Friction Stir Welding of Aluminum in the Aerospace Industry: The Current Progress and State-of-the-Art Review
The use of the friction stir welding (FSW) process as a relatively new solid-state welding technology in the aerospace industry has pushed forward several developments in different related aspects of this strategic industry. In terms of the FSW process itself, due to the geometric limitations involv...
Saved in:
Published in | Materials Vol. 16; no. 8; p. 2971 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
08.04.2023
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1996-1944 1996-1944 |
DOI | 10.3390/ma16082971 |
Cover
Loading…
Abstract | The use of the friction stir welding (FSW) process as a relatively new solid-state welding technology in the aerospace industry has pushed forward several developments in different related aspects of this strategic industry. In terms of the FSW process itself, due to the geometric limitations involved in the conventional FSW process, many variants have been required over time to suit the different types of geometries and structures, which has resulted in the development of numerous variants such as refill friction stir spot welding (RFSSW), stationary shoulder friction stir welding (SSFSW), and bobbin tool friction stir welding (BTFSW). In terms of FSW machines, significant development has occurred in the new design and adaptation of the existing machining equipment through the use of their structures or the new and specially designed FSW heads. In terms of the most used materials in the aerospace industry, there has been development of new high strength-to-weight ratios such as the 3rd generation aluminum–lithium alloys that have become successfully weldable by FSW with fewer welding defects and a significant improvement in the weld quality and geometric accuracy. The purpose of this article is to summarize the state of knowledge regarding the application of the FSW process to join materials used in the aerospace industry and to identify gaps in the state of the art. This work describes the fundamental techniques and tools necessary to make soundly welded joints. Typical applications of FSW processes are surveyed, including friction stir spot welding, RFSSW, SSFSW, BTFSW, and underwater FSW. Conclusions and suggestions for future development are proposed. |
---|---|
AbstractList | The use of the friction stir welding (FSW) process as a relatively new solid-state welding technology in the aerospace industry has pushed forward several developments in different related aspects of this strategic industry. In terms of the FSW process itself, due to the geometric limitations involved in the conventional FSW process, many variants have been required over time to suit the different types of geometries and structures, which has resulted in the development of numerous variants such as refill friction stir spot welding (RFSSW), stationary shoulder friction stir welding (SSFSW), and bobbin tool friction stir welding (BTFSW). In terms of FSW machines, significant development has occurred in the new design and adaptation of the existing machining equipment through the use of their structures or the new and specially designed FSW heads. In terms of the most used materials in the aerospace industry, there has been development of new high strength-to-weight ratios such as the 3rd generation aluminum–lithium alloys that have become successfully weldable by FSW with fewer welding defects and a significant improvement in the weld quality and geometric accuracy. The purpose of this article is to summarize the state of knowledge regarding the application of the FSW process to join materials used in the aerospace industry and to identify gaps in the state of the art. This work describes the fundamental techniques and tools necessary to make soundly welded joints. Typical applications of FSW processes are surveyed, including friction stir spot welding, RFSSW, SSFSW, BTFSW, and underwater FSW. Conclusions and suggestions for future development are proposed. The use of the friction stir welding (FSW) process as a relatively new solid-state welding technology in the aerospace industry has pushed forward several developments in different related aspects of this strategic industry. In terms of the FSW process itself, due to the geometric limitations involved in the conventional FSW process, many variants have been required over time to suit the different types of geometries and structures, which has resulted in the development of numerous variants such as refill friction stir spot welding (RFSSW), stationary shoulder friction stir welding (SSFSW), and bobbin tool friction stir welding (BTFSW). In terms of FSW machines, significant development has occurred in the new design and adaptation of the existing machining equipment through the use of their structures or the new and specially designed FSW heads. In terms of the most used materials in the aerospace industry, there has been development of new high strength-to-weight ratios such as the 3rd generation aluminum-lithium alloys that have become successfully weldable by FSW with fewer welding defects and a significant improvement in the weld quality and geometric accuracy. The purpose of this article is to summarize the state of knowledge regarding the application of the FSW process to join materials used in the aerospace industry and to identify gaps in the state of the art. This work describes the fundamental techniques and tools necessary to make soundly welded joints. Typical applications of FSW processes are surveyed, including friction stir spot welding, RFSSW, SSFSW, BTFSW, and underwater FSW. Conclusions and suggestions for future development are proposed.The use of the friction stir welding (FSW) process as a relatively new solid-state welding technology in the aerospace industry has pushed forward several developments in different related aspects of this strategic industry. In terms of the FSW process itself, due to the geometric limitations involved in the conventional FSW process, many variants have been required over time to suit the different types of geometries and structures, which has resulted in the development of numerous variants such as refill friction stir spot welding (RFSSW), stationary shoulder friction stir welding (SSFSW), and bobbin tool friction stir welding (BTFSW). In terms of FSW machines, significant development has occurred in the new design and adaptation of the existing machining equipment through the use of their structures or the new and specially designed FSW heads. In terms of the most used materials in the aerospace industry, there has been development of new high strength-to-weight ratios such as the 3rd generation aluminum-lithium alloys that have become successfully weldable by FSW with fewer welding defects and a significant improvement in the weld quality and geometric accuracy. The purpose of this article is to summarize the state of knowledge regarding the application of the FSW process to join materials used in the aerospace industry and to identify gaps in the state of the art. This work describes the fundamental techniques and tools necessary to make soundly welded joints. Typical applications of FSW processes are surveyed, including friction stir spot welding, RFSSW, SSFSW, BTFSW, and underwater FSW. Conclusions and suggestions for future development are proposed. |
Audience | Academic |
Author | El-Sayed Seleman, Mohamed M. Çam, Gürel Ahmed, Mohamed M. Z. Fydrych, Dariusz |
AuthorAffiliation | 4 Department of Mechanical Engineering, Iskenderun Technical University, Iskenderun 31200, Hatay, Türkiye 3 Institute of Machines and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza Street 11/12, 80-233 Gdańsk, Poland 2 Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43512, Egypt 1 Department of Mechanical Engineering, College of Engineering at Al Kharj, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia |
AuthorAffiliation_xml | – name: 3 Institute of Machines and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza Street 11/12, 80-233 Gdańsk, Poland – name: 4 Department of Mechanical Engineering, Iskenderun Technical University, Iskenderun 31200, Hatay, Türkiye – name: 2 Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43512, Egypt – name: 1 Department of Mechanical Engineering, College of Engineering at Al Kharj, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia |
Author_xml | – sequence: 1 givenname: Mohamed M. Z. orcidid: 0000-0002-9550-7431 surname: Ahmed fullname: Ahmed, Mohamed M. Z. – sequence: 2 givenname: Mohamed M. orcidid: 0000-0002-6836-3874 surname: El-Sayed Seleman fullname: El-Sayed Seleman, Mohamed M. – sequence: 3 givenname: Dariusz orcidid: 0000-0002-2557-8568 surname: Fydrych fullname: Fydrych, Dariusz – sequence: 4 givenname: Gürel orcidid: 0000-0003-0222-9274 surname: Çam fullname: Çam, Gürel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37109809$$D View this record in MEDLINE/PubMed |
BookMark | eNptklFvFCEQx4mpsfXsix_AkPhiTLbCwi6LL-ZysdqkiUZrfCQczF5pduEKuzX99s7laq2N8AAZfvNnhj_PyUFMEQh5ydmJEJq9Gy1vWVdrxZ-QI651W3Et5cGD_SE5LuWK4RCCI_mMHArFme6YPiLjaQ5uCinS71PI9CcMPsQNTT1dDvMY4jzSEOl0CXQJOZWtdUDPop_LlG_f0wuMr-acIU70a06bDKVQGz2K2Qmq1FeYWS3zRL_BTYBfL8jT3g4Fju_WBflx-vFi9bk6__LpbLU8r5yU7VTxda9438mOKyud9aJjom1s7QUHqxSzWojGKbC6rr3Xcg3gmrrlTnjedN6JBfmw193O6xG8w_qyHcw2h9HmW5NsMP-exHBpNunGcMalkF2DCm_uFHK6nqFMZgzFwTDYCGkupu6Y0rWQeoe-foRepTlH7G9HtY1qpNZIneypjR3AhNgnvNjh9DAGh572AeNLJRU-AUerFuTVwx7ui__jHQJv94BDY0qG_h7hzOz-hvn7NxBmj2AX0CM0HssIw_9SfgM-Ubqv |
CitedBy_id | crossref_primary_10_3389_fmech_2024_1351922 crossref_primary_10_1016_j_ijpvp_2024_105282 crossref_primary_10_1080_01694243_2024_2345163 crossref_primary_10_1007_s44245_024_00076_1 crossref_primary_10_3390_met13050897 crossref_primary_10_1016_j_jmrt_2024_09_118 crossref_primary_10_1016_j_molliq_2024_125894 crossref_primary_10_3390_cryst14090752 crossref_primary_10_3390_ma16145124 crossref_primary_10_1016_j_jallcom_2023_172477 crossref_primary_10_1007_s00170_023_12655_9 crossref_primary_10_1016_j_cirpj_2023_12_002 crossref_primary_10_1080_2374068X_2024_2385213 crossref_primary_10_1016_j_cirpj_2024_04_007 crossref_primary_10_3390_ma17133073 crossref_primary_10_3390_ma17081796 crossref_primary_10_1177_14644207241290196 crossref_primary_10_3390_app131810255 crossref_primary_10_3390_ma17020433 crossref_primary_10_1590_1517_7076_rmat_2024_0465 crossref_primary_10_1088_2053_1591_ad5140 crossref_primary_10_3390_ma17153750 crossref_primary_10_1016_j_jmrt_2025_02_140 crossref_primary_10_1007_s43452_025_01129_2 crossref_primary_10_1016_j_jma_2023_09_039 crossref_primary_10_1016_j_jajp_2024_100259 crossref_primary_10_1177_13506501241246841 crossref_primary_10_3390_cryst13111559 crossref_primary_10_1177_14644207241228370 crossref_primary_10_1016_j_jallcom_2023_173294 crossref_primary_10_1016_j_jallcom_2025_178504 crossref_primary_10_1016_j_msea_2024_146367 crossref_primary_10_1007_s11837_024_07005_3 crossref_primary_10_1177_09544089241283272 crossref_primary_10_1177_09544062241302529 crossref_primary_10_1177_13621718241232797 crossref_primary_10_1002_eng2_13060 crossref_primary_10_1016_j_cirpj_2023_08_014 crossref_primary_10_1080_09507116_2024_2413386 crossref_primary_10_1016_j_triboint_2023_109179 crossref_primary_10_3390_s24031001 crossref_primary_10_1142_S0218625X25501094 crossref_primary_10_1515_rams_2024_0033 crossref_primary_10_1016_j_nxmate_2024_100269 crossref_primary_10_1016_j_cirpj_2023_07_001 crossref_primary_10_3390_met13081494 crossref_primary_10_1016_j_jer_2023_09_005 crossref_primary_10_3390_met13050906 crossref_primary_10_1016_j_ijfatigue_2024_108308 crossref_primary_10_3390_jcs8060210 crossref_primary_10_1080_09507116_2023_2258064 crossref_primary_10_1134_S0031918X24601100 crossref_primary_10_1088_2053_1591_ad45bf crossref_primary_10_1007_s00170_024_14020_w crossref_primary_10_3390_met13111838 crossref_primary_10_1016_j_mtcomm_2023_107660 crossref_primary_10_1016_j_jallcom_2024_174031 crossref_primary_10_1016_j_jmrt_2024_03_072 crossref_primary_10_3390_jmse12010071 crossref_primary_10_1007_s11665_024_10508_4 crossref_primary_10_3390_met13071176 crossref_primary_10_3390_ma18020340 crossref_primary_10_1016_j_matchemphys_2024_129468 crossref_primary_10_1080_2374068X_2024_2400775 crossref_primary_10_1007_s12008_024_01871_6 crossref_primary_10_3390_jmmp7050181 crossref_primary_10_1007_s11665_024_09628_8 crossref_primary_10_1007_s43452_024_00868_y crossref_primary_10_1016_j_jallcom_2025_178804 crossref_primary_10_1016_j_cirpj_2024_09_009 crossref_primary_10_1080_10426914_2024_2362641 crossref_primary_10_1016_j_matchemphys_2024_129075 crossref_primary_10_1080_09507116_2023_2278740 crossref_primary_10_3390_jmmp7030106 crossref_primary_10_1007_s40194_024_01831_4 crossref_primary_10_1038_s41598_024_81135_1 crossref_primary_10_1080_02286203_2024_2365658 crossref_primary_10_3390_met14010128 crossref_primary_10_1016_j_jma_2024_12_022 crossref_primary_10_1007_s43939_024_00138_x crossref_primary_10_3390_ma16103777 crossref_primary_10_1007_s40571_023_00626_6 crossref_primary_10_1007_s00170_023_12114_5 crossref_primary_10_4028_p_j0yFAx crossref_primary_10_1016_j_mtcomm_2023_107600 crossref_primary_10_3390_met13071159 crossref_primary_10_1007_s11665_024_10317_9 crossref_primary_10_1080_09507116_2024_2446254 crossref_primary_10_1080_09507116_2023_2251378 crossref_primary_10_1016_j_dt_2024_11_005 crossref_primary_10_3390_met14091089 crossref_primary_10_1007_s00170_023_11653_1 crossref_primary_10_1080_02533839_2024_2346500 crossref_primary_10_1007_s11665_023_08664_0 crossref_primary_10_1016_j_jma_2024_05_004 crossref_primary_10_1016_j_jmapro_2024_09_095 crossref_primary_10_3390_ma16144904 crossref_primary_10_1016_j_addma_2024_104141 crossref_primary_10_4028_p_SWUb8i crossref_primary_10_1016_j_msea_2024_146840 crossref_primary_10_13111_2066_8201_2024_16_4_1 crossref_primary_10_1007_s41939_024_00535_y crossref_primary_10_1016_j_triboint_2024_109508 crossref_primary_10_3390_jcs8040155 crossref_primary_10_1016_S1003_6326_24_66688_4 crossref_primary_10_1142_S0218625X24501282 crossref_primary_10_1016_j_matlet_2024_136640 crossref_primary_10_3390_met14020192 crossref_primary_10_1080_09507116_2024_2389347 crossref_primary_10_1016_j_engfracmech_2024_110266 crossref_primary_10_1007_s12666_024_03268_1 crossref_primary_10_1038_s41598_025_91065_1 crossref_primary_10_1038_s41598_024_53795_6 crossref_primary_10_3390_app14093544 crossref_primary_10_1016_j_jmrt_2023_10_158 crossref_primary_10_3390_ma17092106 crossref_primary_10_3390_ma17205107 crossref_primary_10_1016_j_jajp_2025_100289 crossref_primary_10_1016_j_surfcoat_2023_130359 crossref_primary_10_1016_j_jallcom_2025_178553 crossref_primary_10_3390_ma16093423 crossref_primary_10_1016_j_heliyon_2024_e41048 crossref_primary_10_1142_S0218625X25500593 crossref_primary_10_1016_j_mtla_2025_102343 crossref_primary_10_1007_s10904_024_03418_4 crossref_primary_10_1080_00084433_2024_2366688 crossref_primary_10_1080_09507116_2024_2394489 crossref_primary_10_1063_5_0199003 crossref_primary_10_3390_polym16050602 crossref_primary_10_1016_j_jmrt_2023_11_222 crossref_primary_10_1080_01694243_2025_2470256 crossref_primary_10_3390_ma16186287 |
Cites_doi | 10.1016/j.jmrt.2019.07.021 10.1016/j.jmapro.2020.08.025 10.1016/j.msea.2006.10.081 10.31399/asm.tb.aub.9781627082976 10.1016/j.jmapro.2022.07.067 10.1016/j.mspro.2014.07.362 10.1016/j.scriptamat.2006.11.022 10.1007/s11665-018-3650-x 10.1016/j.jmapro.2022.04.062 10.1179/136217110X12720264008510 10.1177/0954405421995667 10.1007/s11665-009-9554-z 10.1016/j.jmatprotec.2018.09.031 10.1016/j.matpr.2022.02.137 10.1016/j.msea.2022.144019 10.2320/matertrans1989.37.12 10.1111/ffe.12984 10.1016/j.actamat.2005.05.021 10.1016/S1006-7191(08)60054-X 10.1016/j.jmrt.2023.01.151 10.1177/09544062211070716 10.1016/j.jmst.2017.10.017 10.3390/met11020330 10.1016/j.matdes.2010.02.002 10.1179/1362171814Y.0000000247 10.1063/1.5044305 10.1016/j.acme.2017.07.005 10.1016/j.jare.2017.12.004 10.1080/13621718.2015.1132128 10.3390/ma14206018 10.3390/ma14237485 10.1016/j.pmatsci.2020.100752 10.1016/B978-0-12-805368-3.00005-4 10.1016/j.jmatprotec.2018.08.022 10.1155/2014/697170 10.1016/j.matlet.2016.10.032 10.1016/j.matdes.2009.02.021 10.1016/j.matdes.2010.11.059 10.1088/1757-899X/629/1/012007 10.1016/j.matdes.2010.01.023 10.1016/j.jmapro.2019.04.027 10.1155/2023/2092339 10.1016/S0921-5093(01)01358-2 10.3390/met11071097 10.3390/ma14164585 10.1179/1362171813Y.0000000156 10.1016/j.scriptamat.2018.03.025 10.3390/ma14164597 10.1016/j.matchar.2015.11.020 10.1016/j.scriptamat.2021.114113 10.1016/j.matpr.2020.10.300 10.1088/2053-1591/ab2de6 10.1016/j.matdes.2022.111520 10.3390/ma15082926 10.1023/A:1015359900319 10.1016/j.mfglet.2022.07.032 10.1007/s40195-019-00946-8 10.1016/j.cirpj.2022.07.002 10.1080/10426914.2020.1765249 10.1016/j.jmrt.2021.03.067 10.1016/S1359-6462(99)00226-2 10.1016/j.matdes.2013.12.002 10.1016/j.msea.2014.12.026 10.1016/j.engfailanal.2008.09.024 10.3390/ma16052031 10.3103/S1068798X18120043 10.1016/j.scriptamat.2006.11.028 10.30880/ijie.2022.14.01.001 10.1016/j.msea.2010.02.023 10.3390/ma15196886 10.1016/j.matchar.2018.01.051 10.3390/ma15062223 10.1007/s11015-012-9580-1 10.1088/2053-1591/aafb9f 10.1007/s11661-999-0251-1 10.3390/ma15134684 10.31399/asm.tb.emea.9781627082518 10.2514/4.869198 10.1016/j.matdes.2011.06.021 10.1080/02670836.2020.1867784 10.1007/s00170-017-1492-6 10.3390/ma15082905 10.1179/095066010X12777205875750 10.3390/met11030438 10.1016/j.msea.2015.05.038 10.1016/j.jmrt.2022.07.092 10.1007/s10853-008-2525-1 10.1016/j.pmatsci.2020.100706 10.1016/j.msea.2013.01.044 10.1016/j.jmrt.2022.08.022 10.1016/j.jmapro.2018.10.005 10.1016/j.matdes.2006.01.031 10.1007/s11661-012-1155-z 10.1179/174328009X411136 10.1016/j.jmapro.2019.09.047 10.1007/s11665-014-0968-x 10.1016/j.matdes.2015.07.096 10.1533/9781845697716 10.1016/B978-0-12-805368-3.00001-7 10.3390/ma14092171 10.1016/j.ast.2019.105438 10.1179/174329305X40723 10.3390/met11101592 10.1007/s11661-018-4996-2 10.1016/j.jmrt.2020.05.084 10.1016/j.matdes.2008.06.008 10.1016/j.jmrt.2022.07.152 10.3390/met9030286 10.1016/j.jmatprotec.2007.12.008 10.1007/s12666-019-01570-x 10.4028/www.scientific.net/KEM.340-341.1449 10.1016/j.actamat.2011.01.040 10.1080/15567036.2019.1651793 10.1007/978-981-10-2143-5 10.3390/ma16072818 10.1016/j.jmst.2017.05.015 10.1016/j.matdes.2016.10.012 10.1016/j.compstruct.2018.06.070 10.1007/s10853-007-1604-z 10.3390/ma15196799 10.3390/ma15092971 10.1016/j.matdes.2021.109997 10.1016/j.matdes.2015.09.128 10.3390/ma14216396 10.1016/j.matdes.2016.05.111 10.1016/j.proeng.2013.11.020 10.1016/j.jmatprotec.2016.11.024 10.3390/ma15041394 10.1007/s11665-023-07836-2 10.1016/j.matchar.2018.08.027 10.1016/j.mser.2005.07.001 10.1016/j.matdes.2019.108212 10.1088/2053-1591/ab1369 10.3390/met10070947 10.1016/j.scriptamat.2010.08.060 10.1016/j.jma.2021.03.019 10.3390/ma14216640 10.3390/met13020222 10.1016/j.jmatprotec.2015.03.036 10.1016/j.jmatprotec.2015.02.015 10.1016/j.matchemphys.2022.127251 10.3390/met12060927 10.3390/jmmp6050095 10.1016/j.matpr.2020.11.588 10.1016/j.matchar.2021.111594 10.3390/met11010068 10.1016/j.matdes.2014.05.016 10.1016/S1006-706X(06)60082-4 10.1016/j.msea.2007.10.062 10.1016/j.jmapro.2021.07.044 10.3390/met11010128 10.1016/j.jmrt.2022.11.108 10.1016/j.asr.2022.06.030 10.4028/www.scientific.net/MSF.638-642.1179 10.1080/14786435.2014.887862 10.1016/j.jmst.2017.11.041 10.1016/j.mfglet.2022.09.010 10.1016/j.jmrt.2021.06.017 10.1016/j.wear.2012.10.025 10.1007/s00170-017-1176-2 10.1016/j.tafmec.2013.05.002 10.1016/j.ijpvp.2022.104865 10.1088/1757-899X/629/1/012010 10.1016/j.matchar.2015.06.025 10.22214/ijraset.2019.3151 10.1016/j.matchar.2018.11.019 10.1016/j.jmapro.2020.03.001 10.1016/j.msea.2022.144227 10.1016/j.jmrt.2022.07.125 10.3390/ma15082771 10.1016/j.jmatprotec.2015.09.041 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/ma16082971 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | PMC10143485 A747446103 37109809 10_3390_ma16082971 |
Genre | Journal Article Review |
GeographicLocations | United States United Kingdom |
GeographicLocations_xml | – name: United Kingdom – name: United States |
GrantInformation_xml | – fundername: Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number grantid: IF2/PSAU/2022/RV/xx. – fundername: Prince Sattam bin Abdulaziz University grantid: 2023/RV/018 |
GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM TR2 TUS NPM PQGLB PMFND 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c446t-1bf71f84817a4cad380365a2d31ea770a9335c7ea922dd94beec5261c3d158dc3 |
IEDL.DBID | BENPR |
ISSN | 1996-1944 |
IngestDate | Thu Aug 21 18:37:36 EDT 2025 Thu Jul 10 23:42:58 EDT 2025 Fri Jul 25 11:43:45 EDT 2025 Tue Jun 10 20:38:25 EDT 2025 Mon Jul 21 06:08:57 EDT 2025 Thu Apr 24 22:57:32 EDT 2025 Tue Jul 01 04:28:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | BTFSW SSFSW friction stir welding aerospace industry aluminum–lithium alloys RFSSW |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c446t-1bf71f84817a4cad380365a2d31ea770a9335c7ea922dd94beec5261c3d158dc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-6836-3874 0000-0002-2557-8568 0000-0003-0222-9274 0000-0002-9550-7431 |
OpenAccessLink | https://www.proquest.com/docview/2806575499?pq-origsite=%requestingapplication% |
PMID | 37109809 |
PQID | 2806575499 |
PQPubID | 2032366 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10143485 proquest_miscellaneous_2807923495 proquest_journals_2806575499 gale_infotracacademiconefile_A747446103 pubmed_primary_37109809 crossref_primary_10_3390_ma16082971 crossref_citationtrail_10_3390_ma16082971 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230408 |
PublicationDateYYYYMMDD | 2023-04-08 |
PublicationDate_xml | – month: 4 year: 2023 text: 20230408 day: 8 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Materials |
PublicationTitleAlternate | Materials (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_137 ref_136 ref_92 ref_91 ref_138 Wei (ref_175) 2007; 452–453 Muthumanickam (ref_185) 2019; 72 Rahmatabadi (ref_54) 2020; 9 ref_131 ref_99 ref_130 ref_133 Steuwer (ref_180) 2011; 59 ref_132 Gao (ref_183) 2015; 639 ref_96 ref_135 ref_95 ref_134 Charit (ref_39) 2005; 53 Qin (ref_184) 2015; 626 Fu (ref_106) 2021; 203 (ref_20) 2014; 19 Dursun (ref_41) 2014; 56 ref_128 Mabuwa (ref_15) 2021; 46 ref_129 ref_120 ref_122 ref_123 Mishra (ref_152) 2019; 7 Lequeu (ref_146) 2009; 19 Gera (ref_100) 2021; 13 Sidhar (ref_151) 2016; 106 Hammad (ref_112) 2022; 236 Rahmatabadi (ref_149) 2019; 6 Yoon (ref_196) 2015; 106 (ref_73) 2007; 42 Yan (ref_186) 2018; 27 ref_78 ref_74 Barbini (ref_113) 2018; 34 Sun (ref_79) 2018; 264 Scialpi (ref_167) 2007; 28 Gomez (ref_40) 2019; 95 Zou (ref_93) 2022; 79 Rioja (ref_145) 2012; 43 Kashaev (ref_67) 2018; 36 Ahmed (ref_111) 2011; 64 Chen (ref_11) 2009; 30 Fridlyander (ref_147) 2002; 44 Mehdi (ref_155) 2017; 1 ref_89 ref_142 (ref_4) 2006; 13 ref_88 ref_141 Wang (ref_187) 2016; 21 ref_87 ref_144 ref_86 Benavides (ref_157) 1999; 41 Sun (ref_115) 2019; 263 Threadgill (ref_2) 2009; 54 Ji (ref_198) 2016; 188 Zhang (ref_24) 2023; 296 (ref_25) 2011; 56 Hirata (ref_36) 2007; 56 Tavares (ref_46) 2013; 65 Cisko (ref_189) 2020; 35 Xu (ref_143) 2018; 10 Wu (ref_118) 2015; 221 Pahlavani (ref_150) 2019; 6 Ji (ref_197) 2017; 113 Cavaliere (ref_179) 2009; 16 Malard (ref_182) 2014; 94 Altenkirch (ref_176) 2010; 15 Yu (ref_60) 2018; 153 Chen (ref_104) 2021; 12 ref_200 Javaheri (ref_66) 2022; 37 Ji (ref_117) 2014; 62 ref_119 Shukla (ref_177) 2007; 56 Yang (ref_85) 2014; 2014 Sun (ref_116) 2016; 111 ref_110 Fu (ref_7) 2021; 209 Li (ref_114) 2015; 222 Yoon (ref_194) 2016; 229 Shen (ref_80) 2022; 20 Yang (ref_126) 2018; 145 Kubit (ref_81) 2018; 18 Zhang (ref_98) 2022; 20 ref_108 ref_107 ref_109 Rahmatabadi (ref_56) 2021; 235 Fritsche (ref_97) 2022; 34 ref_102 Yang (ref_6) 2008; 21 Ipekoglu (ref_19) 2021; 51 Polmear (ref_140) 1996; 37 Li (ref_199) 2020; 58 Dubourg (ref_156) 2010; 31 Mishra (ref_65) 2005; 50 Xu (ref_124) 2018; 138 ref_10 Shanavas (ref_162) 2018; 95 Wang (ref_101) 2019; 186 Avinash (ref_160) 2014; 75 Farias (ref_193) 2013; 302 ref_18 Ahmed (ref_75) 2018; 50 ref_16 Kumbhar (ref_166) 2008; 22 Kubit (ref_84) 2018; 42 Li (ref_77) 2019; 8 Nirmal (ref_13) 2020; 46 Zou (ref_103) 2022; 21 Zhang (ref_191) 2008; 488 Rakshith (ref_3) 2021; 9 Ipeko (ref_35) 2019; 6 Pandian (ref_17) 2020; 54 Ramulu (ref_192) 2010; 31 Alam (ref_188) 2019; 44 Meikeerthy (ref_14) 2023; 2023 Yoon (ref_195) 2015; 88 Li (ref_105) 2019; 49 Hsu (ref_5) 2007; 340–341 Campanella (ref_23) 2022; 33 Du (ref_22) 2021; 69 Yang (ref_173) 2022; 82 Kimura (ref_169) 2005; 10 Mistikoglu (ref_70) 2014; 23 Kubit (ref_83) 2018; 201 Threadgill (ref_121) 2010; 638–642 Aktarer (ref_34) 2019; 629 Fu (ref_170) 2011; 32 Ahmed (ref_172) 2017; 242 (ref_69) 2016; 91 Wang (ref_43) 2019; 33 Ipeko (ref_71) 2019; 629 Ahmed (ref_76) 2013; 18 Meisnar (ref_42) 2018; 147 ref_50 Ma (ref_181) 2013; 569 Jahangir (ref_90) 2018; 1980 ref_58 Seleman (ref_139) 2022; 14 ref_57 ref_174 Boldsaikhan (ref_47) 2019; 42 ref_53 ref_51 Gain (ref_29) 2023; 201 Heidarzadeh (ref_68) 2021; 117 Meng (ref_52) 2020; 115 Han (ref_27) 2022; 20 ref_59 Boitsov (ref_61) 2018; 38 Kubit (ref_82) 2017; 94 Rahmatabadi (ref_55) 2021; 37 Ahmed (ref_127) 2022; 38 ref_164 ref_163 ref_64 ref_165 ref_63 ref_62 Wang (ref_190) 2015; 86 Sutton (ref_158) 2002; 323 Varghese (ref_30) 2022; 857 RaviKumar (ref_161) 2014; 5 Arruti (ref_154) 2011; 32 Wang (ref_45) 2018; 34 Su (ref_21) 2022; 859 ref_33 ref_32 ref_31 (ref_72) 2022; 62 ref_38 ref_37 Xu (ref_125) 2018; 34 Fujii (ref_12) 2010; 527 Zou (ref_94) 2021; 183 Liu (ref_26) 2023; 225 Cavaliere (ref_178) 2009; 30 ref_44 Duan (ref_28) 2022; 20 Khokhlatova (ref_148) 2012; 56 Sheikhia (ref_159) 2008; 206 ref_1 Lee (ref_153) 2008; 43 Sato (ref_168) 1999; 30 ref_49 ref_48 ref_9 ref_8 Venugopal (ref_171) 2004; 57 |
References_xml | – volume: 8 start-page: 4115 year: 2019 ident: ref_77 article-title: Microstructural evolution and mechanical properties of refill friction stir spot welded alclad 2A12-T4 aluminum alloy publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2019.07.021 – volume: 58 start-page: 344 year: 2020 ident: ref_199 article-title: Friction stir welding of Ti-6Al-4V alloy: Friction tool, microstructure, and mechanical properties publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2020.08.025 – volume: 452–453 start-page: 170 year: 2007 ident: ref_175 article-title: Study of friction stir welding of 01420 aluminum-lithium alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2006.10.081 – ident: ref_138 doi: 10.31399/asm.tb.aub.9781627082976 – volume: 82 start-page: 230 year: 2022 ident: ref_173 article-title: Research progress on the microstructure and mechanical properties of friction stir welded AlLi alloy joints publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2022.07.067 – volume: 5 start-page: 1726 year: 2014 ident: ref_161 article-title: Effect of Welding Parameters on Macro and Microstructure of Friction Stir Welded Dissimilar Butt Joints between AA7075-T651 and AA6061-T651 Alloys publication-title: Procedia Mater. Sci. doi: 10.1016/j.mspro.2014.07.362 – volume: 56 start-page: 477 year: 2007 ident: ref_36 article-title: Relationship between deformation behavior and microstructural evolution of friction stir processed Zn–22wt.% Al alloy publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2006.11.022 – volume: 27 start-page: 5803 year: 2018 ident: ref_186 article-title: Effects of Rotation Speed on Microstructure and Mechanical Properties of 2060 Al-Cu-Li Alloy in Friction Stir Welding publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-018-3650-x – ident: ref_108 – ident: ref_132 – volume: 79 start-page: 91 year: 2022 ident: ref_93 article-title: Characterizations of dissimilar refill friction stir spot welding 2219 aluminum alloy joints of unequal thickness publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2022.04.062 – volume: 15 start-page: 522 year: 2010 ident: ref_176 article-title: Process—Microstructure—Property correlations in Al–Li AA2199 friction stir welds publication-title: Sci. Technol. Weld. Join. doi: 10.1179/136217110X12720264008510 – volume: 235 start-page: 1363 year: 2021 ident: ref_56 article-title: Manufacturing of three-layered sandwich composite of AA1050/LZ91/AA1050 using cold roll bonding process publication-title: Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. doi: 10.1177/0954405421995667 – volume: 19 start-page: 841 year: 2009 ident: ref_146 article-title: Aluminum-copper-lithium alloy 2050 developed for medium to thick plate publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-009-9554-z – volume: 264 start-page: 414 year: 2018 ident: ref_79 article-title: Flat friction stir spot welding of three 6061-T6 aluminum sheets publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2018.09.031 – ident: ref_120 – volume: 62 start-page: 77 year: 2022 ident: ref_72 article-title: Prospects of producing aluminum parts by wire arc additive manufacturing (WAAM) publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2022.02.137 – ident: ref_48 – volume: 857 start-page: 144019 year: 2022 ident: ref_30 article-title: Ambient, elevated temperature tensile properties and origin of strengthening in friction stir welded 6 mm thick reduced activation ferritic-martensitic steel plates in as-welded and post-weld normalised conditions publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2022.144019 – volume: 37 start-page: 12 year: 1996 ident: ref_140 article-title: Recent Developments in light alloys publication-title: Mater. Trans. JIM doi: 10.2320/matertrans1989.37.12 – volume: 42 start-page: 1308 year: 2018 ident: ref_84 article-title: Analysis of the effect of structural defects on the fatigue strength of RFSSW joints using C-scan scanning acoustic microscopy and SEM publication-title: Fatigue Fract. Eng. Mater. Struct. doi: 10.1111/ffe.12984 – volume: 53 start-page: 4211 year: 2005 ident: ref_39 article-title: Low temperature superplasticity in a friction-stir-processed ultrafine grained Al–Zn–Mg–Sc alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2005.05.021 – volume: 21 start-page: 313 year: 2008 ident: ref_6 article-title: Review on Research and Development of Magnesium Alloys publication-title: Acta Metall. Sin. (Engl. Lett.) doi: 10.1016/S1006-7191(08)60054-X – ident: ref_9 doi: 10.1016/j.jmrt.2023.01.151 – volume: 236 start-page: 6665 year: 2022 ident: ref_112 article-title: An investigation on mechanical and microstructural evolution of stationary shoulder friction stir welded aluminum alloy AA7075-T651 publication-title: Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. doi: 10.1177/09544062211070716 – volume: 34 start-page: 119 year: 2018 ident: ref_113 article-title: Influence of a non-rotating shoulder on heat generation, microstructure and mechanical properties of dissimilar AA2024 / AA7050 FSW joints publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2017.10.017 – ident: ref_57 doi: 10.3390/met11020330 – volume: 31 start-page: 3324 year: 2010 ident: ref_156 article-title: Process optimisation and mechanical properties of friction stir lap welds of 7075-T6 stringers on 2024-T3 skin publication-title: Mater. Des. doi: 10.1016/j.matdes.2010.02.002 – volume: 19 start-page: 715 year: 2014 ident: ref_20 article-title: Effects of use of higher strength interlayer and external cooling on properties of friction stir welded AA6061-T6 joints publication-title: Sci. Technol. Weld. Join. doi: 10.1179/1362171814Y.0000000247 – volume: 1980 start-page: 030026 year: 2018 ident: ref_90 article-title: A review of additive manufacturing of magnesium alloys publication-title: AIP Conference Proceedings doi: 10.1063/1.5044305 – volume: 18 start-page: 235 year: 2018 ident: ref_81 article-title: Analysis of the mechanical properties and of micrographs of refill friction stir spot welded 7075-T6 aluminium sheets publication-title: Arch. Civ. Mech. Eng. doi: 10.1016/j.acme.2017.07.005 – volume: 10 start-page: 49 year: 2018 ident: ref_143 article-title: Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: A review publication-title: J. Adv. Res. doi: 10.1016/j.jare.2017.12.004 – volume: 21 start-page: 479 year: 2016 ident: ref_187 article-title: Global and local mechanical properties and microstructure of Bobbin tool friction-stir-welded Al–Li alloy publication-title: Sci. Technol. Weld. Join. doi: 10.1080/13621718.2015.1132128 – ident: ref_92 doi: 10.3390/ma14206018 – ident: ref_95 doi: 10.3390/ma14237485 – volume: 117 start-page: 100752 year: 2021 ident: ref_68 article-title: Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2020.100752 – ident: ref_174 doi: 10.1016/B978-0-12-805368-3.00005-4 – volume: 263 start-page: 256 year: 2019 ident: ref_115 article-title: Weld zone and residual stress development in AA7050 stationary shoulder friction stir T-joint weld publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2018.08.022 – volume: 2014 start-page: 697170 year: 2014 ident: ref_85 article-title: Friction Stir Spot Welding: A Review on Joint Macro- and Microstructure, Property, and Process Modelling publication-title: Adv. Mater. Sci. Eng. doi: 10.1155/2014/697170 – volume: 188 start-page: 21 year: 2016 ident: ref_198 article-title: Eliminating the tearing defect in Ti-6Al-4V alloy joint by back heating assisted friction stir welding publication-title: Mater. Lett. doi: 10.1016/j.matlet.2016.10.032 – volume: 30 start-page: 3622 year: 2009 ident: ref_178 article-title: 2198 Al–Li plates joined by Friction Stir Welding: Mechanical and microstructural behavior publication-title: Mater. Des. doi: 10.1016/j.matdes.2009.02.021 – volume: 32 start-page: 2021 year: 2011 ident: ref_154 article-title: Material flow and mechanical behaviour of dissimilar AA2024-T3 and AA7075-T6 aluminium alloys friction stir welds publication-title: Mater. Des. doi: 10.1016/j.matdes.2010.11.059 – volume: 629 start-page: 012007 year: 2019 ident: ref_71 article-title: Formation of weld defects in cold metal transfer arc welded 7075-T6 plates and its effect on joint performance publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/629/1/012007 – volume: 31 start-page: 3056 year: 2010 ident: ref_192 article-title: Tensile properties of friction stir welded and friction stir welded-superplastically formed Ti-6Al-4V butt joints publication-title: Mater. Des. doi: 10.1016/j.matdes.2010.01.023 – ident: ref_137 – volume: 42 start-page: 113 year: 2019 ident: ref_47 article-title: Refill friction stir spot welding of surface-treated aerospace aluminum alloys with faying-surface sealant publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2019.04.027 – volume: 2023 start-page: 2092339 year: 2023 ident: ref_14 article-title: Evaluation of Pure Titanium Welded Joints Produced by Underwater Friction Stir Welding publication-title: Adv. Mater. Sci. Eng. doi: 10.1155/2023/2092339 – ident: ref_64 – volume: 323 start-page: 160 year: 2002 ident: ref_158 article-title: Microstructural studies of friction stir welds in 2024-T3 aluminum publication-title: Mater. Sci. Eng. A doi: 10.1016/S0921-5093(01)01358-2 – ident: ref_32 doi: 10.3390/met11071097 – ident: ref_58 doi: 10.3390/ma14164585 – volume: 18 start-page: 680 year: 2013 ident: ref_76 article-title: Effect of friction stir welding speed on mechanical properties and microstructure of nickel based super alloy Inconel 718 publication-title: Sci. Technol. Weld. Join. doi: 10.1179/1362171813Y.0000000156 – volume: 153 start-page: 122 year: 2018 ident: ref_60 article-title: Non-beam-based metal additive manufacturing enabled by additive friction stir deposition publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2018.03.025 – ident: ref_31 doi: 10.3390/ma14164597 – ident: ref_109 – volume: 111 start-page: 114 year: 2016 ident: ref_116 article-title: The local strength and toughness for stationary shoulder friction stir weld on AA6061-T6 alloy publication-title: Mater. Charact. doi: 10.1016/j.matchar.2015.11.020 – volume: 203 start-page: 114113 year: 2021 ident: ref_106 article-title: Improved mechanical properties of cast Mg alloy welds via texture weakening by differential rotation refill friction stir spot welding publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2021.114113 – volume: 46 start-page: 4702 year: 2020 ident: ref_13 article-title: Numerical simulations of friction stir welding of dual phase titanium alloy for aerospace applications publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.10.300 – ident: ref_49 – volume: 37 start-page: 162 year: 2022 ident: ref_66 article-title: Advances in FSW and FSSW of dissimilar Al-alloy plates publication-title: J. Adhes. Sci. Technol. – volume: 6 start-page: 096543 year: 2019 ident: ref_149 article-title: Investigation of mechanical properties, formability, and anisotropy of dual phase Mg-7Li-1Zn publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab2de6 – volume: 225 start-page: 111520 year: 2023 ident: ref_26 article-title: Microstructure and mechanical properties of aluminum-steel dissimilar metal welded using arc and friction stir hybrid welding publication-title: Mater. Des. doi: 10.1016/j.matdes.2022.111520 – ident: ref_89 doi: 10.3390/ma15082926 – volume: 44 start-page: 3 year: 2002 ident: ref_147 article-title: Thermally stable aluminum-lithium alloy 1424 for application in welded fuselage publication-title: Met. Sci. Heat Treat. doi: 10.1023/A:1015359900319 – volume: 33 start-page: 249 year: 2022 ident: ref_23 article-title: Residual stress and material flow prediction in Friction Stir Welding of Gr2 Titanium T-joints publication-title: Manuf. Lett. doi: 10.1016/j.mfglet.2022.07.032 – volume: 33 start-page: 13 year: 2019 ident: ref_43 article-title: Research Progress of Bobbin Tool Friction Stir Welding of Aluminum Alloys: A Review publication-title: Acta Met. Sin. doi: 10.1007/s40195-019-00946-8 – volume: 38 start-page: 801 year: 2022 ident: ref_127 article-title: Production of AA1050/silica fume composite by bobbin tool-friction stir processing: Microstructure, composition and mechanical properties publication-title: CIRP J. Manuf. Sci. Technol. doi: 10.1016/j.cirpj.2022.07.002 – volume: 35 start-page: 1069 year: 2020 ident: ref_189 article-title: A parametric investigation on friction stir welding of Al-Li 2099 publication-title: Mater. Manuf. Process. doi: 10.1080/10426914.2020.1765249 – volume: 12 start-page: 1243 year: 2021 ident: ref_104 article-title: Enhance mechanical properties of refill friction stir spot welding joint of alclad 7050/2524 aluminum via suspension rotating process publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2021.03.067 – volume: 41 start-page: 809 year: 1999 ident: ref_157 article-title: Low-temperature friction-stir welding of 2024 aluminum publication-title: Scr. Mater. doi: 10.1016/S1359-6462(99)00226-2 – volume: 56 start-page: 862 year: 2014 ident: ref_41 article-title: Recent developments in advanced aircraft aluminium alloys publication-title: Mater. Des. doi: 10.1016/j.matdes.2013.12.002 – ident: ref_110 – volume: 626 start-page: 322 year: 2015 ident: ref_184 article-title: The evolution of precipitation and microstructure in friction stir welded 2195-T8 Al–Li alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2014.12.026 – volume: 16 start-page: 1856 year: 2009 ident: ref_179 article-title: Effect of anisotropy on fatigue properties of 2198 Al–Li plates joined by friction stir welding publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2008.09.024 – ident: ref_16 doi: 10.3390/ma16052031 – volume: 38 start-page: 1029 year: 2018 ident: ref_61 article-title: Friction Stir Welding in the Aerospace Industry publication-title: Russ. Eng. Res. doi: 10.3103/S1068798X18120043 – volume: 56 start-page: 513 year: 2007 ident: ref_177 article-title: Study of microstructural evolution in friction-stir welded thin-sheet Al–Cu–Li alloy using transmission-electron microscopy publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2006.11.028 – volume: 14 start-page: 1 year: 2022 ident: ref_139 article-title: Effect of FSW Parameters on The Microstructure and Mechanical Properties of T-joints between Dissimilar Al-Alloys publication-title: Int. J. Integr. Eng. doi: 10.30880/ijie.2022.14.01.001 – ident: ref_144 – volume: 527 start-page: 3386 year: 2010 ident: ref_12 article-title: Investigation of welding parameter dependent microstructure and mechanical properties in friction stir welded pure Ti joints publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2010.02.023 – ident: ref_130 doi: 10.3390/ma15196886 – volume: 1 start-page: 57 year: 2017 ident: ref_155 article-title: Mechanical and microstructure characterization of friction stir welding for dissimilar alloy-A Review publication-title: Int. J. Res. Eng. Innov. – volume: 138 start-page: 48 year: 2018 ident: ref_124 article-title: Microstructure evolution in the conventional single side and bobbin tool friction stir welding of thick rolled 7085-T7452 aluminum alloy publication-title: Mater. Charact. doi: 10.1016/j.matchar.2018.01.051 – ident: ref_163 doi: 10.3390/ma15062223 – volume: 56 start-page: 336 year: 2012 ident: ref_148 article-title: Aluminum-lithium alloys for aircraft building publication-title: Metallurgist doi: 10.1007/s11015-012-9580-1 – volume: 6 start-page: 046537 year: 2019 ident: ref_35 article-title: Investigation of microstructure and mechanical properties of friction stir welded dissimilar St37/St52 joints publication-title: Mater. Res. Express doi: 10.1088/2053-1591/aafb9f – volume: 30 start-page: 2429 year: 1999 ident: ref_168 article-title: Microstructural evolution of 6063 aluminum during friction-stir welding publication-title: Met. Mater. Trans. A doi: 10.1007/s11661-999-0251-1 – ident: ref_129 doi: 10.3390/ma15134684 – ident: ref_136 doi: 10.31399/asm.tb.emea.9781627082518 – ident: ref_131 doi: 10.2514/4.869198 – volume: 32 start-page: 4825 year: 2011 ident: ref_170 article-title: Improvement of weld temperature distribution and mechanical properties of 7050 aluminum alloy butt joints by submerged friction stir welding publication-title: Mater. Des. doi: 10.1016/j.matdes.2011.06.021 – volume: 37 start-page: 78 year: 2021 ident: ref_55 article-title: The influence of post-annealing and ultrasonic vibration on the formability of multilayered Al5052/MgAZ31B composite publication-title: Mater. Sci. Technol. doi: 10.1080/02670836.2020.1867784 – ident: ref_133 – volume: 95 start-page: 4535 year: 2018 ident: ref_162 article-title: Weldability of marine grade AA 5052 aluminum alloy by underwater friction stir welding publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-017-1492-6 – ident: ref_33 doi: 10.3390/ma15082905 – volume: 56 start-page: 1 year: 2011 ident: ref_25 article-title: Friction stir welded structural materials: Beyond Al-alloys publication-title: Int. Mater. Rev. doi: 10.1179/095066010X12777205875750 – ident: ref_128 doi: 10.3390/met11030438 – volume: 639 start-page: 489 year: 2015 ident: ref_183 article-title: Correlation of microstructure and mechanical properties in friction stir welded 2198-T8 Al–Li alloy publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2015.05.038 – ident: ref_74 – ident: ref_51 – volume: 20 start-page: 857 year: 2022 ident: ref_80 article-title: Tool wear mechanisms and effects on refill friction stir spot welding of AA2198-T8 sheets publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2022.07.092 – volume: 43 start-page: 3296 year: 2008 ident: ref_153 article-title: Lap joint properties of FSWed dissimilar formed 5052 Al and 6061 Al alloys with different thickness publication-title: J. Mater. Sci. doi: 10.1007/s10853-008-2525-1 – volume: 115 start-page: 100706 year: 2020 ident: ref_52 article-title: Recent progress on control strategies for inherent issues in friction stir welding publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2020.100706 – volume: 569 start-page: 41 year: 2013 ident: ref_181 article-title: Mechanical properties and fatigue crack growth rates in friction stir welded nugget of 2198-T8 Al–Li alloy joints publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2013.01.044 – volume: 20 start-page: 3381 year: 2022 ident: ref_28 article-title: Achievement of excellent strength and plasticity in the nugget zone of friction stir welded bainitic steel and its deformation behavior publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2022.08.022 – volume: 36 start-page: 571 year: 2018 ident: ref_67 article-title: Prospects of laser beam welding and friction stir welding processes for aluminum airframe structural applications publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2018.10.005 – volume: 28 start-page: 1124 year: 2007 ident: ref_167 article-title: Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminium alloy publication-title: Mater. Des. doi: 10.1016/j.matdes.2006.01.031 – volume: 43 start-page: 3325 year: 2012 ident: ref_145 article-title: The evolution of Al-Li base products for aerospace and space applications publication-title: Metall. Mater. Trans. A Phys. Metall. Mater. Sci. doi: 10.1007/s11661-012-1155-z – volume: 54 start-page: 49 year: 2009 ident: ref_2 article-title: Friction stir welding of aluminium alloys publication-title: Int. Mater. Rev. doi: 10.1179/174328009X411136 – volume: 49 start-page: 385 year: 2019 ident: ref_105 article-title: Interfacial microstructure and mechanical properties of dissimilar aluminum/steel joint fabricated via refilled friction stir spot welding publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2019.09.047 – volume: 23 start-page: 1936 year: 2014 ident: ref_70 article-title: Recent developments in friction stir welding of al-Alloys publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-014-0968-x – ident: ref_135 – ident: ref_10 – volume: 86 start-page: 933 year: 2015 ident: ref_190 article-title: Effect of tool rotational speed on the microstructure and mechanical properties of bobbin tool friction stir welding of Al–Li alloy publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.07.096 – ident: ref_59 doi: 10.1533/9781845697716 – ident: ref_53 doi: 10.1016/B978-0-12-805368-3.00001-7 – ident: ref_62 – ident: ref_102 doi: 10.3390/ma14092171 – volume: 95 start-page: 105438 year: 2019 ident: ref_40 article-title: Liquid hydrogen fuel tanks for commercial aviation: Structural sizing and stress analysis publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2019.105438 – volume: 10 start-page: 378 year: 2005 ident: ref_169 article-title: Joining phenomena during friction stage of A7075-T6 aluminium alloy friction weld publication-title: Sci. Technol. Weld. Join. doi: 10.1179/174329305X40723 – ident: ref_165 doi: 10.3390/met11101592 – volume: 50 start-page: 271 year: 2018 ident: ref_75 article-title: Effect of Tool Geometry and Heat Input on the Hardness, Grain Structure, and Crystallographic Texture of Thick-Section Friction Stir-Welded Aluminium publication-title: Met. Mater. Trans. A doi: 10.1007/s11661-018-4996-2 – volume: 9 start-page: 7880 year: 2020 ident: ref_54 article-title: Production of Al/Mg-Li composite by the accumulative roll bonding process publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2020.05.084 – ident: ref_134 – volume: 30 start-page: 469 year: 2009 ident: ref_11 article-title: Microstructural characterization and mechanical properties in friction stir welding of aluminum and titanium dissimilar alloys publication-title: Mater. Des. doi: 10.1016/j.matdes.2008.06.008 – volume: 20 start-page: 1302 year: 2022 ident: ref_98 article-title: Microstructure characteristics and corrosion behavior of refill friction stir spot welded 7050 aluminum alloy publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2022.07.152 – ident: ref_99 doi: 10.3390/met9030286 – volume: 206 start-page: 132 year: 2008 ident: ref_159 article-title: Preliminary study on the microstructure and mechanical properties of dissimilar friction stir welds in aircraft aluminium alloys 2024-T351 and 6056-T4 publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2007.12.008 – volume: 72 start-page: 1557 year: 2019 ident: ref_185 article-title: Effect of Friction Stir Welding Parameters on Mechanical Properties and Microstructure of AA2195 Al—Li Alloy Welds publication-title: Trans. Indian Inst. Met. doi: 10.1007/s12666-019-01570-x – ident: ref_44 – volume: 340–341 start-page: 1449 year: 2007 ident: ref_5 article-title: A study on friction stir process of magnesium alloy AZ31 sheet publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.340-341.1449 – volume: 59 start-page: 3002 year: 2011 ident: ref_180 article-title: A combined approach to microstructure mapping of an Al–Li AA2199 friction stir weld publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.01.040 – volume: 44 start-page: 2851 year: 2019 ident: ref_188 article-title: Effect of heat assisting backing plate in friction stir welding of high strength Al-Li alloy publication-title: Energy Sources Part A Recover. Util. Environ. Eff. doi: 10.1080/15567036.2019.1651793 – ident: ref_1 doi: 10.1007/978-981-10-2143-5 – ident: ref_8 doi: 10.3390/ma16072818 – ident: ref_50 – volume: 34 start-page: 173 year: 2018 ident: ref_125 article-title: Comparative study on local and global mechanical properties of bobbin tool and conventional friction stir welded 7085-T7452 aluminum thick plate publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2017.05.015 – volume: 113 start-page: 37 year: 2017 ident: ref_197 article-title: Joint formation and mechanical properties of back heating assisted friction stir welded Ti–6Al–4V alloy publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.10.012 – volume: 201 start-page: 389 year: 2018 ident: ref_83 article-title: Refill friction stir spot welding of 7075-T6 aluminium alloy single-lap joints with polymer sealant interlayer publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2018.06.070 – volume: 42 start-page: 7154 year: 2007 ident: ref_73 article-title: Microstructural and mechanical characterization of electron beam welded Al-alloy 7020 publication-title: J. Mater. Sci. doi: 10.1007/s10853-007-1604-z – ident: ref_86 doi: 10.3390/ma15196799 – ident: ref_78 doi: 10.3390/ma15092971 – volume: 209 start-page: 109997 year: 2021 ident: ref_7 article-title: Revealing joining mechanism in refill friction stir spot welding of AZ31 magnesium alloy to galvanized DP600 steel publication-title: Mater. Des. doi: 10.1016/j.matdes.2021.109997 – volume: 88 start-page: 1269 year: 2015 ident: ref_195 article-title: Effect of initial microstructure on Ti-6Al-4V joint by friction stir welding publication-title: Mater. Des. doi: 10.1016/j.matdes.2015.09.128 – volume: 91 start-page: 1851 year: 2016 ident: ref_69 article-title: Recent developments in joining of aluminum alloys publication-title: Int. J. Adv. Manuf. Technol. – ident: ref_88 doi: 10.3390/ma14216396 – ident: ref_142 – volume: 106 start-page: 146 year: 2016 ident: ref_151 article-title: Friction stir welding of Al-Mg-Li 1424 alloy publication-title: Mater. Des. doi: 10.1016/j.matdes.2016.05.111 – volume: 75 start-page: 98 year: 2014 ident: ref_160 article-title: Friction stir welded butt joints of AA2024 T3 and AA7075 T6 aluminum alloys publication-title: Procedia Eng. doi: 10.1016/j.proeng.2013.11.020 – volume: 242 start-page: 77 year: 2017 ident: ref_172 article-title: Friction stir welding of similar and dissimilar AA7075 and AA5083 publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2016.11.024 – ident: ref_123 doi: 10.3390/ma15041394 – ident: ref_164 doi: 10.1007/s11665-023-07836-2 – volume: 145 start-page: 20 year: 2018 ident: ref_126 article-title: A comparative research on bobbin tool and conventional friction stir welding of Al-Mg-Si alloy plates publication-title: Mater. Charact. doi: 10.1016/j.matchar.2018.08.027 – volume: 50 start-page: 1 year: 2005 ident: ref_65 article-title: Friction stir welding and processing publication-title: Mater. Sci. Eng. R Rep. doi: 10.1016/j.mser.2005.07.001 – volume: 186 start-page: 108212 year: 2019 ident: ref_101 article-title: Strengthening and toughening mechanisms in refilled friction stir spot welding of AA2014 aluminum alloy reinforced by graphene nanosheets publication-title: Mater. Des. doi: 10.1016/j.matdes.2019.108212 – volume: 6 start-page: 076554 year: 2019 ident: ref_150 article-title: A comprehensive study on the effect of heat treatment on the fracture behaviors and structural properties of Mg-Li alloys using RSM publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab1369 – ident: ref_87 doi: 10.3390/met10070947 – volume: 64 start-page: 45 year: 2011 ident: ref_111 article-title: Through-thickness crystallographic texture of stationary shoulder friction stir welded aluminium publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2010.08.060 – volume: 9 start-page: 1692 year: 2021 ident: ref_3 article-title: Review on the effect of different processing techniques on the microstructure and mechanical behaviour of AZ31 Magnesium alloy publication-title: J. Magnes. Alloy. doi: 10.1016/j.jma.2021.03.019 – ident: ref_141 doi: 10.3390/ma14216640 – ident: ref_200 doi: 10.3390/met13020222 – volume: 222 start-page: 391 year: 2015 ident: ref_114 article-title: Journal of Materials Processing Technology Investigation of stationary shoulder friction stir welding of aluminum alloy 7075-T651 publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2015.03.036 – volume: 221 start-page: 187 year: 2015 ident: ref_118 article-title: Stationary shoulder FSW for joining high strength aluminum alloys publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2015.02.015 – volume: 296 start-page: 127251 year: 2023 ident: ref_24 article-title: The relationship between microstructures and mechanical properties in friction stir lap welding of titanium alloy publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2022.127251 – ident: ref_96 doi: 10.3390/met12060927 – ident: ref_107 doi: 10.3390/jmmp6050095 – volume: 22 start-page: 63 year: 2008 ident: ref_166 article-title: Friction stir welding of 6061 alloy publication-title: Asian J. Exp. Sci. – volume: 46 start-page: 658 year: 2021 ident: ref_15 article-title: The microstructure and mechanical properties of the friction stir processed TIG-welded aerospace dissimilar aluminium alloys publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.11.588 – volume: 183 start-page: 111594 year: 2021 ident: ref_94 article-title: Detailed characterizations of microstructure evolution, corrosion behavior and mechanical properties of refill friction stir spot welded 2219 aluminum alloy publication-title: Mater. Charact. doi: 10.1016/j.matchar.2021.111594 – ident: ref_38 doi: 10.3390/met11010068 – volume: 62 start-page: 113 year: 2014 ident: ref_117 article-title: Formation and mechanical properties of stationary shoulder friction stir welded 6005A-T6 aluminum alloy publication-title: Mater. Des. doi: 10.1016/j.matdes.2014.05.016 – volume: 13 start-page: 75 year: 2006 ident: ref_4 article-title: Evaluation of Microstructure and Mechanical Property of FSW Welded MB3 Magnesium Alloy publication-title: J. Iron Steel Res. Int. doi: 10.1016/S1006-706X(06)60082-4 – volume: 488 start-page: 25 year: 2008 ident: ref_191 article-title: Stir zone microstructure of commercial purity titanium friction stir welded using pcBN tool publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2007.10.062 – volume: 69 start-page: 215 year: 2021 ident: ref_22 article-title: Eliminating the cavity defect and improving mechanical properties of TA5 alloy joint by titanium alloy supporting friction stir welding publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2021.07.044 – ident: ref_37 doi: 10.3390/met11010128 – volume: 21 start-page: 5066 year: 2022 ident: ref_103 article-title: Microstructure and mechanical properties of refill friction stir spot welded joints: Effects of tool size and welding parameters publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2022.11.108 – ident: ref_119 – ident: ref_18 doi: 10.1016/j.asr.2022.06.030 – volume: 638–642 start-page: 1179 year: 2010 ident: ref_121 article-title: The use of bobbin tools for friction stir welding of aluminium alloys publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.638-642.1179 – volume: 94 start-page: 1451 year: 2014 ident: ref_182 article-title: Microstructure mapping of a friction stir welded AA2050 Al–Li–Cu in the T8 state publication-title: Philos. Mag. doi: 10.1080/14786435.2014.887862 – volume: 34 start-page: 73 year: 2018 ident: ref_45 article-title: Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2017.11.041 – volume: 34 start-page: 78 year: 2022 ident: ref_97 article-title: Refill friction stir spot welding of AlSi10Mg alloy produced by laser powder bed fusion to wrought AA7075-T6 alloy publication-title: Manuf. Lett. doi: 10.1016/j.mfglet.2022.09.010 – ident: ref_63 – volume: 13 start-page: 2272 year: 2021 ident: ref_100 article-title: Microstructure, mechanical and functional properties of refill friction stir spot welds on multilayered aluminum foils for battery application publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2021.06.017 – volume: 302 start-page: 1327 year: 2013 ident: ref_193 article-title: Tool wear evaluations in friction stir processing of commercial titanium Ti-6Al-4V publication-title: Wear doi: 10.1016/j.wear.2012.10.025 – volume: 94 start-page: 4479 year: 2017 ident: ref_82 article-title: Failure mechanisms of refill friction stir spot welded 7075-T6 aluminium alloy single-lap joints publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-017-1176-2 – volume: 65 start-page: 8 year: 2013 ident: ref_46 article-title: Friction stir welded joints of Al-Li Alloys for aeronautical applications: Butt-joints and tailor welded blanks publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2013.05.002 – volume: 201 start-page: 104865 year: 2023 ident: ref_29 article-title: Friction stir welding of industrial grade AISI 316L and P91 steel pipes: A comparative investigation based on mechanical and metallurgical properties publication-title: Int. J. Press. Vessel. Pip. doi: 10.1016/j.ijpvp.2022.104865 – volume: 629 start-page: 012010 year: 2019 ident: ref_34 article-title: Investigation of mechanical and microstructural properties of friction stir welded dual phase (DP) steel publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/629/1/012010 – volume: 106 start-page: 352 year: 2015 ident: ref_196 article-title: Effect of rotation rate on microstructure and texture evolution during friction stir welding of Ti-6Al-4V plates publication-title: Mater. Charact. doi: 10.1016/j.matchar.2015.06.025 – ident: ref_91 – volume: 7 start-page: 863 year: 2019 ident: ref_152 article-title: Friction Stir Welding of Aerospace Alloys publication-title: Int. J. Res. Appl. Sci. Eng. Technol. doi: 10.22214/ijraset.2019.3151 – volume: 51 start-page: 155 year: 2021 ident: ref_19 article-title: Investigation into the effect of temper condition on friction stir weldability of AA6061 Al-alloy plates publication-title: Met. Mater. – volume: 147 start-page: 286 year: 2018 ident: ref_42 article-title: Microstructure characterisation of a friction stir welded hemi-cylinder structure using Ti-6Al-4V castings publication-title: Mater. Charact. doi: 10.1016/j.matchar.2018.11.019 – volume: 54 start-page: 99 year: 2020 ident: ref_17 article-title: Numerical prediction and experimental investigation of aerospace-grade dissimilar aluminium alloy by friction stir welding publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2020.03.001 – volume: 57 start-page: 659 year: 2004 ident: ref_171 article-title: Studies on friction stir welded aa 7075 aluminum alloy publication-title: Trans. Indian Inst. Met. – volume: 859 start-page: 144227 year: 2022 ident: ref_21 article-title: Comparing the fatigue performance of Ti-4Al-0.005B titanium alloy T-joints, welded via different friction stir welding sequences publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2022.144227 – volume: 20 start-page: 508 year: 2022 ident: ref_27 article-title: Investigating local strain rate sensitivity of the individual weld zone in the friction stir welded DP 780 steel publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2022.07.125 – ident: ref_122 doi: 10.3390/ma15082771 – volume: 229 start-page: 390 year: 2016 ident: ref_194 article-title: Microstructure and texture distribution of Ti-6Al-4V alloy joints friction stir welded below β-transus temperature publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2015.09.041 |
SSID | ssj0000331829 |
Score | 2.6684465 |
SecondaryResourceType | review_article |
Snippet | The use of the friction stir welding (FSW) process as a relatively new solid-state welding technology in the aerospace industry has pushed forward several... |
SourceID | pubmedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2971 |
SubjectTerms | Aerospace industry Aerospace materials Aircraft industry Alloys Aluminum alloys Aluminum-lithium alloys Composite materials Cost control Friction stir welding Geometric accuracy Industrial development Machining Magnesium alloys Manufacturing Pressure welding Process controls Review Solids Spot welding State-of-the-art reviews Steel alloys Strength to weight ratio Titanium alloys Weld defects Welded joints Welding Welding equipment |
Title | Friction Stir Welding of Aluminum in the Aerospace Industry: The Current Progress and State-of-the-Art Review |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37109809 https://www.proquest.com/docview/2806575499 https://www.proquest.com/docview/2807923495 https://pubmed.ncbi.nlm.nih.gov/PMC10143485 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3R9gIHxDeBUhmBhDhYjWNn43BBC-q2QqKqgIq9RY7tiEhsUra7B_49M4433UWIY2QncTLj8TzP-A3A60wVNm-ygjuR1VwpnFLoNwtuTW4nxjhRh3Nrn88nZ5fq0zyfxw2365hWubGJwVC73tIe-XGIABaEZt5f_eJUNYqiq7GExh4coAnWCL4OPpycX3wZd1lSiTqblQMvqUR8f7wwYhLOk4qdlehve7y1IO0mS26tPrN7cDe6jWw6yPk-3PLdA7izRSb4EBazZRsOKbCvq3bJvvsQVmJ9w6ZogNpuvWBtx9DfY1OPA0Ks7Fks3PH7HUN1YZGriV1QzhZaQGY6x4I3yvuG450c38-GaMIjuJydfPt4xmMxBW4R8a24qJtCNESeXxhljZMa167cZE4Kb4oiNaWUuS28KbPMuVLV3tsc4ZWVTuTaWfkY9ru-80-BCY9OSqGMRXdBWV0b57MSn6_TMnVykibwdvNjKxuZxqngxc8KEQcJoboRQgKvxr5XA7_GP3u9IflUNOnwSdbEswM4HqKvqqYIihQxx8sEDjcirOJsvK5udCeBl2MzziMKjpjO9-vQh6gUES8m8GSQ-DggSQmr-HUJ6B1dGDsQR_duS9f-CFzdVApZKp0_-_-4nsNtqmMfUoL0Ieyvlmv_Ar2dVX0Ee3p2ehQVG69O5-IPJIACiQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAkaAEAer8SPrBAmhFbBs6UNItKK34NiOiMQmZbsr1D_Fb2TsPLqLELee7ThO5uEZz8w3AM-5VCYpuaKW8YJKiSKFdjOjRidmpLVlRahb2z8YTY_kp-PkeAN-97UwPq2y14lBUdvG-Dvy7RABVN6beXvyk_quUT662rfQaNli1539Qpft9M3Oe6TvC84nHw7fTWnXVYAadH0WlBWlYqVHkVdaGm1Fiko80dwK5rRSsUYXPzHK6YxzazNZOGcS9DOMsCxJrRG47iW4LIXIvESlk4_DnU4sUEJ41qKg4ni8PdNsFKpX2dq597f2Xzn-1lMzV866yQ243hmpZNxy1U3YcPUtuLYCXXgbZpN5FUoiyJdFNSdfXQhikaYkY1R3Vb2ckaomaF2SscMNoWfuSNcm5Ow1QeYkHTIU-ewzxFDfEl1bEmxf2pQUn6T4ftLGLu7A0YX85LuwWTe1uw-EOTSJlNQGjRNp0kJbxzNcP42z2IpRHMGr_sfmpsM19-01fuTo33gi5OdEiODZMPekRfP456yXnj65F3FcyeiuUgH348Gy8jG6YNLj1IsItnoS5p3sn-bnnBrB02EYpdaHYnTtmmWY44Eb0TuN4F5L8WFDwqfH4tdFkK7xwjDBI4Kvj9TV94AM7hsvC5kmD_6_rydwZXq4v5fv7RzsPoSrHO22kIyUbsHmYr50j9DOWhSPA3MT-HbR0vQHnBo8SA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anYTgAXEnMMAIEOLBanxJnSAhVNiqjUFVARN7C47tiEg0GV0rtL_Gr-M4t7UI8bbnOI6Tc_H5co6_A_CMS2WinCtqGc-olGhSGDczanRkRlpbltXn1j5OR_tH8v1xdLwFv7uzML6ssvOJtaO2lfH_yId1BlB5NDPM27KI2e7kzclP6jtI-Uxr106jUZFDd_YL4dvp64NdlPVzzid7X97t07bDADUIg5aUZbliuWeUV1oabUWMDj3S3ArmtFKhRrgfGeV0wrm1icycMxFiDiMsi2JrBM57CbYVoqJwANtv96azT_0fnlCgvfCk4UQVIgmHc81G9VlWtrEL_r0XrG2Gm4Waazvf5Dpca0NWMm507AZsufImXF0jMrwF88miqA9IkM_LYkG-ujqlRaqcjNH5FeVqToqSYKxJxg4XhDjdkbZpyNkrgqpKWp4oMvP1Yuh9iS4tqSNhWuUU76T4fNJkMm7D0YV85jswKKvS3QPCHAZISmqDoYo0caat4wnOH4dJaMUoDOBl92FT07Kc-2YbP1JEO14I6bkQAnjajz1puD3-OeqFl0_qDR5nMro9t4Dr8dRZ6RgBmfSs9SKAnU6EaesJTtNzvQ3gSX8ZbdgnZnTpqlU9xtM4IlYN4G4j8X5BwhfL4tsFEG_oQj_A84NvXimL7zVPuG_DLGQc3f__uh7DZbSk9MPB9PABXOEYxNWVSfEODJaLlXuIQdcye9RqN4FvF21QfwBxMUHa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Friction+Stir+Welding+of+Aluminum+in+the+Aerospace+Industry%3A+The+Current+Progress+and+State-of-the-Art+Review&rft.jtitle=Materials&rft.au=Ahmed%2C+Mohamed+M+Z&rft.au=El-Sayed+Seleman%2C+Mohamed+M&rft.au=Fydrych%2C+Dariusz&rft.au=%C3%87am%2C+G%C3%BCrel&rft.date=2023-04-08&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=16&rft.issue=8&rft_id=info:doi/10.3390%2Fma16082971&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |