Friction Stir Welding of Aluminum in the Aerospace Industry: The Current Progress and State-of-the-Art Review

The use of the friction stir welding (FSW) process as a relatively new solid-state welding technology in the aerospace industry has pushed forward several developments in different related aspects of this strategic industry. In terms of the FSW process itself, due to the geometric limitations involv...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 16; no. 8; p. 2971
Main Authors Ahmed, Mohamed M. Z., El-Sayed Seleman, Mohamed M., Fydrych, Dariusz, Çam, Gürel
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 08.04.2023
MDPI
Subjects
Online AccessGet full text
ISSN1996-1944
1996-1944
DOI10.3390/ma16082971

Cover

Loading…
Abstract The use of the friction stir welding (FSW) process as a relatively new solid-state welding technology in the aerospace industry has pushed forward several developments in different related aspects of this strategic industry. In terms of the FSW process itself, due to the geometric limitations involved in the conventional FSW process, many variants have been required over time to suit the different types of geometries and structures, which has resulted in the development of numerous variants such as refill friction stir spot welding (RFSSW), stationary shoulder friction stir welding (SSFSW), and bobbin tool friction stir welding (BTFSW). In terms of FSW machines, significant development has occurred in the new design and adaptation of the existing machining equipment through the use of their structures or the new and specially designed FSW heads. In terms of the most used materials in the aerospace industry, there has been development of new high strength-to-weight ratios such as the 3rd generation aluminum–lithium alloys that have become successfully weldable by FSW with fewer welding defects and a significant improvement in the weld quality and geometric accuracy. The purpose of this article is to summarize the state of knowledge regarding the application of the FSW process to join materials used in the aerospace industry and to identify gaps in the state of the art. This work describes the fundamental techniques and tools necessary to make soundly welded joints. Typical applications of FSW processes are surveyed, including friction stir spot welding, RFSSW, SSFSW, BTFSW, and underwater FSW. Conclusions and suggestions for future development are proposed.
AbstractList The use of the friction stir welding (FSW) process as a relatively new solid-state welding technology in the aerospace industry has pushed forward several developments in different related aspects of this strategic industry. In terms of the FSW process itself, due to the geometric limitations involved in the conventional FSW process, many variants have been required over time to suit the different types of geometries and structures, which has resulted in the development of numerous variants such as refill friction stir spot welding (RFSSW), stationary shoulder friction stir welding (SSFSW), and bobbin tool friction stir welding (BTFSW). In terms of FSW machines, significant development has occurred in the new design and adaptation of the existing machining equipment through the use of their structures or the new and specially designed FSW heads. In terms of the most used materials in the aerospace industry, there has been development of new high strength-to-weight ratios such as the 3rd generation aluminum–lithium alloys that have become successfully weldable by FSW with fewer welding defects and a significant improvement in the weld quality and geometric accuracy. The purpose of this article is to summarize the state of knowledge regarding the application of the FSW process to join materials used in the aerospace industry and to identify gaps in the state of the art. This work describes the fundamental techniques and tools necessary to make soundly welded joints. Typical applications of FSW processes are surveyed, including friction stir spot welding, RFSSW, SSFSW, BTFSW, and underwater FSW. Conclusions and suggestions for future development are proposed.
The use of the friction stir welding (FSW) process as a relatively new solid-state welding technology in the aerospace industry has pushed forward several developments in different related aspects of this strategic industry. In terms of the FSW process itself, due to the geometric limitations involved in the conventional FSW process, many variants have been required over time to suit the different types of geometries and structures, which has resulted in the development of numerous variants such as refill friction stir spot welding (RFSSW), stationary shoulder friction stir welding (SSFSW), and bobbin tool friction stir welding (BTFSW). In terms of FSW machines, significant development has occurred in the new design and adaptation of the existing machining equipment through the use of their structures or the new and specially designed FSW heads. In terms of the most used materials in the aerospace industry, there has been development of new high strength-to-weight ratios such as the 3rd generation aluminum-lithium alloys that have become successfully weldable by FSW with fewer welding defects and a significant improvement in the weld quality and geometric accuracy. The purpose of this article is to summarize the state of knowledge regarding the application of the FSW process to join materials used in the aerospace industry and to identify gaps in the state of the art. This work describes the fundamental techniques and tools necessary to make soundly welded joints. Typical applications of FSW processes are surveyed, including friction stir spot welding, RFSSW, SSFSW, BTFSW, and underwater FSW. Conclusions and suggestions for future development are proposed.The use of the friction stir welding (FSW) process as a relatively new solid-state welding technology in the aerospace industry has pushed forward several developments in different related aspects of this strategic industry. In terms of the FSW process itself, due to the geometric limitations involved in the conventional FSW process, many variants have been required over time to suit the different types of geometries and structures, which has resulted in the development of numerous variants such as refill friction stir spot welding (RFSSW), stationary shoulder friction stir welding (SSFSW), and bobbin tool friction stir welding (BTFSW). In terms of FSW machines, significant development has occurred in the new design and adaptation of the existing machining equipment through the use of their structures or the new and specially designed FSW heads. In terms of the most used materials in the aerospace industry, there has been development of new high strength-to-weight ratios such as the 3rd generation aluminum-lithium alloys that have become successfully weldable by FSW with fewer welding defects and a significant improvement in the weld quality and geometric accuracy. The purpose of this article is to summarize the state of knowledge regarding the application of the FSW process to join materials used in the aerospace industry and to identify gaps in the state of the art. This work describes the fundamental techniques and tools necessary to make soundly welded joints. Typical applications of FSW processes are surveyed, including friction stir spot welding, RFSSW, SSFSW, BTFSW, and underwater FSW. Conclusions and suggestions for future development are proposed.
Audience Academic
Author El-Sayed Seleman, Mohamed M.
Çam, Gürel
Ahmed, Mohamed M. Z.
Fydrych, Dariusz
AuthorAffiliation 4 Department of Mechanical Engineering, Iskenderun Technical University, Iskenderun 31200, Hatay, Türkiye
3 Institute of Machines and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza Street 11/12, 80-233 Gdańsk, Poland
2 Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43512, Egypt
1 Department of Mechanical Engineering, College of Engineering at Al Kharj, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
AuthorAffiliation_xml – name: 3 Institute of Machines and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza Street 11/12, 80-233 Gdańsk, Poland
– name: 4 Department of Mechanical Engineering, Iskenderun Technical University, Iskenderun 31200, Hatay, Türkiye
– name: 2 Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43512, Egypt
– name: 1 Department of Mechanical Engineering, College of Engineering at Al Kharj, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
Author_xml – sequence: 1
  givenname: Mohamed M. Z.
  orcidid: 0000-0002-9550-7431
  surname: Ahmed
  fullname: Ahmed, Mohamed M. Z.
– sequence: 2
  givenname: Mohamed M.
  orcidid: 0000-0002-6836-3874
  surname: El-Sayed Seleman
  fullname: El-Sayed Seleman, Mohamed M.
– sequence: 3
  givenname: Dariusz
  orcidid: 0000-0002-2557-8568
  surname: Fydrych
  fullname: Fydrych, Dariusz
– sequence: 4
  givenname: Gürel
  orcidid: 0000-0003-0222-9274
  surname: Çam
  fullname: Çam, Gürel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37109809$$D View this record in MEDLINE/PubMed
BookMark eNptklFvFCEQx4mpsfXsix_AkPhiTLbCwi6LL-ZysdqkiUZrfCQczF5pduEKuzX99s7laq2N8AAZfvNnhj_PyUFMEQh5ydmJEJq9Gy1vWVdrxZ-QI651W3Et5cGD_SE5LuWK4RCCI_mMHArFme6YPiLjaQ5uCinS71PI9CcMPsQNTT1dDvMY4jzSEOl0CXQJOZWtdUDPop_LlG_f0wuMr-acIU70a06bDKVQGz2K2Qmq1FeYWS3zRL_BTYBfL8jT3g4Fju_WBflx-vFi9bk6__LpbLU8r5yU7VTxda9438mOKyud9aJjom1s7QUHqxSzWojGKbC6rr3Xcg3gmrrlTnjedN6JBfmw193O6xG8w_qyHcw2h9HmW5NsMP-exHBpNunGcMalkF2DCm_uFHK6nqFMZgzFwTDYCGkupu6Y0rWQeoe-foRepTlH7G9HtY1qpNZIneypjR3AhNgnvNjh9DAGh572AeNLJRU-AUerFuTVwx7ui__jHQJv94BDY0qG_h7hzOz-hvn7NxBmj2AX0CM0HssIw_9SfgM-Ubqv
CitedBy_id crossref_primary_10_3389_fmech_2024_1351922
crossref_primary_10_1016_j_ijpvp_2024_105282
crossref_primary_10_1080_01694243_2024_2345163
crossref_primary_10_1007_s44245_024_00076_1
crossref_primary_10_3390_met13050897
crossref_primary_10_1016_j_jmrt_2024_09_118
crossref_primary_10_1016_j_molliq_2024_125894
crossref_primary_10_3390_cryst14090752
crossref_primary_10_3390_ma16145124
crossref_primary_10_1016_j_jallcom_2023_172477
crossref_primary_10_1007_s00170_023_12655_9
crossref_primary_10_1016_j_cirpj_2023_12_002
crossref_primary_10_1080_2374068X_2024_2385213
crossref_primary_10_1016_j_cirpj_2024_04_007
crossref_primary_10_3390_ma17133073
crossref_primary_10_3390_ma17081796
crossref_primary_10_1177_14644207241290196
crossref_primary_10_3390_app131810255
crossref_primary_10_3390_ma17020433
crossref_primary_10_1590_1517_7076_rmat_2024_0465
crossref_primary_10_1088_2053_1591_ad5140
crossref_primary_10_3390_ma17153750
crossref_primary_10_1016_j_jmrt_2025_02_140
crossref_primary_10_1007_s43452_025_01129_2
crossref_primary_10_1016_j_jma_2023_09_039
crossref_primary_10_1016_j_jajp_2024_100259
crossref_primary_10_1177_13506501241246841
crossref_primary_10_3390_cryst13111559
crossref_primary_10_1177_14644207241228370
crossref_primary_10_1016_j_jallcom_2023_173294
crossref_primary_10_1016_j_jallcom_2025_178504
crossref_primary_10_1016_j_msea_2024_146367
crossref_primary_10_1007_s11837_024_07005_3
crossref_primary_10_1177_09544089241283272
crossref_primary_10_1177_09544062241302529
crossref_primary_10_1177_13621718241232797
crossref_primary_10_1002_eng2_13060
crossref_primary_10_1016_j_cirpj_2023_08_014
crossref_primary_10_1080_09507116_2024_2413386
crossref_primary_10_1016_j_triboint_2023_109179
crossref_primary_10_3390_s24031001
crossref_primary_10_1142_S0218625X25501094
crossref_primary_10_1515_rams_2024_0033
crossref_primary_10_1016_j_nxmate_2024_100269
crossref_primary_10_1016_j_cirpj_2023_07_001
crossref_primary_10_3390_met13081494
crossref_primary_10_1016_j_jer_2023_09_005
crossref_primary_10_3390_met13050906
crossref_primary_10_1016_j_ijfatigue_2024_108308
crossref_primary_10_3390_jcs8060210
crossref_primary_10_1080_09507116_2023_2258064
crossref_primary_10_1134_S0031918X24601100
crossref_primary_10_1088_2053_1591_ad45bf
crossref_primary_10_1007_s00170_024_14020_w
crossref_primary_10_3390_met13111838
crossref_primary_10_1016_j_mtcomm_2023_107660
crossref_primary_10_1016_j_jallcom_2024_174031
crossref_primary_10_1016_j_jmrt_2024_03_072
crossref_primary_10_3390_jmse12010071
crossref_primary_10_1007_s11665_024_10508_4
crossref_primary_10_3390_met13071176
crossref_primary_10_3390_ma18020340
crossref_primary_10_1016_j_matchemphys_2024_129468
crossref_primary_10_1080_2374068X_2024_2400775
crossref_primary_10_1007_s12008_024_01871_6
crossref_primary_10_3390_jmmp7050181
crossref_primary_10_1007_s11665_024_09628_8
crossref_primary_10_1007_s43452_024_00868_y
crossref_primary_10_1016_j_jallcom_2025_178804
crossref_primary_10_1016_j_cirpj_2024_09_009
crossref_primary_10_1080_10426914_2024_2362641
crossref_primary_10_1016_j_matchemphys_2024_129075
crossref_primary_10_1080_09507116_2023_2278740
crossref_primary_10_3390_jmmp7030106
crossref_primary_10_1007_s40194_024_01831_4
crossref_primary_10_1038_s41598_024_81135_1
crossref_primary_10_1080_02286203_2024_2365658
crossref_primary_10_3390_met14010128
crossref_primary_10_1016_j_jma_2024_12_022
crossref_primary_10_1007_s43939_024_00138_x
crossref_primary_10_3390_ma16103777
crossref_primary_10_1007_s40571_023_00626_6
crossref_primary_10_1007_s00170_023_12114_5
crossref_primary_10_4028_p_j0yFAx
crossref_primary_10_1016_j_mtcomm_2023_107600
crossref_primary_10_3390_met13071159
crossref_primary_10_1007_s11665_024_10317_9
crossref_primary_10_1080_09507116_2024_2446254
crossref_primary_10_1080_09507116_2023_2251378
crossref_primary_10_1016_j_dt_2024_11_005
crossref_primary_10_3390_met14091089
crossref_primary_10_1007_s00170_023_11653_1
crossref_primary_10_1080_02533839_2024_2346500
crossref_primary_10_1007_s11665_023_08664_0
crossref_primary_10_1016_j_jma_2024_05_004
crossref_primary_10_1016_j_jmapro_2024_09_095
crossref_primary_10_3390_ma16144904
crossref_primary_10_1016_j_addma_2024_104141
crossref_primary_10_4028_p_SWUb8i
crossref_primary_10_1016_j_msea_2024_146840
crossref_primary_10_13111_2066_8201_2024_16_4_1
crossref_primary_10_1007_s41939_024_00535_y
crossref_primary_10_1016_j_triboint_2024_109508
crossref_primary_10_3390_jcs8040155
crossref_primary_10_1016_S1003_6326_24_66688_4
crossref_primary_10_1142_S0218625X24501282
crossref_primary_10_1016_j_matlet_2024_136640
crossref_primary_10_3390_met14020192
crossref_primary_10_1080_09507116_2024_2389347
crossref_primary_10_1016_j_engfracmech_2024_110266
crossref_primary_10_1007_s12666_024_03268_1
crossref_primary_10_1038_s41598_025_91065_1
crossref_primary_10_1038_s41598_024_53795_6
crossref_primary_10_3390_app14093544
crossref_primary_10_1016_j_jmrt_2023_10_158
crossref_primary_10_3390_ma17092106
crossref_primary_10_3390_ma17205107
crossref_primary_10_1016_j_jajp_2025_100289
crossref_primary_10_1016_j_surfcoat_2023_130359
crossref_primary_10_1016_j_jallcom_2025_178553
crossref_primary_10_3390_ma16093423
crossref_primary_10_1016_j_heliyon_2024_e41048
crossref_primary_10_1142_S0218625X25500593
crossref_primary_10_1016_j_mtla_2025_102343
crossref_primary_10_1007_s10904_024_03418_4
crossref_primary_10_1080_00084433_2024_2366688
crossref_primary_10_1080_09507116_2024_2394489
crossref_primary_10_1063_5_0199003
crossref_primary_10_3390_polym16050602
crossref_primary_10_1016_j_jmrt_2023_11_222
crossref_primary_10_1080_01694243_2025_2470256
crossref_primary_10_3390_ma16186287
Cites_doi 10.1016/j.jmrt.2019.07.021
10.1016/j.jmapro.2020.08.025
10.1016/j.msea.2006.10.081
10.31399/asm.tb.aub.9781627082976
10.1016/j.jmapro.2022.07.067
10.1016/j.mspro.2014.07.362
10.1016/j.scriptamat.2006.11.022
10.1007/s11665-018-3650-x
10.1016/j.jmapro.2022.04.062
10.1179/136217110X12720264008510
10.1177/0954405421995667
10.1007/s11665-009-9554-z
10.1016/j.jmatprotec.2018.09.031
10.1016/j.matpr.2022.02.137
10.1016/j.msea.2022.144019
10.2320/matertrans1989.37.12
10.1111/ffe.12984
10.1016/j.actamat.2005.05.021
10.1016/S1006-7191(08)60054-X
10.1016/j.jmrt.2023.01.151
10.1177/09544062211070716
10.1016/j.jmst.2017.10.017
10.3390/met11020330
10.1016/j.matdes.2010.02.002
10.1179/1362171814Y.0000000247
10.1063/1.5044305
10.1016/j.acme.2017.07.005
10.1016/j.jare.2017.12.004
10.1080/13621718.2015.1132128
10.3390/ma14206018
10.3390/ma14237485
10.1016/j.pmatsci.2020.100752
10.1016/B978-0-12-805368-3.00005-4
10.1016/j.jmatprotec.2018.08.022
10.1155/2014/697170
10.1016/j.matlet.2016.10.032
10.1016/j.matdes.2009.02.021
10.1016/j.matdes.2010.11.059
10.1088/1757-899X/629/1/012007
10.1016/j.matdes.2010.01.023
10.1016/j.jmapro.2019.04.027
10.1155/2023/2092339
10.1016/S0921-5093(01)01358-2
10.3390/met11071097
10.3390/ma14164585
10.1179/1362171813Y.0000000156
10.1016/j.scriptamat.2018.03.025
10.3390/ma14164597
10.1016/j.matchar.2015.11.020
10.1016/j.scriptamat.2021.114113
10.1016/j.matpr.2020.10.300
10.1088/2053-1591/ab2de6
10.1016/j.matdes.2022.111520
10.3390/ma15082926
10.1023/A:1015359900319
10.1016/j.mfglet.2022.07.032
10.1007/s40195-019-00946-8
10.1016/j.cirpj.2022.07.002
10.1080/10426914.2020.1765249
10.1016/j.jmrt.2021.03.067
10.1016/S1359-6462(99)00226-2
10.1016/j.matdes.2013.12.002
10.1016/j.msea.2014.12.026
10.1016/j.engfailanal.2008.09.024
10.3390/ma16052031
10.3103/S1068798X18120043
10.1016/j.scriptamat.2006.11.028
10.30880/ijie.2022.14.01.001
10.1016/j.msea.2010.02.023
10.3390/ma15196886
10.1016/j.matchar.2018.01.051
10.3390/ma15062223
10.1007/s11015-012-9580-1
10.1088/2053-1591/aafb9f
10.1007/s11661-999-0251-1
10.3390/ma15134684
10.31399/asm.tb.emea.9781627082518
10.2514/4.869198
10.1016/j.matdes.2011.06.021
10.1080/02670836.2020.1867784
10.1007/s00170-017-1492-6
10.3390/ma15082905
10.1179/095066010X12777205875750
10.3390/met11030438
10.1016/j.msea.2015.05.038
10.1016/j.jmrt.2022.07.092
10.1007/s10853-008-2525-1
10.1016/j.pmatsci.2020.100706
10.1016/j.msea.2013.01.044
10.1016/j.jmrt.2022.08.022
10.1016/j.jmapro.2018.10.005
10.1016/j.matdes.2006.01.031
10.1007/s11661-012-1155-z
10.1179/174328009X411136
10.1016/j.jmapro.2019.09.047
10.1007/s11665-014-0968-x
10.1016/j.matdes.2015.07.096
10.1533/9781845697716
10.1016/B978-0-12-805368-3.00001-7
10.3390/ma14092171
10.1016/j.ast.2019.105438
10.1179/174329305X40723
10.3390/met11101592
10.1007/s11661-018-4996-2
10.1016/j.jmrt.2020.05.084
10.1016/j.matdes.2008.06.008
10.1016/j.jmrt.2022.07.152
10.3390/met9030286
10.1016/j.jmatprotec.2007.12.008
10.1007/s12666-019-01570-x
10.4028/www.scientific.net/KEM.340-341.1449
10.1016/j.actamat.2011.01.040
10.1080/15567036.2019.1651793
10.1007/978-981-10-2143-5
10.3390/ma16072818
10.1016/j.jmst.2017.05.015
10.1016/j.matdes.2016.10.012
10.1016/j.compstruct.2018.06.070
10.1007/s10853-007-1604-z
10.3390/ma15196799
10.3390/ma15092971
10.1016/j.matdes.2021.109997
10.1016/j.matdes.2015.09.128
10.3390/ma14216396
10.1016/j.matdes.2016.05.111
10.1016/j.proeng.2013.11.020
10.1016/j.jmatprotec.2016.11.024
10.3390/ma15041394
10.1007/s11665-023-07836-2
10.1016/j.matchar.2018.08.027
10.1016/j.mser.2005.07.001
10.1016/j.matdes.2019.108212
10.1088/2053-1591/ab1369
10.3390/met10070947
10.1016/j.scriptamat.2010.08.060
10.1016/j.jma.2021.03.019
10.3390/ma14216640
10.3390/met13020222
10.1016/j.jmatprotec.2015.03.036
10.1016/j.jmatprotec.2015.02.015
10.1016/j.matchemphys.2022.127251
10.3390/met12060927
10.3390/jmmp6050095
10.1016/j.matpr.2020.11.588
10.1016/j.matchar.2021.111594
10.3390/met11010068
10.1016/j.matdes.2014.05.016
10.1016/S1006-706X(06)60082-4
10.1016/j.msea.2007.10.062
10.1016/j.jmapro.2021.07.044
10.3390/met11010128
10.1016/j.jmrt.2022.11.108
10.1016/j.asr.2022.06.030
10.4028/www.scientific.net/MSF.638-642.1179
10.1080/14786435.2014.887862
10.1016/j.jmst.2017.11.041
10.1016/j.mfglet.2022.09.010
10.1016/j.jmrt.2021.06.017
10.1016/j.wear.2012.10.025
10.1007/s00170-017-1176-2
10.1016/j.tafmec.2013.05.002
10.1016/j.ijpvp.2022.104865
10.1088/1757-899X/629/1/012010
10.1016/j.matchar.2015.06.025
10.22214/ijraset.2019.3151
10.1016/j.matchar.2018.11.019
10.1016/j.jmapro.2020.03.001
10.1016/j.msea.2022.144227
10.1016/j.jmrt.2022.07.125
10.3390/ma15082771
10.1016/j.jmatprotec.2015.09.041
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/ma16082971
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed


CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID PMC10143485
A747446103
37109809
10_3390_ma16082971
Genre Journal Article
Review
GeographicLocations United States
United Kingdom
GeographicLocations_xml – name: United Kingdom
– name: United States
GrantInformation_xml – fundername: Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number
  grantid: IF2/PSAU/2022/RV/xx.
– fundername: Prince Sattam bin Abdulaziz University
  grantid: 2023/RV/018
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
TR2
TUS
NPM
PQGLB
PMFND
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c446t-1bf71f84817a4cad380365a2d31ea770a9335c7ea922dd94beec5261c3d158dc3
IEDL.DBID BENPR
ISSN 1996-1944
IngestDate Thu Aug 21 18:37:36 EDT 2025
Thu Jul 10 23:42:58 EDT 2025
Fri Jul 25 11:43:45 EDT 2025
Tue Jun 10 20:38:25 EDT 2025
Mon Jul 21 06:08:57 EDT 2025
Thu Apr 24 22:57:32 EDT 2025
Tue Jul 01 04:28:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords BTFSW
SSFSW
friction stir welding
aerospace industry
aluminum–lithium alloys
RFSSW
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-1bf71f84817a4cad380365a2d31ea770a9335c7ea922dd94beec5261c3d158dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-6836-3874
0000-0002-2557-8568
0000-0003-0222-9274
0000-0002-9550-7431
OpenAccessLink https://www.proquest.com/docview/2806575499?pq-origsite=%requestingapplication%
PMID 37109809
PQID 2806575499
PQPubID 2032366
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10143485
proquest_miscellaneous_2807923495
proquest_journals_2806575499
gale_infotracacademiconefile_A747446103
pubmed_primary_37109809
crossref_primary_10_3390_ma16082971
crossref_citationtrail_10_3390_ma16082971
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230408
PublicationDateYYYYMMDD 2023-04-08
PublicationDate_xml – month: 4
  year: 2023
  text: 20230408
  day: 8
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Materials
PublicationTitleAlternate Materials (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_137
ref_136
ref_92
ref_91
ref_138
Wei (ref_175) 2007; 452–453
Muthumanickam (ref_185) 2019; 72
Rahmatabadi (ref_54) 2020; 9
ref_131
ref_99
ref_130
ref_133
Steuwer (ref_180) 2011; 59
ref_132
Gao (ref_183) 2015; 639
ref_96
ref_135
ref_95
ref_134
Charit (ref_39) 2005; 53
Qin (ref_184) 2015; 626
Fu (ref_106) 2021; 203
(ref_20) 2014; 19
Dursun (ref_41) 2014; 56
ref_128
Mabuwa (ref_15) 2021; 46
ref_129
ref_120
ref_122
ref_123
Mishra (ref_152) 2019; 7
Lequeu (ref_146) 2009; 19
Gera (ref_100) 2021; 13
Sidhar (ref_151) 2016; 106
Hammad (ref_112) 2022; 236
Rahmatabadi (ref_149) 2019; 6
Yoon (ref_196) 2015; 106
(ref_73) 2007; 42
Yan (ref_186) 2018; 27
ref_78
ref_74
Barbini (ref_113) 2018; 34
Sun (ref_79) 2018; 264
Scialpi (ref_167) 2007; 28
Gomez (ref_40) 2019; 95
Zou (ref_93) 2022; 79
Rioja (ref_145) 2012; 43
Kashaev (ref_67) 2018; 36
Ahmed (ref_111) 2011; 64
Chen (ref_11) 2009; 30
Fridlyander (ref_147) 2002; 44
Mehdi (ref_155) 2017; 1
ref_89
ref_142
(ref_4) 2006; 13
ref_88
ref_141
Wang (ref_187) 2016; 21
ref_87
ref_144
ref_86
Benavides (ref_157) 1999; 41
Sun (ref_115) 2019; 263
Threadgill (ref_2) 2009; 54
Ji (ref_198) 2016; 188
Zhang (ref_24) 2023; 296
(ref_25) 2011; 56
Hirata (ref_36) 2007; 56
Tavares (ref_46) 2013; 65
Cisko (ref_189) 2020; 35
Xu (ref_143) 2018; 10
Wu (ref_118) 2015; 221
Pahlavani (ref_150) 2019; 6
Ji (ref_197) 2017; 113
Cavaliere (ref_179) 2009; 16
Malard (ref_182) 2014; 94
Altenkirch (ref_176) 2010; 15
Yu (ref_60) 2018; 153
Chen (ref_104) 2021; 12
ref_200
Javaheri (ref_66) 2022; 37
Ji (ref_117) 2014; 62
ref_119
Shukla (ref_177) 2007; 56
Yang (ref_85) 2014; 2014
Sun (ref_116) 2016; 111
ref_110
Fu (ref_7) 2021; 209
Li (ref_114) 2015; 222
Yoon (ref_194) 2016; 229
Shen (ref_80) 2022; 20
Yang (ref_126) 2018; 145
Kubit (ref_81) 2018; 18
Zhang (ref_98) 2022; 20
ref_108
ref_107
ref_109
Rahmatabadi (ref_56) 2021; 235
Fritsche (ref_97) 2022; 34
ref_102
Yang (ref_6) 2008; 21
Ipekoglu (ref_19) 2021; 51
Polmear (ref_140) 1996; 37
Li (ref_199) 2020; 58
Dubourg (ref_156) 2010; 31
Mishra (ref_65) 2005; 50
Xu (ref_124) 2018; 138
ref_10
Shanavas (ref_162) 2018; 95
Wang (ref_101) 2019; 186
Avinash (ref_160) 2014; 75
Farias (ref_193) 2013; 302
ref_18
Ahmed (ref_75) 2018; 50
ref_16
Kumbhar (ref_166) 2008; 22
Kubit (ref_84) 2018; 42
Li (ref_77) 2019; 8
Nirmal (ref_13) 2020; 46
Zou (ref_103) 2022; 21
Zhang (ref_191) 2008; 488
Rakshith (ref_3) 2021; 9
Ipeko (ref_35) 2019; 6
Pandian (ref_17) 2020; 54
Ramulu (ref_192) 2010; 31
Alam (ref_188) 2019; 44
Meikeerthy (ref_14) 2023; 2023
Yoon (ref_195) 2015; 88
Li (ref_105) 2019; 49
Hsu (ref_5) 2007; 340–341
Campanella (ref_23) 2022; 33
Du (ref_22) 2021; 69
Yang (ref_173) 2022; 82
Kimura (ref_169) 2005; 10
Mistikoglu (ref_70) 2014; 23
Kubit (ref_83) 2018; 201
Threadgill (ref_121) 2010; 638–642
Aktarer (ref_34) 2019; 629
Fu (ref_170) 2011; 32
Ahmed (ref_172) 2017; 242
(ref_69) 2016; 91
Wang (ref_43) 2019; 33
Ipeko (ref_71) 2019; 629
Ahmed (ref_76) 2013; 18
Meisnar (ref_42) 2018; 147
ref_50
Ma (ref_181) 2013; 569
Jahangir (ref_90) 2018; 1980
ref_58
Seleman (ref_139) 2022; 14
ref_57
ref_174
Boldsaikhan (ref_47) 2019; 42
ref_53
ref_51
Gain (ref_29) 2023; 201
Heidarzadeh (ref_68) 2021; 117
Meng (ref_52) 2020; 115
Han (ref_27) 2022; 20
ref_59
Boitsov (ref_61) 2018; 38
Kubit (ref_82) 2017; 94
Rahmatabadi (ref_55) 2021; 37
Ahmed (ref_127) 2022; 38
ref_164
ref_163
ref_64
ref_165
ref_63
ref_62
Wang (ref_190) 2015; 86
Sutton (ref_158) 2002; 323
Varghese (ref_30) 2022; 857
RaviKumar (ref_161) 2014; 5
Arruti (ref_154) 2011; 32
Wang (ref_45) 2018; 34
Su (ref_21) 2022; 859
ref_33
ref_32
ref_31
(ref_72) 2022; 62
ref_38
ref_37
Xu (ref_125) 2018; 34
Fujii (ref_12) 2010; 527
Zou (ref_94) 2021; 183
Liu (ref_26) 2023; 225
Cavaliere (ref_178) 2009; 30
ref_44
Duan (ref_28) 2022; 20
Khokhlatova (ref_148) 2012; 56
Sheikhia (ref_159) 2008; 206
ref_1
Lee (ref_153) 2008; 43
Sato (ref_168) 1999; 30
ref_49
ref_48
ref_9
ref_8
Venugopal (ref_171) 2004; 57
References_xml – volume: 8
  start-page: 4115
  year: 2019
  ident: ref_77
  article-title: Microstructural evolution and mechanical properties of refill friction stir spot welded alclad 2A12-T4 aluminum alloy
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2019.07.021
– volume: 58
  start-page: 344
  year: 2020
  ident: ref_199
  article-title: Friction stir welding of Ti-6Al-4V alloy: Friction tool, microstructure, and mechanical properties
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2020.08.025
– volume: 452–453
  start-page: 170
  year: 2007
  ident: ref_175
  article-title: Study of friction stir welding of 01420 aluminum-lithium alloy
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2006.10.081
– ident: ref_138
  doi: 10.31399/asm.tb.aub.9781627082976
– volume: 82
  start-page: 230
  year: 2022
  ident: ref_173
  article-title: Research progress on the microstructure and mechanical properties of friction stir welded AlLi alloy joints
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2022.07.067
– volume: 5
  start-page: 1726
  year: 2014
  ident: ref_161
  article-title: Effect of Welding Parameters on Macro and Microstructure of Friction Stir Welded Dissimilar Butt Joints between AA7075-T651 and AA6061-T651 Alloys
  publication-title: Procedia Mater. Sci.
  doi: 10.1016/j.mspro.2014.07.362
– volume: 56
  start-page: 477
  year: 2007
  ident: ref_36
  article-title: Relationship between deformation behavior and microstructural evolution of friction stir processed Zn–22wt.% Al alloy
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2006.11.022
– volume: 27
  start-page: 5803
  year: 2018
  ident: ref_186
  article-title: Effects of Rotation Speed on Microstructure and Mechanical Properties of 2060 Al-Cu-Li Alloy in Friction Stir Welding
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-018-3650-x
– ident: ref_108
– ident: ref_132
– volume: 79
  start-page: 91
  year: 2022
  ident: ref_93
  article-title: Characterizations of dissimilar refill friction stir spot welding 2219 aluminum alloy joints of unequal thickness
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2022.04.062
– volume: 15
  start-page: 522
  year: 2010
  ident: ref_176
  article-title: Process—Microstructure—Property correlations in Al–Li AA2199 friction stir welds
  publication-title: Sci. Technol. Weld. Join.
  doi: 10.1179/136217110X12720264008510
– volume: 235
  start-page: 1363
  year: 2021
  ident: ref_56
  article-title: Manufacturing of three-layered sandwich composite of AA1050/LZ91/AA1050 using cold roll bonding process
  publication-title: Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
  doi: 10.1177/0954405421995667
– volume: 19
  start-page: 841
  year: 2009
  ident: ref_146
  article-title: Aluminum-copper-lithium alloy 2050 developed for medium to thick plate
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-009-9554-z
– volume: 264
  start-page: 414
  year: 2018
  ident: ref_79
  article-title: Flat friction stir spot welding of three 6061-T6 aluminum sheets
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2018.09.031
– ident: ref_120
– volume: 62
  start-page: 77
  year: 2022
  ident: ref_72
  article-title: Prospects of producing aluminum parts by wire arc additive manufacturing (WAAM)
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2022.02.137
– ident: ref_48
– volume: 857
  start-page: 144019
  year: 2022
  ident: ref_30
  article-title: Ambient, elevated temperature tensile properties and origin of strengthening in friction stir welded 6 mm thick reduced activation ferritic-martensitic steel plates in as-welded and post-weld normalised conditions
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2022.144019
– volume: 37
  start-page: 12
  year: 1996
  ident: ref_140
  article-title: Recent Developments in light alloys
  publication-title: Mater. Trans. JIM
  doi: 10.2320/matertrans1989.37.12
– volume: 42
  start-page: 1308
  year: 2018
  ident: ref_84
  article-title: Analysis of the effect of structural defects on the fatigue strength of RFSSW joints using C-scan scanning acoustic microscopy and SEM
  publication-title: Fatigue Fract. Eng. Mater. Struct.
  doi: 10.1111/ffe.12984
– volume: 53
  start-page: 4211
  year: 2005
  ident: ref_39
  article-title: Low temperature superplasticity in a friction-stir-processed ultrafine grained Al–Zn–Mg–Sc alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2005.05.021
– volume: 21
  start-page: 313
  year: 2008
  ident: ref_6
  article-title: Review on Research and Development of Magnesium Alloys
  publication-title: Acta Metall. Sin. (Engl. Lett.)
  doi: 10.1016/S1006-7191(08)60054-X
– ident: ref_9
  doi: 10.1016/j.jmrt.2023.01.151
– volume: 236
  start-page: 6665
  year: 2022
  ident: ref_112
  article-title: An investigation on mechanical and microstructural evolution of stationary shoulder friction stir welded aluminum alloy AA7075-T651
  publication-title: Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
  doi: 10.1177/09544062211070716
– volume: 34
  start-page: 119
  year: 2018
  ident: ref_113
  article-title: Influence of a non-rotating shoulder on heat generation, microstructure and mechanical properties of dissimilar AA2024 / AA7050 FSW joints
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2017.10.017
– ident: ref_57
  doi: 10.3390/met11020330
– volume: 31
  start-page: 3324
  year: 2010
  ident: ref_156
  article-title: Process optimisation and mechanical properties of friction stir lap welds of 7075-T6 stringers on 2024-T3 skin
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2010.02.002
– volume: 19
  start-page: 715
  year: 2014
  ident: ref_20
  article-title: Effects of use of higher strength interlayer and external cooling on properties of friction stir welded AA6061-T6 joints
  publication-title: Sci. Technol. Weld. Join.
  doi: 10.1179/1362171814Y.0000000247
– volume: 1980
  start-page: 030026
  year: 2018
  ident: ref_90
  article-title: A review of additive manufacturing of magnesium alloys
  publication-title: AIP Conference Proceedings
  doi: 10.1063/1.5044305
– volume: 18
  start-page: 235
  year: 2018
  ident: ref_81
  article-title: Analysis of the mechanical properties and of micrographs of refill friction stir spot welded 7075-T6 aluminium sheets
  publication-title: Arch. Civ. Mech. Eng.
  doi: 10.1016/j.acme.2017.07.005
– volume: 10
  start-page: 49
  year: 2018
  ident: ref_143
  article-title: Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: A review
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2017.12.004
– volume: 21
  start-page: 479
  year: 2016
  ident: ref_187
  article-title: Global and local mechanical properties and microstructure of Bobbin tool friction-stir-welded Al–Li alloy
  publication-title: Sci. Technol. Weld. Join.
  doi: 10.1080/13621718.2015.1132128
– ident: ref_92
  doi: 10.3390/ma14206018
– ident: ref_95
  doi: 10.3390/ma14237485
– volume: 117
  start-page: 100752
  year: 2021
  ident: ref_68
  article-title: Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2020.100752
– ident: ref_174
  doi: 10.1016/B978-0-12-805368-3.00005-4
– volume: 263
  start-page: 256
  year: 2019
  ident: ref_115
  article-title: Weld zone and residual stress development in AA7050 stationary shoulder friction stir T-joint weld
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2018.08.022
– volume: 2014
  start-page: 697170
  year: 2014
  ident: ref_85
  article-title: Friction Stir Spot Welding: A Review on Joint Macro- and Microstructure, Property, and Process Modelling
  publication-title: Adv. Mater. Sci. Eng.
  doi: 10.1155/2014/697170
– volume: 188
  start-page: 21
  year: 2016
  ident: ref_198
  article-title: Eliminating the tearing defect in Ti-6Al-4V alloy joint by back heating assisted friction stir welding
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2016.10.032
– volume: 30
  start-page: 3622
  year: 2009
  ident: ref_178
  article-title: 2198 Al–Li plates joined by Friction Stir Welding: Mechanical and microstructural behavior
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2009.02.021
– volume: 32
  start-page: 2021
  year: 2011
  ident: ref_154
  article-title: Material flow and mechanical behaviour of dissimilar AA2024-T3 and AA7075-T6 aluminium alloys friction stir welds
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2010.11.059
– volume: 629
  start-page: 012007
  year: 2019
  ident: ref_71
  article-title: Formation of weld defects in cold metal transfer arc welded 7075-T6 plates and its effect on joint performance
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/629/1/012007
– volume: 31
  start-page: 3056
  year: 2010
  ident: ref_192
  article-title: Tensile properties of friction stir welded and friction stir welded-superplastically formed Ti-6Al-4V butt joints
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2010.01.023
– ident: ref_137
– volume: 42
  start-page: 113
  year: 2019
  ident: ref_47
  article-title: Refill friction stir spot welding of surface-treated aerospace aluminum alloys with faying-surface sealant
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2019.04.027
– volume: 2023
  start-page: 2092339
  year: 2023
  ident: ref_14
  article-title: Evaluation of Pure Titanium Welded Joints Produced by Underwater Friction Stir Welding
  publication-title: Adv. Mater. Sci. Eng.
  doi: 10.1155/2023/2092339
– ident: ref_64
– volume: 323
  start-page: 160
  year: 2002
  ident: ref_158
  article-title: Microstructural studies of friction stir welds in 2024-T3 aluminum
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/S0921-5093(01)01358-2
– ident: ref_32
  doi: 10.3390/met11071097
– ident: ref_58
  doi: 10.3390/ma14164585
– volume: 18
  start-page: 680
  year: 2013
  ident: ref_76
  article-title: Effect of friction stir welding speed on mechanical properties and microstructure of nickel based super alloy Inconel 718
  publication-title: Sci. Technol. Weld. Join.
  doi: 10.1179/1362171813Y.0000000156
– volume: 153
  start-page: 122
  year: 2018
  ident: ref_60
  article-title: Non-beam-based metal additive manufacturing enabled by additive friction stir deposition
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2018.03.025
– ident: ref_31
  doi: 10.3390/ma14164597
– ident: ref_109
– volume: 111
  start-page: 114
  year: 2016
  ident: ref_116
  article-title: The local strength and toughness for stationary shoulder friction stir weld on AA6061-T6 alloy
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2015.11.020
– volume: 203
  start-page: 114113
  year: 2021
  ident: ref_106
  article-title: Improved mechanical properties of cast Mg alloy welds via texture weakening by differential rotation refill friction stir spot welding
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2021.114113
– volume: 46
  start-page: 4702
  year: 2020
  ident: ref_13
  article-title: Numerical simulations of friction stir welding of dual phase titanium alloy for aerospace applications
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2020.10.300
– ident: ref_49
– volume: 37
  start-page: 162
  year: 2022
  ident: ref_66
  article-title: Advances in FSW and FSSW of dissimilar Al-alloy plates
  publication-title: J. Adhes. Sci. Technol.
– volume: 6
  start-page: 096543
  year: 2019
  ident: ref_149
  article-title: Investigation of mechanical properties, formability, and anisotropy of dual phase Mg-7Li-1Zn
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/ab2de6
– volume: 225
  start-page: 111520
  year: 2023
  ident: ref_26
  article-title: Microstructure and mechanical properties of aluminum-steel dissimilar metal welded using arc and friction stir hybrid welding
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2022.111520
– ident: ref_89
  doi: 10.3390/ma15082926
– volume: 44
  start-page: 3
  year: 2002
  ident: ref_147
  article-title: Thermally stable aluminum-lithium alloy 1424 for application in welded fuselage
  publication-title: Met. Sci. Heat Treat.
  doi: 10.1023/A:1015359900319
– volume: 33
  start-page: 249
  year: 2022
  ident: ref_23
  article-title: Residual stress and material flow prediction in Friction Stir Welding of Gr2 Titanium T-joints
  publication-title: Manuf. Lett.
  doi: 10.1016/j.mfglet.2022.07.032
– volume: 33
  start-page: 13
  year: 2019
  ident: ref_43
  article-title: Research Progress of Bobbin Tool Friction Stir Welding of Aluminum Alloys: A Review
  publication-title: Acta Met. Sin.
  doi: 10.1007/s40195-019-00946-8
– volume: 38
  start-page: 801
  year: 2022
  ident: ref_127
  article-title: Production of AA1050/silica fume composite by bobbin tool-friction stir processing: Microstructure, composition and mechanical properties
  publication-title: CIRP J. Manuf. Sci. Technol.
  doi: 10.1016/j.cirpj.2022.07.002
– volume: 35
  start-page: 1069
  year: 2020
  ident: ref_189
  article-title: A parametric investigation on friction stir welding of Al-Li 2099
  publication-title: Mater. Manuf. Process.
  doi: 10.1080/10426914.2020.1765249
– volume: 12
  start-page: 1243
  year: 2021
  ident: ref_104
  article-title: Enhance mechanical properties of refill friction stir spot welding joint of alclad 7050/2524 aluminum via suspension rotating process
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2021.03.067
– volume: 41
  start-page: 809
  year: 1999
  ident: ref_157
  article-title: Low-temperature friction-stir welding of 2024 aluminum
  publication-title: Scr. Mater.
  doi: 10.1016/S1359-6462(99)00226-2
– volume: 56
  start-page: 862
  year: 2014
  ident: ref_41
  article-title: Recent developments in advanced aircraft aluminium alloys
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2013.12.002
– ident: ref_110
– volume: 626
  start-page: 322
  year: 2015
  ident: ref_184
  article-title: The evolution of precipitation and microstructure in friction stir welded 2195-T8 Al–Li alloy
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2014.12.026
– volume: 16
  start-page: 1856
  year: 2009
  ident: ref_179
  article-title: Effect of anisotropy on fatigue properties of 2198 Al–Li plates joined by friction stir welding
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2008.09.024
– ident: ref_16
  doi: 10.3390/ma16052031
– volume: 38
  start-page: 1029
  year: 2018
  ident: ref_61
  article-title: Friction Stir Welding in the Aerospace Industry
  publication-title: Russ. Eng. Res.
  doi: 10.3103/S1068798X18120043
– volume: 56
  start-page: 513
  year: 2007
  ident: ref_177
  article-title: Study of microstructural evolution in friction-stir welded thin-sheet Al–Cu–Li alloy using transmission-electron microscopy
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2006.11.028
– volume: 14
  start-page: 1
  year: 2022
  ident: ref_139
  article-title: Effect of FSW Parameters on The Microstructure and Mechanical Properties of T-joints between Dissimilar Al-Alloys
  publication-title: Int. J. Integr. Eng.
  doi: 10.30880/ijie.2022.14.01.001
– ident: ref_144
– volume: 527
  start-page: 3386
  year: 2010
  ident: ref_12
  article-title: Investigation of welding parameter dependent microstructure and mechanical properties in friction stir welded pure Ti joints
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2010.02.023
– ident: ref_130
  doi: 10.3390/ma15196886
– volume: 1
  start-page: 57
  year: 2017
  ident: ref_155
  article-title: Mechanical and microstructure characterization of friction stir welding for dissimilar alloy-A Review
  publication-title: Int. J. Res. Eng. Innov.
– volume: 138
  start-page: 48
  year: 2018
  ident: ref_124
  article-title: Microstructure evolution in the conventional single side and bobbin tool friction stir welding of thick rolled 7085-T7452 aluminum alloy
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2018.01.051
– ident: ref_163
  doi: 10.3390/ma15062223
– volume: 56
  start-page: 336
  year: 2012
  ident: ref_148
  article-title: Aluminum-lithium alloys for aircraft building
  publication-title: Metallurgist
  doi: 10.1007/s11015-012-9580-1
– volume: 6
  start-page: 046537
  year: 2019
  ident: ref_35
  article-title: Investigation of microstructure and mechanical properties of friction stir welded dissimilar St37/St52 joints
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/aafb9f
– volume: 30
  start-page: 2429
  year: 1999
  ident: ref_168
  article-title: Microstructural evolution of 6063 aluminum during friction-stir welding
  publication-title: Met. Mater. Trans. A
  doi: 10.1007/s11661-999-0251-1
– ident: ref_129
  doi: 10.3390/ma15134684
– ident: ref_136
  doi: 10.31399/asm.tb.emea.9781627082518
– ident: ref_131
  doi: 10.2514/4.869198
– volume: 32
  start-page: 4825
  year: 2011
  ident: ref_170
  article-title: Improvement of weld temperature distribution and mechanical properties of 7050 aluminum alloy butt joints by submerged friction stir welding
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2011.06.021
– volume: 37
  start-page: 78
  year: 2021
  ident: ref_55
  article-title: The influence of post-annealing and ultrasonic vibration on the formability of multilayered Al5052/MgAZ31B composite
  publication-title: Mater. Sci. Technol.
  doi: 10.1080/02670836.2020.1867784
– ident: ref_133
– volume: 95
  start-page: 4535
  year: 2018
  ident: ref_162
  article-title: Weldability of marine grade AA 5052 aluminum alloy by underwater friction stir welding
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-017-1492-6
– ident: ref_33
  doi: 10.3390/ma15082905
– volume: 56
  start-page: 1
  year: 2011
  ident: ref_25
  article-title: Friction stir welded structural materials: Beyond Al-alloys
  publication-title: Int. Mater. Rev.
  doi: 10.1179/095066010X12777205875750
– ident: ref_128
  doi: 10.3390/met11030438
– volume: 639
  start-page: 489
  year: 2015
  ident: ref_183
  article-title: Correlation of microstructure and mechanical properties in friction stir welded 2198-T8 Al–Li alloy
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2015.05.038
– ident: ref_74
– ident: ref_51
– volume: 20
  start-page: 857
  year: 2022
  ident: ref_80
  article-title: Tool wear mechanisms and effects on refill friction stir spot welding of AA2198-T8 sheets
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2022.07.092
– volume: 43
  start-page: 3296
  year: 2008
  ident: ref_153
  article-title: Lap joint properties of FSWed dissimilar formed 5052 Al and 6061 Al alloys with different thickness
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-008-2525-1
– volume: 115
  start-page: 100706
  year: 2020
  ident: ref_52
  article-title: Recent progress on control strategies for inherent issues in friction stir welding
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2020.100706
– volume: 569
  start-page: 41
  year: 2013
  ident: ref_181
  article-title: Mechanical properties and fatigue crack growth rates in friction stir welded nugget of 2198-T8 Al–Li alloy joints
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2013.01.044
– volume: 20
  start-page: 3381
  year: 2022
  ident: ref_28
  article-title: Achievement of excellent strength and plasticity in the nugget zone of friction stir welded bainitic steel and its deformation behavior
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2022.08.022
– volume: 36
  start-page: 571
  year: 2018
  ident: ref_67
  article-title: Prospects of laser beam welding and friction stir welding processes for aluminum airframe structural applications
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2018.10.005
– volume: 28
  start-page: 1124
  year: 2007
  ident: ref_167
  article-title: Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminium alloy
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2006.01.031
– volume: 43
  start-page: 3325
  year: 2012
  ident: ref_145
  article-title: The evolution of Al-Li base products for aerospace and space applications
  publication-title: Metall. Mater. Trans. A Phys. Metall. Mater. Sci.
  doi: 10.1007/s11661-012-1155-z
– volume: 54
  start-page: 49
  year: 2009
  ident: ref_2
  article-title: Friction stir welding of aluminium alloys
  publication-title: Int. Mater. Rev.
  doi: 10.1179/174328009X411136
– volume: 49
  start-page: 385
  year: 2019
  ident: ref_105
  article-title: Interfacial microstructure and mechanical properties of dissimilar aluminum/steel joint fabricated via refilled friction stir spot welding
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2019.09.047
– volume: 23
  start-page: 1936
  year: 2014
  ident: ref_70
  article-title: Recent developments in friction stir welding of al-Alloys
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-014-0968-x
– ident: ref_135
– ident: ref_10
– volume: 86
  start-page: 933
  year: 2015
  ident: ref_190
  article-title: Effect of tool rotational speed on the microstructure and mechanical properties of bobbin tool friction stir welding of Al–Li alloy
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.07.096
– ident: ref_59
  doi: 10.1533/9781845697716
– ident: ref_53
  doi: 10.1016/B978-0-12-805368-3.00001-7
– ident: ref_62
– ident: ref_102
  doi: 10.3390/ma14092171
– volume: 95
  start-page: 105438
  year: 2019
  ident: ref_40
  article-title: Liquid hydrogen fuel tanks for commercial aviation: Structural sizing and stress analysis
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2019.105438
– volume: 10
  start-page: 378
  year: 2005
  ident: ref_169
  article-title: Joining phenomena during friction stage of A7075-T6 aluminium alloy friction weld
  publication-title: Sci. Technol. Weld. Join.
  doi: 10.1179/174329305X40723
– ident: ref_165
  doi: 10.3390/met11101592
– volume: 50
  start-page: 271
  year: 2018
  ident: ref_75
  article-title: Effect of Tool Geometry and Heat Input on the Hardness, Grain Structure, and Crystallographic Texture of Thick-Section Friction Stir-Welded Aluminium
  publication-title: Met. Mater. Trans. A
  doi: 10.1007/s11661-018-4996-2
– volume: 9
  start-page: 7880
  year: 2020
  ident: ref_54
  article-title: Production of Al/Mg-Li composite by the accumulative roll bonding process
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2020.05.084
– ident: ref_134
– volume: 30
  start-page: 469
  year: 2009
  ident: ref_11
  article-title: Microstructural characterization and mechanical properties in friction stir welding of aluminum and titanium dissimilar alloys
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2008.06.008
– volume: 20
  start-page: 1302
  year: 2022
  ident: ref_98
  article-title: Microstructure characteristics and corrosion behavior of refill friction stir spot welded 7050 aluminum alloy
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2022.07.152
– ident: ref_99
  doi: 10.3390/met9030286
– volume: 206
  start-page: 132
  year: 2008
  ident: ref_159
  article-title: Preliminary study on the microstructure and mechanical properties of dissimilar friction stir welds in aircraft aluminium alloys 2024-T351 and 6056-T4
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2007.12.008
– volume: 72
  start-page: 1557
  year: 2019
  ident: ref_185
  article-title: Effect of Friction Stir Welding Parameters on Mechanical Properties and Microstructure of AA2195 Al—Li Alloy Welds
  publication-title: Trans. Indian Inst. Met.
  doi: 10.1007/s12666-019-01570-x
– ident: ref_44
– volume: 340–341
  start-page: 1449
  year: 2007
  ident: ref_5
  article-title: A study on friction stir process of magnesium alloy AZ31 sheet
  publication-title: Key Eng. Mater.
  doi: 10.4028/www.scientific.net/KEM.340-341.1449
– volume: 59
  start-page: 3002
  year: 2011
  ident: ref_180
  article-title: A combined approach to microstructure mapping of an Al–Li AA2199 friction stir weld
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2011.01.040
– volume: 44
  start-page: 2851
  year: 2019
  ident: ref_188
  article-title: Effect of heat assisting backing plate in friction stir welding of high strength Al-Li alloy
  publication-title: Energy Sources Part A Recover. Util. Environ. Eff.
  doi: 10.1080/15567036.2019.1651793
– ident: ref_1
  doi: 10.1007/978-981-10-2143-5
– ident: ref_8
  doi: 10.3390/ma16072818
– ident: ref_50
– volume: 34
  start-page: 173
  year: 2018
  ident: ref_125
  article-title: Comparative study on local and global mechanical properties of bobbin tool and conventional friction stir welded 7085-T7452 aluminum thick plate
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2017.05.015
– volume: 113
  start-page: 37
  year: 2017
  ident: ref_197
  article-title: Joint formation and mechanical properties of back heating assisted friction stir welded Ti–6Al–4V alloy
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.10.012
– volume: 201
  start-page: 389
  year: 2018
  ident: ref_83
  article-title: Refill friction stir spot welding of 7075-T6 aluminium alloy single-lap joints with polymer sealant interlayer
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2018.06.070
– volume: 42
  start-page: 7154
  year: 2007
  ident: ref_73
  article-title: Microstructural and mechanical characterization of electron beam welded Al-alloy 7020
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-007-1604-z
– ident: ref_86
  doi: 10.3390/ma15196799
– ident: ref_78
  doi: 10.3390/ma15092971
– volume: 209
  start-page: 109997
  year: 2021
  ident: ref_7
  article-title: Revealing joining mechanism in refill friction stir spot welding of AZ31 magnesium alloy to galvanized DP600 steel
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2021.109997
– volume: 88
  start-page: 1269
  year: 2015
  ident: ref_195
  article-title: Effect of initial microstructure on Ti-6Al-4V joint by friction stir welding
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2015.09.128
– volume: 91
  start-page: 1851
  year: 2016
  ident: ref_69
  article-title: Recent developments in joining of aluminum alloys
  publication-title: Int. J. Adv. Manuf. Technol.
– ident: ref_88
  doi: 10.3390/ma14216396
– ident: ref_142
– volume: 106
  start-page: 146
  year: 2016
  ident: ref_151
  article-title: Friction stir welding of Al-Mg-Li 1424 alloy
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2016.05.111
– volume: 75
  start-page: 98
  year: 2014
  ident: ref_160
  article-title: Friction stir welded butt joints of AA2024 T3 and AA7075 T6 aluminum alloys
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2013.11.020
– volume: 242
  start-page: 77
  year: 2017
  ident: ref_172
  article-title: Friction stir welding of similar and dissimilar AA7075 and AA5083
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2016.11.024
– ident: ref_123
  doi: 10.3390/ma15041394
– ident: ref_164
  doi: 10.1007/s11665-023-07836-2
– volume: 145
  start-page: 20
  year: 2018
  ident: ref_126
  article-title: A comparative research on bobbin tool and conventional friction stir welding of Al-Mg-Si alloy plates
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2018.08.027
– volume: 50
  start-page: 1
  year: 2005
  ident: ref_65
  article-title: Friction stir welding and processing
  publication-title: Mater. Sci. Eng. R Rep.
  doi: 10.1016/j.mser.2005.07.001
– volume: 186
  start-page: 108212
  year: 2019
  ident: ref_101
  article-title: Strengthening and toughening mechanisms in refilled friction stir spot welding of AA2014 aluminum alloy reinforced by graphene nanosheets
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2019.108212
– volume: 6
  start-page: 076554
  year: 2019
  ident: ref_150
  article-title: A comprehensive study on the effect of heat treatment on the fracture behaviors and structural properties of Mg-Li alloys using RSM
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/ab1369
– ident: ref_87
  doi: 10.3390/met10070947
– volume: 64
  start-page: 45
  year: 2011
  ident: ref_111
  article-title: Through-thickness crystallographic texture of stationary shoulder friction stir welded aluminium
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2010.08.060
– volume: 9
  start-page: 1692
  year: 2021
  ident: ref_3
  article-title: Review on the effect of different processing techniques on the microstructure and mechanical behaviour of AZ31 Magnesium alloy
  publication-title: J. Magnes. Alloy.
  doi: 10.1016/j.jma.2021.03.019
– ident: ref_141
  doi: 10.3390/ma14216640
– ident: ref_200
  doi: 10.3390/met13020222
– volume: 222
  start-page: 391
  year: 2015
  ident: ref_114
  article-title: Journal of Materials Processing Technology Investigation of stationary shoulder friction stir welding of aluminum alloy 7075-T651
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2015.03.036
– volume: 221
  start-page: 187
  year: 2015
  ident: ref_118
  article-title: Stationary shoulder FSW for joining high strength aluminum alloys
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2015.02.015
– volume: 296
  start-page: 127251
  year: 2023
  ident: ref_24
  article-title: The relationship between microstructures and mechanical properties in friction stir lap welding of titanium alloy
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2022.127251
– ident: ref_96
  doi: 10.3390/met12060927
– ident: ref_107
  doi: 10.3390/jmmp6050095
– volume: 22
  start-page: 63
  year: 2008
  ident: ref_166
  article-title: Friction stir welding of 6061 alloy
  publication-title: Asian J. Exp. Sci.
– volume: 46
  start-page: 658
  year: 2021
  ident: ref_15
  article-title: The microstructure and mechanical properties of the friction stir processed TIG-welded aerospace dissimilar aluminium alloys
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2020.11.588
– volume: 183
  start-page: 111594
  year: 2021
  ident: ref_94
  article-title: Detailed characterizations of microstructure evolution, corrosion behavior and mechanical properties of refill friction stir spot welded 2219 aluminum alloy
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2021.111594
– ident: ref_38
  doi: 10.3390/met11010068
– volume: 62
  start-page: 113
  year: 2014
  ident: ref_117
  article-title: Formation and mechanical properties of stationary shoulder friction stir welded 6005A-T6 aluminum alloy
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2014.05.016
– volume: 13
  start-page: 75
  year: 2006
  ident: ref_4
  article-title: Evaluation of Microstructure and Mechanical Property of FSW Welded MB3 Magnesium Alloy
  publication-title: J. Iron Steel Res. Int.
  doi: 10.1016/S1006-706X(06)60082-4
– volume: 488
  start-page: 25
  year: 2008
  ident: ref_191
  article-title: Stir zone microstructure of commercial purity titanium friction stir welded using pcBN tool
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2007.10.062
– volume: 69
  start-page: 215
  year: 2021
  ident: ref_22
  article-title: Eliminating the cavity defect and improving mechanical properties of TA5 alloy joint by titanium alloy supporting friction stir welding
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2021.07.044
– ident: ref_37
  doi: 10.3390/met11010128
– volume: 21
  start-page: 5066
  year: 2022
  ident: ref_103
  article-title: Microstructure and mechanical properties of refill friction stir spot welded joints: Effects of tool size and welding parameters
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2022.11.108
– ident: ref_119
– ident: ref_18
  doi: 10.1016/j.asr.2022.06.030
– volume: 638–642
  start-page: 1179
  year: 2010
  ident: ref_121
  article-title: The use of bobbin tools for friction stir welding of aluminium alloys
  publication-title: Mater. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.638-642.1179
– volume: 94
  start-page: 1451
  year: 2014
  ident: ref_182
  article-title: Microstructure mapping of a friction stir welded AA2050 Al–Li–Cu in the T8 state
  publication-title: Philos. Mag.
  doi: 10.1080/14786435.2014.887862
– volume: 34
  start-page: 73
  year: 2018
  ident: ref_45
  article-title: Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2017.11.041
– volume: 34
  start-page: 78
  year: 2022
  ident: ref_97
  article-title: Refill friction stir spot welding of AlSi10Mg alloy produced by laser powder bed fusion to wrought AA7075-T6 alloy
  publication-title: Manuf. Lett.
  doi: 10.1016/j.mfglet.2022.09.010
– ident: ref_63
– volume: 13
  start-page: 2272
  year: 2021
  ident: ref_100
  article-title: Microstructure, mechanical and functional properties of refill friction stir spot welds on multilayered aluminum foils for battery application
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2021.06.017
– volume: 302
  start-page: 1327
  year: 2013
  ident: ref_193
  article-title: Tool wear evaluations in friction stir processing of commercial titanium Ti-6Al-4V
  publication-title: Wear
  doi: 10.1016/j.wear.2012.10.025
– volume: 94
  start-page: 4479
  year: 2017
  ident: ref_82
  article-title: Failure mechanisms of refill friction stir spot welded 7075-T6 aluminium alloy single-lap joints
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-017-1176-2
– volume: 65
  start-page: 8
  year: 2013
  ident: ref_46
  article-title: Friction stir welded joints of Al-Li Alloys for aeronautical applications: Butt-joints and tailor welded blanks
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2013.05.002
– volume: 201
  start-page: 104865
  year: 2023
  ident: ref_29
  article-title: Friction stir welding of industrial grade AISI 316L and P91 steel pipes: A comparative investigation based on mechanical and metallurgical properties
  publication-title: Int. J. Press. Vessel. Pip.
  doi: 10.1016/j.ijpvp.2022.104865
– volume: 629
  start-page: 012010
  year: 2019
  ident: ref_34
  article-title: Investigation of mechanical and microstructural properties of friction stir welded dual phase (DP) steel
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/629/1/012010
– volume: 106
  start-page: 352
  year: 2015
  ident: ref_196
  article-title: Effect of rotation rate on microstructure and texture evolution during friction stir welding of Ti-6Al-4V plates
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2015.06.025
– ident: ref_91
– volume: 7
  start-page: 863
  year: 2019
  ident: ref_152
  article-title: Friction Stir Welding of Aerospace Alloys
  publication-title: Int. J. Res. Appl. Sci. Eng. Technol.
  doi: 10.22214/ijraset.2019.3151
– volume: 51
  start-page: 155
  year: 2021
  ident: ref_19
  article-title: Investigation into the effect of temper condition on friction stir weldability of AA6061 Al-alloy plates
  publication-title: Met. Mater.
– volume: 147
  start-page: 286
  year: 2018
  ident: ref_42
  article-title: Microstructure characterisation of a friction stir welded hemi-cylinder structure using Ti-6Al-4V castings
  publication-title: Mater. Charact.
  doi: 10.1016/j.matchar.2018.11.019
– volume: 54
  start-page: 99
  year: 2020
  ident: ref_17
  article-title: Numerical prediction and experimental investigation of aerospace-grade dissimilar aluminium alloy by friction stir welding
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2020.03.001
– volume: 57
  start-page: 659
  year: 2004
  ident: ref_171
  article-title: Studies on friction stir welded aa 7075 aluminum alloy
  publication-title: Trans. Indian Inst. Met.
– volume: 859
  start-page: 144227
  year: 2022
  ident: ref_21
  article-title: Comparing the fatigue performance of Ti-4Al-0.005B titanium alloy T-joints, welded via different friction stir welding sequences
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2022.144227
– volume: 20
  start-page: 508
  year: 2022
  ident: ref_27
  article-title: Investigating local strain rate sensitivity of the individual weld zone in the friction stir welded DP 780 steel
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2022.07.125
– ident: ref_122
  doi: 10.3390/ma15082771
– volume: 229
  start-page: 390
  year: 2016
  ident: ref_194
  article-title: Microstructure and texture distribution of Ti-6Al-4V alloy joints friction stir welded below β-transus temperature
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2015.09.041
SSID ssj0000331829
Score 2.6684465
SecondaryResourceType review_article
Snippet The use of the friction stir welding (FSW) process as a relatively new solid-state welding technology in the aerospace industry has pushed forward several...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2971
SubjectTerms Aerospace industry
Aerospace materials
Aircraft industry
Alloys
Aluminum alloys
Aluminum-lithium alloys
Composite materials
Cost control
Friction stir welding
Geometric accuracy
Industrial development
Machining
Magnesium alloys
Manufacturing
Pressure welding
Process controls
Review
Solids
Spot welding
State-of-the-art reviews
Steel alloys
Strength to weight ratio
Titanium alloys
Weld defects
Welded joints
Welding
Welding equipment
Title Friction Stir Welding of Aluminum in the Aerospace Industry: The Current Progress and State-of-the-Art Review
URI https://www.ncbi.nlm.nih.gov/pubmed/37109809
https://www.proquest.com/docview/2806575499
https://www.proquest.com/docview/2807923495
https://pubmed.ncbi.nlm.nih.gov/PMC10143485
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3R9gIHxDeBUhmBhDhYjWNn43BBC-q2QqKqgIq9RY7tiEhsUra7B_49M4433UWIY2QncTLj8TzP-A3A60wVNm-ygjuR1VwpnFLoNwtuTW4nxjhRh3Nrn88nZ5fq0zyfxw2365hWubGJwVC73tIe-XGIABaEZt5f_eJUNYqiq7GExh4coAnWCL4OPpycX3wZd1lSiTqblQMvqUR8f7wwYhLOk4qdlehve7y1IO0mS26tPrN7cDe6jWw6yPk-3PLdA7izRSb4EBazZRsOKbCvq3bJvvsQVmJ9w6ZogNpuvWBtx9DfY1OPA0Ks7Fks3PH7HUN1YZGriV1QzhZaQGY6x4I3yvuG450c38-GaMIjuJydfPt4xmMxBW4R8a24qJtCNESeXxhljZMa167cZE4Kb4oiNaWUuS28KbPMuVLV3tsc4ZWVTuTaWfkY9ru-80-BCY9OSqGMRXdBWV0b57MSn6_TMnVykibwdvNjKxuZxqngxc8KEQcJoboRQgKvxr5XA7_GP3u9IflUNOnwSdbEswM4HqKvqqYIihQxx8sEDjcirOJsvK5udCeBl2MzziMKjpjO9-vQh6gUES8m8GSQ-DggSQmr-HUJ6B1dGDsQR_duS9f-CFzdVApZKp0_-_-4nsNtqmMfUoL0Ieyvlmv_Ar2dVX0Ee3p2ehQVG69O5-IPJIACiQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAkaAEAer8SPrBAmhFbBs6UNItKK34NiOiMQmZbsr1D_Fb2TsPLqLELee7ThO5uEZz8w3AM-5VCYpuaKW8YJKiSKFdjOjRidmpLVlRahb2z8YTY_kp-PkeAN-97UwPq2y14lBUdvG-Dvy7RABVN6beXvyk_quUT662rfQaNli1539Qpft9M3Oe6TvC84nHw7fTWnXVYAadH0WlBWlYqVHkVdaGm1Fiko80dwK5rRSsUYXPzHK6YxzazNZOGcS9DOMsCxJrRG47iW4LIXIvESlk4_DnU4sUEJ41qKg4ni8PdNsFKpX2dq597f2Xzn-1lMzV866yQ243hmpZNxy1U3YcPUtuLYCXXgbZpN5FUoiyJdFNSdfXQhikaYkY1R3Vb2ckaomaF2SscMNoWfuSNcm5Ow1QeYkHTIU-ewzxFDfEl1bEmxf2pQUn6T4ftLGLu7A0YX85LuwWTe1uw-EOTSJlNQGjRNp0kJbxzNcP42z2IpRHMGr_sfmpsM19-01fuTo33gi5OdEiODZMPekRfP456yXnj65F3FcyeiuUgH348Gy8jG6YNLj1IsItnoS5p3sn-bnnBrB02EYpdaHYnTtmmWY44Eb0TuN4F5L8WFDwqfH4tdFkK7xwjDBI4Kvj9TV94AM7hsvC5kmD_6_rydwZXq4v5fv7RzsPoSrHO22kIyUbsHmYr50j9DOWhSPA3MT-HbR0vQHnBo8SA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anYTgAXEnMMAIEOLBanxJnSAhVNiqjUFVARN7C47tiEg0GV0rtL_Gr-M4t7UI8bbnOI6Tc_H5co6_A_CMS2WinCtqGc-olGhSGDczanRkRlpbltXn1j5OR_tH8v1xdLwFv7uzML6ssvOJtaO2lfH_yId1BlB5NDPM27KI2e7kzclP6jtI-Uxr106jUZFDd_YL4dvp64NdlPVzzid7X97t07bDADUIg5aUZbliuWeUV1oabUWMDj3S3ArmtFKhRrgfGeV0wrm1icycMxFiDiMsi2JrBM57CbYVoqJwANtv96azT_0fnlCgvfCk4UQVIgmHc81G9VlWtrEL_r0XrG2Gm4Waazvf5Dpca0NWMm507AZsufImXF0jMrwF88miqA9IkM_LYkG-ujqlRaqcjNH5FeVqToqSYKxJxg4XhDjdkbZpyNkrgqpKWp4oMvP1Yuh9iS4tqSNhWuUU76T4fNJkMm7D0YV85jswKKvS3QPCHAZISmqDoYo0caat4wnOH4dJaMUoDOBl92FT07Kc-2YbP1JEO14I6bkQAnjajz1puD3-OeqFl0_qDR5nMro9t4Dr8dRZ6RgBmfSs9SKAnU6EaesJTtNzvQ3gSX8ZbdgnZnTpqlU9xtM4IlYN4G4j8X5BwhfL4tsFEG_oQj_A84NvXimL7zVPuG_DLGQc3f__uh7DZbSk9MPB9PABXOEYxNWVSfEODJaLlXuIQdcye9RqN4FvF21QfwBxMUHa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Friction+Stir+Welding+of+Aluminum+in+the+Aerospace+Industry%3A+The+Current+Progress+and+State-of-the-Art+Review&rft.jtitle=Materials&rft.au=Ahmed%2C+Mohamed+M+Z&rft.au=El-Sayed+Seleman%2C+Mohamed+M&rft.au=Fydrych%2C+Dariusz&rft.au=%C3%87am%2C+G%C3%BCrel&rft.date=2023-04-08&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=16&rft.issue=8&rft_id=info:doi/10.3390%2Fma16082971&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon