Research on Multi-Object Sorting System Based on Deep Learning

As a complex task, robot sorting has become a research hotspot. In order to enable robots to perform simple, efficient, stable and accurate sorting operations for stacked multi-objects in unstructured scenes, a robot multi-object sorting system is built in this paper. Firstly, the training model of...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 21; no. 18; p. 6238
Main Authors Zhang, Hongyan, Liang, Huawei, Ni, Tao, Huang, Lingtao, Yang, Jinsong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 17.09.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As a complex task, robot sorting has become a research hotspot. In order to enable robots to perform simple, efficient, stable and accurate sorting operations for stacked multi-objects in unstructured scenes, a robot multi-object sorting system is built in this paper. Firstly, the training model of rotating target detection is constructed, and the placement state of five common objects in unstructured scenes is collected as the training set for training. The trained model is used to obtain the position, rotation angle and category of the target object. Then, the instance segmentation model is constructed, and the same data set is made, and the instance segmentation network model is trained. Then, the optimized Mask R-CNN instance segmentation network is used to segment the object surface pixels, and the upper surface point cloud is extracted to calculate the normal vector. Then, the angle obtained by the normal vector of the upper surface and the rotation target detection network is fused with the normal vector to obtain the attitude of the object. At the same time, the grasping order is calculated according to the average depth of the surface. Finally, after the obtained object posture, category and grasping sequence are fused, the performance of the rotating target detection network, the instance segmentation network and the robot sorting system are tested on the established experimental platform. Based on this system, this paper carried out an experiment on the success rate of object capture in a single network and an integrated network. The experimental results show that the multi-object sorting system based on deep learning proposed in this paper can sort stacked objects efficiently, accurately and stably in unstructured scenes.
AbstractList As a complex task, robot sorting has become a research hotspot. In order to enable robots to perform simple, efficient, stable and accurate sorting operations for stacked multi-objects in unstructured scenes, a robot multi-object sorting system is built in this paper. Firstly, the training model of rotating target detection is constructed, and the placement state of five common objects in unstructured scenes is collected as the training set for training. The trained model is used to obtain the position, rotation angle and category of the target object. Then, the instance segmentation model is constructed, and the same data set is made, and the instance segmentation network model is trained. Then, the optimized Mask R-CNN instance segmentation network is used to segment the object surface pixels, and the upper surface point cloud is extracted to calculate the normal vector. Then, the angle obtained by the normal vector of the upper surface and the rotation target detection network is fused with the normal vector to obtain the attitude of the object. At the same time, the grasping order is calculated according to the average depth of the surface. Finally, after the obtained object posture, category and grasping sequence are fused, the performance of the rotating target detection network, the instance segmentation network and the robot sorting system are tested on the established experimental platform. Based on this system, this paper carried out an experiment on the success rate of object capture in a single network and an integrated network. The experimental results show that the multi-object sorting system based on deep learning proposed in this paper can sort stacked objects efficiently, accurately and stably in unstructured scenes.
As a complex task, robot sorting has become a research hotspot. In order to enable robots to perform simple, efficient, stable and accurate sorting operations for stacked multi-objects in unstructured scenes, a robot multi-object sorting system is built in this paper. Firstly, the training model of rotating target detection is constructed, and the placement state of five common objects in unstructured scenes is collected as the training set for training. The trained model is used to obtain the position, rotation angle and category of the target object. Then, the instance segmentation model is constructed, and the same data set is made, and the instance segmentation network model is trained. Then, the optimized Mask R-CNN instance segmentation network is used to segment the object surface pixels, and the upper surface point cloud is extracted to calculate the normal vector. Then, the angle obtained by the normal vector of the upper surface and the rotation target detection network is fused with the normal vector to obtain the attitude of the object. At the same time, the grasping order is calculated according to the average depth of the surface. Finally, after the obtained object posture, category and grasping sequence are fused, the performance of the rotating target detection network, the instance segmentation network and the robot sorting system are tested on the established experimental platform. Based on this system, this paper carried out an experiment on the success rate of object capture in a single network and an integrated network. The experimental results show that the multi-object sorting system based on deep learning proposed in this paper can sort stacked objects efficiently, accurately and stably in unstructured scenes.As a complex task, robot sorting has become a research hotspot. In order to enable robots to perform simple, efficient, stable and accurate sorting operations for stacked multi-objects in unstructured scenes, a robot multi-object sorting system is built in this paper. Firstly, the training model of rotating target detection is constructed, and the placement state of five common objects in unstructured scenes is collected as the training set for training. The trained model is used to obtain the position, rotation angle and category of the target object. Then, the instance segmentation model is constructed, and the same data set is made, and the instance segmentation network model is trained. Then, the optimized Mask R-CNN instance segmentation network is used to segment the object surface pixels, and the upper surface point cloud is extracted to calculate the normal vector. Then, the angle obtained by the normal vector of the upper surface and the rotation target detection network is fused with the normal vector to obtain the attitude of the object. At the same time, the grasping order is calculated according to the average depth of the surface. Finally, after the obtained object posture, category and grasping sequence are fused, the performance of the rotating target detection network, the instance segmentation network and the robot sorting system are tested on the established experimental platform. Based on this system, this paper carried out an experiment on the success rate of object capture in a single network and an integrated network. The experimental results show that the multi-object sorting system based on deep learning proposed in this paper can sort stacked objects efficiently, accurately and stably in unstructured scenes.
Author Zhang, Hongyan
Liang, Huawei
Huang, Lingtao
Yang, Jinsong
Ni, Tao
AuthorAffiliation 1 School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China; zhanghy@jlu.edu.cn (H.Z.); lianghw19@mails.jlu.edu.cn (H.L.); jsyang18@mails.jlu.edu.cn (J.Y.)
2 School of Vehicle and Energy, Yanshan University, Qinhuangdao 066004, China; nitao@jlu.edu.cn
AuthorAffiliation_xml – name: 1 School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China; zhanghy@jlu.edu.cn (H.Z.); lianghw19@mails.jlu.edu.cn (H.L.); jsyang18@mails.jlu.edu.cn (J.Y.)
– name: 2 School of Vehicle and Energy, Yanshan University, Qinhuangdao 066004, China; nitao@jlu.edu.cn
Author_xml – sequence: 1
  givenname: Hongyan
  surname: Zhang
  fullname: Zhang, Hongyan
– sequence: 2
  givenname: Huawei
  surname: Liang
  fullname: Liang, Huawei
– sequence: 3
  givenname: Tao
  surname: Ni
  fullname: Ni, Tao
– sequence: 4
  givenname: Lingtao
  surname: Huang
  fullname: Huang, Lingtao
– sequence: 5
  givenname: Jinsong
  surname: Yang
  fullname: Yang, Jinsong
BookMark eNptkU1rFTEUhoNU7Icu_AcDbnQxNp8zmU1Ba9XClYLVdcjHmdtc5ibXJCP03zfTW4otLkJCznMeXs45RgchBkDoLcEfGRvwaaaEyI4y-QIdEU55KynFB_-8D9FxzhuMKWNMvkKHjIu-51wcobOfkEEne9PE0PyYp-LbK7MBW5rrmIoP6-b6NhfYNp91BrdAXwB2zar2hFp9jV6Oesrw5uE-Qb-_Xvw6_96urr5dnn9atZbzrrSEakEZkSCM0RI7LYkACVQODrtxICN1nPcdBjGKjlopaW-AYynBOWO4Zifocu91UW_ULvmtTrcqaq_uP2JaK13j2gkUlZQMwnZuoIazftSd6wU2fNCWaMFJdZ3tXbvZbMFZCCXp6Yn0aSX4G7WOf5XkPWN0Ebx_EKT4Z4Zc1NZnC9OkA8Q5K3o_3HpYRd89QzdxTqGOaqE6gfEgukp92FM2xZwTjI9hCFbLhtXjhit7-oy1vuji45LVT__puAM9vqYN
CitedBy_id crossref_primary_10_1155_2022_5458703
crossref_primary_10_17587_mau_24_533_541
crossref_primary_10_1080_0952813X_2024_2383647
crossref_primary_10_3390_agronomy12030663
crossref_primary_10_1108_IR_09_2024_0419
crossref_primary_10_1186_s10033_024_01012_w
crossref_primary_10_3390_s22020682
Cites_doi 10.1109/CVPR.2018.00725
10.1177/027836490302210009
10.1109/CVPR.2017.472
10.1109/CVPR42600.2020.00856
10.1016/j.procs.2017.01.195
10.1109/CVPR.2015.7298965
10.1109/ICCV.2017.322
10.1109/TPAMI.2020.2974745
10.1007/s10846-005-3895-0
10.1109/ICPR.2018.8545598
10.1177/0278364917710318
10.1177/0278364907087172
10.1007/978-3-030-58523-5_38
10.1109/CVPR.2019.00296
10.3390/s21041213
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s21186238
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_282195c6d92b437fa6d750b49ac1a541
PMC8473321
10_3390_s21186238
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c446t-12a52318e5bba80da815e8e289d0df91f2d44760e5f562c8827be4088eddbb4a3
IEDL.DBID 7X7
ISSN 1424-8220
IngestDate Wed Aug 27 01:32:49 EDT 2025
Thu Aug 21 13:43:34 EDT 2025
Tue Aug 05 10:35:06 EDT 2025
Fri Jul 25 20:17:51 EDT 2025
Tue Jul 01 03:56:20 EDT 2025
Thu Apr 24 23:10:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c446t-12a52318e5bba80da815e8e289d0df91f2d44760e5f562c8827be4088eddbb4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2576500956?pq-origsite=%requestingapplication%
PMID 34577445
PQID 2576500956
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_282195c6d92b437fa6d750b49ac1a541
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8473321
proquest_miscellaneous_2577447743
proquest_journals_2576500956
crossref_primary_10_3390_s21186238
crossref_citationtrail_10_3390_s21186238
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210917
PublicationDateYYYYMMDD 2021-09-17
PublicationDate_xml – month: 9
  year: 2021
  text: 20210917
  day: 17
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_14
Levine (ref_7) 2016; 37
ref_13
Zheng (ref_32) 2019; 48
ref_12
Cao (ref_30) 2018; 46
Ata (ref_3) 2005; 43
ref_11
ref_33
ref_10
ref_31
ref_19
ref_18
ref_17
ref_15
Xu (ref_16) 2020; 43
Wang (ref_29) 2017; 30
ref_25
ref_24
ref_23
ref_22
ref_21
ref_20
ref_2
ref_28
ref_27
ref_26
Kragic (ref_4) 2003; 22
ref_9
Liu (ref_1) 2020; 35
ref_8
ref_5
ref_6
References_xml – ident: ref_28
– ident: ref_33
  doi: 10.1109/CVPR.2018.00725
– ident: ref_9
– volume: 22
  start-page: 923
  year: 2003
  ident: ref_4
  article-title: Robust visual servoing
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/027836490302210009
– ident: ref_18
  doi: 10.1109/CVPR.2017.472
– ident: ref_23
  doi: 10.1109/CVPR42600.2020.00856
– ident: ref_26
– ident: ref_11
– volume: 46
  start-page: 108
  year: 2018
  ident: ref_30
  article-title: Research on Straightness Detection Method of Cartesian Robot Based on Machine Vision
  publication-title: Mach. Tool Hydraul.
– ident: ref_8
  doi: 10.1016/j.procs.2017.01.195
– volume: 30
  start-page: 139
  year: 2017
  ident: ref_29
  article-title: The Research on Orientation and Scraping of Workpiece with Asymmetry Structure
  publication-title: Electronic Sci. Technol.
– ident: ref_19
  doi: 10.1109/CVPR.2015.7298965
– volume: 35
  start-page: 2817
  year: 2020
  ident: ref_1
  article-title: Recent researches on robot autonomous grasp technology
  publication-title: Control. Decis.
– ident: ref_6
– ident: ref_25
– ident: ref_31
– ident: ref_21
  doi: 10.1109/ICCV.2017.322
– volume: 48
  start-page: 127
  year: 2019
  ident: ref_32
  article-title: Design of Visual Servo Sorting Robot Based on SVM Classification
  publication-title: ME Eng. Technol.
– volume: 43
  start-page: 1452
  year: 2020
  ident: ref_16
  article-title: Gliding vertex on the horizontal bounding box for multi-oriented object detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.2974745
– ident: ref_27
– ident: ref_2
– volume: 43
  start-page: 99
  year: 2005
  ident: ref_3
  article-title: Sensory-based colour sorting automated robotic cell
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-005-3895-0
– ident: ref_12
– ident: ref_10
– ident: ref_14
  doi: 10.1109/ICPR.2018.8545598
– ident: ref_13
– volume: 37
  start-page: 421
  year: 2016
  ident: ref_7
  article-title: Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364917710318
– ident: ref_17
– ident: ref_5
  doi: 10.1177/0278364907087172
– ident: ref_24
  doi: 10.1007/978-3-030-58523-5_38
– ident: ref_22
– ident: ref_15
  doi: 10.1109/CVPR.2019.00296
– ident: ref_20
  doi: 10.3390/s21041213
SSID ssj0023338
Score 2.3871305
Snippet As a complex task, robot sorting has become a research hotspot. In order to enable robots to perform simple, efficient, stable and accurate sorting operations...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 6238
SubjectTerms Accuracy
Algorithms
Cameras
Deep learning
instance segmentation
Machine learning
Neural networks
pose estimation
Principal components analysis
robot sorting
Robots
rotating target detection
Semantics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpwgUZBADS9Q6seNkQaJAVTHAAJW6RX6lIKGkou3_5y4vJRISC2t8g30X574vPn9HyE0kA8cyofwsiIXPlRF-goVrkY6t4ULiSRZWW7xE0xl_not5p9UX1oRV8sCV44ZACVgiTGSTQPNQZiqykOQ0T5RhSpRX1gPIeQ2ZqqlWCMyr0hEKgdQPV0BzALrjJZRO9ilF-nvIsl8X2Uk0k32yVyNEel_N7IBsufyQ7HZ0A4_IXVMvR4uclldo_VeNP1ToW4GqAAtaCZHTMeQoi0aPzi1praW6OCazydP7w9SvGyH4Btja2meBAr7IYie0VvHIqpgJFzvgSnZks4RlgeVcRiMnMoAzBkCz1I7D98NZqzVX4QnZzovcnRLKjNCZsQrsHUe1NRerRAEJcjYZiVh65LZxUGpqlXBsVvGVAltAX6atLz1y3ZouK2mM34zG6OXWANWsywcQ47SOcfpXjD0yaGKU1ltslSJTEogQI49ctcOwOfDEQ-Wu2JQ2ElYKKMkjshfb3oT6I_nnRymzDXk7DAN29h8rOCc7ARbDYO8JOSDb6--NuwA0s9aX5Yv7A4Am8a8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS-RAEC58XPQgPjGuShQPXqLTSXe6c1DxiQjqQQe8hX5ldkESdxxh999blUmCAfGaLkhS3ZX6vnT1VwAHqYw9K4SOiliJiGsroowK11KjnOVC0k4WVVs8pLdDfvciXmag7bHZOPD9W2pH_aSG49ejf3__n2HAnxDjRMp-_I4kBoF5omZhHhOSpPi8591mQpwgDZuKCvXNe6moVuzvwcx-keSXrHOzDEsNXAzPp_O7AjO-XIXFLyKCa3DaFs-FVRnW52mjR0N_V8KniiQCRuFUlTy8wITlyOjK-7ewEVYdrcPw5vr58jZquiJEFqnbJGKxRvLIlBfGaDVwWjHhlUfi5AauyFgRO85lOvCiQGxjEUFL4zl-TLxzxnCdbMBcWZV-E0JmhSms02jvOUmveaUzjYzIu2wglAzgsHVQbhvJcOpc8ZojdSBf5p0vA9jvTN-mOhnfGV2QlzsDkrauL1TjUd5ESo4ckGXCpi6LDU9koVOHqMbwTFumBWcBbLdzlLfLJSfaJAgupgHsdcMYKbT9oUtffdQ2Et8UIVMAsje3vQfqj5R_ftea25jEkyRmWz_f_BcsxFTzQi0m5DbMTcYffgdBy8Ts1kvyE4s860s
  priority: 102
  providerName: Scholars Portal
Title Research on Multi-Object Sorting System Based on Deep Learning
URI https://www.proquest.com/docview/2576500956
https://www.proquest.com/docview/2577447743
https://pubmed.ncbi.nlm.nih.gov/PMC8473321
https://doaj.org/article/282195c6d92b437fa6d750b49ac1a541
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB0VuMChoi0VaWEVUA9cItaJHTsXEFtYEFIpaou0t8hfWZBQsmWX_89M1rtsJMTFh3ikJB5_vGeP3wD8yGXqWSV0UqVKJFxbkRQUuJYb5SwXkk6yKNriJr-649cjMQobbtMQVrmYE9uJ2jWW9siPCRgLAgT56eR_Qlmj6HQ1pNBYgw2SLqOQLjl6JVwZ8q-5mlCG1P54imQHATxdRVlZg1qp_g6-7EZHriw3w234GHBifDZ37Cf44OvPsLWiHvgFThZRc3FTx-1F2uS3oW2V-G9D2gDjeC5HHg9wpXJkdO79JA6KquMduBte_Pt5lYR0CIlFzjZLWKqRNTLlhTFa9Z1WTHjlkTG5vqsKVqWOc5n3vagQ1FiEztJ4jrOId84YrrOvsF43td-FmFlhKus02ntOmmte6UIjFfKu6AslIzhaNFBpg1Y4pax4LJEzUFuWy7aM4HBpOpkLZLxlNKBWXhqQpnX7oHkal2GIlEj-0Ic2d0VqeCYrnTuEM4YX2jItOItgb-GjMgy0afnaLSI4WFbjEKFzD1375rm1kfiniJUikB3fdj6oW1M_3Ldi27h6Z1nKvr3_8u-wmVKwC-WWkHuwPnt69vuIVmam13ZJLNXwsgcbg4ub2z-9lvlj-YurF5SC7jU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKcIFDAIJC5RY8eOkwMgSqm2tJQDrbS34FeWSlWydLdC_Cl-IzN5bDcS4tZrPMpj7Im_zx5_A_Aq0yLwSpm4ErmKpXEqLihxLbO5d1Jp2smibIujbHIiP0_VdAP-DGdhKK1y-Ce2P2rfOFoj3yZgrAgQZO_nP2OqGkW7q0MJjW5YHITfv5CyLd7u72L_vhZi79Pxx0ncVxWIHVKfZcyFQfLF86CsNXniTc5VyAMSD5_4quCV8FLqLAmqQmzgEIFqGyQGY_DeWmlSvO81uI4Tb0IRpaeXBC9FvtepF6VpkWwvkFwhYaCjL2tzXlsaYIRnx9mYa9Pb3h243eNS9qEbSHdhI9T34NaaWuF9eDdk6bGmZu3B3firpWUc9q0hLYIZ6-TP2Q7OjJ6MdkOYs17BdfYATq7EUQ9hs27q8AgYd8pWzhu0D5I03kJuCoPUK_giUbmO4M3goNL12uRUIuOsRI5CvixXvozg5cp03gly_Mtoh7y8MiAN7fZCcz4r-5AskWzyQrnMF8LKVFcm8wifrCyM40ZJHsHW0EdlH9iL8nIYRvBi1YwhSfsspg7NRWuj8UsRm0WgR307eqFxS336oxX3RrSQpoI__v_Dn8ONyfGXw_Jw_-jgCdwUlGhDdS30Fmwuzy_CU0RKS_usHZ4Mvl91PPwFMyonAA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IJ4iUMAgkLhEGzt2nBwAUZZVS1FBgkp7C35lQULJ0t0K8df4dczksd1IiFuv8SiPsSf-Pnv8DcCzTIvAK2XiSuQqlsapuKDEtczm3kmlaSeLsi2Os4MT-X6u5jvwZzgLQ2mVwz-x_VH7xtEa-YSAsSJAkE2qPi3i03T2evkzpgpStNM6lNPohshR-P0L6dvq5eEU-_q5ELN3X94exH2FgdghDVrHXBgkYjwPylqTJ97kXIU8IAnxia8KXgkvpc6SoCrECQ7RqLZBYmAG762VJsX7XoLLOlWcYkzPz8leityvUzJK0yKZrJBoIXmgYzBb819bJmCEbceZmVtT3ewGXO8xKnvTDaqbsBPqW3BtS7nwNrwaMvZYU7P2EG_80dKSDvvckC7BgnVS6GwfZ0lPRtMQlqxXc13cgZMLcdRd2K2bOtwDxp2ylfMG7YMkvbeQm8IgDQu-SFSuI3gxOKh0vU45lcv4USJfIV-WG19G8HRjuuzEOf5ltE9e3hiQnnZ7oTldlH14lkg8eaFc5gthZaork3mEUlYWxnGjJI9gb-ijsg_yVXk-JCN4smnG8KQ9F1OH5qy10filiNMi0KO-Hb3QuKX-_q0V-kbkkKaC3___wx_DFYyE8sPh8dEDuCoo54ZKXOg92F2fnoWHCJrW9lE7Ohl8vehw-Au0Gis2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Multi-Object+Sorting+System+Based+on+Deep+Learning&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Zhang%2C+Hongyan&rft.au=Liang%2C+Huawei&rft.au=Ni%2C+Tao&rft.au=Huang%2C+Lingtao&rft.date=2021-09-17&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=21&rft.issue=18&rft.spage=6238&rft_id=info:doi/10.3390%2Fs21186238&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon