The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation

Saccharomyces cerevisiae contains two structural genes, ACS1 and ACS2, each encoding an active acetyl-coenzyme A synthetase. Characterization of enzyme activities in cell-free extracts from strains expressing either of the two genes revealed differences in the catalytic properties of the two enzymes...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 271; no. 46; pp. 28953 - 28959
Main Authors Berg, M.A. van den (Delft University of Technology, Delft, The Netherlands.), Jong-Gubbels, P. de, Kortland, C.J, Dijken, J.P. van, Pronk, J.T, Steensma, H.Y
Format Journal Article
LanguageEnglish
Published United States American Society for Biochemistry and Molecular Biology 15.11.1996
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Saccharomyces cerevisiae contains two structural genes, ACS1 and ACS2, each encoding an active acetyl-coenzyme A synthetase. Characterization of enzyme activities in cell-free extracts from strains expressing either of the two genes revealed differences in the catalytic properties of the two enzymes. The Km for acetate of Acs1p was about 30-fold lower than that of Acs2p and Acs1p, but not Acs2p, could use propionate as a substrate. Enzyme activity measurements and mRNA analyses showed that ACS1 and ACS2 were both expressed during carbon-limited growth on glucose, ethanol, and acetate in aerobic chemostat cultures. In anaerobic glucose-limited cultures, only the ACS2 gene was expressed. Based on these facts, the products of the ACS1 and ACS2 genes were identified as the previously described "aerobic" and "non-aerobic" forms of acetyl-coenzyme A synthetase, respectively. Batch and glucose-pulse experiments revealed that transcription of ACS1 is subject to glucose repression. A mutant strain lacking Acs2p was unable to grow on glucose in batch cultures, but grew readily in aerobic glucose-limited chemostat cultures, in which the low residual glucose concentration alleviated glucose repression. Experiments in which ethanol was pulsed to aerobic ethanol-limited chemostat cultures indicated that, in addition to glucose, ethanol also repressed ACS1 transcription, although to a lesser extent. In contrast, transcription of ACS2 was slightly induced by ethanol and glucose. Absence of ACS2 prevented complete glucose repression of ACS1, indicating that ACS2 (in)directly is involved in the transcriptional regulation of ACS1
AbstractList Saccharomyces cerevisiae contains two structural genes, ACS1 and ACS2, each encoding an active acetyl-coenzyme A synthetase. Characterization of enzyme activities in cell-free extracts from strains expressing either of the two genes revealed differences in the catalytic properties of the two enzymes. The Km for acetate of Acs1p was about 30-fold lower than that of Acs2p and Acs1p, but not Acs2p, could use propionate as a substrate. Enzyme activity measurements and mRNA analyses showed that ACS1 and ACS2 were both expressed during carbon-limited growth on glucose, ethanol, and acetate in aerobic chemostat cultures. In anaerobic glucose-limited cultures, only the ACS2 gene was expressed. Based on these facts, the products of the ACS1 and ACS2 genes were identified as the previously described "aerobic" and "non-aerobic" forms of acetyl-coenzyme A synthetase, respectively. Batch and glucose-pulse experiments revealed that transcription of ACS1 is subject to glucose repression. A mutant strain lacking Acs2p was unable to grow on glucose in batch cultures, but grew readily in aerobic glucose-limited chemostat cultures, in which the low residual glucose concentration alleviated glucose repression. Experiments in which ethanol was pulsed to aerobic ethanol-limited chemostat cultures indicated that, in addition to glucose, ethanol also repressed ACS1 transcription, although to a lesser extent. In contrast, transcription of ACS2 was slightly induced by ethanol and glucose. Absence of ACS2 prevented complete glucose repression of ACS1, indicating that ACS2 (in)directly is involved in the transcriptional regulation of ACS1
Saccharomyces cerevisiae contains two structural genes, ACS1 and ACS2, each encoding an active acetyl-coenzyme A synthetase. Characterization of enzyme activities in cell-free extracts from strains expressing either of the two genes revealed differences in the catalytic properties of the two enzymes. The K sub(m) for acetate of Acs1p was about 30-fold lower than that of Acs2p and Acs1p, but not Acs2p, could use propionate as a substrate. Enzyme activity measurements and mRNA analyses showed that ACS1 and ACS2 were both expressed during carbon-limited growth on glucose, ethanol, and acetate in aerobic chemostat cultures. In anaerobic glucose-limited cultures, only the ACS2 gene was expressed. Based on these facts, the products of the ACS1 and ACS2 genes were identified as the previously described "aerobic" and "non-aerobic" forms of acetyl-coenzyme A synthetase, respectively. Batch and glucose-pulse experiments revealed that transcription of ACS1 is subject to glucose repression. A mutant strain lacking Acs2p was unable to grow on glucose in batch cultures, but grew readily in aerobic glucose-limited chemostat cultures, in which the low residual glucose concentration alleviated glucose repression. Experiments in which ethanol was pulsed to aerobic ethanol-limited chemostat cultures indicated that, in addition to glucose, ethanol also repressed ACS1 transcription, although to a lesser extent. In contrast, transcription of ACS2 was slightly induced by ethanol and glucose. Absence of ACS2 prevented complete glucose repression of ACS1, indicating that ACS2 (in)directly is involved in the transcriptional regulation of ACS1.
Saccharomyces cerevisiae contains two structural genes, ACS1 and ACS2, each encoding an active acetyl-coenzyme A synthetase. Characterization of enzyme activities in cell-free extracts from strains expressing either of the two genes revealed differences in the catalytic properties of the two enzymes. The Km for acetate of Acs1p was about 30-fold lower than that of Acs2p and Acs1p, but not Acs2p, could use propionate as a substrate. Enzyme activity measurements and mRNA analyses showed that ACS1 and ACS2 were both expressed during carbon-limited growth on glucose, ethanol, and acetate in aerobic chemostat cultures. In anaerobic glucose-limited cultures, only the ACS2 gene was expressed. Based on these facts, the products of the ACS1 and ACS2 genes were identified as the previously described "aerobic" and "non-aerobic" forms of acetyl-coenzyme A synthetase, respectively. Batch and glucose-pulse experiments revealed that transcription of ACS1 is subject to glucose repression. A mutant strain lacking Acs2p was unable to grow on glucose in batch cultures, but grew readily in aerobic glucose-limited chemostat cultures, in which the low residual glucose concentration alleviated glucose repression. Experiments in which ethanol was pulsed to aerobic ethanol-limited chemostat cultures indicated that, in addition to glucose, ethanol also repressed ACS1 transcription, although to a lesser extent. In contrast, transcription of ACS2 was slightly induced by ethanol and glucose. Absence of ACS2 prevented complete glucose repression of ACS1, indicating that ACS2 (in)directly is involved in the transcriptional regulation of ACS1.Saccharomyces cerevisiae contains two structural genes, ACS1 and ACS2, each encoding an active acetyl-coenzyme A synthetase. Characterization of enzyme activities in cell-free extracts from strains expressing either of the two genes revealed differences in the catalytic properties of the two enzymes. The Km for acetate of Acs1p was about 30-fold lower than that of Acs2p and Acs1p, but not Acs2p, could use propionate as a substrate. Enzyme activity measurements and mRNA analyses showed that ACS1 and ACS2 were both expressed during carbon-limited growth on glucose, ethanol, and acetate in aerobic chemostat cultures. In anaerobic glucose-limited cultures, only the ACS2 gene was expressed. Based on these facts, the products of the ACS1 and ACS2 genes were identified as the previously described "aerobic" and "non-aerobic" forms of acetyl-coenzyme A synthetase, respectively. Batch and glucose-pulse experiments revealed that transcription of ACS1 is subject to glucose repression. A mutant strain lacking Acs2p was unable to grow on glucose in batch cultures, but grew readily in aerobic glucose-limited chemostat cultures, in which the low residual glucose concentration alleviated glucose repression. Experiments in which ethanol was pulsed to aerobic ethanol-limited chemostat cultures indicated that, in addition to glucose, ethanol also repressed ACS1 transcription, although to a lesser extent. In contrast, transcription of ACS2 was slightly induced by ethanol and glucose. Absence of ACS2 prevented complete glucose repression of ACS1, indicating that ACS2 (in)directly is involved in the transcriptional regulation of ACS1.
Saccharomyces cerevisiae contains two structural genes, ACS1 and ACS2 , each encoding an active acetyl-coenzyme A synthetase. Characterization of enzyme activities in cell-free extracts from strains expressing either of the two genes revealed differences in the catalytic properties of the two enzymes. The K m for acetate of Acs1p was about 30-fold lower than that of Acs2p and Acs1p, but not Acs2p, could use propionate as a substrate. Enzyme activity measurements and mRNA analyses showed that ACS1 and ACS2 were both expressed during carbon-limited growth on glucose, ethanol, and acetate in aerobic chemostat cultures. In anaerobic glucose-limited cultures, only the ACS2 gene was expressed. Based on these facts, the products of the ACS1 and ACS2 genes were identified as the previously described “aerobic” and “non-aerobic” forms of acetyl-coenzyme A synthetase, respectively. Batch and glucose-pulse experiments revealed that transcription of ACS1 is subject to glucose repression. A mutant strain lacking Acs2p was unable to grow on glucose in batch cultures, but grew readily in aerobic glucose-limited chemostat cultures, in which the low residual glucose concentration alleviated glucose repression. Experiments in which ethanol was pulsed to aerobic ethanol-limited chemostat cultures indicated that, in addition to glucose, ethanol also repressed ACS1 transcription, although to a lesser extent. In contrast, transcription of ACS2 was slightly induced by ethanol and glucose. Absence of ACS2 prevented complete glucose repression of ACS1 , indicating that ACS2 (in)directly is involved in the transcriptional regulation of ACS1 .
Saccharomyces cerevisiae contains two structural genes, ACS1 and ACS2, each encoding an active acetyl-coenzyme A synthetase. Characterization of enzyme activities in cell-free extracts from strains expressing either of the two genes revealed differences in the catalytic properties of the two enzymes. The Km for acetate of Acs1p was about 30-fold lower than that of Acs2p and Acs1p, but not Acs2p, could use propionate as a substrate. Enzyme activity measurements and mRNA analyses showed that ACS1 and ACS2 were both expressed during carbon-limited growth on glucose, ethanol, and acetate in aerobic chemostat cultures. In anaerobic glucose-limited cultures, only the ACS2 gene was expressed. Based on these facts, the products of the ACS1 and ACS2 genes were identified as the previously described "aerobic" and "non-aerobic" forms of acetyl-coenzyme A synthetase, respectively. Batch and glucose-pulse experiments revealed that transcription of ACS1 is subject to glucose repression. A mutant strain lacking Acs2p was unable to grow on glucose in batch cultures, but grew readily in aerobic glucose-limited chemostat cultures, in which the low residual glucose concentration alleviated glucose repression. Experiments in which ethanol was pulsed to aerobic ethanol-limited chemostat cultures indicated that, in addition to glucose, ethanol also repressed ACS1 transcription, although to a lesser extent. In contrast, transcription of ACS2 was slightly induced by ethanol and glucose. Absence of ACS2 prevented complete glucose repression of ACS1, indicating that ACS2 (in)directly is involved in the transcriptional regulation of ACS1.
Author Dijken, J.P. van
Steensma, H.Y
Berg, M.A. van den (Delft University of Technology, Delft, The Netherlands.)
Jong-Gubbels, P. de
Kortland, C.J
Pronk, J.T
Author_xml – sequence: 1
  fullname: Berg, M.A. van den (Delft University of Technology, Delft, The Netherlands.)
– sequence: 2
  fullname: Jong-Gubbels, P. de
– sequence: 3
  fullname: Kortland, C.J
– sequence: 4
  fullname: Dijken, J.P. van
– sequence: 5
  fullname: Pronk, J.T
– sequence: 6
  fullname: Steensma, H.Y
BackLink https://www.ncbi.nlm.nih.gov/pubmed/8910545$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9rHCEUx6WkpJu091IoeCi9zVZHZ3SOIfQXBHpIAr2JOs8d05lxq26X6Z_Qv7omu_SQQ-NF9H0-j8f7nqGTOcyA0GtK1pQI_uHO2HUt6Jq361p2DXuGVpRIVrGGfj9BK0JqWnV1I1-gs5TuSDm8o6foVHaUNLxZoT83A-C8D1hbyMtY2QDz72UCfIHTMucBsk6QcHD4Wls76BimxZYPCxF--eQ14N47BxHvfR5whLQFm3EO-IefIXuLtzFsIWZfJD33OEc9Jxv9Nvsw67EYm92o7x8v0XOnxwSvjvc5uv308ebyS3X17fPXy4urynLe5opaJ51gDrpWGku4Y1owY3ljWNMTQZ2kda87Q4njrJW2J8wYbZxkorat7Ng5en_oWyb7uYOU1eSThXHUM4RdUkI2ddlb-yTIZenWMvYkSBtZS8JEAd8ewZ2ZoFfb6CcdF3WMo9TJoW5jSCmC-0dQou4DVyVwVQJXvFUPgRelfaRYnx_2WTbtx_-J7w7i4DfD3kdQxgc7wPQYe3PAnA5Kb6JP6va6E2VYQdlf8OfHaw
CitedBy_id crossref_primary_10_1002_bit_27456
crossref_primary_10_1515_ijfe_2018_0003
crossref_primary_10_1007_s10068_012_0047_8
crossref_primary_10_1099_00221287_144_12_3437
crossref_primary_10_1016_j_femsyr_2004_09_009
crossref_primary_10_1093_femsyr_fow072
crossref_primary_10_1186_1471_2164_9_530
crossref_primary_10_1128_AEM_01772_09
crossref_primary_10_1111_tpj_12568
crossref_primary_10_1186_s12896_017_0376_z
crossref_primary_10_1093_nar_gkp270
crossref_primary_10_1093_femsyr_foad048
crossref_primary_10_1074_jbc_M309578200
crossref_primary_10_1007_s00253_016_7662_x
crossref_primary_10_1016_j_cmet_2014_03_027
crossref_primary_10_1093_femsle_fnu042
crossref_primary_10_1128_AEM_03136_18
crossref_primary_10_1371_journal_pgen_1006626
crossref_primary_10_1128_EC_00189_14
crossref_primary_10_1128_AEM_01445_07
crossref_primary_10_1074_jbc_M004160200
crossref_primary_10_1002_bit_26377
crossref_primary_10_34133_bdr_0026
crossref_primary_10_1016_j_jbiotec_2005_09_016
crossref_primary_10_1007_s00253_014_6343_x
crossref_primary_10_1016_j_mec_2020_e00158
crossref_primary_10_1002_bit_27508
crossref_primary_10_1186_1752_0509_4_145
crossref_primary_10_1186_s12934_016_0465_z
crossref_primary_10_1128_aem_01857_21
crossref_primary_10_1038_nature19769
crossref_primary_10_1007_s00203_022_03269_y
crossref_primary_10_1093_femsyr_fow006
crossref_primary_10_1038_nrendo_2015_181
crossref_primary_10_1002_bit_10513
crossref_primary_10_1002_jctb_6787
crossref_primary_10_1016_j_exger_2010_02_008
crossref_primary_10_1038_msb_2011_80
crossref_primary_10_1194_jlr_M070748
crossref_primary_10_1016_j_bbamcr_2012_11_008
crossref_primary_10_1016_j_synbio_2022_12_007
crossref_primary_10_1038_s41467_021_25241_y
crossref_primary_10_1111_j_1574_6968_1998_tb13121_x
crossref_primary_10_1128_AEM_66_8_3151_3159_2000
crossref_primary_10_1016_j_ymben_2014_11_009
crossref_primary_10_1111_1751_7915_12080
crossref_primary_10_3389_fmicb_2017_01137
crossref_primary_10_1016_j_enzmictec_2022_110091
crossref_primary_10_1002_bit_26021
crossref_primary_10_1016_j_fm_2014_07_001
crossref_primary_10_1104_pp_008110
crossref_primary_10_1128_MMBR_69_1_12_50_2005
crossref_primary_10_1016_j_bbalip_2016_04_002
crossref_primary_10_1016_j_ymben_2013_11_005
crossref_primary_10_1007_s10529_015_2006_y
crossref_primary_10_1128_EC_00253_08
crossref_primary_10_1038_s41598_020_66997_5
crossref_primary_10_1002_j_2050_0416_2001_tb00083_x
crossref_primary_10_1128_EC_00080_10
crossref_primary_10_3389_fbioe_2022_826787
crossref_primary_10_1002__SICI_1097_0061_200005_16_7_611__AID_YEA558_3_0_CO_2_Z
crossref_primary_10_1093_femsyr_foy077
crossref_primary_10_1091_mbc_12_2_297
crossref_primary_10_1016_j_molcel_2006_05_040
crossref_primary_10_1016_j_algal_2016_09_025
crossref_primary_10_1038_s42003_024_06595_7
crossref_primary_10_1074_jbc_274_30_21044
crossref_primary_10_1111_j_1365_2672_2007_03381_x
crossref_primary_10_1002_1097_0290_20001020_70_2_197__AID_BIT9_3_0_CO_2_D
crossref_primary_10_1093_femsyr_fov004
crossref_primary_10_1186_s12934_018_0925_8
crossref_primary_10_1021_acsinfecdis_5b00134
crossref_primary_10_1042_BSR20170157
crossref_primary_10_1074_mcp_M200001_MCP200
crossref_primary_10_1099_mic_0_2006_002873_0
crossref_primary_10_1021_acs_jafc_9b03370
crossref_primary_10_1021_acs_jafc_7b02507
crossref_primary_10_1128_AEM_71_6_3276_3284_2005
crossref_primary_10_1038_s42003_023_05633_0
crossref_primary_10_1186_1752_0509_8_16
crossref_primary_10_1111_j_1574_6976_2000_tb00553_x
crossref_primary_10_1186_s13068_020_01838_1
crossref_primary_10_1016_S1389_1723_01_80040_2
crossref_primary_10_1128_AEM_01121_08
crossref_primary_10_1186_1471_2164_9_100
crossref_primary_10_1038_s41598_019_39489_4
crossref_primary_10_1038_s41589_022_01091_7
crossref_primary_10_3390_fermentation9110984
crossref_primary_10_3389_fcell_2019_00301
crossref_primary_10_1371_journal_pone_0058455
crossref_primary_10_1038_ng1523
crossref_primary_10_1038_s42255_021_00412_9
crossref_primary_10_1039_c1mb05250k
crossref_primary_10_1111_j_1567_1364_2008_00472_x
crossref_primary_10_1128_AEM_69_8_4534_4541_2003
crossref_primary_10_1016_j_ymben_2008_02_002
crossref_primary_10_1038_onc_2010_206
crossref_primary_10_1074_jbc_M209759200
crossref_primary_10_1016_j_renene_2024_120281
crossref_primary_10_1016_j_procbio_2020_01_002
crossref_primary_10_1128_AEM_00602_08
crossref_primary_10_1021_bm5006382
crossref_primary_10_1016_j_ymben_2006_10_005
crossref_primary_10_1111_j_1365_2958_2004_03994_x
crossref_primary_10_1016_j_ymben_2016_07_008
crossref_primary_10_1074_jbc_M204490200
crossref_primary_10_1186_1475_2859_13_39
crossref_primary_10_1016_S0014_5793_97_01085_5
crossref_primary_10_1002__SICI_1097_0061_19980915_14_12_1089__AID_YEA312_3_0_CO_2_K
crossref_primary_10_1038_msb4100069
crossref_primary_10_1099_00221287_144_3_665
crossref_primary_10_1016_j_molcel_2011_05_004
crossref_primary_10_1099_mic_0_030213_0
crossref_primary_10_1128_JB_181_24_7409_7413_1999
crossref_primary_10_1128_JB_182_24_7007_7013_2000
crossref_primary_10_1111_j_1567_1364_2012_00831_x
crossref_primary_10_1111_jam_13733
crossref_primary_10_1016_j_resmic_2005_03_003
crossref_primary_10_3390_ijms21228777
crossref_primary_10_1002_bit_10305
crossref_primary_10_1002_elsc_201600040
crossref_primary_10_1002_jctb_6587
crossref_primary_10_1016_j_cmet_2014_02_010
crossref_primary_10_1002_bit_21286
crossref_primary_10_1111_j_1365_2672_2007_03608_x
crossref_primary_10_1111_j_1472_765X_2004_01563_x
crossref_primary_10_1016_j_cell_2009_01_033
crossref_primary_10_1111_j_1432_1033_2004_04255_x
crossref_primary_10_1021_acssynbio_4c00529
crossref_primary_10_1111_j_1567_1364_2007_00220_x
crossref_primary_10_1074_jbc_M116_753624
crossref_primary_10_1016_j_funbio_2025_101545
crossref_primary_10_1128_mBio_01696_14
crossref_primary_10_1155_2013_802870
crossref_primary_10_1111_j_1574_6968_1997_tb10466_x
crossref_primary_10_1002_yea_1081
crossref_primary_10_1007_s11157_024_09682_7
crossref_primary_10_1073_pnas_0604883103
crossref_primary_10_1016_j_biotechadv_2021_107736
crossref_primary_10_1186_s13068_019_1466_z
crossref_primary_10_1007_s00018_019_03342_8
crossref_primary_10_1007_s13238_021_00846_7
crossref_primary_10_1007_s11274_021_03082_7
crossref_primary_10_1002_bit_22668
crossref_primary_10_1073_pnas_2020197117
crossref_primary_10_1016_j_jbiotec_2012_05_025
crossref_primary_10_1002_yea_3827
crossref_primary_10_1074_mcp_M400087_MCP200
crossref_primary_10_1016_j_fgb_2016_07_012
crossref_primary_10_1016_S0168_1656_01_00269_3
crossref_primary_10_1101_gr_3992505
crossref_primary_10_1002_ejlt_201100264
crossref_primary_10_1002_yea_1807
crossref_primary_10_1152_ajpendo_00189_2001
crossref_primary_10_1371_journal_pone_0144981
crossref_primary_10_1111_1567_1364_12217
crossref_primary_10_1111_mmi_13595
crossref_primary_10_1093_femsyr_fow017
crossref_primary_10_1128_JB_01961_14
crossref_primary_10_1155_2006_738517
crossref_primary_10_1016_j_femsyr_2005_04_003
crossref_primary_10_1099_mic_0_025775_0
crossref_primary_10_1111_j_1567_1364_2007_00234_x
crossref_primary_10_1007_s11010_009_0209_z
crossref_primary_10_1016_j_cell_2014_11_020
crossref_primary_10_1126_science_278_5338_680
crossref_primary_10_1186_s12934_023_02137_8
crossref_primary_10_1186_1471_2164_13_62
crossref_primary_10_1002_bies_20296
crossref_primary_10_1042_BJ20050556
crossref_primary_10_1073_pnas_0402317101
crossref_primary_10_1074_jbc_M410573200
crossref_primary_10_1017_S0953756297004462
crossref_primary_10_1074_jbc_M709654200
crossref_primary_10_1111_j_1574_695X_2007_00277_x
crossref_primary_10_1007_s00253_004_1697_0
crossref_primary_10_1016_j_micres_2010_10_004
crossref_primary_10_1016_j_synbio_2021_12_010
crossref_primary_10_1111_j_1567_1364_2007_00242_x
crossref_primary_10_1002_yea_936
crossref_primary_10_1186_s12934_019_1072_6
crossref_primary_10_1128_MCB_00198_13
crossref_primary_10_1038_ng0305_214
crossref_primary_10_3390_fermentation8100480
crossref_primary_10_1016_j_bbagen_2013_10_020
Cites_doi 10.1099/00221287-140-4-717
10.1002/(SICI)1097-0061(19960315)12:3<247::AID-YEA911>3.0.CO;2-I
10.1111/j.1432-1033.1995.tb20751.x
10.1002/yea.320080703
10.1002/yea.320040406
10.1128/jb.115.2.600-606.1973
10.1016/0005-2744(74)90232-0
10.1099/00221287-136-3-395
10.1093/nar/18.10.3091
10.1002/yea.320081210
10.1002/yea.320110503
10.1128/jb.137.1.179-184.1979
10.1111/j.1365-2958.1993.tb01952.x
10.1128/jb.106.2.596-602.1971
10.1099/00221287-140-3-601
10.1016/S0021-9258(17)32745-X
10.1111/j.1432-1033.1994.00473.x
10.1128/aem.55.2.468-477.1989
10.1002/yea.320081207
10.1016/0003-9861(76)90376-3
10.1016/0167-7012(86)90040-0
10.1007/BF00430373
10.1128/aem.56.1.281-287.1990
10.1016/0378-1119(95)00289-I
ContentType Journal Article
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
M7N
7S9
L.6
7X8
DOI 10.1074/jbc.271.46.28953
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic

AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1083-351X
EndPage 28959
ExternalDocumentID 8910545
10_1074_jbc_271_46_28953
271_46_28953
US9745371
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-ET
-~X
.55
.GJ
0SF
186
18M
2WC
3O-
53G
5BI
5GY
5RE
5VS
6TJ
85S
AAEDW
AAFWJ
AARDX
AAXUO
AAYOK
ABDNZ
ABOCM
ABPPZ
ABPTK
ABRJW
ABTAH
ACGFO
ACNCT
ADBBV
ADIYS
AENEX
AEQTP
AEXQZ
AFFNX
AFMIJ
AFOSN
AFPKN
AI.
ALMA_UNASSIGNED_HOLDINGS
BTFSW
C1A
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F20
F5P
FA8
FBQ
FDB
FRP
GROUPED_DOAJ
GX1
HH5
IH2
J5H
KQ8
L7B
MVM
N9A
NHB
OHT
OK1
P-O
P0W
P2P
R.V
RHF
RHI
RNS
ROL
RPM
SJN
TBC
TN5
TR2
UHB
UPT
UQL
VH1
VQA
W8F
WH7
WHG
WOQ
X7M
XFK
XJT
XSW
Y6R
YQT
YSK
YWH
YYP
YZZ
ZA5
ZGI
ZY4
~02
~KM
-
02
08R
55
AAWZA
ABFLS
ABUFD
ABZEH
ACDCL
ADACO
ADBIT
ADCOW
AEILP
AIZTS
DL
DZ
ET
FH7
GJ
H13
KM
LI
MYA
O0-
OHM
X
XHC
.7T
0R~
29J
34G
39C
4.4
41~
79B
AALRI
AAYJJ
AAYWO
AAYXX
ABFSI
ACSFO
ACVFH
ACYGS
ADCNI
ADNWM
ADVLN
ADXHL
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
AMRAJ
AOIJS
BAWUL
CITATION
E.L
HYE
QZG
UKR
ZE2
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7TM
M7N
7S9
L.6
7X8
ID FETCH-LOGICAL-c446t-1cf8f73fe968bc04f3a73bc45b35d071f812da9b10f4368cd03bbabf8372c6893
ISSN 0021-9258
IngestDate Thu Jul 10 17:19:27 EDT 2025
Fri Jul 11 02:06:56 EDT 2025
Mon Jul 21 10:52:35 EDT 2025
Wed Feb 19 02:29:24 EST 2025
Tue Jul 01 00:20:17 EDT 2025
Thu Apr 24 22:54:31 EDT 2025
Tue Jan 05 14:52:03 EST 2021
Wed Dec 27 19:41:55 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 46
Language English
License http://creativecommons.org/licenses/by/4.0
https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c446t-1cf8f73fe968bc04f3a73bc45b35d071f812da9b10f4368cd03bbabf8372c6893
Notes F60
9745371
F30
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink http://www.jbc.org/article/S0021925818350208/pdf
PMID 8910545
PQID 15828037
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_78520216
proquest_miscellaneous_48893633
proquest_miscellaneous_15828037
pubmed_primary_8910545
crossref_primary_10_1074_jbc_271_46_28953
crossref_citationtrail_10_1074_jbc_271_46_28953
highwire_biochem_271_46_28953
fao_agris_US9745371
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1996-11-15
PublicationDateYYYYMMDD 1996-11-15
PublicationDate_xml – month: 11
  year: 1996
  text: 1996-11-15
  day: 15
PublicationDecade 1990
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of biological chemistry
PublicationTitleAlternate J Biol Chem
PublicationYear 1996
Publisher American Society for Biochemistry and Molecular Biology
Publisher_xml – name: American Society for Biochemistry and Molecular Biology
References Van den Berg (10.1074/jbc.271.46.28953_bib3) 1995; 231
Postma (10.1074/jbc.271.46.28953_bib26) 1989; 53
Lombardo (10.1074/jbc.271.46.28953_bib28) 1992; 12
DeVicenzi (10.1074/jbc.271.46.28953_bib9) 1970; 872
Klein (10.1074/jbc.271.46.28953_bib23) 1971; 106
Mercado (10.1074/jbc.271.46.28953_bib29) 1994; 224
Van Urk (10.1074/jbc.271.46.28953_bib27) 1990; 56
10.1074/jbc.271.46.28953_bib12
Petrik (10.1074/jbc.271.46.28953_bib5) 1983; 135
Holzer (10.1074/jbc.271.46.28953_bib1) 1957; 329
Kratzer (10.1074/jbc.271.46.28953_bib16) 1995; 161
Grundy (10.1074/jbc.271.46.28953_bib20) 1993; 10
Satyanarayana (10.1074/jbc.271.46.28953_bib13) 1976; 174
Satyanarayana (10.1074/jbc.271.46.28953_bib10) 1973; 115
Verduyn (10.1074/jbc.271.46.28953_bib7) 1991; 60
Verduyn (10.1074/jbc.271.46.28953_bib19) 1990; 136
DeVirgilio (10.1074/jbc.271.46.28953_bib15) 1992; 8
De Jong-Gubbels (10.1074/jbc.271.46.28953_bib25) 1995; 11
Sierkstra (10.1074/jbc.271.46.28953_bib24) 1992; 8
Zonneveld (10.1074/jbc.271.46.28953_bib17) 1986; 4
Verduyn (10.1074/jbc.271.46.28953_bib18) 1992; 8
Pronk (10.1074/jbc.271.46.28953_bib21) 1994; 170
Klein (10.1074/jbc.271.46.28953_bib11) 1979; 137
Frenkel (10.1074/jbc.271.46.28953_bib14) 1977; 252
Schmitt (10.1074/jbc.271.46.28953_bib22) 1990; 18
Pronk (10.1074/jbc.271.46.28953_bib2) 1994; 140
Van Urk (10.1074/jbc.271.46.28953_bib6) 1988; 4
Flikweert (10.1074/jbc.271.46.28953_bib4) 1996; 12
Satyanarayana (10.1074/jbc.271.46.28953_bib8) 1974; 341
References_xml – volume: 170
  start-page: 717
  year: 1994
  ident: 10.1074/jbc.271.46.28953_bib21
  publication-title: Microbiology
  doi: 10.1099/00221287-140-4-717
– volume: 12
  start-page: 247
  year: 1996
  ident: 10.1074/jbc.271.46.28953_bib4
  publication-title: Yeast
  doi: 10.1002/(SICI)1097-0061(19960315)12:3<247::AID-YEA911>3.0.CO;2-I
– volume: 231
  start-page: 704
  year: 1995
  ident: 10.1074/jbc.271.46.28953_bib3
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1995.tb20751.x
– volume: 8
  start-page: 501
  year: 1992
  ident: 10.1074/jbc.271.46.28953_bib18
  publication-title: Yeast
  doi: 10.1002/yea.320080703
– volume: 4
  start-page: 283
  year: 1988
  ident: 10.1074/jbc.271.46.28953_bib6
  publication-title: Yeast
  doi: 10.1002/yea.320040406
– volume: 115
  start-page: 600
  year: 1973
  ident: 10.1074/jbc.271.46.28953_bib10
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.115.2.600-606.1973
– volume: 341
  start-page: 396
  year: 1974
  ident: 10.1074/jbc.271.46.28953_bib8
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2744(74)90232-0
– volume: 136
  start-page: 395
  year: 1990
  ident: 10.1074/jbc.271.46.28953_bib19
  publication-title: J. Gen. Microbiol.
  doi: 10.1099/00221287-136-3-395
– volume: 18
  start-page: 3091
  year: 1990
  ident: 10.1074/jbc.271.46.28953_bib22
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/18.10.3091
– volume: 8
  start-page: 1077
  year: 1992
  ident: 10.1074/jbc.271.46.28953_bib24
  publication-title: Yeast
  doi: 10.1002/yea.320081210
– volume: 11
  start-page: 407
  year: 1995
  ident: 10.1074/jbc.271.46.28953_bib25
  publication-title: Yeast
  doi: 10.1002/yea.320110503
– volume: 137
  start-page: 179
  year: 1979
  ident: 10.1074/jbc.271.46.28953_bib11
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.137.1.179-184.1979
– volume: 10
  start-page: 259
  year: 1993
  ident: 10.1074/jbc.271.46.28953_bib20
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.1993.tb01952.x
– volume: 106
  start-page: 596
  year: 1971
  ident: 10.1074/jbc.271.46.28953_bib23
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.106.2.596-602.1971
– volume: 12
  start-page: 2941
  year: 1992
  ident: 10.1074/jbc.271.46.28953_bib28
  publication-title: Mol. Cell. Biol.
– volume: 140
  start-page: 601
  year: 1994
  ident: 10.1074/jbc.271.46.28953_bib2
  publication-title: Microbiology
  doi: 10.1099/00221287-140-3-601
– volume: 872
  year: 1970
  ident: 10.1074/jbc.271.46.28953_bib9
  publication-title: Fed. Proc.
– volume: 252
  start-page: 504
  year: 1977
  ident: 10.1074/jbc.271.46.28953_bib14
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)32745-X
– ident: 10.1074/jbc.271.46.28953_bib12
– volume: 224
  start-page: 473
  year: 1994
  ident: 10.1074/jbc.271.46.28953_bib29
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1994.00473.x
– volume: 135
  start-page: 43
  year: 1983
  ident: 10.1074/jbc.271.46.28953_bib5
  publication-title: J. Gen. Microbiol.
– volume: 329
  start-page: 175
  year: 1957
  ident: 10.1074/jbc.271.46.28953_bib1
  publication-title: Biochem. Z.
– volume: 53
  start-page: 468
  year: 1989
  ident: 10.1074/jbc.271.46.28953_bib26
  publication-title: Appl. Env. Microbiol.
  doi: 10.1128/aem.55.2.468-477.1989
– volume: 8
  start-page: 1043
  year: 1992
  ident: 10.1074/jbc.271.46.28953_bib15
  publication-title: Yeast
  doi: 10.1002/yea.320081207
– volume: 174
  start-page: 480
  year: 1976
  ident: 10.1074/jbc.271.46.28953_bib13
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(76)90376-3
– volume: 4
  start-page: 287
  year: 1986
  ident: 10.1074/jbc.271.46.28953_bib17
  publication-title: J. Microbiol. Methods
  doi: 10.1016/0167-7012(86)90040-0
– volume: 60
  start-page: 325
  year: 1991
  ident: 10.1074/jbc.271.46.28953_bib7
  publication-title: Antonie van Leeuwenhoek Int. J. Gen. Mol. Microbiol.
  doi: 10.1007/BF00430373
– volume: 56
  start-page: 281
  year: 1990
  ident: 10.1074/jbc.271.46.28953_bib27
  publication-title: Appl. Env. Microbiol.
  doi: 10.1128/aem.56.1.281-287.1990
– volume: 161
  start-page: 75
  year: 1995
  ident: 10.1074/jbc.271.46.28953_bib16
  publication-title: Gene (Amst.)
  doi: 10.1016/0378-1119(95)00289-I
SSID ssj0000491
Score 1.9800565
Snippet Saccharomyces cerevisiae contains two structural genes, ACS1 and ACS2, each encoding an active acetyl-coenzyme A synthetase. Characterization of enzyme...
Saccharomyces cerevisiae contains two structural genes, ACS1 and ACS2 , each encoding an active acetyl-coenzyme A synthetase. Characterization of enzyme...
SourceID proquest
pubmed
crossref
highwire
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 28953
SubjectTerms acetate-CoA ligase
Acetate-CoA Ligase - genetics
Acetate-CoA Ligase - metabolism
acetic acid
ACIDE ACETIQUE
ACIDO ACETICO
ACTIVIDAD ENZIMATICA
ACTIVITE ENZYMATIQUE
aerobic conditions
ARN MENSAJERO
ARN MESSAGER
drug effects
enzyme activity
enzymology
ETANOL
ETHANOL
Ethanol - pharmacology
EXPRESION GENICA
EXPRESSION DES GENES
Fermentation
GENE
gene expression
Gene Expression Regulation, Enzymologic
Gene Expression Regulation, Enzymologic - drug effects
Gene Expression Regulation, Fungal
Gene Expression Regulation, Fungal - drug effects
GENES
GENETICA
genetics
GENETIQUE
GLUCOSA
GLUCOSE
Glucose - metabolism
growth & development
ISOENZIMAS
ISOENZYME
Isoenzymes
Isoenzymes - metabolism
isozymes
Kinetics
LIGASAS
LIGASE
messenger RNA
metabolism
pharmacology
RNA, Messenger
RNA, Messenger - genetics
SACCHAROMYCES CEREVISIAE
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
structural genes
TRANSCRIPCION
TRANSCRIPTION
transcription (genetics)
Transcription, Genetic
Transgenes
Title The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation
URI http://www.jbc.org/content/271/46/28953.abstract
https://www.ncbi.nlm.nih.gov/pubmed/8910545
https://www.proquest.com/docview/15828037
https://www.proquest.com/docview/48893633
https://www.proquest.com/docview/78520216
Volume 271
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa68QAvCDomCgz8gJDQlK6JndtjGRsTuyC0VuqbZTt2tVsyralQ9xPgT3McO01b2Li8RFVku62-7_icY58LQm8FzwIR6hAkLVYelTrxEsK1F8UyDYWUilYlhY5PooMh_TwKR63Wj4WopWkpuvL2t3kl_4MqvANcTZbsPyA7XxRewGfAF56AMDz_GuPyW7HNpSpnl54sVH47u1Ig7JNZDpZdCSqqCtU45dKkVxVXMxOAJavY3skZV64_ij2NBcfbpF0aa_QCbE9TyfXaHNXfmJqrNtLSKLZ6m6k6Aoxd969FG7fJNqvsXFvmyRYiqbvL1TCb5CnY-LY_uCCz4-ZoNTOL5GPv01QI0N9LqWiH4DPUEZkLF1tmtY9n5xcu38SNz1yOX2Ry-2xS5zzFwPfSwNZ0r7fpwLZqcXykS7tuktqKw7_oAzCQjD4QsgvTuzTqzocul94--cL2h0dHbLA3GqyhBwH4HKYdxuHXpvQ8uFK2_aL7be7OG75hZ3X9JRtnTfNiofr03Z5MZdEMnqDHDiLct7x6iloqb6ONfs5L4Al-h6vg4OrWpY0e7tbQbaDvADAG2uEV2uE-XqAdLjReoh1uaIct7bChHXa0w2WBHe1wQzsMKOMV2uGGds_QcH9vsHvguZYenqQ0Kj0fNgMdE63SKBGyRzXhMRGShoKEGVi7GuzNjKfC72nTGkFmPSIEFzohcSAjsK030Xpe5Oo5wpwnYEuBDqJK0SwWpplaAMBlkYylSEkH7dQgMOnq3Zu2K5esiruIKQPYGMDGaMQq2Dro_XzGta31cs_YNuDK-BhUMRueglcektjvoK0aZwbSZaRqZdabGnwGoJm7OZ6rYjphvrm-7pH47hGgaVMSkXvWiJMwAHZGHbRpeTX_Fwk4BeAqvfjj1JfoUSOQr9B6eTNVW2B1l-J1JQ0_Aems3cA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+two+acetyl-coenzyme+A+synthetases+of+Saccharomyces+cerevisiae+differ+with+respect+to+kinetic+properties+and+transcriptional+regulation&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=van+den+Berg%2C+M+A&rft.au=de+Jong-Gubbels%2C+P&rft.au=Kortland%2C+C+J&rft.au=van+Dijken%2C+J+P&rft.date=1996-11-15&rft.issn=0021-9258&rft.volume=271&rft.issue=46&rft.spage=28953&rft_id=info:doi/10.1074%2Fjbc.271.46.28953&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon