Fast‐Response, Stiffness‐Tunable Soft Actuator by Hybrid Multimaterial 3D Printing
Soft robots have the appealing advantages of being highly flexible and adaptive to complex environments. However, the low‐stiffness nature of the constituent materials makes soft robotic systems incompetent in tasks requiring relatively high load capacity. Despite recent attempts to develop stiffnes...
Saved in:
Published in | Advanced functional materials Vol. 29; no. 15 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
11.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soft robots have the appealing advantages of being highly flexible and adaptive to complex environments. However, the low‐stiffness nature of the constituent materials makes soft robotic systems incompetent in tasks requiring relatively high load capacity. Despite recent attempts to develop stiffness‐tunable soft actuators by employing variable stiffness materials and structures, the reported stiffness‐tunable actuators generally suffer from limitations including slow responses, small deformations, and difficulties in fabrication with microfeatures. This work presents a paradigm to design and manufacture fast‐response, stiffness‐tunable (FRST) soft actuators via hybrid multimaterial 3D printing. The integration of a shape memory polymer layer into the fully printed actuator body enhances its stiffness by up to 120 times without sacrificing flexibility and adaptivity. The printed Joule‐heating circuit and fluidic cooling microchannel enable fast heating and cooling rates and allow the FRST actuator to complete a softening–stiffening cycle within 32 s. Numerical simulations are used to optimize the load capacity and thermal rates. The high load capacity and shape adaptivity of the FRST actuator are finally demonstrated by a robotic gripper with three FRST actuators that can grasp and lift objects with arbitrary shapes and various weights spanning from less than 10 g to up to 1.5 kg.
A fast‐response, stiffness‐tunable (FRST) soft actuator is fabricated by hybrid multimaterial 3D printing. Owing to the thermomechanical properties of an embedded shape memory polymer layer, the actuator exhibits flexibility when heated and high stiffness (120 times stiffer than its purely elastomeric counterpart) when cooled. Assisted by Joule‐heating and fluidic cooling, the heating–cooling cycle is completed within 32 s. |
---|---|
AbstractList | Soft robots have the appealing advantages of being highly flexible and adaptive to complex environments. However, the low‐stiffness nature of the constituent materials makes soft robotic systems incompetent in tasks requiring relatively high load capacity. Despite recent attempts to develop stiffness‐tunable soft actuators by employing variable stiffness materials and structures, the reported stiffness‐tunable actuators generally suffer from limitations including slow responses, small deformations, and difficulties in fabrication with microfeatures. This work presents a paradigm to design and manufacture fast‐response, stiffness‐tunable (FRST) soft actuators via hybrid multimaterial 3D printing. The integration of a shape memory polymer layer into the fully printed actuator body enhances its stiffness by up to 120 times without sacrificing flexibility and adaptivity. The printed Joule‐heating circuit and fluidic cooling microchannel enable fast heating and cooling rates and allow the FRST actuator to complete a softening–stiffening cycle within 32 s. Numerical simulations are used to optimize the load capacity and thermal rates. The high load capacity and shape adaptivity of the FRST actuator are finally demonstrated by a robotic gripper with three FRST actuators that can grasp and lift objects with arbitrary shapes and various weights spanning from less than 10 g to up to 1.5 kg.
A fast‐response, stiffness‐tunable (FRST) soft actuator is fabricated by hybrid multimaterial 3D printing. Owing to the thermomechanical properties of an embedded shape memory polymer layer, the actuator exhibits flexibility when heated and high stiffness (120 times stiffer than its purely elastomeric counterpart) when cooled. Assisted by Joule‐heating and fluidic cooling, the heating–cooling cycle is completed within 32 s. Soft robots have the appealing advantages of being highly flexible and adaptive to complex environments. However, the low‐stiffness nature of the constituent materials makes soft robotic systems incompetent in tasks requiring relatively high load capacity. Despite recent attempts to develop stiffness‐tunable soft actuators by employing variable stiffness materials and structures, the reported stiffness‐tunable actuators generally suffer from limitations including slow responses, small deformations, and difficulties in fabrication with microfeatures. This work presents a paradigm to design and manufacture fast‐response, stiffness‐tunable (FRST) soft actuators via hybrid multimaterial 3D printing. The integration of a shape memory polymer layer into the fully printed actuator body enhances its stiffness by up to 120 times without sacrificing flexibility and adaptivity. The printed Joule‐heating circuit and fluidic cooling microchannel enable fast heating and cooling rates and allow the FRST actuator to complete a softening–stiffening cycle within 32 s. Numerical simulations are used to optimize the load capacity and thermal rates. The high load capacity and shape adaptivity of the FRST actuator are finally demonstrated by a robotic gripper with three FRST actuators that can grasp and lift objects with arbitrary shapes and various weights spanning from less than 10 g to up to 1.5 kg. |
Author | Zhang, Biao Ge, Qi Wang, Dong Hingorani, Hardik Gu, Guoying Yuan, Chao Zhang, Yuan‐Fang Zhang, Ningbin Ding, Ningyuan |
Author_xml | – sequence: 1 givenname: Yuan‐Fang surname: Zhang fullname: Zhang, Yuan‐Fang organization: Singapore University of Technology and Design – sequence: 2 givenname: Ningbin surname: Zhang fullname: Zhang, Ningbin organization: Shanghai Jiao Tong University – sequence: 3 givenname: Hardik surname: Hingorani fullname: Hingorani, Hardik organization: Singapore University of Technology and Design – sequence: 4 givenname: Ningyuan surname: Ding fullname: Ding, Ningyuan organization: Shanghai Jiao Tong University – sequence: 5 givenname: Dong surname: Wang fullname: Wang, Dong organization: Singapore University of Technology and Design – sequence: 6 givenname: Chao surname: Yuan fullname: Yuan, Chao organization: Singapore University of Technology and Design – sequence: 7 givenname: Biao surname: Zhang fullname: Zhang, Biao organization: Singapore University of Technology and Design – sequence: 8 givenname: Guoying surname: Gu fullname: Gu, Guoying email: guguoying@sjtu.edu.cn organization: Shanghai Jiao Tong University – sequence: 9 givenname: Qi orcidid: 0000-0002-8666-8532 surname: Ge fullname: Ge, Qi email: ge_qi@sutd.edu.sg organization: Singapore University of Technology and Design |
BookMark | eNqFkMFKAzEQhoNUsK1ePQe8ujXJZrPpsbTWCi2KreJtyWYTSdlma5JF9uYj-Iw-iVsqFQTxNMMw3_zz_z3QsZVVAJxjNMAIkStR6M2AIMwRY0N-BLqYYRbFiPDOocfPJ6Dn_RohnKYx7YKnqfDh8_3jQfltZb26hMtgtLbK-3a6qq3ISwWXlQ5wJEMtQuVg3sBZkztTwEVdBrMRQTkjShhP4L0zNhj7cgqOtSi9OvuuffA4vV6NZ9H87uZ2PJpHklLGIz4sEoHyOCGap4iRmKnWQIETlUomOEsRTnRaaFRgmTAsqMIkl3FONZIs5TTug4v93a2rXmvlQ7auamdbyYwQlBBGk9ZnHwz2W9JV3juls61r33ZNhlG2yy7bZZcdsmsB-guQJohgKhucMOXf2HCPvZlSNf-IZKPJdPHDfgHB44c8 |
CitedBy_id | crossref_primary_10_1016_j_bioactmat_2021_12_032 crossref_primary_10_3390_app13084950 crossref_primary_10_1089_soro_2019_0089 crossref_primary_10_3390_app13010120 crossref_primary_10_1016_j_compositesa_2023_107978 crossref_primary_10_1021_acsami_0c04097 crossref_primary_10_1039_C9CC07855J crossref_primary_10_1126_sciadv_abn5722 crossref_primary_10_1002_aisy_202200301 crossref_primary_10_3390_act13030084 crossref_primary_10_1016_j_pmatsci_2022_101021 crossref_primary_10_1007_s00170_024_14216_0 crossref_primary_10_1108_IR_01_2021_0013 crossref_primary_10_1089_soro_2018_0123 crossref_primary_10_1002_aisy_202400790 crossref_primary_10_1016_j_cej_2021_133840 crossref_primary_10_1002_admt_202200041 crossref_primary_10_1002_adma_202007772 crossref_primary_10_1108_RIA_11_2023_0160 crossref_primary_10_1177_00219983241283607 crossref_primary_10_1002_asia_202201160 crossref_primary_10_1007_s42235_023_00403_4 crossref_primary_10_3390_app11104581 crossref_primary_10_1002_adfm_202008936 crossref_primary_10_1002_adma_202104798 crossref_primary_10_1002_admt_202400074 crossref_primary_10_1002_adma_201903970 crossref_primary_10_1016_j_xcrp_2020_100144 crossref_primary_10_3390_app10093020 crossref_primary_10_1016_j_cej_2023_143515 crossref_primary_10_1126_sciadv_ade4381 crossref_primary_10_1016_j_sna_2023_114294 crossref_primary_10_1002_admt_202101521 crossref_primary_10_1021_acsami_2c19782 crossref_primary_10_3390_nano9081108 crossref_primary_10_1109_ACCESS_2022_3194153 crossref_primary_10_1016_j_eurpolymj_2021_110955 crossref_primary_10_1016_j_matt_2021_06_046 crossref_primary_10_1016_j_mattod_2023_02_005 crossref_primary_10_53941_ijamm_2023_100013 crossref_primary_10_1088_1361_665X_ac7680 crossref_primary_10_1021_acs_chemrev_4c00070 crossref_primary_10_1088_1361_665X_aca263 crossref_primary_10_1002_adma_202307963 crossref_primary_10_1089_soro_2021_0220 crossref_primary_10_1002_app_55557 crossref_primary_10_1002_admt_202401293 crossref_primary_10_1002_adma_202308829 crossref_primary_10_1002_advs_202300935 crossref_primary_10_1146_annurev_control_061022_012035 crossref_primary_10_1089_soro_2019_0186 crossref_primary_10_1002_admt_202101672 crossref_primary_10_1002_advs_202002017 crossref_primary_10_1002_adfm_202419520 crossref_primary_10_1039_D2MH01056A crossref_primary_10_1088_1361_665X_ad5a59 crossref_primary_10_1016_j_ymssp_2021_108267 crossref_primary_10_3390_polym13121957 crossref_primary_10_1039_D3MH01312J crossref_primary_10_1049_ccs2_12009 crossref_primary_10_3390_mi13101589 crossref_primary_10_1021_acsami_1c25103 crossref_primary_10_1080_19475411_2019_1591540 crossref_primary_10_3390_polym16101387 crossref_primary_10_3390_machines10040272 crossref_primary_10_1007_s11431_021_1944_y crossref_primary_10_3390_polym12030619 crossref_primary_10_1038_s43246_021_00211_5 crossref_primary_10_1002_advs_202100230 crossref_primary_10_1002_adma_202003387 crossref_primary_10_1021_acsami_4c23086 crossref_primary_10_1016_j_addr_2021_04_019 crossref_primary_10_1002_adsr_202200034 crossref_primary_10_1089_soro_2023_0022 crossref_primary_10_1109_ACCESS_2025_3546327 crossref_primary_10_1016_j_colsurfa_2025_136382 crossref_primary_10_1002_aisy_202300711 crossref_primary_10_1109_ACCESS_2022_3179589 crossref_primary_10_1557_s43578_021_00381_5 crossref_primary_10_1002_adfm_202212093 crossref_primary_10_1089_soro_2021_0126 crossref_primary_10_1098_rspa_2023_0067 crossref_primary_10_1109_LRA_2024_3357035 crossref_primary_10_1109_TRO_2021_3096644 crossref_primary_10_1002_aisy_202300032 crossref_primary_10_1063_5_0185725 crossref_primary_10_1039_D0TB01585G crossref_primary_10_1002_smll_202100804 crossref_primary_10_1088_1361_665X_ac6e53 crossref_primary_10_1002_admt_202100084 crossref_primary_10_1002_app_53166 crossref_primary_10_1017_S0263574721001740 crossref_primary_10_1007_s11431_022_2277_x crossref_primary_10_1002_adma_202402517 crossref_primary_10_1007_s11465_024_0788_0 crossref_primary_10_1007_s42242_021_00146_3 crossref_primary_10_1016_j_isci_2021_103075 crossref_primary_10_1109_JSEN_2022_3157709 crossref_primary_10_3390_polym12030710 crossref_primary_10_1002_app_49294 crossref_primary_10_1002_adem_202201268 crossref_primary_10_1002_anie_202410693 crossref_primary_10_1002_macp_202100486 crossref_primary_10_1007_s40820_024_01423_3 crossref_primary_10_1088_1361_665X_ab47e4 crossref_primary_10_1002_adfm_202107662 crossref_primary_10_1002_mame_202100638 crossref_primary_10_1089_soro_2023_0168 crossref_primary_10_1016_j_xcrp_2021_100600 crossref_primary_10_1021_acsami_3c03880 crossref_primary_10_3390_polym15092003 crossref_primary_10_1016_j_compstruct_2023_117369 crossref_primary_10_1016_j_compscitech_2022_109505 crossref_primary_10_1088_1748_3190_ad1c87 crossref_primary_10_1002_adfm_202000187 crossref_primary_10_1021_acsami_1c02656 crossref_primary_10_1016_j_compscitech_2021_109246 crossref_primary_10_1038_s41378_024_00812_3 crossref_primary_10_1063_5_0186757 crossref_primary_10_1002_admt_202200536 crossref_primary_10_1088_1748_3190_ad0b8c crossref_primary_10_3390_act9040136 crossref_primary_10_1093_nsr_nwab048 crossref_primary_10_1002_adem_202101533 crossref_primary_10_3390_act9040131 crossref_primary_10_1051_e3sconf_202123304023 crossref_primary_10_1142_S1758825124410035 crossref_primary_10_1088_2631_7990_ab8d9a crossref_primary_10_1039_D4BM00004H crossref_primary_10_3390_agronomy13102481 crossref_primary_10_1002_marc_201800873 crossref_primary_10_1002_aisy_202000223 crossref_primary_10_1371_journal_pone_0235229 crossref_primary_10_1002_aisy_202200409 crossref_primary_10_1002_adfm_201907401 crossref_primary_10_1088_1361_665X_ad0753 crossref_primary_10_1021_acsnano_3c01474 crossref_primary_10_3389_fmats_2021_661593 crossref_primary_10_1039_D2PY01607A crossref_primary_10_1021_acsapm_2c01833 crossref_primary_10_1109_TIE_2022_3229371 crossref_primary_10_1002_adma_202409811 crossref_primary_10_1016_j_matdes_2019_108411 crossref_primary_10_1089_3dp_2023_0126 crossref_primary_10_1089_3dp_2023_0127 crossref_primary_10_1109_LRA_2024_3408082 crossref_primary_10_1002_ange_202410693 crossref_primary_10_1007_s11431_023_2382_x crossref_primary_10_1002_adfm_202403252 crossref_primary_10_1039_D1MH00615K crossref_primary_10_1089_soro_2024_0166 crossref_primary_10_1146_annurev_control_062322_100607 crossref_primary_10_1002_advs_202104347 crossref_primary_10_1109_LRA_2022_3187615 crossref_primary_10_1109_LRA_2024_3368235 crossref_primary_10_1371_journal_pone_0250325 crossref_primary_10_1007_s12274_022_4827_z crossref_primary_10_3389_frobt_2023_1206579 crossref_primary_10_1002_aisy_202300788 crossref_primary_10_3390_polym14214740 crossref_primary_10_1088_1361_665X_ad1427 crossref_primary_10_1002_adsr_202300154 crossref_primary_10_3390_ma15248838 crossref_primary_10_1016_j_matdes_2023_111851 crossref_primary_10_3389_frobt_2021_663158 crossref_primary_10_1109_LRA_2021_3083236 crossref_primary_10_1016_j_compscitech_2022_109399 crossref_primary_10_1109_TMECH_2023_3317576 crossref_primary_10_1016_j_addma_2019_100819 crossref_primary_10_1007_s12541_019_00255_1 crossref_primary_10_1007_s42114_022_00585_1 crossref_primary_10_1080_19475411_2025_2458833 crossref_primary_10_1002_adem_201901586 crossref_primary_10_1134_S2635167623700039 crossref_primary_10_1002_advs_202308835 crossref_primary_10_1002_aisy_202000136 crossref_primary_10_1002_aisy_202000257 crossref_primary_10_1021_acsami_1c14030 crossref_primary_10_1088_1361_665X_ab9f48 crossref_primary_10_1088_1748_605X_ac6b04 crossref_primary_10_1016_j_nanoen_2020_105438 crossref_primary_10_1088_1361_665X_ab9f47 crossref_primary_10_1039_D3TC01563G crossref_primary_10_1088_1361_665X_ad6ed1 crossref_primary_10_34133_cbsystems_0103 crossref_primary_10_1088_1361_665X_ab7ab0 crossref_primary_10_1089_soro_2019_0105 crossref_primary_10_1088_1748_3190_abffec crossref_primary_10_3390_act12110397 crossref_primary_10_1002_adfm_202406847 crossref_primary_10_5194_ms_14_99_2023 crossref_primary_10_1002_adma_202007239 crossref_primary_10_1080_19475411_2023_2166143 crossref_primary_10_3390_act10100269 crossref_primary_10_1002_admt_201900427 crossref_primary_10_1186_s40580_024_00452_3 crossref_primary_10_1109_TRO_2024_3392162 crossref_primary_10_1016_j_compositesb_2020_107988 crossref_primary_10_1021_acsapm_3c01048 crossref_primary_10_1109_TIM_2023_3276501 crossref_primary_10_1002_adfm_202005804 crossref_primary_10_1038_s41467_020_20300_2 crossref_primary_10_3390_mi14101966 crossref_primary_10_1002_aisy_202200170 crossref_primary_10_1016_j_cej_2023_141278 crossref_primary_10_1002_adma_202000713 crossref_primary_10_1002_pen_26950 crossref_primary_10_1007_s11012_024_01852_9 crossref_primary_10_1007_s11431_022_2263_7 crossref_primary_10_1021_acsami_9b21816 crossref_primary_10_1109_LRA_2024_3468094 crossref_primary_10_1002_adfm_202306079 crossref_primary_10_1089_soro_2020_0142 crossref_primary_10_1109_LRA_2020_3037858 crossref_primary_10_1021_acsami_2c07119 crossref_primary_10_1002_adem_202400461 crossref_primary_10_1021_acsami_2c13982 crossref_primary_10_1039_D2ME00066K crossref_primary_10_1089_soro_2022_0212 crossref_primary_10_1115_1_4051722 crossref_primary_10_1007_s00542_023_05489_8 crossref_primary_10_1039_D1RA05021D crossref_primary_10_1080_19475411_2022_2095454 crossref_primary_10_1002_admt_201900784 crossref_primary_10_1088_1361_665X_aba491 crossref_primary_10_3390_polym16081087 crossref_primary_10_3390_technologies10020045 crossref_primary_10_1002_pc_27738 crossref_primary_10_46519_ij3dptdi_949479 crossref_primary_10_1089_soro_2020_0039 crossref_primary_10_1007_s00170_023_11180_z crossref_primary_10_1002_adma_201906657 crossref_primary_10_1002_admt_202300894 crossref_primary_10_1016_j_compositesa_2021_106444 crossref_primary_10_1002_adma_202200671 crossref_primary_10_1016_j_cej_2024_151462 crossref_primary_10_1088_1361_665X_ad5944 crossref_primary_10_1021_acsaelm_4c01546 crossref_primary_10_1109_LRA_2023_3320906 crossref_primary_10_1021_acsnano_4c01062 crossref_primary_10_1088_1361_665X_abe4e5 crossref_primary_10_1089_soro_2022_0166 crossref_primary_10_1021_acsami_9b10386 crossref_primary_10_1039_D3RA00670K crossref_primary_10_1108_RPJ_11_2019_0302 crossref_primary_10_1002_aisy_202000282 crossref_primary_10_1021_acsami_1c03572 crossref_primary_10_1016_j_addma_2023_103582 crossref_primary_10_1089_soro_2021_0032 crossref_primary_10_1002_adhm_202200050 crossref_primary_10_1080_17452759_2020_1795209 crossref_primary_10_3389_fsens_2020_586300 crossref_primary_10_3390_machines13010055 crossref_primary_10_1016_j_matdes_2020_109205 crossref_primary_10_1016_j_mser_2022_100702 crossref_primary_10_3390_act8040074 crossref_primary_10_1002_marc_202300661 crossref_primary_10_1021_acsami_9b00359 crossref_primary_10_1002_adfm_202201942 crossref_primary_10_1016_j_carbpol_2023_120879 crossref_primary_10_1109_TRO_2020_3021427 crossref_primary_10_3390_polym15092089 crossref_primary_10_1126_sciadv_adl4387 crossref_primary_10_1088_1361_665X_ab6759 crossref_primary_10_3390_gels9100784 crossref_primary_10_1002_adem_202400563 crossref_primary_10_1002_adfm_202409611 crossref_primary_10_1007_s42235_022_00281_2 crossref_primary_10_1089_soro_2021_0025 crossref_primary_10_1002_aenm_202203040 crossref_primary_10_3390_act10050103 crossref_primary_10_1002_pi_6636 crossref_primary_10_3390_mi13101783 crossref_primary_10_1002_smll_202305371 crossref_primary_10_1016_j_matpr_2022_09_552 crossref_primary_10_1021_acsami_0c13863 crossref_primary_10_1080_17452759_2020_1822189 crossref_primary_10_1021_acs_iecr_2c02540 crossref_primary_10_1016_j_sna_2023_114562 crossref_primary_10_1002_adfm_202402563 crossref_primary_10_1039_D1TB01350E crossref_primary_10_1109_TMECH_2023_3241844 crossref_primary_10_1007_s40684_023_00533_4 crossref_primary_10_1089_soro_2023_0111 crossref_primary_10_1126_sciadv_adg1203 crossref_primary_10_1002_advs_202202549 crossref_primary_10_1002_aisy_202000069 crossref_primary_10_1088_1361_665X_ad49ee crossref_primary_10_3390_act12040172 crossref_primary_10_1016_j_compositesa_2024_108083 crossref_primary_10_1007_s12274_023_6092_1 crossref_primary_10_34133_research_0456 crossref_primary_10_1002_adem_202301431 crossref_primary_10_1021_acsami_3c12173 crossref_primary_10_1002_aisy_202400699 crossref_primary_10_1109_TMECH_2022_3219108 crossref_primary_10_1155_2024_1119181 crossref_primary_10_1088_1361_665X_abe3a9 crossref_primary_10_1002_admt_202000724 crossref_primary_10_1002_advs_202404913 crossref_primary_10_1088_1361_665X_ac05dc crossref_primary_10_1002_advs_202001379 crossref_primary_10_1021_acs_chemrev_1c00453 crossref_primary_10_1109_LRA_2022_3229225 crossref_primary_10_1002_admt_202100018 crossref_primary_10_3390_app11135891 crossref_primary_10_3390_app12073582 crossref_primary_10_1002_sus2_11 crossref_primary_10_1002_aisy_202100163 crossref_primary_10_1002_aisy_202100282 crossref_primary_10_1002_adma_202304430 crossref_primary_10_1142_S1758825121501179 crossref_primary_10_1002_aisy_202100165 crossref_primary_10_1016_j_sna_2020_112398 crossref_primary_10_1089_soro_2019_0129 crossref_primary_10_1109_TRO_2024_3519433 crossref_primary_10_1039_D2TC04033F |
Cites_doi | 10.1002/adfm.201303288 10.1073/pnas.1116564108 10.1002/adma.201203002 10.1089/soro.2016.0060 10.1002/adfm.201705727 10.1016/j.mattod.2017.10.010 10.1002/adma.201304018 10.1109/MRA.2016.2582718 10.1016/j.ijsolstr.2014.03.029 10.1126/science.aao6139 10.1073/pnas.1003250107 10.1109/LRA.2017.2656943 10.1088/0964-1726/23/9/094007 10.1038/s41578-018-0022-y 10.1088/0964-1726/22/8/085005 10.1109/TRO.2017.2692266 10.1038/nature19100 10.1088/0964-1726/23/12/125005 10.1088/1361-665X/aa5cca 10.1126/sciadv.1602890 10.1016/j.mechmat.2011.09.004 10.1089/soro.2016.0030 10.1089/soro.2016.0034 10.1038/srep31110 10.1038/ncomms4066 10.1177/0278364915592961 10.1016/j.robot.2014.08.014 10.1126/scitranslmed.aaf3925 10.1088/1361-6439/aa9d0e 10.1080/09349840209409701 10.1002/adfm.201707136 10.1089/soro.2013.0009 10.1016/j.progpolymsci.2015.04.001 10.1177/1045389X10386399 10.1038/nature14543 10.1063/1.3503969 10.1002/adma.201505991 10.1126/scirobotics.aar3276 10.1089/soro.2015.0013 10.1038/srep24224 10.1089/soro.2015.0015 10.1089/soro.2014.0008 10.1109/TRO.2013.2256313 10.1016/j.polymer.2011.08.003 10.1063/1.4819837 10.1002/adma.201303175 10.1088/1748-3182/6/3/036004 10.1088/1748-3182/9/4/046006 10.1089/soro.2014.0001 10.1115/1.4033728 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201806698 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201806698 ADFM201806698 |
Genre | article |
GrantInformation_xml | – fundername: SUTD Digital Manufacturing and Design Centre – fundername: State Key Laboratory of Mechanical System and Vibration funderid: MSV201802 – fundername: Shanghai Jiaotong University, China – fundername: National Additive Manufacturing Innovation Cluster – fundername: National Natural Science Foundation of China funderid: 51622506; 91848204 – fundername: SUTD Start‐up Research – fundername: Science and Technology Commission of Shanghai Municipality funderid: 16JC1401000 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c4468-89d5a0b352f8706236e201d15e7c6a867015f7df0d1c561a4e12bc3b4f0c67843 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Mon Jul 14 07:47:51 EDT 2025 Tue Jul 01 04:11:55 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 Wed Jan 22 17:00:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4468-89d5a0b352f8706236e201d15e7c6a867015f7df0d1c561a4e12bc3b4f0c67843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8666-8532 |
PQID | 2205264577 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2205264577 crossref_primary_10_1002_adfm_201806698 crossref_citationtrail_10_1002_adfm_201806698 wiley_primary_10_1002_adfm_201806698_ADFM201806698 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 11, 2019 |
PublicationDateYYYYMMDD | 2019-04-11 |
PublicationDate_xml | – month: 04 year: 2019 text: April 11, 2019 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 2 2013; 29 2002; 14 2018; 28 2010; 97 2013; 25 2017; 2 2017; 3 2017; 4 2013; 22 2010; 107 2012 2017; 26 2015; 521 2015; 73 2014; 26 2011; 52 2013; 103 2014; 24 2011; 6 2018; 21 2017; 9 2014; 23 2016; 35 2014; 1 2010; 21 2016; 6 2018; 3 2014; 5 2011; 108 2015; 49 2016; 3 2018; 359 2016; 536 2017; 33 2017 2011; 43 2015 2014; 9 2016; 28 2014; 51 2016; 8 2016; 23 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 Cheng G. N. (e_1_2_6_35_1) 2012 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 Buckner T. L. (e_1_2_6_27_1) 2017 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 Yap H. K. (e_1_2_6_16_1) 2015 e_1_2_6_8_1 Alexander C. (e_1_2_6_55_1) 2012 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 Shintake J. (e_1_2_6_31_1) 2015 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_46_1 |
References_xml | – volume: 1 start-page: 122 year: 2014 publication-title: Soft Rob. – volume: 4 start-page: 147 year: 2017 publication-title: Soft Rob. – volume: 23 start-page: 93 year: 2016 publication-title: IEEE Rob. Autom. Mag. – volume: 6 start-page: 31110 year: 2016 publication-title: Sci. Rep. – volume: 108 start-page: 20400 year: 2011 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 536 start-page: 451 year: 2016 publication-title: Nature – volume: 2 start-page: 155 year: 2015 publication-title: Soft Rob. – volume: 28 start-page: 024004 year: 2018 publication-title: J. Micromech. Microeng. – volume: 49 start-page: 79 year: 2015 publication-title: Prog. Polym. Sci. – volume: 51 start-page: 2777 year: 2014 publication-title: Int. J. Solids Struct. – volume: 1 start-page: 75 year: 2014 publication-title: Soft Rob. – volume: 73 start-page: 135 year: 2015 publication-title: Rob. Auton. Syst. – volume: 28 start-page: 1705727 year: 2018 publication-title: Adv. Funct. Mater. – volume: 103 start-page: 131901 year: 2013 publication-title: Appl. Phys. Lett. – volume: 33 start-page: 765 year: 2017 publication-title: IEEE Trans. Rob. – volume: 22 start-page: 085005 year: 2013 publication-title: Smart Mater. Struct. – volume: 97 start-page: 164104 year: 2010 publication-title: Appl. Phys. Lett. – volume: 9 start-page: 046006 year: 2014 publication-title: Bioinspiration Biomimetics – volume: 3 start-page: 143 year: 2018 publication-title: Nat. Rev. Mater. – volume: 3 start-page: 34 year: 2016 publication-title: Soft Rob. – volume: 9 start-page: eaaf3925 year: 2017 publication-title: Sci. Transl. Med. – volume: 6 start-page: 24224 year: 2016 publication-title: Sci. Rep. – volume: 14 start-page: 1 year: 2002 publication-title: Res. Nondestr. Eval. – year: 2015 – volume: 25 start-page: 205 year: 2013 publication-title: Adv. Mater. – volume: 3 start-page: e1602890 year: 2017 publication-title: Sci. Adv. – volume: 23 start-page: 094007 year: 2014 publication-title: Smart Mater. Struct. – volume: 21 start-page: 1783 year: 2010 publication-title: J. Intell. Mater. Syst. Struct. – volume: 2 start-page: 985 year: 2017 publication-title: IEEE Rob. Autom. Lett. – volume: 5 start-page: 3066 year: 2014 publication-title: Nat. Commun. – volume: 3 start-page: eaar3276 year: 2018 publication-title: Sci. Rob. – volume: 107 start-page: 18809 year: 2010 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 29 start-page: 1031 year: 2013 publication-title: IEEE Trans. Rob. – volume: 25 start-page: 6709 year: 2013 publication-title: Adv. Mater. – volume: 28 start-page: 2801 year: 2016 publication-title: Adv. Mater. – volume: 521 start-page: 467 year: 2015 publication-title: Nature – volume: 3 start-page: 144 year: 2016 publication-title: Soft Rob. – volume: 4 start-page: 338 year: 2017 publication-title: Soft Rob. – volume: 6 start-page: 036004 year: 2011 publication-title: Bioinspiration Biomimetics – year: 2012 – volume: 52 start-page: 4985 year: 2011 publication-title: Polymer – volume: 1 start-page: 213 year: 2014 publication-title: Soft Rob. – volume: 23 start-page: 125005 year: 2014 publication-title: Smart Mater. Struct. – volume: 26 start-page: 1200 year: 2014 publication-title: Adv. Mater. – volume: 28 start-page: 1707136 year: 2018 publication-title: Adv. Funct. Mater. – volume: 26 start-page: 045008 year: 2017 publication-title: Smart Mater. Struct. – volume: 43 start-page: 853 year: 2011 publication-title: Mech. Mater. – volume: 359 start-page: 61 year: 2018 publication-title: Science – volume: 21 start-page: 563 year: 2018 publication-title: Mater. Today – volume: 35 start-page: 161 year: 2016 publication-title: Int. J. Robotics Research – volume: 24 start-page: 2163 year: 2014 publication-title: Adv. Funct. Mater. – year: 2017 – volume: 8 start-page: 061010 year: 2016 publication-title: J. Mech. Rob. – ident: e_1_2_6_46_1 doi: 10.1002/adfm.201303288 – ident: e_1_2_6_8_1 doi: 10.1073/pnas.1116564108 – ident: e_1_2_6_4_1 doi: 10.1002/adma.201203002 – ident: e_1_2_6_26_1 doi: 10.1089/soro.2016.0060 – ident: e_1_2_6_53_1 doi: 10.1002/adfm.201705727 – ident: e_1_2_6_45_1 doi: 10.1016/j.mattod.2017.10.010 – ident: e_1_2_6_14_1 doi: 10.1002/adma.201304018 – ident: e_1_2_6_20_1 doi: 10.1109/MRA.2016.2582718 – ident: e_1_2_6_51_1 doi: 10.1016/j.ijsolstr.2014.03.029 – ident: e_1_2_6_39_1 doi: 10.1126/science.aao6139 – ident: e_1_2_6_34_1 doi: 10.1073/pnas.1003250107 – ident: e_1_2_6_54_1 doi: 10.1109/LRA.2017.2656943 – ident: e_1_2_6_42_1 doi: 10.1088/0964-1726/23/9/094007 – ident: e_1_2_6_18_1 doi: 10.1038/s41578-018-0022-y – ident: e_1_2_6_30_1 doi: 10.1088/0964-1726/22/8/085005 – ident: e_1_2_6_25_1 doi: 10.1109/TRO.2017.2692266 – volume-title: 2015 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS) year: 2015 ident: e_1_2_6_31_1 – ident: e_1_2_6_2_1 doi: 10.1038/nature19100 – ident: e_1_2_6_22_1 doi: 10.1088/0964-1726/23/12/125005 – volume-title: 2012 IEEE Int. Conf. on Robotics and Automation (ICRA) year: 2012 ident: e_1_2_6_35_1 – ident: e_1_2_6_47_1 doi: 10.1088/1361-665X/aa5cca – ident: e_1_2_6_49_1 doi: 10.1126/sciadv.1602890 – ident: e_1_2_6_50_1 doi: 10.1016/j.mechmat.2011.09.004 – volume-title: 2015 IEEE Int. Conf. on Robotics and Automation (ICRA) year: 2015 ident: e_1_2_6_16_1 – ident: e_1_2_6_19_1 doi: 10.1089/soro.2016.0030 – ident: e_1_2_6_24_1 doi: 10.1089/soro.2016.0034 – ident: e_1_2_6_44_1 doi: 10.1038/srep31110 – ident: e_1_2_6_52_1 doi: 10.1038/ncomms4066 – ident: e_1_2_6_6_1 doi: 10.1177/0278364915592961 – ident: e_1_2_6_15_1 doi: 10.1016/j.robot.2014.08.014 – ident: e_1_2_6_17_1 doi: 10.1126/scitranslmed.aaf3925 – ident: e_1_2_6_33_1 doi: 10.1088/1361-6439/aa9d0e – volume-title: 2017 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS) year: 2017 ident: e_1_2_6_27_1 – ident: e_1_2_6_28_1 doi: 10.1080/09349840209409701 – ident: e_1_2_6_36_1 doi: 10.1002/adfm.201707136 – ident: e_1_2_6_10_1 doi: 10.1089/soro.2013.0009 – ident: e_1_2_6_48_1 doi: 10.1016/j.progpolymsci.2015.04.001 – ident: e_1_2_6_21_1 doi: 10.1177/1045389X10386399 – ident: e_1_2_6_1_1 doi: 10.1038/nature14543 – ident: e_1_2_6_37_1 doi: 10.1063/1.3503969 – volume-title: Fundamentals of Electric Circuits year: 2012 ident: e_1_2_6_55_1 – ident: e_1_2_6_32_1 doi: 10.1002/adma.201505991 – ident: e_1_2_6_38_1 doi: 10.1126/scirobotics.aar3276 – ident: e_1_2_6_5_1 doi: 10.1089/soro.2015.0013 – ident: e_1_2_6_43_1 doi: 10.1038/srep24224 – ident: e_1_2_6_29_1 doi: 10.1089/soro.2015.0015 – ident: e_1_2_6_9_1 doi: 10.1089/soro.2014.0008 – ident: e_1_2_6_12_1 doi: 10.1109/TRO.2013.2256313 – ident: e_1_2_6_40_1 doi: 10.1016/j.polymer.2011.08.003 – ident: e_1_2_6_41_1 doi: 10.1063/1.4819837 – ident: e_1_2_6_3_1 doi: 10.1002/adma.201303175 – ident: e_1_2_6_7_1 doi: 10.1088/1748-3182/6/3/036004 – ident: e_1_2_6_11_1 doi: 10.1088/1748-3182/9/4/046006 – ident: e_1_2_6_13_1 doi: 10.1089/soro.2014.0001 – ident: e_1_2_6_23_1 doi: 10.1115/1.4033728 |
SSID | ssj0017734 |
Score | 2.6896837 |
Snippet | Soft robots have the appealing advantages of being highly flexible and adaptive to complex environments. However, the low‐stiffness nature of the constituent... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | 3-D printers 3D printing Actuators Computer simulation Cooling rate Deformation fast‐response Heating Materials science Microchannels Shape memory Soft robotics soft robots Stiffening Stiffness stiffness‐tunable Three dimensional printing |
Title | Fast‐Response, Stiffness‐Tunable Soft Actuator by Hybrid Multimaterial 3D Printing |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201806698 https://www.proquest.com/docview/2205264577 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSgMxFA1SN7rwLVZryUJwY9tJ5pHpslhLESvSh3Q35AmiVLHTRV35CX6jX2Jupp22ggi6mxmSkMnrntzcc4LQGRHcQjYBfjdqNyjaUxVBwQevJFeRLyR1Iq6d26g9CK6H4XCJxZ_pQ-QON5gZbr2GCc7FuLYQDeXKAJOcxNZo1oHtCwFbgIq6uX4UYSw7Vo4IBHiR4Vy10aO11eyrVmkBNZcBq7M4rW3E53XNAk0eq5NUVOXbNxnH__zMDtqawVHcyMbPLlrToz20uSRSuI_uW3ycfr5_dLNoWn2Be-mDMbBE2q_9iSNf4Z5dznED2Ch2E4_FFLenwAXDjuBrUbEb6Nhv4jtbKoRaH6BB66p_2a7MbmOoyADoWXFdhdwTFrAZOBulfqRthRUJNZMRjyNmgYVhyniKSAvKeKAJFdIXgfGktYiBf4gKo-eRPkLYMEAGRqmY8iCue5zoMIg8SRmV0o9UEVXmvZHImVQ53JjxlGQiyzSB9kry9iqi8zz9SybS8WPK0rxzk9lkHSfANba4MGSsiKjrpV9KSRrNVid_O_5LphO0YZ_duRQhJVRIXyf61MKbVJTReqPZuemV3VD-Ao2I86k |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LThsxFL2isAAWlEIRgZR6UakbAmPPw5NlRBoFSqIqCYjdyE8JgQIikwWs-AS-sV9SX09mSJCqSnQ5lm15_LrH1_ccA3yjUjjIJtHvxtwBxQS6IRn64LUSOgmlYl7EtddPuhfR2VVcRhMiF6bQh6gcbrgy_H6NCxwd0sevqqFCW6SS09RZzWb6AVbwWW-Uz28PKgUpynlxsZxQDPGiV6VuY8COF8sv2qVXsDkPWb3N6XwEWba2CDW5OZrm8kg9vRFy_K_f2YSNGSIlrWIKfYIlM96C9Tmdwm247IhJ_vv5ZVAE1JpDMsyvrcVd0qWOpp5_RYZuRyctJKS4czyRj6T7iHQw4jm-Dhj7uU7CNvnlasVo689w0fkxOuk2Zg8yNFSEDK20qWMRSIfZLF6PsjAxrsGaxoarRKQJd9jCcm0DTZXDZSIylEkVysgGyhnFKNyB5fHd2OwCsRzBgdU6ZSJKm4GgJo6SQDHOlAoTXYNGORyZmqmV46MZt1mhs8wy7K-s6q8afK_y3xc6HX_NWS9HN5ut10mGdGMHDWPOa8D8MP2jlqzV7vSqr733FPoKq91R7zw7P-3_3Ic1l-6vqSitw3L-MDVfHNrJ5YGfz38AIQj2MQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LThsxFL2iIFVl0UILIi0FLyp108DY8_BkGTUdhacQjyq7kZ8SAoUIJgtY8Ql8I1_CvZ5kCJUqpHY5lm15fG3fY_ueY4BvXCuEbJrO3QRuUFxk21rQGbw1ymaxNiKIuB4cZv2zZHeQDmZY_LU-RHPgRjMjrNc0wUfWbz-LhirriUnOc3SanfwNLCRZ1KHHG3rHjYAUl7K-V844RXjxwVS2MRLbL8u_dEvPWHMWsQaXU3wANW1sHWlysTWu9Ja5-0PH8X_-ZgneT_Ao69YDaBnm3PAjLM6oFH6C34W6qR7vH47rcFr3g51U597TGompp-PAvmInuJ6zLtFRcBfP9C3r3xIZjAWGL8LiMNJZ3GNHWCvFWq_AWfHr9Ge_PXmOoW0S4mflHZuqSCNi83Q5KuLMYYMtT500mcozicjCS-sjyw2iMpU4LrSJdeIjgy4xiVdhfng1dGvAvCRo4K3NhUryTqS4S9F8RkhhTJzZFrSn1ijNRKucnsy4LGuVZVFSf5VNf7Xge5N_VKt0_DXn-tS45WS23pRENkZgmErZAhGs9EotZbdXHDRfn_-l0Ca8PeoV5f7O4d4XeIfJ4Y6K83WYr67H7itCnUpvhNH8BEK89OA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast%E2%80%90Response%2C+Stiffness%E2%80%90Tunable+Soft+Actuator+by+Hybrid+Multimaterial+3D+Printing&rft.jtitle=Advanced+functional+materials&rft.au=Zhang%2C+Yuan%E2%80%90Fang&rft.au=Zhang%2C+Ningbin&rft.au=Hingorani%2C+Hardik&rft.au=Ding%2C+Ningyuan&rft.date=2019-04-11&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=15&rft_id=info:doi/10.1002%2Fadfm.201806698&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201806698 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |