Fast‐Response, Stiffness‐Tunable Soft Actuator by Hybrid Multimaterial 3D Printing

Soft robots have the appealing advantages of being highly flexible and adaptive to complex environments. However, the low‐stiffness nature of the constituent materials makes soft robotic systems incompetent in tasks requiring relatively high load capacity. Despite recent attempts to develop stiffnes...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 29; no. 15
Main Authors Zhang, Yuan‐Fang, Zhang, Ningbin, Hingorani, Hardik, Ding, Ningyuan, Wang, Dong, Yuan, Chao, Zhang, Biao, Gu, Guoying, Ge, Qi
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 11.04.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Soft robots have the appealing advantages of being highly flexible and adaptive to complex environments. However, the low‐stiffness nature of the constituent materials makes soft robotic systems incompetent in tasks requiring relatively high load capacity. Despite recent attempts to develop stiffness‐tunable soft actuators by employing variable stiffness materials and structures, the reported stiffness‐tunable actuators generally suffer from limitations including slow responses, small deformations, and difficulties in fabrication with microfeatures. This work presents a paradigm to design and manufacture fast‐response, stiffness‐tunable (FRST) soft actuators via hybrid multimaterial 3D printing. The integration of a shape memory polymer layer into the fully printed actuator body enhances its stiffness by up to 120 times without sacrificing flexibility and adaptivity. The printed Joule‐heating circuit and fluidic cooling microchannel enable fast heating and cooling rates and allow the FRST actuator to complete a softening–stiffening cycle within 32 s. Numerical simulations are used to optimize the load capacity and thermal rates. The high load capacity and shape adaptivity of the FRST actuator are finally demonstrated by a robotic gripper with three FRST actuators that can grasp and lift objects with arbitrary shapes and various weights spanning from less than 10 g to up to 1.5 kg. A fast‐response, stiffness‐tunable (FRST) soft actuator is fabricated by hybrid multimaterial 3D printing. Owing to the thermomechanical properties of an embedded shape memory polymer layer, the actuator exhibits flexibility when heated and high stiffness (120 times stiffer than its purely elastomeric counterpart) when cooled. Assisted by Joule‐heating and fluidic cooling, the heating–cooling cycle is completed within 32 s.
AbstractList Soft robots have the appealing advantages of being highly flexible and adaptive to complex environments. However, the low‐stiffness nature of the constituent materials makes soft robotic systems incompetent in tasks requiring relatively high load capacity. Despite recent attempts to develop stiffness‐tunable soft actuators by employing variable stiffness materials and structures, the reported stiffness‐tunable actuators generally suffer from limitations including slow responses, small deformations, and difficulties in fabrication with microfeatures. This work presents a paradigm to design and manufacture fast‐response, stiffness‐tunable (FRST) soft actuators via hybrid multimaterial 3D printing. The integration of a shape memory polymer layer into the fully printed actuator body enhances its stiffness by up to 120 times without sacrificing flexibility and adaptivity. The printed Joule‐heating circuit and fluidic cooling microchannel enable fast heating and cooling rates and allow the FRST actuator to complete a softening–stiffening cycle within 32 s. Numerical simulations are used to optimize the load capacity and thermal rates. The high load capacity and shape adaptivity of the FRST actuator are finally demonstrated by a robotic gripper with three FRST actuators that can grasp and lift objects with arbitrary shapes and various weights spanning from less than 10 g to up to 1.5 kg. A fast‐response, stiffness‐tunable (FRST) soft actuator is fabricated by hybrid multimaterial 3D printing. Owing to the thermomechanical properties of an embedded shape memory polymer layer, the actuator exhibits flexibility when heated and high stiffness (120 times stiffer than its purely elastomeric counterpart) when cooled. Assisted by Joule‐heating and fluidic cooling, the heating–cooling cycle is completed within 32 s.
Soft robots have the appealing advantages of being highly flexible and adaptive to complex environments. However, the low‐stiffness nature of the constituent materials makes soft robotic systems incompetent in tasks requiring relatively high load capacity. Despite recent attempts to develop stiffness‐tunable soft actuators by employing variable stiffness materials and structures, the reported stiffness‐tunable actuators generally suffer from limitations including slow responses, small deformations, and difficulties in fabrication with microfeatures. This work presents a paradigm to design and manufacture fast‐response, stiffness‐tunable (FRST) soft actuators via hybrid multimaterial 3D printing. The integration of a shape memory polymer layer into the fully printed actuator body enhances its stiffness by up to 120 times without sacrificing flexibility and adaptivity. The printed Joule‐heating circuit and fluidic cooling microchannel enable fast heating and cooling rates and allow the FRST actuator to complete a softening–stiffening cycle within 32 s. Numerical simulations are used to optimize the load capacity and thermal rates. The high load capacity and shape adaptivity of the FRST actuator are finally demonstrated by a robotic gripper with three FRST actuators that can grasp and lift objects with arbitrary shapes and various weights spanning from less than 10 g to up to 1.5 kg.
Author Zhang, Biao
Ge, Qi
Wang, Dong
Hingorani, Hardik
Gu, Guoying
Yuan, Chao
Zhang, Yuan‐Fang
Zhang, Ningbin
Ding, Ningyuan
Author_xml – sequence: 1
  givenname: Yuan‐Fang
  surname: Zhang
  fullname: Zhang, Yuan‐Fang
  organization: Singapore University of Technology and Design
– sequence: 2
  givenname: Ningbin
  surname: Zhang
  fullname: Zhang, Ningbin
  organization: Shanghai Jiao Tong University
– sequence: 3
  givenname: Hardik
  surname: Hingorani
  fullname: Hingorani, Hardik
  organization: Singapore University of Technology and Design
– sequence: 4
  givenname: Ningyuan
  surname: Ding
  fullname: Ding, Ningyuan
  organization: Shanghai Jiao Tong University
– sequence: 5
  givenname: Dong
  surname: Wang
  fullname: Wang, Dong
  organization: Singapore University of Technology and Design
– sequence: 6
  givenname: Chao
  surname: Yuan
  fullname: Yuan, Chao
  organization: Singapore University of Technology and Design
– sequence: 7
  givenname: Biao
  surname: Zhang
  fullname: Zhang, Biao
  organization: Singapore University of Technology and Design
– sequence: 8
  givenname: Guoying
  surname: Gu
  fullname: Gu, Guoying
  email: guguoying@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
– sequence: 9
  givenname: Qi
  orcidid: 0000-0002-8666-8532
  surname: Ge
  fullname: Ge, Qi
  email: ge_qi@sutd.edu.sg
  organization: Singapore University of Technology and Design
BookMark eNqFkMFKAzEQhoNUsK1ePQe8ujXJZrPpsbTWCi2KreJtyWYTSdlma5JF9uYj-Iw-iVsqFQTxNMMw3_zz_z3QsZVVAJxjNMAIkStR6M2AIMwRY0N-BLqYYRbFiPDOocfPJ6Dn_RohnKYx7YKnqfDh8_3jQfltZb26hMtgtLbK-3a6qq3ISwWXlQ5wJEMtQuVg3sBZkztTwEVdBrMRQTkjShhP4L0zNhj7cgqOtSi9OvuuffA4vV6NZ9H87uZ2PJpHklLGIz4sEoHyOCGap4iRmKnWQIETlUomOEsRTnRaaFRgmTAsqMIkl3FONZIs5TTug4v93a2rXmvlQ7auamdbyYwQlBBGk9ZnHwz2W9JV3juls61r33ZNhlG2yy7bZZcdsmsB-guQJohgKhucMOXf2HCPvZlSNf-IZKPJdPHDfgHB44c8
CitedBy_id crossref_primary_10_1016_j_bioactmat_2021_12_032
crossref_primary_10_3390_app13084950
crossref_primary_10_1089_soro_2019_0089
crossref_primary_10_3390_app13010120
crossref_primary_10_1016_j_compositesa_2023_107978
crossref_primary_10_1021_acsami_0c04097
crossref_primary_10_1039_C9CC07855J
crossref_primary_10_1126_sciadv_abn5722
crossref_primary_10_1002_aisy_202200301
crossref_primary_10_3390_act13030084
crossref_primary_10_1016_j_pmatsci_2022_101021
crossref_primary_10_1007_s00170_024_14216_0
crossref_primary_10_1108_IR_01_2021_0013
crossref_primary_10_1089_soro_2018_0123
crossref_primary_10_1002_aisy_202400790
crossref_primary_10_1016_j_cej_2021_133840
crossref_primary_10_1002_admt_202200041
crossref_primary_10_1002_adma_202007772
crossref_primary_10_1108_RIA_11_2023_0160
crossref_primary_10_1177_00219983241283607
crossref_primary_10_1002_asia_202201160
crossref_primary_10_1007_s42235_023_00403_4
crossref_primary_10_3390_app11104581
crossref_primary_10_1002_adfm_202008936
crossref_primary_10_1002_adma_202104798
crossref_primary_10_1002_admt_202400074
crossref_primary_10_1002_adma_201903970
crossref_primary_10_1016_j_xcrp_2020_100144
crossref_primary_10_3390_app10093020
crossref_primary_10_1016_j_cej_2023_143515
crossref_primary_10_1126_sciadv_ade4381
crossref_primary_10_1016_j_sna_2023_114294
crossref_primary_10_1002_admt_202101521
crossref_primary_10_1021_acsami_2c19782
crossref_primary_10_3390_nano9081108
crossref_primary_10_1109_ACCESS_2022_3194153
crossref_primary_10_1016_j_eurpolymj_2021_110955
crossref_primary_10_1016_j_matt_2021_06_046
crossref_primary_10_1016_j_mattod_2023_02_005
crossref_primary_10_53941_ijamm_2023_100013
crossref_primary_10_1088_1361_665X_ac7680
crossref_primary_10_1021_acs_chemrev_4c00070
crossref_primary_10_1088_1361_665X_aca263
crossref_primary_10_1002_adma_202307963
crossref_primary_10_1089_soro_2021_0220
crossref_primary_10_1002_app_55557
crossref_primary_10_1002_admt_202401293
crossref_primary_10_1002_adma_202308829
crossref_primary_10_1002_advs_202300935
crossref_primary_10_1146_annurev_control_061022_012035
crossref_primary_10_1089_soro_2019_0186
crossref_primary_10_1002_admt_202101672
crossref_primary_10_1002_advs_202002017
crossref_primary_10_1002_adfm_202419520
crossref_primary_10_1039_D2MH01056A
crossref_primary_10_1088_1361_665X_ad5a59
crossref_primary_10_1016_j_ymssp_2021_108267
crossref_primary_10_3390_polym13121957
crossref_primary_10_1039_D3MH01312J
crossref_primary_10_1049_ccs2_12009
crossref_primary_10_3390_mi13101589
crossref_primary_10_1021_acsami_1c25103
crossref_primary_10_1080_19475411_2019_1591540
crossref_primary_10_3390_polym16101387
crossref_primary_10_3390_machines10040272
crossref_primary_10_1007_s11431_021_1944_y
crossref_primary_10_3390_polym12030619
crossref_primary_10_1038_s43246_021_00211_5
crossref_primary_10_1002_advs_202100230
crossref_primary_10_1002_adma_202003387
crossref_primary_10_1021_acsami_4c23086
crossref_primary_10_1016_j_addr_2021_04_019
crossref_primary_10_1002_adsr_202200034
crossref_primary_10_1089_soro_2023_0022
crossref_primary_10_1109_ACCESS_2025_3546327
crossref_primary_10_1016_j_colsurfa_2025_136382
crossref_primary_10_1002_aisy_202300711
crossref_primary_10_1109_ACCESS_2022_3179589
crossref_primary_10_1557_s43578_021_00381_5
crossref_primary_10_1002_adfm_202212093
crossref_primary_10_1089_soro_2021_0126
crossref_primary_10_1098_rspa_2023_0067
crossref_primary_10_1109_LRA_2024_3357035
crossref_primary_10_1109_TRO_2021_3096644
crossref_primary_10_1002_aisy_202300032
crossref_primary_10_1063_5_0185725
crossref_primary_10_1039_D0TB01585G
crossref_primary_10_1002_smll_202100804
crossref_primary_10_1088_1361_665X_ac6e53
crossref_primary_10_1002_admt_202100084
crossref_primary_10_1002_app_53166
crossref_primary_10_1017_S0263574721001740
crossref_primary_10_1007_s11431_022_2277_x
crossref_primary_10_1002_adma_202402517
crossref_primary_10_1007_s11465_024_0788_0
crossref_primary_10_1007_s42242_021_00146_3
crossref_primary_10_1016_j_isci_2021_103075
crossref_primary_10_1109_JSEN_2022_3157709
crossref_primary_10_3390_polym12030710
crossref_primary_10_1002_app_49294
crossref_primary_10_1002_adem_202201268
crossref_primary_10_1002_anie_202410693
crossref_primary_10_1002_macp_202100486
crossref_primary_10_1007_s40820_024_01423_3
crossref_primary_10_1088_1361_665X_ab47e4
crossref_primary_10_1002_adfm_202107662
crossref_primary_10_1002_mame_202100638
crossref_primary_10_1089_soro_2023_0168
crossref_primary_10_1016_j_xcrp_2021_100600
crossref_primary_10_1021_acsami_3c03880
crossref_primary_10_3390_polym15092003
crossref_primary_10_1016_j_compstruct_2023_117369
crossref_primary_10_1016_j_compscitech_2022_109505
crossref_primary_10_1088_1748_3190_ad1c87
crossref_primary_10_1002_adfm_202000187
crossref_primary_10_1021_acsami_1c02656
crossref_primary_10_1016_j_compscitech_2021_109246
crossref_primary_10_1038_s41378_024_00812_3
crossref_primary_10_1063_5_0186757
crossref_primary_10_1002_admt_202200536
crossref_primary_10_1088_1748_3190_ad0b8c
crossref_primary_10_3390_act9040136
crossref_primary_10_1093_nsr_nwab048
crossref_primary_10_1002_adem_202101533
crossref_primary_10_3390_act9040131
crossref_primary_10_1051_e3sconf_202123304023
crossref_primary_10_1142_S1758825124410035
crossref_primary_10_1088_2631_7990_ab8d9a
crossref_primary_10_1039_D4BM00004H
crossref_primary_10_3390_agronomy13102481
crossref_primary_10_1002_marc_201800873
crossref_primary_10_1002_aisy_202000223
crossref_primary_10_1371_journal_pone_0235229
crossref_primary_10_1002_aisy_202200409
crossref_primary_10_1002_adfm_201907401
crossref_primary_10_1088_1361_665X_ad0753
crossref_primary_10_1021_acsnano_3c01474
crossref_primary_10_3389_fmats_2021_661593
crossref_primary_10_1039_D2PY01607A
crossref_primary_10_1021_acsapm_2c01833
crossref_primary_10_1109_TIE_2022_3229371
crossref_primary_10_1002_adma_202409811
crossref_primary_10_1016_j_matdes_2019_108411
crossref_primary_10_1089_3dp_2023_0126
crossref_primary_10_1089_3dp_2023_0127
crossref_primary_10_1109_LRA_2024_3408082
crossref_primary_10_1002_ange_202410693
crossref_primary_10_1007_s11431_023_2382_x
crossref_primary_10_1002_adfm_202403252
crossref_primary_10_1039_D1MH00615K
crossref_primary_10_1089_soro_2024_0166
crossref_primary_10_1146_annurev_control_062322_100607
crossref_primary_10_1002_advs_202104347
crossref_primary_10_1109_LRA_2022_3187615
crossref_primary_10_1109_LRA_2024_3368235
crossref_primary_10_1371_journal_pone_0250325
crossref_primary_10_1007_s12274_022_4827_z
crossref_primary_10_3389_frobt_2023_1206579
crossref_primary_10_1002_aisy_202300788
crossref_primary_10_3390_polym14214740
crossref_primary_10_1088_1361_665X_ad1427
crossref_primary_10_1002_adsr_202300154
crossref_primary_10_3390_ma15248838
crossref_primary_10_1016_j_matdes_2023_111851
crossref_primary_10_3389_frobt_2021_663158
crossref_primary_10_1109_LRA_2021_3083236
crossref_primary_10_1016_j_compscitech_2022_109399
crossref_primary_10_1109_TMECH_2023_3317576
crossref_primary_10_1016_j_addma_2019_100819
crossref_primary_10_1007_s12541_019_00255_1
crossref_primary_10_1007_s42114_022_00585_1
crossref_primary_10_1080_19475411_2025_2458833
crossref_primary_10_1002_adem_201901586
crossref_primary_10_1134_S2635167623700039
crossref_primary_10_1002_advs_202308835
crossref_primary_10_1002_aisy_202000136
crossref_primary_10_1002_aisy_202000257
crossref_primary_10_1021_acsami_1c14030
crossref_primary_10_1088_1361_665X_ab9f48
crossref_primary_10_1088_1748_605X_ac6b04
crossref_primary_10_1016_j_nanoen_2020_105438
crossref_primary_10_1088_1361_665X_ab9f47
crossref_primary_10_1039_D3TC01563G
crossref_primary_10_1088_1361_665X_ad6ed1
crossref_primary_10_34133_cbsystems_0103
crossref_primary_10_1088_1361_665X_ab7ab0
crossref_primary_10_1089_soro_2019_0105
crossref_primary_10_1088_1748_3190_abffec
crossref_primary_10_3390_act12110397
crossref_primary_10_1002_adfm_202406847
crossref_primary_10_5194_ms_14_99_2023
crossref_primary_10_1002_adma_202007239
crossref_primary_10_1080_19475411_2023_2166143
crossref_primary_10_3390_act10100269
crossref_primary_10_1002_admt_201900427
crossref_primary_10_1186_s40580_024_00452_3
crossref_primary_10_1109_TRO_2024_3392162
crossref_primary_10_1016_j_compositesb_2020_107988
crossref_primary_10_1021_acsapm_3c01048
crossref_primary_10_1109_TIM_2023_3276501
crossref_primary_10_1002_adfm_202005804
crossref_primary_10_1038_s41467_020_20300_2
crossref_primary_10_3390_mi14101966
crossref_primary_10_1002_aisy_202200170
crossref_primary_10_1016_j_cej_2023_141278
crossref_primary_10_1002_adma_202000713
crossref_primary_10_1002_pen_26950
crossref_primary_10_1007_s11012_024_01852_9
crossref_primary_10_1007_s11431_022_2263_7
crossref_primary_10_1021_acsami_9b21816
crossref_primary_10_1109_LRA_2024_3468094
crossref_primary_10_1002_adfm_202306079
crossref_primary_10_1089_soro_2020_0142
crossref_primary_10_1109_LRA_2020_3037858
crossref_primary_10_1021_acsami_2c07119
crossref_primary_10_1002_adem_202400461
crossref_primary_10_1021_acsami_2c13982
crossref_primary_10_1039_D2ME00066K
crossref_primary_10_1089_soro_2022_0212
crossref_primary_10_1115_1_4051722
crossref_primary_10_1007_s00542_023_05489_8
crossref_primary_10_1039_D1RA05021D
crossref_primary_10_1080_19475411_2022_2095454
crossref_primary_10_1002_admt_201900784
crossref_primary_10_1088_1361_665X_aba491
crossref_primary_10_3390_polym16081087
crossref_primary_10_3390_technologies10020045
crossref_primary_10_1002_pc_27738
crossref_primary_10_46519_ij3dptdi_949479
crossref_primary_10_1089_soro_2020_0039
crossref_primary_10_1007_s00170_023_11180_z
crossref_primary_10_1002_adma_201906657
crossref_primary_10_1002_admt_202300894
crossref_primary_10_1016_j_compositesa_2021_106444
crossref_primary_10_1002_adma_202200671
crossref_primary_10_1016_j_cej_2024_151462
crossref_primary_10_1088_1361_665X_ad5944
crossref_primary_10_1021_acsaelm_4c01546
crossref_primary_10_1109_LRA_2023_3320906
crossref_primary_10_1021_acsnano_4c01062
crossref_primary_10_1088_1361_665X_abe4e5
crossref_primary_10_1089_soro_2022_0166
crossref_primary_10_1021_acsami_9b10386
crossref_primary_10_1039_D3RA00670K
crossref_primary_10_1108_RPJ_11_2019_0302
crossref_primary_10_1002_aisy_202000282
crossref_primary_10_1021_acsami_1c03572
crossref_primary_10_1016_j_addma_2023_103582
crossref_primary_10_1089_soro_2021_0032
crossref_primary_10_1002_adhm_202200050
crossref_primary_10_1080_17452759_2020_1795209
crossref_primary_10_3389_fsens_2020_586300
crossref_primary_10_3390_machines13010055
crossref_primary_10_1016_j_matdes_2020_109205
crossref_primary_10_1016_j_mser_2022_100702
crossref_primary_10_3390_act8040074
crossref_primary_10_1002_marc_202300661
crossref_primary_10_1021_acsami_9b00359
crossref_primary_10_1002_adfm_202201942
crossref_primary_10_1016_j_carbpol_2023_120879
crossref_primary_10_1109_TRO_2020_3021427
crossref_primary_10_3390_polym15092089
crossref_primary_10_1126_sciadv_adl4387
crossref_primary_10_1088_1361_665X_ab6759
crossref_primary_10_3390_gels9100784
crossref_primary_10_1002_adem_202400563
crossref_primary_10_1002_adfm_202409611
crossref_primary_10_1007_s42235_022_00281_2
crossref_primary_10_1089_soro_2021_0025
crossref_primary_10_1002_aenm_202203040
crossref_primary_10_3390_act10050103
crossref_primary_10_1002_pi_6636
crossref_primary_10_3390_mi13101783
crossref_primary_10_1002_smll_202305371
crossref_primary_10_1016_j_matpr_2022_09_552
crossref_primary_10_1021_acsami_0c13863
crossref_primary_10_1080_17452759_2020_1822189
crossref_primary_10_1021_acs_iecr_2c02540
crossref_primary_10_1016_j_sna_2023_114562
crossref_primary_10_1002_adfm_202402563
crossref_primary_10_1039_D1TB01350E
crossref_primary_10_1109_TMECH_2023_3241844
crossref_primary_10_1007_s40684_023_00533_4
crossref_primary_10_1089_soro_2023_0111
crossref_primary_10_1126_sciadv_adg1203
crossref_primary_10_1002_advs_202202549
crossref_primary_10_1002_aisy_202000069
crossref_primary_10_1088_1361_665X_ad49ee
crossref_primary_10_3390_act12040172
crossref_primary_10_1016_j_compositesa_2024_108083
crossref_primary_10_1007_s12274_023_6092_1
crossref_primary_10_34133_research_0456
crossref_primary_10_1002_adem_202301431
crossref_primary_10_1021_acsami_3c12173
crossref_primary_10_1002_aisy_202400699
crossref_primary_10_1109_TMECH_2022_3219108
crossref_primary_10_1155_2024_1119181
crossref_primary_10_1088_1361_665X_abe3a9
crossref_primary_10_1002_admt_202000724
crossref_primary_10_1002_advs_202404913
crossref_primary_10_1088_1361_665X_ac05dc
crossref_primary_10_1002_advs_202001379
crossref_primary_10_1021_acs_chemrev_1c00453
crossref_primary_10_1109_LRA_2022_3229225
crossref_primary_10_1002_admt_202100018
crossref_primary_10_3390_app11135891
crossref_primary_10_3390_app12073582
crossref_primary_10_1002_sus2_11
crossref_primary_10_1002_aisy_202100163
crossref_primary_10_1002_aisy_202100282
crossref_primary_10_1002_adma_202304430
crossref_primary_10_1142_S1758825121501179
crossref_primary_10_1002_aisy_202100165
crossref_primary_10_1016_j_sna_2020_112398
crossref_primary_10_1089_soro_2019_0129
crossref_primary_10_1109_TRO_2024_3519433
crossref_primary_10_1039_D2TC04033F
Cites_doi 10.1002/adfm.201303288
10.1073/pnas.1116564108
10.1002/adma.201203002
10.1089/soro.2016.0060
10.1002/adfm.201705727
10.1016/j.mattod.2017.10.010
10.1002/adma.201304018
10.1109/MRA.2016.2582718
10.1016/j.ijsolstr.2014.03.029
10.1126/science.aao6139
10.1073/pnas.1003250107
10.1109/LRA.2017.2656943
10.1088/0964-1726/23/9/094007
10.1038/s41578-018-0022-y
10.1088/0964-1726/22/8/085005
10.1109/TRO.2017.2692266
10.1038/nature19100
10.1088/0964-1726/23/12/125005
10.1088/1361-665X/aa5cca
10.1126/sciadv.1602890
10.1016/j.mechmat.2011.09.004
10.1089/soro.2016.0030
10.1089/soro.2016.0034
10.1038/srep31110
10.1038/ncomms4066
10.1177/0278364915592961
10.1016/j.robot.2014.08.014
10.1126/scitranslmed.aaf3925
10.1088/1361-6439/aa9d0e
10.1080/09349840209409701
10.1002/adfm.201707136
10.1089/soro.2013.0009
10.1016/j.progpolymsci.2015.04.001
10.1177/1045389X10386399
10.1038/nature14543
10.1063/1.3503969
10.1002/adma.201505991
10.1126/scirobotics.aar3276
10.1089/soro.2015.0013
10.1038/srep24224
10.1089/soro.2015.0015
10.1089/soro.2014.0008
10.1109/TRO.2013.2256313
10.1016/j.polymer.2011.08.003
10.1063/1.4819837
10.1002/adma.201303175
10.1088/1748-3182/6/3/036004
10.1088/1748-3182/9/4/046006
10.1089/soro.2014.0001
10.1115/1.4033728
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201806698
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID 10_1002_adfm_201806698
ADFM201806698
Genre article
GrantInformation_xml – fundername: SUTD Digital Manufacturing and Design Centre
– fundername: State Key Laboratory of Mechanical System and Vibration
  funderid: MSV201802
– fundername: Shanghai Jiaotong University, China
– fundername: National Additive Manufacturing Innovation Cluster
– fundername: National Natural Science Foundation of China
  funderid: 51622506; 91848204
– fundername: SUTD Start‐up Research
– fundername: Science and Technology Commission of Shanghai Municipality
  funderid: 16JC1401000
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
.Y3
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
HF~
HVGLF
LW6
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c4468-89d5a0b352f8706236e201d15e7c6a867015f7df0d1c561a4e12bc3b4f0c67843
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Mon Jul 14 07:47:51 EDT 2025
Tue Jul 01 04:11:55 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
Wed Jan 22 17:00:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4468-89d5a0b352f8706236e201d15e7c6a867015f7df0d1c561a4e12bc3b4f0c67843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8666-8532
PQID 2205264577
PQPubID 2045204
PageCount 9
ParticipantIDs proquest_journals_2205264577
crossref_primary_10_1002_adfm_201806698
crossref_citationtrail_10_1002_adfm_201806698
wiley_primary_10_1002_adfm_201806698_ADFM201806698
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 11, 2019
PublicationDateYYYYMMDD 2019-04-11
PublicationDate_xml – month: 04
  year: 2019
  text: April 11, 2019
  day: 11
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 2
2013; 29
2002; 14
2018; 28
2010; 97
2013; 25
2017; 2
2017; 3
2017; 4
2013; 22
2010; 107
2012
2017; 26
2015; 521
2015; 73
2014; 26
2011; 52
2013; 103
2014; 24
2011; 6
2018; 21
2017; 9
2014; 23
2016; 35
2014; 1
2010; 21
2016; 6
2018; 3
2014; 5
2011; 108
2015; 49
2016; 3
2018; 359
2016; 536
2017; 33
2017
2011; 43
2015
2014; 9
2016; 28
2014; 51
2016; 8
2016; 23
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
Cheng G. N. (e_1_2_6_35_1) 2012
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
Buckner T. L. (e_1_2_6_27_1) 2017
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
Yap H. K. (e_1_2_6_16_1) 2015
e_1_2_6_8_1
Alexander C. (e_1_2_6_55_1) 2012
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
Shintake J. (e_1_2_6_31_1) 2015
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_46_1
References_xml – volume: 1
  start-page: 122
  year: 2014
  publication-title: Soft Rob.
– volume: 4
  start-page: 147
  year: 2017
  publication-title: Soft Rob.
– volume: 23
  start-page: 93
  year: 2016
  publication-title: IEEE Rob. Autom. Mag.
– volume: 6
  start-page: 31110
  year: 2016
  publication-title: Sci. Rep.
– volume: 108
  start-page: 20400
  year: 2011
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 536
  start-page: 451
  year: 2016
  publication-title: Nature
– volume: 2
  start-page: 155
  year: 2015
  publication-title: Soft Rob.
– volume: 28
  start-page: 024004
  year: 2018
  publication-title: J. Micromech. Microeng.
– volume: 49
  start-page: 79
  year: 2015
  publication-title: Prog. Polym. Sci.
– volume: 51
  start-page: 2777
  year: 2014
  publication-title: Int. J. Solids Struct.
– volume: 1
  start-page: 75
  year: 2014
  publication-title: Soft Rob.
– volume: 73
  start-page: 135
  year: 2015
  publication-title: Rob. Auton. Syst.
– volume: 28
  start-page: 1705727
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 103
  start-page: 131901
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 33
  start-page: 765
  year: 2017
  publication-title: IEEE Trans. Rob.
– volume: 22
  start-page: 085005
  year: 2013
  publication-title: Smart Mater. Struct.
– volume: 97
  start-page: 164104
  year: 2010
  publication-title: Appl. Phys. Lett.
– volume: 9
  start-page: 046006
  year: 2014
  publication-title: Bioinspiration Biomimetics
– volume: 3
  start-page: 143
  year: 2018
  publication-title: Nat. Rev. Mater.
– volume: 3
  start-page: 34
  year: 2016
  publication-title: Soft Rob.
– volume: 9
  start-page: eaaf3925
  year: 2017
  publication-title: Sci. Transl. Med.
– volume: 6
  start-page: 24224
  year: 2016
  publication-title: Sci. Rep.
– volume: 14
  start-page: 1
  year: 2002
  publication-title: Res. Nondestr. Eval.
– year: 2015
– volume: 25
  start-page: 205
  year: 2013
  publication-title: Adv. Mater.
– volume: 3
  start-page: e1602890
  year: 2017
  publication-title: Sci. Adv.
– volume: 23
  start-page: 094007
  year: 2014
  publication-title: Smart Mater. Struct.
– volume: 21
  start-page: 1783
  year: 2010
  publication-title: J. Intell. Mater. Syst. Struct.
– volume: 2
  start-page: 985
  year: 2017
  publication-title: IEEE Rob. Autom. Lett.
– volume: 5
  start-page: 3066
  year: 2014
  publication-title: Nat. Commun.
– volume: 3
  start-page: eaar3276
  year: 2018
  publication-title: Sci. Rob.
– volume: 107
  start-page: 18809
  year: 2010
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 29
  start-page: 1031
  year: 2013
  publication-title: IEEE Trans. Rob.
– volume: 25
  start-page: 6709
  year: 2013
  publication-title: Adv. Mater.
– volume: 28
  start-page: 2801
  year: 2016
  publication-title: Adv. Mater.
– volume: 521
  start-page: 467
  year: 2015
  publication-title: Nature
– volume: 3
  start-page: 144
  year: 2016
  publication-title: Soft Rob.
– volume: 4
  start-page: 338
  year: 2017
  publication-title: Soft Rob.
– volume: 6
  start-page: 036004
  year: 2011
  publication-title: Bioinspiration Biomimetics
– year: 2012
– volume: 52
  start-page: 4985
  year: 2011
  publication-title: Polymer
– volume: 1
  start-page: 213
  year: 2014
  publication-title: Soft Rob.
– volume: 23
  start-page: 125005
  year: 2014
  publication-title: Smart Mater. Struct.
– volume: 26
  start-page: 1200
  year: 2014
  publication-title: Adv. Mater.
– volume: 28
  start-page: 1707136
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 26
  start-page: 045008
  year: 2017
  publication-title: Smart Mater. Struct.
– volume: 43
  start-page: 853
  year: 2011
  publication-title: Mech. Mater.
– volume: 359
  start-page: 61
  year: 2018
  publication-title: Science
– volume: 21
  start-page: 563
  year: 2018
  publication-title: Mater. Today
– volume: 35
  start-page: 161
  year: 2016
  publication-title: Int. J. Robotics Research
– volume: 24
  start-page: 2163
  year: 2014
  publication-title: Adv. Funct. Mater.
– year: 2017
– volume: 8
  start-page: 061010
  year: 2016
  publication-title: J. Mech. Rob.
– ident: e_1_2_6_46_1
  doi: 10.1002/adfm.201303288
– ident: e_1_2_6_8_1
  doi: 10.1073/pnas.1116564108
– ident: e_1_2_6_4_1
  doi: 10.1002/adma.201203002
– ident: e_1_2_6_26_1
  doi: 10.1089/soro.2016.0060
– ident: e_1_2_6_53_1
  doi: 10.1002/adfm.201705727
– ident: e_1_2_6_45_1
  doi: 10.1016/j.mattod.2017.10.010
– ident: e_1_2_6_14_1
  doi: 10.1002/adma.201304018
– ident: e_1_2_6_20_1
  doi: 10.1109/MRA.2016.2582718
– ident: e_1_2_6_51_1
  doi: 10.1016/j.ijsolstr.2014.03.029
– ident: e_1_2_6_39_1
  doi: 10.1126/science.aao6139
– ident: e_1_2_6_34_1
  doi: 10.1073/pnas.1003250107
– ident: e_1_2_6_54_1
  doi: 10.1109/LRA.2017.2656943
– ident: e_1_2_6_42_1
  doi: 10.1088/0964-1726/23/9/094007
– ident: e_1_2_6_18_1
  doi: 10.1038/s41578-018-0022-y
– ident: e_1_2_6_30_1
  doi: 10.1088/0964-1726/22/8/085005
– ident: e_1_2_6_25_1
  doi: 10.1109/TRO.2017.2692266
– volume-title: 2015 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS)
  year: 2015
  ident: e_1_2_6_31_1
– ident: e_1_2_6_2_1
  doi: 10.1038/nature19100
– ident: e_1_2_6_22_1
  doi: 10.1088/0964-1726/23/12/125005
– volume-title: 2012 IEEE Int. Conf. on Robotics and Automation (ICRA)
  year: 2012
  ident: e_1_2_6_35_1
– ident: e_1_2_6_47_1
  doi: 10.1088/1361-665X/aa5cca
– ident: e_1_2_6_49_1
  doi: 10.1126/sciadv.1602890
– ident: e_1_2_6_50_1
  doi: 10.1016/j.mechmat.2011.09.004
– volume-title: 2015 IEEE Int. Conf. on Robotics and Automation (ICRA)
  year: 2015
  ident: e_1_2_6_16_1
– ident: e_1_2_6_19_1
  doi: 10.1089/soro.2016.0030
– ident: e_1_2_6_24_1
  doi: 10.1089/soro.2016.0034
– ident: e_1_2_6_44_1
  doi: 10.1038/srep31110
– ident: e_1_2_6_52_1
  doi: 10.1038/ncomms4066
– ident: e_1_2_6_6_1
  doi: 10.1177/0278364915592961
– ident: e_1_2_6_15_1
  doi: 10.1016/j.robot.2014.08.014
– ident: e_1_2_6_17_1
  doi: 10.1126/scitranslmed.aaf3925
– ident: e_1_2_6_33_1
  doi: 10.1088/1361-6439/aa9d0e
– volume-title: 2017 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS)
  year: 2017
  ident: e_1_2_6_27_1
– ident: e_1_2_6_28_1
  doi: 10.1080/09349840209409701
– ident: e_1_2_6_36_1
  doi: 10.1002/adfm.201707136
– ident: e_1_2_6_10_1
  doi: 10.1089/soro.2013.0009
– ident: e_1_2_6_48_1
  doi: 10.1016/j.progpolymsci.2015.04.001
– ident: e_1_2_6_21_1
  doi: 10.1177/1045389X10386399
– ident: e_1_2_6_1_1
  doi: 10.1038/nature14543
– ident: e_1_2_6_37_1
  doi: 10.1063/1.3503969
– volume-title: Fundamentals of Electric Circuits
  year: 2012
  ident: e_1_2_6_55_1
– ident: e_1_2_6_32_1
  doi: 10.1002/adma.201505991
– ident: e_1_2_6_38_1
  doi: 10.1126/scirobotics.aar3276
– ident: e_1_2_6_5_1
  doi: 10.1089/soro.2015.0013
– ident: e_1_2_6_43_1
  doi: 10.1038/srep24224
– ident: e_1_2_6_29_1
  doi: 10.1089/soro.2015.0015
– ident: e_1_2_6_9_1
  doi: 10.1089/soro.2014.0008
– ident: e_1_2_6_12_1
  doi: 10.1109/TRO.2013.2256313
– ident: e_1_2_6_40_1
  doi: 10.1016/j.polymer.2011.08.003
– ident: e_1_2_6_41_1
  doi: 10.1063/1.4819837
– ident: e_1_2_6_3_1
  doi: 10.1002/adma.201303175
– ident: e_1_2_6_7_1
  doi: 10.1088/1748-3182/6/3/036004
– ident: e_1_2_6_11_1
  doi: 10.1088/1748-3182/9/4/046006
– ident: e_1_2_6_13_1
  doi: 10.1089/soro.2014.0001
– ident: e_1_2_6_23_1
  doi: 10.1115/1.4033728
SSID ssj0017734
Score 2.6896837
Snippet Soft robots have the appealing advantages of being highly flexible and adaptive to complex environments. However, the low‐stiffness nature of the constituent...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms 3-D printers
3D printing
Actuators
Computer simulation
Cooling rate
Deformation
fast‐response
Heating
Materials science
Microchannels
Shape memory
Soft robotics
soft robots
Stiffening
Stiffness
stiffness‐tunable
Three dimensional printing
Title Fast‐Response, Stiffness‐Tunable Soft Actuator by Hybrid Multimaterial 3D Printing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201806698
https://www.proquest.com/docview/2205264577
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFA1SN7rwLVZryUJwY9tJ5pHpslhLESvSh3Q35AmiVLHTRV35CX6jX2Jupp22ggi6mxmSkMnrntzcc4LQGRHcQjYBfjdqNyjaUxVBwQevJFeRLyR1Iq6d26g9CK6H4XCJxZ_pQ-QON5gZbr2GCc7FuLYQDeXKAJOcxNZo1oHtCwFbgIq6uX4UYSw7Vo4IBHiR4Vy10aO11eyrVmkBNZcBq7M4rW3E53XNAk0eq5NUVOXbNxnH__zMDtqawVHcyMbPLlrToz20uSRSuI_uW3ycfr5_dLNoWn2Be-mDMbBE2q_9iSNf4Z5dznED2Ch2E4_FFLenwAXDjuBrUbEb6Nhv4jtbKoRaH6BB66p_2a7MbmOoyADoWXFdhdwTFrAZOBulfqRthRUJNZMRjyNmgYVhyniKSAvKeKAJFdIXgfGktYiBf4gKo-eRPkLYMEAGRqmY8iCue5zoMIg8SRmV0o9UEVXmvZHImVQ53JjxlGQiyzSB9kry9iqi8zz9SybS8WPK0rxzk9lkHSfANba4MGSsiKjrpV9KSRrNVid_O_5LphO0YZ_duRQhJVRIXyf61MKbVJTReqPZuemV3VD-Ao2I86k
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LThsxFL2isAAWlEIRgZR6UakbAmPPw5NlRBoFSqIqCYjdyE8JgQIikwWs-AS-sV9SX09mSJCqSnQ5lm15_LrH1_ccA3yjUjjIJtHvxtwBxQS6IRn64LUSOgmlYl7EtddPuhfR2VVcRhMiF6bQh6gcbrgy_H6NCxwd0sevqqFCW6SS09RZzWb6AVbwWW-Uz28PKgUpynlxsZxQDPGiV6VuY8COF8sv2qVXsDkPWb3N6XwEWba2CDW5OZrm8kg9vRFy_K_f2YSNGSIlrWIKfYIlM96C9Tmdwm247IhJ_vv5ZVAE1JpDMsyvrcVd0qWOpp5_RYZuRyctJKS4czyRj6T7iHQw4jm-Dhj7uU7CNvnlasVo689w0fkxOuk2Zg8yNFSEDK20qWMRSIfZLF6PsjAxrsGaxoarRKQJd9jCcm0DTZXDZSIylEkVysgGyhnFKNyB5fHd2OwCsRzBgdU6ZSJKm4GgJo6SQDHOlAoTXYNGORyZmqmV46MZt1mhs8wy7K-s6q8afK_y3xc6HX_NWS9HN5ut10mGdGMHDWPOa8D8MP2jlqzV7vSqr733FPoKq91R7zw7P-3_3Ic1l-6vqSitw3L-MDVfHNrJ5YGfz38AIQj2MQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LThsxFL2iIFVl0UILIi0FLyp108DY8_BkGTUdhacQjyq7kZ8SAoUIJgtY8Ql8I1_CvZ5kCJUqpHY5lm15fG3fY_ueY4BvXCuEbJrO3QRuUFxk21rQGbw1ymaxNiKIuB4cZv2zZHeQDmZY_LU-RHPgRjMjrNc0wUfWbz-LhirriUnOc3SanfwNLCRZ1KHHG3rHjYAUl7K-V844RXjxwVS2MRLbL8u_dEvPWHMWsQaXU3wANW1sHWlysTWu9Ja5-0PH8X_-ZgneT_Ao69YDaBnm3PAjLM6oFH6C34W6qR7vH47rcFr3g51U597TGompp-PAvmInuJ6zLtFRcBfP9C3r3xIZjAWGL8LiMNJZ3GNHWCvFWq_AWfHr9Ge_PXmOoW0S4mflHZuqSCNi83Q5KuLMYYMtT500mcozicjCS-sjyw2iMpU4LrSJdeIjgy4xiVdhfng1dGvAvCRo4K3NhUryTqS4S9F8RkhhTJzZFrSn1ijNRKucnsy4LGuVZVFSf5VNf7Xge5N_VKt0_DXn-tS45WS23pRENkZgmErZAhGs9EotZbdXHDRfn_-l0Ca8PeoV5f7O4d4XeIfJ4Y6K83WYr67H7itCnUpvhNH8BEK89OA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast%E2%80%90Response%2C+Stiffness%E2%80%90Tunable+Soft+Actuator+by+Hybrid+Multimaterial+3D+Printing&rft.jtitle=Advanced+functional+materials&rft.au=Zhang%2C+Yuan%E2%80%90Fang&rft.au=Zhang%2C+Ningbin&rft.au=Hingorani%2C+Hardik&rft.au=Ding%2C+Ningyuan&rft.date=2019-04-11&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=15&rft_id=info:doi/10.1002%2Fadfm.201806698&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201806698
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon