On the Significance of Properly Weighting Sorption Data for Least Squares Analysis
In this study, we examined the role of proper weighting in the least squares (LS) analysis of P sorption data when both the dependent (y) and independent (x) variables contain heteroscedastic errors. We compared parameter estimates and uncertainties obtained with unweighted LS (ULS) regression with...
Saved in:
Published in | Soil Science Society of America journal Vol. 74; no. 2; pp. 670 - 679 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Madison
Soil Science Society
01.03.2010
Soil Science Society of America American Society of Agronomy |
Subjects | |
Online Access | Get full text |
ISSN | 0361-5995 1435-0661 |
DOI | 10.2136/sssaj2009.0177 |
Cover
Loading…
Abstract | In this study, we examined the role of proper weighting in the least squares (LS) analysis of P sorption data when both the dependent (y) and independent (x) variables contain heteroscedastic errors. We compared parameter estimates and uncertainties obtained with unweighted LS (ULS) regression with those obtained using two different weighted LS (WLS) regression methods. In the first WLS method, we weighted the data by the inverse of the variance in y. In the second WLS method, we included the variance in x when calculating the weights. This method, commonly referred to as the effective variance method, has primarily been applied to data with uncorrelated errors in x and y, conditions not representative of sorption studies where values of y are calculated from measured values of x Therefore, in this study we tested a modified version of the effective weighting function that specifically accounts for correlated errors in x and y. The accuracy of the different weighting methods was assessed using Monte Carlo simulations and high‐replication sorption data obtained for three different soil types. Our findings show that the effective variance weighting method provides superior parameter estimates and uncertainties compared with ULS or traditional WLS methods, although the differences between the weighting methods were not always large enough to be of practical concern. We also found that weighting by the effective variance allowed improved assessments of model fits. Our findings are applicable to sorption studies where the dependent variable is calculated from measured values of the so‐called independent variable |
---|---|
AbstractList | In this study, we examined the role of proper weighting in the least squares (LS) analysis of P sorption data when both the dependent (y) and independent (x) variables contain heteroscedastic errors. We compared parameter estimates and uncertainties obtained with unweighted LS (ULS) regression with those obtained using two different weighted LS (WLS) regression methods. In the first WLS method, we weighted the data by the inverse of the variance in y. In the second WLS method, we included the variance in x when calculating the weights. This method, commonly referred to as the effective variance method, has primarily been applied to data with uncorrelated errors in x and y, conditions not representative of sorption studies where values of y are calculated from measured values of x. Therefore, in this study we tested a modified version of the effective weighting function that specifically accounts for correlated errors in x and y. The accuracy of the different weighting methods was assessed using Monte Carlo simulations and high-replication sorption data obtained for three different soil types. Our findings show that the effective variance weighting method provides superior parameter estimates and uncertainties compared with ULS or traditional WLS methods, although the differences between the weighting methods were not always large enough to be of practical concern. We also found that weighting by the effective variance allowed improved assessments of model fits. Our findings are applicable to sorption studies where the dependent variable is calculated from measured values of the so-called independent variable [PUBLICATION ABSTRACT] In this study, we examined the role of proper weighting in the least squares (LS) analysis of P sorption data when both the dependent (y) and independent (x) variables contain heteroscedastic errors. We compared parameter estimates and uncertainties obtained with unweighted LS (ULS) regression with those obtained using two different weighted LS (WLS) regression methods. In the first WLS method, we weighted the data by the inverse of the variance in y. In the second WLS method, we included the variance in x when calculating the weights. This method, commonly referred to as the effective variance method, has primarily been applied to data with uncorrelated errors in x and y, conditions not representative of sorption studies where values of y are calculated from measured values of x Therefore, in this study we tested a modified version of the effective weighting function that specifically accounts for correlated errors in x and y. The accuracy of the different weighting methods was assessed using Monte Carlo simulations and high-replication sorption data obtained for three different soil types. Our findings show that the effective variance weighting method provides superior parameter estimates and uncertainties compared with ULS or traditional WLS methods, although the differences between the weighting methods were not always large enough to be of practical concern. We also found that weighting by the effective variance allowed improved assessments of model fits. Our findings are applicable to sorption studies where the dependent variable is calculated from measured values of the so-called independent variable In this study, we examined the role of proper weighting in the least squares (LS) analysis of P sorption data when both the dependent ( y ) and independent ( x ) variables contain heteroscedastic errors. We compared parameter estimates and uncertainties obtained with unweighted LS (ULS) regression with those obtained using two different weighted LS (WLS) regression methods. In the first WLS method, we weighted the data by the inverse of the variance in y. In the second WLS method, we included the variance in x when calculating the weights. This method, commonly referred to as the effective variance method, has primarily been applied to data with uncorrelated errors in x and y , conditions not representative of sorption studies where values of y are calculated from measured values of x Therefore, in this study we tested a modified version of the effective weighting function that specifically accounts for correlated errors in x and y. The accuracy of the different weighting methods was assessed using Monte Carlo simulations and high‐replication sorption data obtained for three different soil types. Our findings show that the effective variance weighting method provides superior parameter estimates and uncertainties compared with ULS or traditional WLS methods, although the differences between the weighting methods were not always large enough to be of practical concern. We also found that weighting by the effective variance allowed improved assessments of model fits. Our findings are applicable to sorption studies where the dependent variable is calculated from measured values of the so‐called independent variable |
Author | Bolster, Carl H. Tellinghuisen, Joel |
Author_xml | – sequence: 1 givenname: Carl H. surname: Bolster fullname: Bolster, Carl H. email: carl.bolster@ars.usda.gov organization: USDA‐ARS – sequence: 2 givenname: Joel surname: Tellinghuisen fullname: Tellinghuisen, Joel organization: Vanderbilt Univ |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22487415$$DView record in Pascal Francis |
BookMark | eNqFkU2LFDEQhoOs4Ozo1XMQ1FOPSeerc_AwrN8MrNiKx1Dbncxm6E1mUz3I_Hu7ndXDgnqpguJ5Cqrec3KWcvKEPOVsVXOhXyEi7GrG7IpxYx6QBZdCVUxrfkYWTGheKWvVI3KOuGOMK8vYgny5THS89rSN2xRD7CB1nuZAP5e892U40u8-bq_HmLa0zWU_xpzoGxiBhlzoxgOOtL09QPFI1wmGI0Z8TB4GGNA_uetL8u3d268XH6rN5fuPF-tN1UmpTeUb2ygh-roHybXvIRgjQF8J7aWwQWtlroyE4IGFvp675UwbY20joe-tWJKXp737km8PHkd3E7HzwwDJ5wM6I4VQrGn4RL74Jym10krYZgKf3QN3-VCmu9AJOSNiKkvy_A4C7GAIZfpZRLcv8QbK0dW1bIzkMydPXFcyYvHBdXGE-YNjgTg4ztycm_uTm5tzm7TVPe335r8Kr0_Cjzj4439o164_1W0712n0y_8J7Z2u2w |
CODEN | SSSJD4 |
CitedBy_id | crossref_primary_10_2136_sssaj2015_03_0116 crossref_primary_10_1002_saj2_20078 crossref_primary_10_1016_j_still_2021_104952 crossref_primary_10_1111_j_1475_2743_2012_00431_x crossref_primary_10_1016_j_chemosphere_2014_09_019 crossref_primary_10_1118_1_4811238 crossref_primary_10_2134_jeq2012_0418 crossref_primary_10_2136_sssaj2010_0084 crossref_primary_10_1016_j_jconhyd_2017_03_006 crossref_primary_10_1016_j_ecoleng_2014_03_042 crossref_primary_10_2134_jeq2012_0222 crossref_primary_10_1016_j_jhydrol_2016_05_009 crossref_primary_10_1021_es100535b crossref_primary_10_1016_j_jconhyd_2015_03_011 |
Cites_doi | 10.2136/sssaj1996.03615995006000020014x 10.2134/jeq2003.1114 10.1080/00103620902753822 10.1080/00401706.1967.10490460 10.1002/9781118625590 10.2134/jeq1984.00472425001300040016x 10.1021/jp993279i 10.1080/00401706.1972.10488884 10.2134/jeq2003.1082 10.5194/acp-8-5477-2008 10.1080/00401706.1987.10488184 10.1021/jp8112039 10.1081/CSS-120004825 10.1016/j.jhazmat.2008.01.052 10.1093/comjnl/15.2.148 10.1119/1.13713 10.1002/9780471722199 10.1111/j.1365-2389.2008.01041.x 10.2136/sssaj2006.0304 10.1016/j.jmarsys.2004.09.006 10.1119/1.13822 10.1023/A:1009888707349 10.1016/S0003-2670(00)88444-5 10.2134/jeq2007.0461 10.2134/jeq2002.1918 |
ContentType | Journal Article |
Copyright | Soil Science Society of America 2015 INIST-CNRS Copyright American Society of Agronomy Mar/Apr 2010 |
Copyright_xml | – notice: Soil Science Society of America – notice: 2015 INIST-CNRS – notice: Copyright American Society of Agronomy Mar/Apr 2010 |
DBID | AAYXX CITATION IQODW 3V. 7ST 7T7 7X2 7XB 88I 8AF 8FD 8FE 8FG 8FH 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO FR3 GNUQQ GUQSH HCIFZ L6V M0K M2O M2P M7S MBDVC P64 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U R05 S0X SOI 7S9 L.6 KR7 |
DOI | 10.2136/sssaj2009.0177 |
DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) STEM Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Materials Science & Engineering Collection ProQuest Central (Alumni) One Sustainability ProQuest Central UK/Ireland ProQuest Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Engineering Collection Agricultural Science Database ProQuest Research Library Science Database Engineering Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan SIRS Editorial Environment Abstracts AGRICOLA AGRICOLA - Academic Civil Engineering Abstracts |
DatabaseTitle | CrossRef Agricultural Science Database University of Michigan Research Library Prep ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials SIRS Editorial ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Technology Collection ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic Civil Engineering Abstracts |
DatabaseTitleList | Agricultural Science Database AGRICOLA CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1435-0661 |
EndPage | 679 |
ExternalDocumentID | 2043885071 22487415 10_2136_sssaj2009_0177 SAJ2SSSAJ20090177 |
Genre | miscellaneous Feature |
GroupedDBID | -DZ -~X .86 .~0 0R~ 123 186 18M 1OB 1OC 2WC 33P 3V. 53G 6KN 7X2 7XC 88I 8AF 8FE 8FG 8FH 8FW 8G5 8R4 8R5 8WZ A6W AAHBH AAHHS AAHQN AAMNL AANLZ AAYCA ABCQX ABCUV ABEFU ABJCF ABJNI ABUWG ACAWQ ACCFJ ACCZN ACGFO ACGOD ACIWK ACPOU ACPRK ACXQS ADFRT ADKYN ADYHW ADZMN AEEZP AEIGN AENEX AEQDE AEUYN AEUYR AFFNX AFFPM AFKRA AFRAH AFWVQ AHBTC AIDBO AITYG AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ATCPS AZQEC BENPR BFHJK BGLVJ BHPHI BKOMP BKSAR BPHCQ C1A CCPQU CS3 DCZOG DDYGU DU5 DWQXO E3Z EBS ECGQY EJD GNUQQ GUQSH H13 HCIFZ H~9 L6V L7B LAS LATKE LEEKS LK5 M0K M2O M2P M2Q M7R M7S MEWTI MV1 MVM NHAZY NHB O9- OHT P2P PATMY PCBAR PK- PQQKQ PRG PROAC PTHSS PYCSY Q2X R05 RAK ROL RPX RXW S0X SAMSI SJN SUPJJ TAE TN5 TR2 TWZ U2A VJK WOQ WXSBR XIH XJT XOL Y6R YYP ZCA ~02 ~KM AAYXX ADXHL AETEA AEYWJ AGHNM AGYGG CITATION HGLYW PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW PQGLB 7ST 7T7 7XB 8FD 8FK C1K FR3 MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U SOI 7S9 L.6 KR7 |
ID | FETCH-LOGICAL-c4467-e898533d2da416edaf773a6b36e439f6657b74afea0fd2afea9106779984add93 |
IEDL.DBID | BENPR |
ISSN | 0361-5995 |
IngestDate | Fri Jul 11 01:03:46 EDT 2025 Fri Jul 11 14:22:12 EDT 2025 Fri Aug 15 07:42:02 EDT 2025 Mon Jul 21 09:12:03 EDT 2025 Thu Apr 24 22:53:48 EDT 2025 Tue Jul 01 00:50:28 EDT 2025 Wed Jan 22 16:36:04 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | data Applied mathematics Least squares method Soil science Earth science statistical analysis analysis sorption |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4467-e898533d2da416edaf773a6b36e439f6657b74afea0fd2afea9106779984add93 |
Notes | All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher. SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
PQID | 346539365 |
PQPubID | 40901 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_743350881 proquest_miscellaneous_46565398 proquest_journals_346539365 pascalfrancis_primary_22487415 crossref_citationtrail_10_2136_sssaj2009_0177 crossref_primary_10_2136_sssaj2009_0177 wiley_primary_10_2136_sssaj2009_0177_SAJ2SSSAJ20090177 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2010 |
PublicationDateYYYYMMDD | 2010-03-01 |
PublicationDate_xml | – month: 03 year: 2010 text: March 2010 |
PublicationDecade | 2010 |
PublicationPlace | Madison |
PublicationPlace_xml | – name: Madison – name: Madison, WI |
PublicationTitle | Soil Science Society of America journal |
PublicationYear | 2010 |
Publisher | Soil Science Society Soil Science Society of America American Society of Agronomy |
Publisher_xml | – name: Soil Science Society – name: Soil Science Society of America – name: American Society of Agronomy |
References | 1970; 9 2009; 40 2002; 31 2002; 33 1998 2008; 59 2008; 37 2008; 8 2009; 113 2007; 71 1992 2003 1984a; 52 2003; 32 1984; 3 2000; 104 1943 1962; 27 1996; 60 2001; 59 1984b; 52 2008; 158 1972; 14 2005; 55 1987; 29 1972; 15 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 Deming W.E. (e_1_2_7_13_1) 1943 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 Nair P.S. (e_1_2_7_22_1) 1984; 3 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_21_1 e_1_2_7_20_1 Clutton‐Brock M. (e_1_2_7_10_1) 1970; 9 Bevington P.R. (e_1_2_7_3_1) 1992 |
References_xml | – volume: 32 start-page: 1114 year: 2003 end-page: 1121 article-title: Phosphorus sorption and availability in soils amended with animal manures and sewage sludge publication-title: J. Environ. Qual. – volume: 9 start-page: 261 year: 1970 end-page: 269 article-title: Likelihood distributions for estimating functions when both variables are subject to error publication-title: Technometrics – volume: 52 start-page: 22 year: 1984a end-page: 26 article-title: A better least‐squares method when both variables have uncertainties publication-title: Am. J. Phys. – volume: 32 start-page: 1082 year: 2003 end-page: 1088 article-title: Estimating soil phosphorus requirements and limits from oxalate extract data publication-title: J. Environ. Qual. – volume: 8 start-page: 5477 year: 2008 end-page: 5487 article-title: Review of methods for linear least‐squares fitting of data and application to atmospheric chemistry problems publication-title: Atmos. Chem. Phys. – year: 2003 – volume: 113 start-page: 6151 year: 2009 end-page: 6157 article-title: Weighting formulas for the least squares analysis of binding constant data publication-title: J. Phys. Chem. A – volume: 71 start-page: 1796 year: 2007 end-page: 1806 article-title: On the use of linearized Langmuir equations publication-title: Soil Sci. Soc. Am. J. – volume: 31 start-page: 1918 year: 2002 end-page: 1929 article-title: Estimating runoff phosphorus losses from calcareous soils in the Minnesota River Basin publication-title: J. Environ. Qual. – volume: 59 start-page: 900 year: 2008 end-page: 910 article-title: The description of sorption curves publication-title: Eur. J. Soil Sci. – volume: 3 start-page: 591 year: 1984 end-page: 595 article-title: Interlaboratory comparison of a standardized phosphorus adsorption procedure publication-title: J. Environ. Qual. – volume: 40 start-page: 1106 year: 2009 end-page: 1123 article-title: Sorption of phosphorus from swine, dairy, and poultry manures publication-title: Commun. Soil Sci. Plant Anal. – year: 1992 – volume: 59 start-page: 39 year: 2001 end-page: 46 article-title: Phosphorus sorption in relation to soil properties in some cultivated Swedish soils publication-title: Nutr. Cycling Agroecosyst. – year: 1998 – volume: 14 start-page: 71 year: 1972 end-page: 76 article-title: Iterative procedure for estimating functions when both variables are subject to error publication-title: Technometrics – volume: 55 start-page: 205 year: 2005 end-page: 221 article-title: Refined parameter and uncertainty estimation when both variables are subject to error. Case study: Estimation of Si consumption and regeneration rates in a marine environment publication-title: J. Mar. Syst. – volume: 37 start-page: 1986 year: 2008 end-page: 1992 article-title: Revisiting a statistical shortcoming when fitting the Langmuir model to sorption data publication-title: J. Environ. Qual. – volume: 15 start-page: 148 year: 1972 end-page: 155 article-title: A rapidly convergent iterative method for the solution of the generalized nonlinear least squares problem publication-title: Comput. J. – volume: 27 start-page: 31 year: 1962 end-page: 36 article-title: A modified single solution method for the determination of phosphate in natural waters publication-title: Anal. Chim. Acta – volume: 29 start-page: 67 year: 1987 end-page: 82 article-title: Computational experience with confidence regions and confidence intervals for nonlinear least squares publication-title: Technometrics – volume: 33 start-page: 1825 year: 2002 end-page: 1839 article-title: Estimating soil phosphorus sorption saturation data from Mehlich‐3 data publication-title: Commun. Soil Sci. Plant Anal. – volume: 60 start-page: 433 year: 1996 end-page: 442 article-title: Estimation of Langmuir constants using linear and nonlinear least squares regression analyses publication-title: Soil Sci. Soc. Am. J. – year: 1943 – volume: 158 start-page: 73 year: 2008 end-page: 87 article-title: Least‐squares regression of adsorption equilibrium data: Comparing options publication-title: J. Hazard. Mater. – volume: 52 start-page: 276 year: 1984b end-page: 278 article-title: Comment on “Least squares when both variables have uncertainties” publication-title: Am. J. Phys. – volume: 104 start-page: 2834 year: 2000 end-page: 2844 article-title: A Monte Carlo study of precision, bias, inconsistency, and non‐Gaussian distributions in nonlinear least squares publication-title: J. Phys. Chem. A – ident: e_1_2_7_24_1 doi: 10.2136/sssaj1996.03615995006000020014x – ident: e_1_2_7_26_1 doi: 10.2134/jeq2003.1114 – ident: e_1_2_7_6_1 doi: 10.1080/00103620902753822 – volume: 9 start-page: 261 year: 1970 ident: e_1_2_7_10_1 article-title: Likelihood distributions for estimating functions when both variables are subject to error publication-title: Technometrics doi: 10.1080/00401706.1967.10490460 – volume-title: Data reduction and error analysis for the physical sciences year: 1992 ident: e_1_2_7_3_1 – ident: e_1_2_7_15_1 doi: 10.1002/9781118625590 – volume: 3 start-page: 591 year: 1984 ident: e_1_2_7_22_1 article-title: Interlaboratory comparison of a standardized phosphorus adsorption procedure publication-title: J. Environ. Qual. doi: 10.2134/jeq1984.00472425001300040016x – ident: e_1_2_7_27_1 doi: 10.1021/jp993279i – ident: e_1_2_7_9_1 doi: 10.1080/00401706.1972.10488884 – ident: e_1_2_7_11_1 doi: 10.2134/jeq2003.1082 – ident: e_1_2_7_8_1 doi: 10.5194/acp-8-5477-2008 – ident: e_1_2_7_14_1 doi: 10.1080/00401706.1987.10488184 – ident: e_1_2_7_28_1 doi: 10.1021/jp8112039 – ident: e_1_2_7_18_1 doi: 10.1081/CSS-120004825 – ident: e_1_2_7_16_1 doi: 10.1016/j.jhazmat.2008.01.052 – ident: e_1_2_7_23_1 doi: 10.1093/comjnl/15.2.148 – ident: e_1_2_7_20_1 doi: 10.1119/1.13713 – ident: e_1_2_7_25_1 doi: 10.1002/9780471722199 – ident: e_1_2_7_2_1 doi: 10.1111/j.1365-2389.2008.01041.x – ident: e_1_2_7_5_1 doi: 10.2136/sssaj2006.0304 – ident: e_1_2_7_12_1 doi: 10.1016/j.jmarsys.2004.09.006 – ident: e_1_2_7_19_1 doi: 10.1119/1.13822 – volume-title: Statistical adjustment of data year: 1943 ident: e_1_2_7_13_1 – ident: e_1_2_7_7_1 doi: 10.1023/A:1009888707349 – ident: e_1_2_7_21_1 doi: 10.1016/S0003-2670(00)88444-5 – ident: e_1_2_7_4_1 doi: 10.2134/jeq2007.0461 – ident: e_1_2_7_17_1 doi: 10.2134/jeq2002.1918 |
SSID | ssj0015900 |
Score | 2.0315568 |
Snippet | In this study, we examined the role of proper weighting in the least squares (LS) analysis of P sorption data when both the dependent (y) and independent (x)... In this study, we examined the role of proper weighting in the least squares (LS) analysis of P sorption data when both the dependent ( y ) and independent ( x... |
SourceID | proquest pascalfrancis crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 670 |
SubjectTerms | accuracy Agronomy. Soil science and plant productions Biological and medical sciences correlation data analysis Earth sciences Earth, ocean, space Estimates Exact sciences and technology Fundamental and applied biological sciences. Psychology least squares Monte Carlo method Monte Carlo simulation phosphorus Regression analysis soil chemistry Soil science Soil types Soils Sorption Statistical methods Studies Surficial geology uncertainty Variables variance |
Title | On the Significance of Properly Weighting Sorption Data for Least Squares Analysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.2136%2Fsssaj2009.0177 https://www.proquest.com/docview/346539365 https://www.proquest.com/docview/46565398 https://www.proquest.com/docview/743350881 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT4NAEJ5ovWiM8RmxWvdg4olUWArLydRHNY1WUzR6IwssjcZALe3Bf-8MbIk9qBcgyxzIzO7MtzvDNwAniAiELX2F21TRMZ1IemYkrNhEf5lyCjpeyXhzP3Bvn53-a-dV1-YUuqxy7hNLR53kMZ2RtzkRgfnc7ZyPP01qGkXJVd1BYxlW0AML3HutXFwPHod1GoFaYlbJSsskZq2KtdG2uNsuikK-V3SVluctRKX1sSxQQWnV2WIBev4EsGUE6m3ChoaOrFvZeguWVLYNa93RRNNnqB0YPmQMER0L3kYZ1QCRSVmeskc6cp98fLGX8iQUwxUL8knpLdiVnEqG0JXdURsfFnzO6JckNmcr2YXn3vXT5a2puyaYsUNeTwkfQzBP7EQi2FKJTD2PSzfirkLwkVKmJfIcmSp5liY23f2SRg73XQ46O5_vQSPLM7UPTCgRKeX4UnqWIzsiSiwXHxVCgNhBWxpgzrUWxppSnDpbfIS4tSAth7WWQ9KyAae1_Lgi0_hVsrVghFocEYcgEGRAc26VUK-6IqzniAHH9VtcLpQDkZnKZ0VI9HAoIwxgv0ggpOKEWi0D3NLa_3xqGHT7dhDQFYdo5ODPb2vCalWBQHVsh9CYTmbqCIHNNGrBsujdtPQk_gZ4y_aj |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4heoCqqnhVpFDwAcQpoom9iXOo0KqwLLA8REDlZpzEWbVCybLZVcWP6n_sTF5iD8CJSxIlc4hmxjOfPfY3ADuICKSrA4PTVNmxRaR9O5JObGO8TDklHb9kvDm_8Pq34vSuczcH_5qzMLStsomJZaBO8pjWyPc5EYEF3OscjB5tahpFxdWmg0blFWfm6S_O2IofJ4do3l3X7R3d_OzbdVMBOxYUFIwMMEPxxE00YhGT6NT3ufYi7hnMzSkVIiJf6NTo72ni0j0oWdZwWiIwFhD3Ekb8D4LzgAaU7B23RQtqwFmVRh2beLwqjkjX4d5-URT6T0WO6fj-TA78NNIFmiOt-mjMAN3ncLnMd70l-FwDVdatPGsZ5ky2Ah-7w3FN1mFW4foyY4gfWfh7mNGOI3Iglqfsihb4xw9P7Fe57orJkYX5uIxN7FBPNEOgzAbUNIiFj1M6AMUabpQ1uH0XdX6B-SzPzDowaWRkjAi09h2hOzJKHA8fDQKOWKDnWGA3WlNxTWBOfTQeFE5kSMuq1bIiLVuw18qPKuqOFyW3ZozQiiO-kQS5LNhorKLqMV6o1iMt2G6_4uCkiovOTD4tFJHRoYy0gL0ggQCOE0Z2LPBKa7_xqyrsnrphSFd8RW--vvpv27DQvzkfqMHJxdkGLFZ7H2gH3SbMT8ZT8w0h1STaKh2Zwf17j5z_HqMxng |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB6hICEqhFqgwjz3UMTJCn7Euz5UKDREPEOEQXBb1vYatUJ2iBNV_DT-HTN-qTlAT1wcy5mDNTM7883O-huAH4gIhK18jWWq6JhuqLgZCisyMV4mDiUdXjDeXA68k1v37L5zPwev9bcwdKyyjolFoI6ziPbI2w4RgfmO12kn1amIYa9_OHo2aYAUNVrraRqlh5zrl79YveU_T3to6j3b7h_f_DoxqwEDZuRSgNDCx2zlxHasEJfoWCWcO8oLHU9jnk6oKRFyVyVaHSSxTb9-wbiGJYqLcYF4mDD6z3Msig5aMH90PBheNy0MGsdZNkotk1i9SsZI23K8dp7n6k9JlWlxPpMRl0YqR-Mk5VSNGdj7L3gusl__KyxXsJV1Sz_7BnM6XYEv3cdxRd2hV-H6KmWIJlnw-zGl80fkTixL2JC2-8dPL-yu2IXFVMmCbFxEKtZTE8UQNrMLGiHEgucpfQ7FaqaUNbj9FIV-h1aapXodmNAi1Nr1leKWqzoijC0PbzXCj8hFPzLArLUmo4rOnKZqPEksa0jLstGyJC0bsN_Ij0oij3cld2aM0Igj2hEEwAzYrK0iqxWfy8Y_Ddht_sWlSv0XlepsmkuipkMZYQB7RwLhnEOI2TLAK6z9n1eVQffMDgK64iN6svHhu-3CAq4aeXE6ON-ExfIgBB2n24LWZDzV24ivJuFO5ckMHj578bwBcxk3MA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Significance+of+Properly+Weighting+Sorption+Data+for+Least+Squares+Analysis&rft.jtitle=Soil+Science+Society+of+America+journal&rft.au=Bolster%2C+Carl+H&rft.au=Tellinghuisen%2C+Joel&rft.date=2010-03-01&rft.issn=0361-5995&rft.volume=74&rft.issue=2+p.670-679&rft.spage=670&rft.epage=679&rft_id=info:doi/10.2136%2Fsssaj2009.0177&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-5995&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-5995&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-5995&client=summon |