts, the products of the ACS1 and ACS2 genes were identified as the previously described "aerobic" and "non-aerobic" forms of acetyl-coenzyme A synthetase, respectively. Batch and glucose-pulse experiments revealed that transcription of ACS1 is subject to glucose repression. A mutant strain lacking Acs2p was unable to grow on glucose in batch cultures, but grew readily in aerobic glucose-limited chemostat cultures, in which the low residual glucose concentration alleviated glucose repression. Experiments in which ethanol was pulsed to aerobic ethanol-limited chemostat cultures indicated that, in addition to glucose, ethanol also repressed ACS1 transcription, although to a lesser extent. In contrast, transcription of ACS2 was slightly induced by ethanol and glucose. Absence of ACS2 prevented complete glucose repression of ACS1, indicating that ACS2 (in)directly is involved in the transcriptional regulation of ACS1. |
Author | Dijken, J.P. van Steensma, H.Y Berg, M.A. van den (Delft University of Technology, Delft, The Netherlands.) Jong-Gubbels, P. de Kortland, C.J Pronk, J.T |
Author_xml | – sequence: 1 fullname: Berg, M.A. van den (Delft University of Technology, Delft, The Netherlands.) – sequence: 2 fullname: Jong-Gubbels, P. de – sequence: 3 fullname: Kortland, C.J – sequence: 4 fullname: Dijken, J.P. van – sequence: 5 fullname: Pronk, J.T – sequence: 6 fullname: Steensma, H.Y |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/8910545$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9rHCEUx6WkpJu091IoeCi9zVZHZ3SOIfQXBHpIAr2JOs8d05lxq26X6Z_Qv7omu_SQQ-NF9H0-j8f7nqGTOcyA0GtK1pQI_uHO2HUt6Jq361p2DXuGVpRIVrGGfj9BK0JqWnV1I1-gs5TuSDm8o6foVHaUNLxZoT83A-C8D1hbyMtY2QDz72UCfIHTMucBsk6QcHD4Wls76BimxZYPCxF--eQ14N47BxHvfR5whLQFm3EO-IefIXuLtzFsIWZfJD33OEc9Jxv9Nvsw67EYm92o7x8v0XOnxwSvjvc5uv308ebyS3X17fPXy4urynLe5opaJ51gDrpWGku4Y1owY3ljWNMTQZ2kda87Q4njrJW2J8wYbZxkorat7Ng5en_oWyb7uYOU1eSThXHUM4RdUkI2ddlb-yTIZenWMvYkSBtZS8JEAd8ewZ2ZoFfb6CcdF3WMo9TJoW5jSCmC-0dQou4DVyVwVQJXvFUPgRelfaRYnx_2WTbtx_-J7w7i4DfD3kdQxgc7wPQYe3PAnA5Kb6JP6va6E2VYQdlf8OfHaw |
CitedBy_id | crossref_primary_10_1002_bit_27456 crossref_primary_10_1515_ijfe_2018_0003 crossref_primary_10_1007_s10068_012_0047_8 crossref_primary_10_1099_00221287_144_12_3437 crossref_primary_10_1016_j_femsyr_2004_09_009 crossref_primary_10_1093_femsyr_fow072 crossref_primary_10_1186_1471_2164_9_530 crossref_primary_10_1128_AEM_01772_09 crossref_primary_10_1111_tpj_12568 crossref_primary_10_1186_s12896_017_0376_z crossref_primary_10_1093_nar_gkp270 crossref_primary_10_1093_femsyr_foad048 crossref_primary_10_1074_jbc_M309578200 crossref_primary_10_1007_s00253_016_7662_x crossref_primary_10_1016_j_cmet_2014_03_027 crossref_primary_10_1093_femsle_fnu042 crossref_primary_10_1128_AEM_03136_18 crossref_primary_10_1371_journal_pgen_1006626 crossref_primary_10_1128_EC_00189_14 crossref_primary_10_1128_AEM_01445_07 crossref_primary_10_1074_jbc_M004160200 crossref_primary_10_1002_bit_26377 crossref_primary_10_34133_bdr_0026 crossref_primary_10_1016_j_jbiotec_2005_09_016 crossref_primary_10_1007_s00253_014_6343_x crossref_primary_10_1016_j_mec_2020_e00158 crossref_primary_10_1002_bit_27508 crossref_primary_10_1186_1752_0509_4_145 crossref_primary_10_1186_s12934_016_0465_z crossref_primary_10_1128_aem_01857_21 crossref_primary_10_1038_nature19769 crossref_primary_10_1007_s00203_022_03269_y crossref_primary_10_1093_femsyr_fow006 crossref_primary_10_1038_nrendo_2015_181 crossref_primary_10_1002_bit_10513 crossref_primary_10_1002_jctb_6787 crossref_primary_10_1016_j_exger_2010_02_008 crossref_primary_10_1038_msb_2011_80 crossref_primary_10_1194_jlr_M070748 crossref_primary_10_1016_j_bbamcr_2012_11_008 crossref_primary_10_1016_j_synbio_2022_12_007 crossref_primary_10_1038_s41467_021_25241_y crossref_primary_10_1111_j_1574_6968_1998_tb13121_x crossref_primary_10_1128_AEM_66_8_3151_3159_2000 crossref_primary_10_1016_j_ymben_2014_11_009 crossref_primary_10_1111_1751_7915_12080 crossref_primary_10_3389_fmicb_2017_01137 crossref_primary_10_1016_j_enzmictec_2022_110091 crossref_primary_10_1002_bit_26021 crossref_primary_10_1016_j_fm_2014_07_001 crossref_primary_10_1104_pp_008110 crossref_primary_10_1128_MMBR_69_1_12_50_2005 crossref_primary_10_1016_j_bbalip_2016_04_002 crossref_primary_10_1016_j_ymben_2013_11_005 crossref_primary_10_1007_s10529_015_2006_y crossref_primary_10_1128_EC_00253_08 crossref_primary_10_1038_s41598_020_66997_5 crossref_primary_10_1002_j_2050_0416_2001_tb00083_x crossref_primary_10_1128_EC_00080_10 crossref_primary_10_3389_fbioe_2022_826787 crossref_primary_10_1002__SICI_1097_0061_200005_16_7_611__AID_YEA558_3_0_CO_2_Z crossref_primary_10_1093_femsyr_foy077 crossref_primary_10_1091_mbc_12_2_297 crossref_primary_10_1016_j_molcel_2006_05_040 crossref_primary_10_1016_j_algal_2016_09_025 crossref_primary_10_1038_s42003_024_06595_7 crossref_primary_10_1074_jbc_274_30_21044 crossref_primary_10_1111_j_1365_2672_2007_03381_x crossref_primary_10_1002_1097_0290_20001020_70_2_197__AID_BIT9_3_0_CO_2_D crossref_primary_10_1093_femsyr_fov004 crossref_primary_10_1186_s12934_018_0925_8 crossref_primary_10_1021_acsinfecdis_5b00134 crossref_primary_10_1042_BSR20170157 crossref_primary_10_1074_mcp_M200001_MCP200 crossref_primary_10_1099_mic_0_2006_002873_0 crossref_primary_10_1021_acs_jafc_9b03370 crossref_primary_10_1021_acs_jafc_7b02507 crossref_primary_10_1128_AEM_71_6_3276_3284_2005 crossref_primary_10_1038_s42003_023_05633_0 crossref_primary_10_1186_1752_0509_8_16 crossref_primary_10_1111_j_1574_6976_2000_tb00553_x crossref_primary_10_1186_s13068_020_01838_1 crossref_primary_10_1016_S1389_1723_01_80040_2 crossref_primary_10_1128_AEM_01121_08 crossref_primary_10_1186_1471_2164_9_100 crossref_primary_10_1038_s41598_019_39489_4 crossref_primary_10_1038_s41589_022_01091_7 crossref_primary_10_3390_fermentation9110984 crossref_primary_10_3389_fcell_2019_00301 crossref_primary_10_1371_journal_pone_0058455 crossref_primary_10_1038_ng1523 crossref_primary_10_1038_s42255_021_00412_9 crossref_primary_10_1039_c1mb05250k crossref_primary_10_1111_j_1567_1364_2008_00472_x crossref_primary_10_1128_AEM_69_8_4534_4541_2003 crossref_primary_10_1016_j_ymben_2008_02_002 crossref_primary_10_1038_onc_2010_206 crossref_primary_10_1074_jbc_M209759200 crossref_primary_10_1016_j_renene_2024_120281 crossref_primary_10_1016_j_procbio_2020_01_002 crossref_primary_10_1128_AEM_00602_08 crossref_primary_10_1021_bm5006382 crossref_primary_10_1016_j_ymben_2006_10_005 crossref_primary_10_1111_j_1365_2958_2004_03994_x crossref_primary_10_1016_j_ymben_2016_07_008 crossref_primary_10_1074_jbc_M204490200 crossref_primary_10_1186_1475_2859_13_39 crossref_primary_10_1016_S0014_5793_97_01085_5 crossref_primary_10_1002__SICI_1097_0061_19980915_14_12_1089__AID_YEA312_3_0_CO_2_K crossref_primary_10_1038_msb4100069 crossref_primary_10_1099_00221287_144_3_665 crossref_primary_10_1016_j_molcel_2011_05_004 crossref_primary_10_1099_mic_0_030213_0 crossref_primary_10_1128_JB_181_24_7409_7413_1999 crossref_primary_10_1128_JB_182_24_7007_7013_2000 crossref_primary_10_1111_j_1567_1364_2012_00831_x crossref_primary_10_1111_jam_13733 crossref_primary_10_1016_j_resmic_2005_03_003 crossref_primary_10_3390_ijms21228777 crossref_primary_10_1002_bit_10305 crossref_primary_10_1002_elsc_201600040 crossref_primary_10_1002_jctb_6587 crossref_primary_10_1016_j_cmet_2014_02_010 crossref_primary_10_1002_bit_21286 crossref_primary_10_1111_j_1365_2672_2007_03608_x crossref_primary_10_1111_j_1472_765X_2004_01563_x crossref_primary_10_1016_j_cell_2009_01_033 crossref_primary_10_1111_j_1432_1033_2004_04255_x crossref_primary_10_1021_acssynbio_4c00529 crossref_primary_10_1111_j_1567_1364_2007_00220_x crossref_primary_10_1074_jbc_M116_753624 crossref_primary_10_1016_j_funbio_2025_101545 crossref_primary_10_1128_mBio_01696_14 crossref_primary_10_1155_2013_802870 crossref_primary_10_1111_j_1574_6968_1997_tb10466_x crossref_primary_10_1002_yea_1081 crossref_primary_10_1007_s11157_024_09682_7 crossref_primary_10_1073_pnas_0604883103 crossref_primary_10_1016_j_biotechadv_2021_107736 crossref_primary_10_1186_s13068_019_1466_z crossref_primary_10_1007_s00018_019_03342_8 crossref_primary_10_1007_s13238_021_00846_7 crossref_primary_10_1007_s11274_021_03082_7 crossref_primary_10_1002_bit_22668 crossref_primary_10_1073_pnas_2020197117 crossref_primary_10_1016_j_jbiotec_2012_05_025 crossref_primary_10_1002_yea_3827 crossref_primary_10_1074_mcp_M400087_MCP200 crossref_primary_10_1016_j_fgb_2016_07_012 crossref_primary_10_1016_S0168_1656_01_00269_3 crossref_primary_10_1101_gr_3992505 crossref_primary_10_1002_ejlt_201100264 crossref_primary_10_1002_yea_1807 crossref_primary_10_1152_ajpendo_00189_2001 crossref_primary_10_1371_journal_pone_0144981 crossref_primary_10_1111_1567_1364_12217 crossref_primary_10_1111_mmi_13595 crossref_primary_10_1093_femsyr_fow017 crossref_primary_10_1128_JB_01961_14 crossref_primary_10_1155_2006_738517 crossref_primary_10_1016_j_femsyr_2005_04_003 crossref_primary_10_1099_mic_0_025775_0 crossref_primary_10_1111_j_1567_1364_2007_00234_x crossref_primary_10_1007_s11010_009_0209_z crossref_primary_10_1016_j_cell_2014_11_020 crossref_primary_10_1126_science_278_5338_680 crossref_primary_10_1186_s12934_023_02137_8 crossref_primary_10_1186_1471_2164_13_62 crossref_primary_10_1002_bies_20296 crossref_primary_10_1042_BJ20050556 crossref_primary_10_1073_pnas_0402317101 crossref_primary_10_1074_jbc_M410573200 crossref_primary_10_1017_S0953756297004462 crossref_primary_10_1074_jbc_M709654200 crossref_primary_10_1111_j_1574_695X_2007_00277_x crossref_primary_10_1007_s00253_004_1697_0 crossref_primary_10_1016_j_micres_2010_10_004 crossref_primary_10_1016_j_synbio_2021_12_010 crossref_primary_10_1111_j_1567_1364_2007_00242_x crossref_primary_10_1002_yea_936 crossref_primary_10_1186_s12934_019_1072_6 crossref_primary_10_1128_MCB_00198_13 crossref_primary_10_1038_ng0305_214 crossref_primary_10_3390_fermentation8100480 crossref_primary_10_1016_j_bbagen_2013_10_020 |
Cites_doi | 10.1099/00221287-140-4-717 10.1002/(SICI)1097-0061(19960315)12:3<247::AID-YEA911>3.0.CO;2-I 10.1111/j.1432-1033.1995.tb20751.x 10.1002/yea.320080703 10.1002/yea.320040406 10.1128/jb.115.2.600-606.1973 10.1016/0005-2744(74)90232-0 10.1099/00221287-136-3-395 10.1093/nar/18.10.3091 10.1002/yea.320081210 10.1002/yea.320110503 10.1128/jb.137.1.179-184.1979 10.1111/j.1365-2958.1993.tb01952.x 10.1128/jb.106.2.596-602.1971 10.1099/00221287-140-3-601 10.1016/S0021-9258(17)32745-X 10.1111/j.1432-1033.1994.00473.x 10.1128/aem.55.2.468-477.1989 10.1002/yea.320081207 10.1016/0003-9861(76)90376-3 10.1016/0167-7012(86)90040-0 10.1007/BF00430373 10.1128/aem.56.1.281-287.1990 10.1016/0378-1119(95)00289-I |
ContentType | Journal Article |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM M7N 7S9 L.6 7X8 |
DOI | 10.1074/jbc.271.46.28953 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1083-351X |
EndPage | 28959 |
ExternalDocumentID | 8910545 10_1074_jbc_271_46_28953 271_46_28953 US9745371 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -ET -~X .55 .GJ 0SF 186 18M 2WC 3O- 53G 5BI 5GY 5RE 5VS 6TJ 85S AAEDW AAFWJ AARDX AAXUO AAYOK ABDNZ ABOCM ABPPZ ABPTK ABRJW ABTAH ACGFO ACNCT ADBBV ADIYS AENEX AEQTP AEXQZ AFFNX AFMIJ AFOSN AFPKN AI. ALMA_UNASSIGNED_HOLDINGS BTFSW C1A CJ0 CS3 DIK DU5 E3Z EBS EJD F20 F5P FA8 FBQ FDB FRP GROUPED_DOAJ GX1 HH5 IH2 J5H KQ8 L7B MVM N9A NHB OHT OK1 P-O P0W P2P R.V RHF RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UPT UQL VH1 VQA W8F WH7 WHG WOQ X7M XFK XJT XSW Y6R YQT YSK YWH YYP YZZ ZA5 ZGI ZY4 ~02 ~KM - 02 08R 55 AAWZA ABFLS ABUFD ABZEH ACDCL ADACO ADBIT ADCOW AEILP AIZTS DL DZ ET FH7 GJ H13 KM LI MYA O0- OHM X XHC .7T 0R~ 29J 34G 39C 4.4 41~ 79B AALRI AAYJJ AAYWO AAYXX ABFSI ACSFO ACVFH ACYGS ADCNI ADNWM ADVLN ADXHL AEUPX AFPUW AIGII AITUG AKBMS AKRWK AKYEP AMRAJ AOIJS BAWUL CITATION E.L HYE QZG UKR ZE2 CGR CUY CVF ECM EIF NPM PKN Z5M 7TM M7N 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c446t-1cf8f73fe968bc04f3a73bc45b35d071f812da9b10f4368cd03bbabf8372c6893 |
ISSN | 0021-9258 |
IngestDate | Thu Jul 10 17:19:27 EDT 2025 Fri Jul 11 02:06:56 EDT 2025 Mon Jul 21 10:52:35 EDT 2025 Wed Feb 19 02:29:24 EST 2025 Tue Jul 01 00:20:17 EDT 2025 Thu Apr 24 22:54:31 EDT 2025 Tue Jan 05 14:52:03 EST 2021 Wed Dec 27 19:41:55 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c446t-1cf8f73fe968bc04f3a73bc45b35d071f812da9b10f4368cd03bbabf8372c6893 |
Notes | F60 9745371 F30 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | http://www.jbc.org/article/S0021925818350208/pdf |
PMID | 8910545 |
PQID | 15828037 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_78520216 proquest_miscellaneous_48893633 proquest_miscellaneous_15828037 pubmed_primary_8910545 crossref_primary_10_1074_jbc_271_46_28953 crossref_citationtrail_10_1074_jbc_271_46_28953 highwire_biochem_271_46_28953 fao_agris_US9745371 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1996-11-15 |
PublicationDateYYYYMMDD | 1996-11-15 |
PublicationDate_xml | – month: 11 year: 1996 text: 1996-11-15 day: 15 |
PublicationDecade | 1990 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 1996 |
Publisher | American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: American Society for Biochemistry and Molecular Biology |
References | Van den Berg (10.1074/jbc.271.46.28953_bib3) 1995; 231 Postma (10.1074/jbc.271.46.28953_bib26) 1989; 53 Lombardo (10.1074/jbc.271.46.28953_bib28) 1992; 12 DeVicenzi (10.1074/jbc.271.46.28953_bib9) 1970; 872 Klein (10.1074/jbc.271.46.28953_bib23) 1971; 106 Mercado (10.1074/jbc.271.46.28953_bib29) 1994; 224 Van Urk (10.1074/jbc.271.46.28953_bib27) 1990; 56 10.1074/jbc.271.46.28953_bib12 Petrik (10.1074/jbc.271.46.28953_bib5) 1983; 135 Holzer (10.1074/jbc.271.46.28953_bib1) 1957; 329 Kratzer (10.1074/jbc.271.46.28953_bib16) 1995; 161 Grundy (10.1074/jbc.271.46.28953_bib20) 1993; 10 Satyanarayana (10.1074/jbc.271.46.28953_bib13) 1976; 174 Satyanarayana (10.1074/jbc.271.46.28953_bib10) 1973; 115 Verduyn (10.1074/jbc.271.46.28953_bib7) 1991; 60 Verduyn (10.1074/jbc.271.46.28953_bib19) 1990; 136 DeVirgilio (10.1074/jbc.271.46.28953_bib15) 1992; 8 De Jong-Gubbels (10.1074/jbc.271.46.28953_bib25) 1995; 11 Sierkstra (10.1074/jbc.271.46.28953_bib24) 1992; 8 Zonneveld (10.1074/jbc.271.46.28953_bib17) 1986; 4 Verduyn (10.1074/jbc.271.46.28953_bib18) 1992; 8 Pronk (10.1074/jbc.271.46.28953_bib21) 1994; 170 Klein (10.1074/jbc.271.46.28953_bib11) 1979; 137 Frenkel (10.1074/jbc.271.46.28953_bib14) 1977; 252 Schmitt (10.1074/jbc.271.46.28953_bib22) 1990; 18 Pronk (10.1074/jbc.271.46.28953_bib2) 1994; 140 Van Urk (10.1074/jbc.271.46.28953_bib6) 1988; 4 Flikweert (10.1074/jbc.271.46.28953_bib4) 1996; 12 Satyanarayana (10.1074/jbc.271.46.28953_bib8) 1974; 341 |
References_xml | – volume: 170 start-page: 717 year: 1994 ident: 10.1074/jbc.271.46.28953_bib21 publication-title: Microbiology doi: 10.1099/00221287-140-4-717 – volume: 12 start-page: 247 year: 1996 ident: 10.1074/jbc.271.46.28953_bib4 publication-title: Yeast doi: 10.1002/(SICI)1097-0061(19960315)12:3<247::AID-YEA911>3.0.CO;2-I – volume: 231 start-page: 704 year: 1995 ident: 10.1074/jbc.271.46.28953_bib3 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1995.tb20751.x – volume: 8 start-page: 501 year: 1992 ident: 10.1074/jbc.271.46.28953_bib18 publication-title: Yeast doi: 10.1002/yea.320080703 – volume: 4 start-page: 283 year: 1988 ident: 10.1074/jbc.271.46.28953_bib6 publication-title: Yeast doi: 10.1002/yea.320040406 – volume: 115 start-page: 600 year: 1973 ident: 10.1074/jbc.271.46.28953_bib10 publication-title: J. Bacteriol. doi: 10.1128/jb.115.2.600-606.1973 – volume: 341 start-page: 396 year: 1974 ident: 10.1074/jbc.271.46.28953_bib8 publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2744(74)90232-0 – volume: 136 start-page: 395 year: 1990 ident: 10.1074/jbc.271.46.28953_bib19 publication-title: J. Gen. Microbiol. doi: 10.1099/00221287-136-3-395 – volume: 18 start-page: 3091 year: 1990 ident: 10.1074/jbc.271.46.28953_bib22 publication-title: Nucleic Acids Res. doi: 10.1093/nar/18.10.3091 – volume: 8 start-page: 1077 year: 1992 ident: 10.1074/jbc.271.46.28953_bib24 publication-title: Yeast doi: 10.1002/yea.320081210 – volume: 11 start-page: 407 year: 1995 ident: 10.1074/jbc.271.46.28953_bib25 publication-title: Yeast doi: 10.1002/yea.320110503 – volume: 137 start-page: 179 year: 1979 ident: 10.1074/jbc.271.46.28953_bib11 publication-title: J. Bacteriol. doi: 10.1128/jb.137.1.179-184.1979 – volume: 10 start-page: 259 year: 1993 ident: 10.1074/jbc.271.46.28953_bib20 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1993.tb01952.x – volume: 106 start-page: 596 year: 1971 ident: 10.1074/jbc.271.46.28953_bib23 publication-title: J. Bacteriol. doi: 10.1128/jb.106.2.596-602.1971 – volume: 12 start-page: 2941 year: 1992 ident: 10.1074/jbc.271.46.28953_bib28 publication-title: Mol. Cell. Biol. – volume: 140 start-page: 601 year: 1994 ident: 10.1074/jbc.271.46.28953_bib2 publication-title: Microbiology doi: 10.1099/00221287-140-3-601 – volume: 872 year: 1970 ident: 10.1074/jbc.271.46.28953_bib9 publication-title: Fed. Proc. – volume: 252 start-page: 504 year: 1977 ident: 10.1074/jbc.271.46.28953_bib14 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)32745-X – ident: 10.1074/jbc.271.46.28953_bib12 – volume: 224 start-page: 473 year: 1994 ident: 10.1074/jbc.271.46.28953_bib29 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1994.00473.x – volume: 135 start-page: 43 year: 1983 ident: 10.1074/jbc.271.46.28953_bib5 publication-title: J. Gen. Microbiol. – volume: 329 start-page: 175 year: 1957 ident: 10.1074/jbc.271.46.28953_bib1 publication-title: Biochem. Z. – volume: 53 start-page: 468 year: 1989 ident: 10.1074/jbc.271.46.28953_bib26 publication-title: Appl. Env. Microbiol. doi: 10.1128/aem.55.2.468-477.1989 – volume: 8 start-page: 1043 year: 1992 ident: 10.1074/jbc.271.46.28953_bib15 publication-title: Yeast doi: 10.1002/yea.320081207 – volume: 174 start-page: 480 year: 1976 ident: 10.1074/jbc.271.46.28953_bib13 publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(76)90376-3 – volume: 4 start-page: 287 year: 1986 ident: 10.1074/jbc.271.46.28953_bib17 publication-title: J. Microbiol. Methods doi: 10.1016/0167-7012(86)90040-0 – volume: 60 start-page: 325 year: 1991 ident: 10.1074/jbc.271.46.28953_bib7 publication-title: Antonie van Leeuwenhoek Int. J. Gen. Mol. Microbiol. doi: 10.1007/BF00430373 – volume: 56 start-page: 281 year: 1990 ident: 10.1074/jbc.271.46.28953_bib27 publication-title: Appl. Env. Microbiol. doi: 10.1128/aem.56.1.281-287.1990 – volume: 161 start-page: 75 year: 1995 ident: 10.1074/jbc.271.46.28953_bib16 publication-title: Gene (Amst.) doi: 10.1016/0378-1119(95)00289-I |
SSID | ssj0000491 |
Score | 1.9800565 |
Snippet | Saccharomyces cerevisiae contains two structural genes, ACS1 and ACS2, each encoding an active acetyl-coenzyme A synthetase. Characterization of enzyme... Saccharomyces cerevisiae contains two structural genes, ACS1 and ACS2 , each encoding an active acetyl-coenzyme A synthetase. Characterization of enzyme... |
SourceID | proquest pubmed crossref highwire fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 28953 |
SubjectTerms | acetate-CoA ligase Acetate-CoA Ligase - genetics Acetate-CoA Ligase - metabolism acetic acid ACIDE ACETIQUE ACIDO ACETICO ACTIVIDAD ENZIMATICA ACTIVITE ENZYMATIQUE aerobic conditions ARN MENSAJERO ARN MESSAGER drug effects enzyme activity enzymology ETANOL ETHANOL Ethanol - pharmacology EXPRESION GENICA EXPRESSION DES GENES Fermentation GENE gene expression Gene Expression Regulation, Enzymologic Gene Expression Regulation, Enzymologic - drug effects Gene Expression Regulation, Fungal Gene Expression Regulation, Fungal - drug effects GENES GENETICA genetics GENETIQUE GLUCOSA GLUCOSE Glucose - metabolism growth & development ISOENZIMAS ISOENZYME Isoenzymes Isoenzymes - metabolism isozymes Kinetics LIGASAS LIGASE messenger RNA metabolism pharmacology RNA, Messenger RNA, Messenger - genetics SACCHAROMYCES CEREVISIAE Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - growth & development structural genes TRANSCRIPCION TRANSCRIPTION transcription (genetics) Transcription, Genetic Transgenes |
Title | The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation |
URI | http://www.jbc.org/content/271/46/28953.abstract https://www.ncbi.nlm.nih.gov/pubmed/8910545 https://www.proquest.com/docview/15828037 https://www.proquest.com/docview/48893633 https://www.proquest.com/docview/78520216 |
Volume | 271 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa68QAvCDomCgz8gJDQlK6JndtjGRsTuyC0VuqbZTt2tVsyralQ9xPgT3McO01b2Li8RFVku62-7_icY58LQm8FzwIR6hAkLVYelTrxEsK1F8UyDYWUilYlhY5PooMh_TwKR63Wj4WopWkpuvL2t3kl_4MqvANcTZbsPyA7XxRewGfAF56AMDz_GuPyW7HNpSpnl54sVH47u1Ig7JNZDpZdCSqqCtU45dKkVxVXMxOAJavY3skZV64_ij2NBcfbpF0aa_QCbE9TyfXaHNXfmJqrNtLSKLZ6m6k6Aoxd969FG7fJNqvsXFvmyRYiqbvL1TCb5CnY-LY_uCCz4-ZoNTOL5GPv01QI0N9LqWiH4DPUEZkLF1tmtY9n5xcu38SNz1yOX2Ry-2xS5zzFwPfSwNZ0r7fpwLZqcXykS7tuktqKw7_oAzCQjD4QsgvTuzTqzocul94--cL2h0dHbLA3GqyhBwH4HKYdxuHXpvQ8uFK2_aL7be7OG75hZ3X9JRtnTfNiofr03Z5MZdEMnqDHDiLct7x6iloqb6ONfs5L4Al-h6vg4OrWpY0e7tbQbaDvADAG2uEV2uE-XqAdLjReoh1uaIct7bChHXa0w2WBHe1wQzsMKOMV2uGGds_QcH9vsHvguZYenqQ0Kj0fNgMdE63SKBGyRzXhMRGShoKEGVi7GuzNjKfC72nTGkFmPSIEFzohcSAjsK030Xpe5Oo5wpwnYEuBDqJK0SwWpplaAMBlkYylSEkH7dQgMOnq3Zu2K5esiruIKQPYGMDGaMQq2Dro_XzGta31cs_YNuDK-BhUMRueglcektjvoK0aZwbSZaRqZdabGnwGoJm7OZ6rYjphvrm-7pH47hGgaVMSkXvWiJMwAHZGHbRpeTX_Fwk4BeAqvfjj1JfoUSOQr9B6eTNVW2B1l-J1JQ0_Aems3cA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+two+acetyl-coenzyme+A+synthetases+of+Saccharomyces+cerevisiae+differ+with+respect+to+kinetic+properties+and+transcriptional+regulation&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=van+den+Berg%2C+M+A&rft.au=de+Jong-Gubbels%2C+P&rft.au=Kortland%2C+C+J&rft.au=van+Dijken%2C+J+P&rft.date=1996-11-15&rft.issn=0021-9258&rft.volume=271&rft.issue=46&rft.spage=28953&rft_id=info:doi/10.1074%2Fjbc.271.46.28953&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |