Research progress on plant stress‐associated protein (SAP) family: Master regulators to deal with environmental stresses

Every year, unfavorable environmental factors significantly affect crop productivity and threaten food security. Plants are sessile; they cannot move to escape unfavorable environmental conditions, and therefore, they activate a variety of defense pathways. Among them are processes regulated by stre...

Full description

Saved in:
Bibliographic Details
Published inBioEssays Vol. 46; no. 11; pp. e2400097 - n/a
Main Authors Ben Saad, Rania, Ben Romdhane, Walid, Čmiková, Natália, Baazaoui, Narjes, Bouteraa, Mohamed Taieb, Ben Akacha, Bouthaina, Chouaibi, Yosra, Maisto, Maria, Ben Hsouna, Anis, Garzoli, Stefania, Wiszniewska, Alina, Kačániová, Miroslava
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Every year, unfavorable environmental factors significantly affect crop productivity and threaten food security. Plants are sessile; they cannot move to escape unfavorable environmental conditions, and therefore, they activate a variety of defense pathways. Among them are processes regulated by stress‐associated proteins (SAPs). SAPs have a specific zinc finger domain (A20) at the N‐terminus and either AN1 or C2H2 at the C‐terminus. SAP proteins are involved in many biological processes and in response to various abiotic or biotic constraints. Most SAPs play a role in conferring transgenic stress resistance and are stress‐inducible. The emerging field of SAPs in abiotic or biotic stress response regulation has attracted the attention of researchers. Although SAPs interact with various proteins to perform their functions, the exact mechanisms of these interactions remain incompletely understood. This review aims to provide a comprehensive understanding of SAPs, covering their diversity, structure, expression, and subcellular localization. SAPs play a pivotal role in enabling crosstalk between abiotic and biotic stress signaling pathways, making them essential for developing stress‐tolerant crops without yield penalties. Collectively, understanding the complex regulation of SAPs in stress responses can contribute to enhancing tolerance against various environmental stresses through several techniques such as transgenesis, classical breeding, or gene editing. The graphical illustrates the role played by plant stress‐associated proteins (SAPs) during environmental stress conditions. A comprehensive understanding of SAPs diversity, structure, localization, and expression highlights their involvement in stress signaling pathways and critical biological processes. Thus, SAPs can facilitate the development of crops resistant to multiple stresses without yield penalties.
AbstractList Every year, unfavorable environmental factors significantly affect crop productivity and threaten food security. Plants are sessile; they cannot move to escape unfavorable environmental conditions, and therefore, they activate a variety of defense pathways. Among them are processes regulated by stress‐associated proteins (SAPs). SAPs have a specific zinc finger domain (A20) at the N‐terminus and either AN1 or C2H2 at the C‐terminus. SAP proteins are involved in many biological processes and in response to various abiotic or biotic constraints. Most SAPs play a role in conferring transgenic stress resistance and are stress‐inducible. The emerging field of SAPs in abiotic or biotic stress response regulation has attracted the attention of researchers. Although SAPs interact with various proteins to perform their functions, the exact mechanisms of these interactions remain incompletely understood. This review aims to provide a comprehensive understanding of SAPs, covering their diversity, structure, expression, and subcellular localization. SAPs play a pivotal role in enabling crosstalk between abiotic and biotic stress signaling pathways, making them essential for developing stress‐tolerant crops without yield penalties. Collectively, understanding the complex regulation of SAPs in stress responses can contribute to enhancing tolerance against various environmental stresses through several techniques such as transgenesis, classical breeding, or gene editing. The graphical illustrates the role played by plant stress‐associated proteins (SAPs) during environmental stress conditions. A comprehensive understanding of SAPs diversity, structure, localization, and expression highlights their involvement in stress signaling pathways and critical biological processes. Thus, SAPs can facilitate the development of crops resistant to multiple stresses without yield penalties.
Every year, unfavorable environmental factors significantly affect crop productivity and threaten food security. Plants are sessile; they cannot move to escape unfavorable environmental conditions, and therefore, they activate a variety of defense pathways. Among them are processes regulated by stress‐associated proteins (SAPs). SAPs have a specific zinc finger domain (A20) at the N‐terminus and either AN1 or C2H2 at the C‐terminus. SAP proteins are involved in many biological processes and in response to various abiotic or biotic constraints. Most SAPs play a role in conferring transgenic stress resistance and are stress‐inducible. The emerging field of SAPs in abiotic or biotic stress response regulation has attracted the attention of researchers. Although SAPs interact with various proteins to perform their functions, the exact mechanisms of these interactions remain incompletely understood. This review aims to provide a comprehensive understanding of SAPs, covering their diversity, structure, expression, and subcellular localization. SAPs play a pivotal role in enabling crosstalk between abiotic and biotic stress signaling pathways, making them essential for developing stress‐tolerant crops without yield penalties. Collectively, understanding the complex regulation of SAPs in stress responses can contribute to enhancing tolerance against various environmental stresses through several techniques such as transgenesis, classical breeding, or gene editing.
Every year, unfavorable environmental factors significantly affect crop productivity and threaten food security. Plants are sessile; they cannot move to escape unfavorable environmental conditions, and therefore, they activate a variety of defense pathways. Among them are processes regulated by stress-associated proteins (SAPs). SAPs have a specific zinc finger domain (A20) at the N-terminus and either AN1 or C2H2 at the C-terminus. SAP proteins are involved in many biological processes and in response to various abiotic or biotic constraints. Most SAPs play a role in conferring transgenic stress resistance and are stress-inducible. The emerging field of SAPs in abiotic or biotic stress response regulation has attracted the attention of researchers. Although SAPs interact with various proteins to perform their functions, the exact mechanisms of these interactions remain incompletely understood. This review aims to provide a comprehensive understanding of SAPs, covering their diversity, structure, expression, and subcellular localization. SAPs play a pivotal role in enabling crosstalk between abiotic and biotic stress signaling pathways, making them essential for developing stress-tolerant crops without yield penalties. Collectively, understanding the complex regulation of SAPs in stress responses can contribute to enhancing tolerance against various environmental stresses through several techniques such as transgenesis, classical breeding, or gene editing.Every year, unfavorable environmental factors significantly affect crop productivity and threaten food security. Plants are sessile; they cannot move to escape unfavorable environmental conditions, and therefore, they activate a variety of defense pathways. Among them are processes regulated by stress-associated proteins (SAPs). SAPs have a specific zinc finger domain (A20) at the N-terminus and either AN1 or C2H2 at the C-terminus. SAP proteins are involved in many biological processes and in response to various abiotic or biotic constraints. Most SAPs play a role in conferring transgenic stress resistance and are stress-inducible. The emerging field of SAPs in abiotic or biotic stress response regulation has attracted the attention of researchers. Although SAPs interact with various proteins to perform their functions, the exact mechanisms of these interactions remain incompletely understood. This review aims to provide a comprehensive understanding of SAPs, covering their diversity, structure, expression, and subcellular localization. SAPs play a pivotal role in enabling crosstalk between abiotic and biotic stress signaling pathways, making them essential for developing stress-tolerant crops without yield penalties. Collectively, understanding the complex regulation of SAPs in stress responses can contribute to enhancing tolerance against various environmental stresses through several techniques such as transgenesis, classical breeding, or gene editing.
Author Čmiková, Natália
Ben Saad, Rania
Baazaoui, Narjes
Kačániová, Miroslava
Ben Akacha, Bouthaina
Ben Hsouna, Anis
Ben Romdhane, Walid
Maisto, Maria
Garzoli, Stefania
Bouteraa, Mohamed Taieb
Chouaibi, Yosra
Wiszniewska, Alina
Author_xml – sequence: 1
  givenname: Rania
  surname: Ben Saad
  fullname: Ben Saad, Rania
  organization: University of Sfax
– sequence: 2
  givenname: Walid
  orcidid: 0000-0002-7797-5813
  surname: Ben Romdhane
  fullname: Ben Romdhane, Walid
  email: walid.brm3@gmail.com
  organization: King Saud University
– sequence: 3
  givenname: Natália
  surname: Čmiková
  fullname: Čmiková, Natália
  organization: Slovak University of Agriculture
– sequence: 4
  givenname: Narjes
  surname: Baazaoui
  fullname: Baazaoui, Narjes
  organization: King Khalid University
– sequence: 5
  givenname: Mohamed Taieb
  surname: Bouteraa
  fullname: Bouteraa, Mohamed Taieb
  organization: University of Sfax
– sequence: 6
  givenname: Bouthaina
  surname: Ben Akacha
  fullname: Ben Akacha, Bouthaina
  organization: University of Sfax
– sequence: 7
  givenname: Yosra
  surname: Chouaibi
  fullname: Chouaibi, Yosra
  organization: University of Sfax
– sequence: 8
  givenname: Maria
  surname: Maisto
  fullname: Maisto, Maria
  organization: University of Naples Federico II
– sequence: 9
  givenname: Anis
  surname: Ben Hsouna
  fullname: Ben Hsouna, Anis
  organization: University of Monastir
– sequence: 10
  givenname: Stefania
  surname: Garzoli
  fullname: Garzoli, Stefania
  organization: Sapienza University
– sequence: 11
  givenname: Alina
  surname: Wiszniewska
  fullname: Wiszniewska, Alina
  organization: University of Agriculture in Kraków
– sequence: 12
  givenname: Miroslava
  surname: Kačániová
  fullname: Kačániová, Miroslava
  email: miroslava.kacaniova@gmail.com
  organization: University of Economics and Human Sciences in Warsaw
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39248672$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1PFTEUhhsDkQu6dWmauMHFXPsxnQ93SBBJMBrR9eRM5wyUzLTXtiO5rPgJ_kZ-iR0uYkJidHXSk-c5pyfvLtmyziIhLzhbcsbEm9ZgWAomcsZYXT4hC64Ez3hVVltkwUShslrk5Q7ZDeFyRgqRPyU7MjWrohQLcv0FA4LXF3Tl3bnHEKizdDWAjTTE-X178xNCcNpAxG6mIhpL988OPr-mPYxmWL-lHyFE9NTj-TRAdD7Q6GiHMNArEy8o2h_GOzuijam1GYvhGdnuYQj4_L7ukW_vj74efshOPx2fHB6cZjrPizLTnHMAnuu871kNgMAq3dZQqLZvWS513SKTQkulewl124oaW1BS61KprujkHtnfzE1__z5hiM1ogsYh3YhuCo3kSlaCcSb_A2WClbJUIqGvHqGXbvI2HZIoXldc8Tvq5T01tSN2zcqbEfy6-R1AApYbQHsXgsf-AeGsmRNu5oSbh4STkD8StIkQjbPRgxn-rtUb7coMuP7HkubdydHZH_cXHma9YA
CitedBy_id crossref_primary_10_1111_pbr_13277
Cites_doi 10.1016/j.immuni.2013.03.008
10.3390/genes13101766
10.2298/ABS170529028Z
10.1038/35013076
10.1111/mpp.12793
10.1111/ppl.12728
10.1111/j.1399-3054.2008.01103.x
10.1111/pce.12621
10.1016/j.gene.2023.147284
10.1111/jipb.12706
10.1007/s00344-021-10344-z
10.1371/journal.ppat.1007288
10.1016/j.plaphy.2011.01.004
10.3389/fpls.2017.00994
10.1016/j.bbrc.2012.06.092
10.1007/s13562-021-00704-x
10.1007/s10142-008-0078-7
10.1111/j.1365-3040.2011.02441.x
10.3389/fpls.2021.609351
10.1002/bies.201200181
10.1016/S0006-2952(00)00404-4
10.1093/jxb/erv464
10.1111/tpj.12312
10.1016/j.bbrc.2012.02.044
10.1007/s00425-012-1635-9
10.1111/jipb.12654
10.1371/journal.pone.0236943
10.1007/s11240-019-01677-5
10.1371/journal.pone.0233420
10.1111/pce.13103
10.1007/s00299-015-1825-6
10.1016/j.ijbiomac.2019.04.012
10.1007/s00709-019-01390-2
10.1146/annurev.arplant.55.031903.141701
10.1016/j.ygeno.2007.03.019
10.1016/0378-1119(93)90561-G
10.1016/S1097-2765(00)80022-2
10.1016/j.heliyon.2024.e30933
10.1007/s11248-010-9474-6
10.1016/j.jplph.2018.09.019
10.1038/sj.emboj.7600945
10.1371/journal.pone.0157244
10.3390/pathogens11121426
10.1016/j.jplph.2010.12.013
10.1371/journal.pone.0273416
10.1071/FP17202
10.1104/pp.17.01319
10.1007/s00438-009-0455-5
10.1016/j.tig.2008.05.006
10.1007/s11033-016-4091-y
10.1016/j.pbi.2020.04.006
10.3389/fpls.2019.01453
10.1007/s00438-006-0165-1
10.1073/pnas.0602874103
10.1094/MPMI-04-18-0097-R
10.1080/07391102.2020.1747548
10.1007/s11103-007-9284-2
10.3389/fpls.2022.974396
10.1007/s11103-009-9560-4
10.3390/ijms19092478
10.1016/S2095-3119(17)61681-2
10.1105/tpc.105.039198
10.1016/j.pld.2020.07.010
10.1111/pce.12892
10.1016/j.cj.2022.03.013
10.15835/nbha47411610
10.1016/j.scienta.2021.110147
10.1111/tpj.15088
10.1093/pcp/pcr106
10.1089/omi.2011.0095
10.1007/s00299-014-1626-3
10.1038/emboj.2012.241
10.3390/horticulturae8050363
10.1016/j.envexpbot.2019.05.007
10.1007/s00438-016-1252-6
10.1007/s11103-011-9748-2
10.1016/S0378-1119(00)00365-6
10.1093/jxb/erac027
10.1016/j.jplph.2013.01.008
10.1073/pnas.0401572101
10.1016/S0021-9258(18)77165-2
10.3389/fpls.2016.01057
10.3390/ijms232214010
10.1016/j.plantsci.2014.05.016
10.3389/fpls.2022.925744
10.1007/s11240-011-9962-2
10.1371/journal.pone.0020921
10.2135/cropsci2014.01.0047
10.1105/tpc.108.060699
10.1111/j.1469-8137.2011.03740.x
10.1007/s11032-013-9882-4
10.3390/agronomy10060788
10.1038/s41598-017-00471-7
10.1007/s00468-018-1675-2
10.1126/science.289.5488.2350
10.1105/tpc.107.057380
10.1042/BJ20061138
10.3389/fpls.2021.756068
10.3390/ijms231911551
10.3390/horticulturae8020108
10.1016/j.plaphy.2010.01.021
10.1007/s11295-016-1033-8
10.3389/fpls.2019.01336
10.1126/science.1171647
10.1007/s11032-011-9641-3
10.1146/annurev.arplant.53.091401.143329
10.1016/j.jplph.2012.04.007
10.1016/j.plaphy.2021.05.016
10.1146/annurev.biochem.67.1.425
10.1186/s12870-020-02332-4
10.3390/ijms20225782
10.1186/s12284-022-00616-x
10.3390/ijms232214109
10.1016/j.plantsci.2015.05.011
10.1016/j.gene.2008.05.019
10.3390/biom12111583
10.1093/mp/ssn084
10.1007/s11103-012-9964-4
10.1016/S0959-440X(00)00167-6
ContentType Journal Article
Copyright 2024 Wiley Periodicals LLC.
Copyright_xml – notice: 2024 Wiley Periodicals LLC.
DBID AAYXX
CITATION
NPM
7QL
7QO
7QP
7QR
7SS
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1002/bies.202400097
DatabaseName CrossRef
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
PubMed
Virology and AIDS Abstracts
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1521-1878
EndPage n/a
ExternalDocumentID 39248672
10_1002_bies_202400097
BIES202400097
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Deanship of Scientific Research at King Khalid University
– fundername: Narjes Baazaoui
  funderid: RGP. 2/88/45
– fundername: Narjes Baazaoui
  grantid: RGP. 2/88/45
– fundername: Program contract 2023-2026
– fundername: The Tunisian Ministry of Higher Education and Scientific Research
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACKIV
ACKOT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KD1
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWR
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UDS
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
XG1
XV2
Y6R
YYQ
YZZ
ZGI
ZUP
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AETEA
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
NPM
7QL
7QO
7QP
7QR
7SS
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4467-c111aa14c4ff09aaea08cb9a65bfb043c9be032c35cf3a9bb29eba53cc755d6d3
IEDL.DBID DR2
ISSN 0265-9247
1521-1878
IngestDate Fri Jul 11 16:15:02 EDT 2025
Fri Jul 11 05:40:57 EDT 2025
Mon Jul 21 12:12:25 EDT 2025
Mon Jul 21 06:04:55 EDT 2025
Thu Apr 24 23:05:24 EDT 2025
Thu Jul 24 02:06:44 EDT 2025
Wed Jan 22 17:15:38 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords development
redox regulation
ubiquitination
abiotic and biotic stress
stress‐associated protein
gene expression
tolerance
Language English
License 2024 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4467-c111aa14c4ff09aaea08cb9a65bfb043c9be032c35cf3a9bb29eba53cc755d6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7797-5813
OpenAccessLink https://hdl.handle.net/11573/1719538
PMID 39248672
PQID 3119815152
PQPubID 37030
PageCount 20
ParticipantIDs proquest_miscellaneous_3153820103
proquest_miscellaneous_3102073752
proquest_journals_3119815152
pubmed_primary_39248672
crossref_primary_10_1002_bies_202400097
crossref_citationtrail_10_1002_bies_202400097
wiley_primary_10_1002_bies_202400097_BIES202400097
PublicationCentury 2000
PublicationDate November 2024
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle BioEssays
PublicationTitleAlternate Bioessays
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1993; 128
2000; 256
2020; 20
2019; 10
2022; 23
2011; 52
2020; 15
2023; 862
2018; 41
2021; 285
2011; 191
2021; 165
2020; 10
2018; 45
2016; 39
2019; 165
2019; 20
2006; 25
2000; 405
2012; 419
2008; 24
2008; 20
2018; 32
2021; 43
2019; 32
2011; 75
2007; 90
2024; 10
2012; 35
2011; 6
1998; 67
2012; 31
2016; 12
2016; 11
2018; 19
2004; 55
2016; 7
2018; 17
2018; 231
2010; 48
2015; 237
2013; 76
2022; 8
2019; 47
2022; 12
2022; 13
2022; 15
2022; 10
1998; 1
2022; 11
2013; 170
2016; 291
2008; 133
2012; 236
2022; 17
2014; 33
2018; 14
2006; 103
2017; 40
2015; 34
2017; 7
2017; 8
2002; 53
2022; 73
2017; 44
2008; 8
2020; 56
2011; 15
2012; 169
2008; 420
2021; 30
1990; 265
2011; 168
2000; 289
2021; 39
2020; 9
2018; 70
2011; 20
2000; 60
2009; 282
2008; 66
2001; 11
2021; 41
2009; 324
2010; 72
2014; 54
2004; 101
2012; 80
2021; 105
2011; 30
2006; 18
2006
2017; 175
2018; 60
2012; 424
2006; 276
2006; 399
2021; 12
2011; 107
2021; 11
2013; 38
2013; 32
2013; 35
2019; 256
2019; 139
2011; 49
2009; 2
2014; 225
2016; 67
2019; 132
e_1_2_14_114_1
e_1_2_14_73_1
e_1_2_14_96_1
e_1_2_14_110_1
e_1_2_14_31_1
e_1_2_14_50_1
e_1_2_14_92_1
e_1_2_14_35_1
e_1_2_14_12_1
e_1_2_14_54_1
e_1_2_14_39_1
e_1_2_14_77_1
e_1_2_14_16_1
e_1_2_14_58_1
e_1_2_14_6_1
e_1_2_14_121_1
e_1_2_14_107_1
e_1_2_14_103_1
e_1_2_14_85_1
e_1_2_14_2_1
e_1_2_14_20_1
e_1_2_14_62_1
e_1_2_14_81_1
e_1_2_14_24_1
e_1_2_14_43_1
e_1_2_14_66_1
e_1_2_14_28_1
e_1_2_14_89_1
e_1_2_14_47_1
Fatima S. (e_1_2_14_45_1) 2021; 11
e_1_2_14_119_1
e_1_2_14_115_1
e_1_2_14_72_1
e_1_2_14_95_1
e_1_2_14_111_1
e_1_2_14_30_1
e_1_2_14_53_1
e_1_2_14_91_1
e_1_2_14_11_1
e_1_2_14_34_1
e_1_2_14_57_1
e_1_2_14_15_1
e_1_2_14_38_1
e_1_2_14_76_1
e_1_2_14_99_1
Lai W. (e_1_2_14_56_1) 2020; 9
e_1_2_14_120_1
e_1_2_14_7_1
e_1_2_14_108_1
e_1_2_14_104_1
e_1_2_14_84_1
e_1_2_14_100_1
e_1_2_14_42_1
e_1_2_14_80_1
e_1_2_14_3_1
e_1_2_14_61_1
e_1_2_14_23_1
e_1_2_14_46_1
e_1_2_14_65_1
e_1_2_14_27_1
e_1_2_14_88_1
e_1_2_14_69_1
e_1_2_14_116_1
e_1_2_14_94_1
e_1_2_14_112_1
e_1_2_14_75_1
e_1_2_14_52_1
e_1_2_14_90_1
e_1_2_14_71_1
e_1_2_14_10_1
e_1_2_14_33_1
e_1_2_14_14_1
e_1_2_14_98_1
e_1_2_14_37_1
e_1_2_14_79_1
e_1_2_14_8_1
e_1_2_14_109_1
e_1_2_14_123_1
e_1_2_14_105_1
e_1_2_14_60_1
e_1_2_14_83_1
e_1_2_14_101_1
e_1_2_14_41_1
e_1_2_14_64_1
e_1_2_14_4_1
e_1_2_14_68_1
e_1_2_14_22_1
e_1_2_14_87_1
e_1_2_14_49_1
e_1_2_14_26_1
e_1_2_14_19_1
e_1_2_14_117_1
e_1_2_14_113_1
e_1_2_14_74_1
e_1_2_14_97_1
e_1_2_14_51_1
e_1_2_14_70_1
e_1_2_14_93_1
e_1_2_14_13_1
e_1_2_14_32_1
e_1_2_14_55_1
e_1_2_14_17_1
e_1_2_14_36_1
e_1_2_14_59_1
e_1_2_14_78_1
e_1_2_14_29_1
e_1_2_14_5_1
e_1_2_14_122_1
e_1_2_14_9_1
e_1_2_14_106_1
e_1_2_14_102_1
e_1_2_14_86_1
e_1_2_14_63_1
e_1_2_14_40_1
e_1_2_14_82_1
e_1_2_14_67_1
e_1_2_14_21_1
e_1_2_14_44_1
e_1_2_14_25_1
e_1_2_14_48_1
e_1_2_14_18_1
e_1_2_14_118_1
References_xml – volume: 66
  start-page: 445
  year: 2008
  end-page: 462
  article-title: Overexpression of , a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice
  publication-title: Plant Molecular Biology
– volume: 33
  start-page: 1425
  year: 2014
  end-page: 40
  article-title: OsiSAP1 overexpression improves water‐deficit stress tolerance in transgenic rice by affecting expression of endogenous stress‐related genes
  publication-title: Plant Cell Rep.
– volume: 45
  start-page: 378
  year: 2018
  end-page: 91
  article-title: The gene isolated from the halotolerant improves salt and ionic tolerance in transgenic tobacco lines
  publication-title: Functional Plant Biology
– volume: 18
  start-page: 1084
  year: 2006
  end-page: 1098
  article-title: The E3 ubiquitin ligase activity of Arabidopsis plant U‐BOX17 and its functional tobacco homolog ACRE276 are required for cell death and defense
  publication-title: Plant Cell
– volume: 60
  start-page: 745
  year: 2018
  end-page: 756
  article-title: Cold signaling in plants: Insights into mechanisms and regulation
  publication-title: Journal of Integrative Plant Biology
– volume: 10
  start-page: 1336
  year: 2019
  article-title: Potential mechanisms of abiotic stress tolerance in crop plants induced by thiourea
  publication-title: Frontiers in Plant Science
– volume: 8
  start-page: 108
  year: 2022
  article-title: Identification and expression analysis of zinc finger A20/AN1 stress‐associated genes responding to abiotic stress in Eggplant
  publication-title: Horticulturae
– volume: 105
  start-page: 1072
  year: 2021
  end-page: 1082
  article-title: The emergence and evolution of intron‐poor and intronless genes in intron‐rich plant gene families
  publication-title: Plant Journal
– volume: 24
  start-page: 375
  year: 2008
  end-page: 378
  article-title: Rapidly regulated genes are intron poor
  publication-title: Trends in Genetics
– volume: 73
  start-page: 2420
  year: 2022
  end-page: 2433
  article-title: A stress‐associated protein OsSAP8 modulates gibberellic acid biosynthesis by reducing the promotive effect of transcription factor OsbZIP58 on OsKO2
  publication-title: Journal of Experimental Botany
– volume: 56
  start-page: 99
  year: 2020
  end-page: 108
  article-title: Plant NLRs get by with a little help from their friends
  publication-title: Current Opinion in Plant Biology
– volume: 41
  start-page: 848
  year: 2021
  end-page: 862
  article-title: Expression of an A20/AN1 stress‐associated protein from in rice deregulates stress‐related genes
  publication-title: Journal of Plant Growth Regulation
– volume: 236
  start-page: 567
  year: 2012
  end-page: 577
  article-title: Overexpression of a stress‐associated protein gene ( ) leads to nitric oxide accumulation and confers osmotic and salt stress tolerance in transgenic tobacco
  publication-title: Planta
– volume: 43
  start-page: 152
  year: 2021
  end-page: 162
  article-title: Genomic characterization and expression profiles of stress‐associated proteins (SAPs) in castor bean ( )
  publication-title: Plant Divers
– volume: 289
  start-page: 2350
  year: 2000
  end-page: 2354
  article-title: Failure to regulate TNF‐induced NF‐kappaB and cell death responses in A20‐deficient mice
  publication-title: Science
– volume: 20
  start-page: 1003
  year: 2011
  end-page: 1018
  article-title: Promoter of the gene from the halophyte grass directs developmental‐regulated, stress‐inducible, and organ‐specific gene expression in transgenic tobacco
  publication-title: Transgenic Research
– year: 2006
  article-title: The NF‐kB‐mediated control of ROS and JNK signaling
– volume: 17
  year: 2022
  article-title: Genome‐wide in silico identification and characterization of the stress associated protein (SAP) gene family encoding A20/AN1 zinc‐finger proteins in potato ( L.)
  publication-title: PLoS ONE
– volume: 20
  start-page: 156
  year: 2020
  article-title: Identification, gene expression and genetic polymorphism of zinc finger A20/AN1 stress‐associated genes, , in salt stressed barley from Kazakhstan
  publication-title: BMC Plant Biology
– volume: 32
  start-page: 823
  year: 2018
  end-page: 833
  article-title: Downregulation of stress‐associated protein 1 (PagSAP1) increases salt stress tolerance in poplar ( × )
  publication-title: Trees
– volume: 10
  start-page: 1453
  year: 2019
  article-title: Genomic analysis of stress associated proteins in soybean and the role of GmSAP16 in abiotic stress responses in and soybean
  publication-title: Frontiers in Plant Science
– volume: 34
  start-page: 1791
  year: 2015
  end-page: 1806
  article-title: The promoter of the gene from the halophyte grass directs a stress‐inducible expression pattern in transgenic rice plants
  publication-title: Plant Cell Reports
– volume: 35
  start-page: 626
  year: 2012
  end-page: 643
  article-title: Expression of the gene in rice confers broad tolerance to abiotic stresses through maintenance of photosynthesis
  publication-title: Plant, Cell and Environment
– volume: 15
  year: 2020
  article-title: Characterization of a novel gene promoter from : Tissue specificity and environmental stress responsiveness
  publication-title: PLoS ONE
– volume: 47
  start-page: 1168
  year: 2019
  end-page: 1177
  article-title: Identification and characterization of a SEPALLATA‐like MADS‐box gene from cucumber ( L.)
  publication-title: Notulae Botanicae Horti Agrobotanici
– volume: 256
  start-page: 113
  year: 2000
  end-page: 121
  article-title: Cloning and characterization of AWP1, a novel protein that associates with serine/threonine kinase PRK1 in vivo
  publication-title: Gene
– volume: 11
  start-page: 1426
  year: 2022
  article-title: Genome‐wide identification and characterisation of stress‐associated protein gene family to biotic and abiotic stresses of grapevine
  publication-title: Pathogens
– volume: 8
  start-page: 363
  year: 2022
  article-title: Genome‐wide analyses of tea plant stress‐associated proteins (SAPs) reveal the role of in increased drought tolerance in transgenic tomatoes
  publication-title: Horticulturae
– volume: 165
  start-page: 1
  year: 2021
  end-page: 9
  article-title: Comprehensive analysis of the stress associated protein (SAP) gene family in and the function of in salt tolerance
  publication-title: Plant Physiology and Biochemistry
– volume: 10
  start-page: 1601
  year: 2022
  end-page: 1610
  article-title: A soybean A20/AN1 domain‐containing stress‐associated protein gene activated by GmAREB3, increases drought stress resistance in soybean by mediating ABA signaling
  publication-title: Crop Journal
– volume: 12
  year: 2021
  article-title: Differential functions of pepper stress‐associated proteins in response to abiotic stresses
  publication-title: Frontiers in Plant Science
– volume: 420
  start-page: 135
  year: 2008
  end-page: 144
  article-title: Expression analysis of rice A20/AN1‐type zinc finger genes and characterization of ZFP177 that contributes to temperature stress tolerance
  publication-title: Gene
– volume: 23
  year: 2022
  article-title: Comprehensive identification and functional analysis of stress‐associated protein (SAP) genes in osmotic stress in maize
  publication-title: International Journal of Molecular Sciences
– volume: 10
  start-page: 788
  year: 2020
  article-title: The role of stress‐responsive transcription factors in modulating abiotic stress tolerance in Plants
  publication-title: Agronomy‐Basel
– volume: 60
  start-page: 1143
  year: 2000
  end-page: 1151
  article-title: A20 and A20‐binding proteins as cellular inhibitors of nuclear factor‐κB‐dependent gene expression and apoptosis
  publication-title: Biochemical Pharmacology
– volume: 60
  start-page: 805
  year: 2018
  end-page: 826
  article-title: Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack
  publication-title: Journal of Integrative Plant Biology
– volume: 6
  year: 2011
  article-title: A novel stress‐associated protein ‘AtSAP10’ from confers tolerance to nickel, manganese, zinc, and high temperature stress
  publication-title: PLoS ONE
– volume: 132
  start-page: 888
  year: 2019
  end-page: 896
  article-title: Stress associated protein from : Heterologous expression, antioxidant and antimicrobial activities with its preservative effect against inoculated in beef meat
  publication-title: International Journal of Biological Macromolecules
– volume: 170
  start-page: 874
  year: 2013
  end-page: 877
  article-title: stress associated protein 1 gene ( ) overexpression confers tolerance to abiotic stress and impacts proline accumulation in transgenic tobacco
  publication-title: Journal of Plant Physiology
– volume: 7
  start-page: 1057
  year: 2016
  article-title: Rice stress associated protein 1 (OsSAP1) interacts with aminotransferase (OsAMTR1) and pathogenesis‐related 1a protein (OsSCP) and regulates abiotic stress responses
  publication-title: Frontiers in Plant Science
– volume: 7
  start-page: 332
  year: 2017
  article-title: Dual regulation of water retention and cell growth by a stress‐associated protein (SAP) gene in
  publication-title: Scientific Reports
– volume: 52
  start-page: 1569
  year: 2011
  end-page: 1582
  article-title: Achievements and challenges in understanding plant abiotic stress responses and tolerance
  publication-title: Plant & Cell Physiology
– volume: 419
  start-page: 436
  year: 2012
  end-page: 440
  article-title: Polyubiquitin recognition by AtSAP5, an A20‐type zinc finger containing protein from
  publication-title: Biochemical and Biophysical Research Communications
– volume: 862
  year: 2023
  article-title: AoSAP8‐P encoding A20 and/or AN1 type zinc finger protein in L. Improving stress tolerance in transgenic
  publication-title: Gene
– volume: 282
  start-page: 153
  year: 2009
  end-page: 164
  article-title: Characterization and phylogenetic analysis of environmental stress‐responsive SAP gene family encoding A20/AN1 zinc finger proteins in tomato
  publication-title: Molecular Genetics and Genomics
– volume: 75
  start-page: 451
  year: 2011
  end-page: 466
  article-title: SAP5 functions as a positive regulator of stress responses and exhibits E3 ubiquitin ligase activity
  publication-title: Plant Molecular Biology
– volume: 324
  start-page: 742
  year: 2009
  end-page: 744
  article-title: Innate immunity in plants: An arms race between pattern recognition receptors in plants and effectors in microbial pathogens
  publication-title: Science
– volume: 13
  start-page: 1766
  year: 2022
  article-title: Identification, phylogeny, divergence, structure, and expression analysis of A20/AN1 zinc finger domain containing stress‐associated proteins (SAPs) genes in Jatropha curcas
  publication-title: L. Genes
– volume: 23
  year: 2022
  article-title: Identification and analysis of stress‐associated proteins (SAPs) protein family and drought tolerance of ZmSAP8 in transgenic
  publication-title: International Journal of Molecular Sciences
– volume: 67
  start-page: 315
  year: 2016
  end-page: 326
  article-title: An A20/AN1‐type zinc finger protein modulates gibberellins and abscisic acid contents and increases sensitivity to abiotic stress in rice ( )
  publication-title: Journal of Experimental Botany
– volume: 32
  start-page: 566
  year: 2019
  end-page: 582
  article-title: Tomato stress‐associated protein 4 contributes positively to immunity against necrotrophic fungus
  publication-title: Molecular Plant‐Microbe Interactions
– volume: 17
  start-page: 507
  year: 2018
  end-page: 516
  article-title: A wheat gene TaSAP17‐D encoding an AN1/AN1 zinc finger protein improves salt stress tolerance in transgenic
  publication-title: Journal of Integrative Agriculture
– volume: 399
  start-page: 361
  year: 2006
  end-page: 372
  article-title: Ubiquitin‐binding domains
  publication-title: Biochemical Journal
– volume: 15
  year: 2020
  article-title: A LmSAP protein modulates gibberellic acid homeostasis via its A20 domain under abiotic stress conditions
  publication-title: PLoS ONE
– volume: 39
  start-page: 2106
  year: 2021
  end-page: 2117
  article-title: Global transcriptome analysis of novel stress associated protein (SAP) genes expression dynamism of combined abiotic stresses in (L.)
  publication-title: Journal of Biomolecular Structure & Dynamics
– volume: 165
  start-page: 108
  year: 2019
  end-page: 119
  article-title: Genome‐wide identification of stress‐associated proteins (SAP) with A20/AN1 zinc finger domains associated with abiotic stresses responses in
  publication-title: Environmental and Experimental Botany
– volume: 13
  year: 2022
  article-title: Knockdown of PagSAP11 confers drought resistance and promotes lateral shoot growth in hybrid poplar ( x var. )
  publication-title: Frontiers in Plant Science
– volume: 20
  start-page: 1899
  year: 2008
  end-page: 1914
  article-title: PUB22 and PUB23 are homologous U‐box E3 ubiquitin ligases that play combinatory roles in response to drought stress
  publication-title: Plant Cell
– volume: 191
  start-page: 721
  year: 2011
  end-page: 732
  article-title: Rice A20/AN1 zinc‐finger containing stress‐associated proteins (SAP1/11) and a receptor‐like cytoplasmic kinase (OsRLCK253) interact via A20 zinc‐finger and confer abiotic stress tolerance in transgenic plants
  publication-title: New Phytologist
– volume: 90
  start-page: 265
  year: 2007
  end-page: 275
  article-title: Phylogenetic and expression analysis of ZnF‐AN1 genes in plants
  publication-title: Genomics
– volume: 12
  year: 2021
  article-title: Cloning and characterization of TaSAP7‐A, a member of the stress‐associated protein family in common wheat
  publication-title: Frontiers in Plant Science
– volume: 30
  start-page: 779
  year: 2021
  end-page: 792
  article-title: Structural evolution and function of stress associated proteins in regulating biotic and abiotic stress responses in plants
  publication-title: Journal of Plant Biochemistry and Biotechnology
– volume: 128
  start-page: 181
  year: 1993
  end-page: 188
  article-title: Two related localized mRNAs from encode ubiquitin‐like fusion proteins
  publication-title: Gene
– volume: 25
  start-page: 554
  year: 2006
  end-page: 564
  article-title: A novel ubiquitin‐binding protein ZNF216 functioning in muscle atrophy
  publication-title: Embo Journal
– volume: 169
  start-page: 1261
  year: 2012
  end-page: 1270
  article-title: Expression of in cotton up‐regulates putative stress‐responsive genes and improves the tolerance to rapidly developing water deficit and moderate heat stress
  publication-title: Journal of Plant Physiology
– volume: 31
  start-page: 3856
  year: 2012
  end-page: 3870
  article-title: Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF‐kappaB regulation
  publication-title: Embo Journal
– volume: 53
  start-page: 247
  year: 2002
  end-page: 273
  article-title: Salt and drought stress signal transduction in plants
  publication-title: Annual Review of Plant Biology
– volume: 1
  start-page: 213
  year: 1998
  end-page: 222
  article-title: Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of development
  publication-title: Molecular Cell
– volume: 80
  start-page: 503
  year: 2012
  end-page: 517
  article-title: MusaSAP1, a A20/AN1 zinc finger gene from banana functions as a positive regulator in different stress responses
  publication-title: Plant Molecular Biology
– volume: 265
  start-page: 14705
  year: 1990
  end-page: 14708
  article-title: The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein
  publication-title: Journal of Biological Chemistry
– volume: 49
  start-page: 303
  year: 2011
  end-page: 310
  article-title: A stress‐associated protein containing A20/AN1 zing‐finger domains expressed in seeds
  publication-title: Plant Physiology and Biochemistry
– volume: 19
  start-page: 2478
  year: 2018
  article-title: Genome‐wide analysis and cloning of the apple stress‐associated protein gene family reveals MdSAP15, which confers tolerance to drought and osmotic stresses in transgenic
  publication-title: International Journal of Molecular Sciences
– volume: 10
  year: 2024
  article-title: stress‐associated protein promotes water deficit resilience in engineered durum wheat
  publication-title: Heliyon
– volume: 175
  start-page: 1878
  year: 2017
  end-page: 1892
  article-title: The E3 ligase TaSAP5 alters drought stress responses by promoting the degradation of DRIP proteins
  publication-title: Plant Physiology
– volume: 15
  start-page: 69
  year: 2022
  article-title: OsSAP6 pBrnositively regulates soda saline‐alkaline stress tolerance in rice
  publication-title: Rice
– volume: 139
  start-page: 249
  year: 2019
  end-page: 259
  article-title: Stress associated protein 1 regulates the development of glandular trichomes in
  publication-title: Plant Cell Tissue and Organ
– volume: 54
  start-page: 2724
  year: 2014
  end-page: 2734
  article-title: Function analysis of sugarcane A20/AN1 zinc‐finger protein gene in transgenic tobacco
  publication-title: Crop Science
– volume: 12
  start-page: 1
  year: 2016
  end-page: 16
  article-title: Genome‐wide survey and expression analysis of the stress‐associated protein gene family in desert poplar,
  publication-title: Tree Genetics & Genomes
– volume: 11
  start-page: 39
  year: 2001
  end-page: 46
  article-title: Zinc finger proteins: New insights into structural and functional diversity
  publication-title: Current Opinion in Structural Biology
– volume: 70
  start-page: 87
  year: 2018
  end-page: 98
  article-title: Genome‐wide identification and characterization of stress‐associated protein (SAP) gene family encoding A20/AN1 zinc‐finger proteins in
  publication-title: Archives of Biological Sciences
– volume: 23
  year: 2022
  article-title: Genome‐wide identification of the A20/AN1 zinc finger protein family genes in and its two relatives and function analysis of IbSAP16 in salinity tolerance
  publication-title: International Journal of Molecular Sciences
– volume: 11
  year: 2016
  article-title: Overexpression of OsSAP16 regulates photosynthesis and the expression of a broad range of stress response genes in rice ( L.)
  publication-title: PLoS ONE
– volume: 11
  start-page: 117
  year: 2021
  article-title: Genome‐wide identification of stress‐associated proteins (SAPs) encoding A20/AN1 zinc finger in almond ( ) and their differential expression during fruit development
  publication-title: Plants (Basel)
– volume: 424
  start-page: 1
  year: 2012
  end-page: 6
  article-title: Human intronless genes: Functional groups, associated diseases, evolution, and mRNA processing in absence of splicing
  publication-title: Biochemical and Biophysical Research Communications
– volume: 8
  start-page: 301
  year: 2008
  end-page: 307
  article-title: A20/AN1 zinc‐finger domain‐containing proteins in plants and animals represent common elements in stress response
  publication-title: Functional & Integrative Genomics
– volume: 231
  start-page: 234
  year: 2018
  end-page: 243
  article-title: A stress‐associated protein, LmSAP, from the halophyte provides tolerance to heavy metals in tobacco through increased ROS scavenging and metal detoxification processes
  publication-title: Journal of Plant Physiology
– volume: 225
  start-page: 68
  year: 2014
  end-page: 76
  article-title: Rice SAPs are responsive to multiple biotic stresses and overexpression of OsSAP1, an A20/AN1 zinc‐finger protein, enhances the basal resistance against pathogen infection in tobacco
  publication-title: Plant Science
– volume: 165
  start-page: 690
  year: 2019
  end-page: 700
  article-title: The role of C2H2 zinc finger proteins in plant responses to abiotic stresses
  publication-title: Physiologia Plantarum
– volume: 237
  start-page: 80
  year: 2015
  end-page: 92
  article-title: Rice OsiSAP7 negatively regulates ABA stress signalling and imparts sensitivity to water‐deficit stress in
  publication-title: Plant Science
– volume: 55
  start-page: 373
  year: 2004
  end-page: 399
  article-title: Reactive oxygen species: Metabolism, oxidative stress, and signal transduction
  publication-title: Annual Review of Plant Biology
– volume: 32
  start-page: 437
  year: 2013
  end-page: 449
  article-title: A novel stress‐associated protein SbSAP14 from confers tolerance to salt stress in transgenic rice
  publication-title: Molecular Breeding
– volume: 103
  start-page: 8281
  year: 2006
  end-page: 8286
  article-title: The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 20
  start-page: 815
  year: 2019
  end-page: 830
  article-title: Tomato SlSAP3, a member of the stress‐associated protein family, is a positive regulator of immunity against pv. tomato DC3000
  publication-title: Molecular plant pathology
– volume: 44
  start-page: 5
  year: 2017
  end-page: 9
  article-title: Isolation and characterization of , a gene which enhances the salinity tolerance of
  publication-title: Molecular Biology Reports
– volume: 67
  start-page: 425
  year: 1998
  end-page: 479
  article-title: The ubiquitin system
  publication-title: Annual Review of Biochemistry
– volume: 256
  start-page: 1333
  year: 2019
  end-page: 1344
  article-title: Functional domain analysis of LmSAP protein reveals the crucial role of the zinc‐finger A20 domain in abiotic stress tolerance
  publication-title: Protoplasma
– volume: 285
  year: 2021
  article-title: A stress associated protein from Chinese wild , VaSAP15, enhances the cold tolerance of transgenic grapes
  publication-title: Scientia Horticulturae
– volume: 133
  start-page: 566
  year: 2008
  end-page: 583
  article-title: The dynamic thiol‐disulphide redox proteome of the chloroplast as revealed by differential electrophoretic mobility
  publication-title: Physiologia Plantarum
– volume: 72
  start-page: 171
  year: 2010
  end-page: 190
  article-title: Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc‐finger “ ” gene isolated from the halophyte grass
  publication-title: Plant Molecular Biology
– volume: 291
  start-page: 2199
  year: 2016
  end-page: 2213
  article-title: Genome‐wide identification and expression analysis of stress‐associated proteins (SAPs) containing A20/AN1 zinc finger in cotton
  publication-title: Molecular Genetics and Genomics
– volume: 20
  start-page: 5782
  year: 2019
  article-title: A stress‐associated protein, PtSAP13, from provides tolerance to salt stress
  publication-title: International Journal of Molecular Sciences
– volume: 41
  start-page: 1171
  year: 2018
  end-page: 1185
  article-title: A stress‐associated protein, AtSAP13, from provides tolerance to multiple abiotic stresses
  publication-title: Plant, Cell and Environment
– volume: 38
  start-page: 896
  year: 2013
  end-page: 905
  article-title: Dimerization and ubiquitin mediated recruitment of A20, a complex deubiquitinating enzyme
  publication-title: Immunity
– volume: 48
  start-page: 351
  year: 2010
  end-page: 358
  article-title: Redox regulation of water stress responses in field‐grown plants. Role of hydrogen peroxide and ascorbate
  publication-title: Plant Physiology and Biochemistry
– volume: 8
  start-page: 994
  year: 2017
  article-title: Expression of the gene enhances rice yield under field drought at the reproductive stage
  publication-title: Frontiers in Plant Science
– volume: 76
  start-page: 481
  year: 2013
  end-page: 493
  article-title: AtMBP‐1, an alternative translation product of LOS2, affects abscisic acid responses and is modulated by the E3 ubiquitin ligase AtSAP5
  publication-title: Plant Journal
– volume: 20
  start-page: 1693
  year: 2008
  end-page: 1707
  article-title: DREB2A‐interacting proteins function as RING E3 ligases and negatively regulate plant drought stress–responsive gene expression
  publication-title: The Plant Cell
– volume: 14
  year: 2018
  article-title: Plant A20/AN1 protein serves as the important hub to mediate antiviral immunity
  publication-title: Plos Pathogens
– volume: 39
  start-page: 951
  year: 2016
  end-page: 964
  article-title: Stress‐triggered redox signalling: What's in prospect?
  publication-title: Plant, Cell and Environment
– volume: 2
  start-page: 357
  year: 2009
  end-page: 367
  article-title: Redox‐dependent regulation of the stress‐induced zinc‐finger protein SAP12 in
  publication-title: Molecular Plant
– volume: 13
  year: 2022
  article-title: Multifaceted roles of zinc finger proteins in regulating various agronomic traits in rice
  publication-title: Frontiers in Plant Science
– volume: 30
  start-page: 521
  year: 2011
  end-page: 33
  article-title: Marker‐free transgenic durum wheat cv. Karim expressing the AlSAP gene exhibits a high level of tolerance to salinity and dehydration stresses
  publication-title: Molecular Breeding
– volume: 35
  start-page: 639
  year: 2013
  end-page: 648
  article-title: SAPs as novel regulators of abiotic stress response in plants
  publication-title: BioEssays
– volume: 405
  start-page: 462
  year: 2000
  end-page: 466
  article-title: Targeted destabilization of HY5 during light‐regulated development of
  publication-title: Nature
– volume: 40
  start-page: 702
  year: 2017
  end-page: 716
  article-title: stress associated protein 9 mediates biotic and abiotic stress responsive ABA signaling via the proteasome pathway
  publication-title: Plant, Cell and Environment
– volume: 15
  start-page: 839
  year: 2011
  end-page: 857
  article-title: Transcription regulation of abiotic stress responses in rice: A combined action of transcription factors and epigenetic mechanisms
  publication-title: Omics
– volume: 101
  start-page: 6309
  year: 2004
  end-page: 6314
  article-title: Overexpression of a zinc‐finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco
  publication-title: PNAS
– volume: 12
  start-page: 1583
  year: 2022
  article-title: Evaluation of halophyte biopotential as an unused natural resource: The case of
  publication-title: Biomolecules
– volume: 168
  start-page: 1098
  year: 2011
  end-page: 1105
  article-title: OsDOG, a gibberellin‐induced A20/AN1 zinc‐finger protein, negatively regulates gibberellin‐mediated cell elongation in rice
  publication-title: Journal of Plant Physiology
– volume: 276
  start-page: 565
  year: 2006
  end-page: 575
  article-title: Genome‐wide analysis of the stress associated protein (SAP) gene family containing A20/AN1 zinc‐finger(s) in rice and their phylogenetic relationship with
  publication-title: Molecular Genetics and Genomics
– volume: 107
  start-page: 101
  year: 2011
  end-page: 112
  article-title: A putative maize zinc‐finger protein gene, ZmAN13, participates in abiotic stress response
  publication-title: Plant Cell, Tissue and Organ
– volume: 9
  start-page: 400
  year: 2020
  article-title: Identification and expression analysis of stress‐associated proteins (SAPs) containing A20/AN1 zinc finger in cucumber
  publication-title: Plants (Basel)
– ident: e_1_2_14_89_1
  doi: 10.1016/j.immuni.2013.03.008
– ident: e_1_2_14_117_1
  doi: 10.3390/genes13101766
– ident: e_1_2_14_10_1
  doi: 10.2298/ABS170529028Z
– ident: e_1_2_14_77_1
  doi: 10.1038/35013076
– ident: e_1_2_14_73_1
  doi: 10.1111/mpp.12793
– ident: e_1_2_14_19_1
  doi: 10.1111/ppl.12728
– ident: e_1_2_14_94_1
  doi: 10.1111/j.1399-3054.2008.01103.x
– ident: e_1_2_14_87_1
  doi: 10.1111/pce.12621
– ident: e_1_2_14_120_1
  doi: 10.1016/j.gene.2023.147284
– ident: e_1_2_14_2_1
  doi: 10.1111/jipb.12706
– ident: e_1_2_14_21_1
  doi: 10.1007/s00344-021-10344-z
– ident: e_1_2_14_16_1
  doi: 10.1371/journal.ppat.1007288
– ident: e_1_2_14_18_1
  doi: 10.1016/j.plaphy.2011.01.004
– ident: e_1_2_14_101_1
  doi: 10.3389/fpls.2017.00994
– ident: e_1_2_14_49_1
  doi: 10.1016/j.bbrc.2012.06.092
– ident: e_1_2_14_20_1
  doi: 10.1007/s13562-021-00704-x
– ident: e_1_2_14_37_1
  doi: 10.1007/s10142-008-0078-7
– ident: e_1_2_14_58_1
  doi: 10.1111/j.1365-3040.2011.02441.x
– ident: e_1_2_14_75_1
  doi: 10.3389/fpls.2021.609351
– ident: e_1_2_14_8_1
  doi: 10.1002/bies.201200181
– ident: e_1_2_14_112_1
  doi: 10.1016/S0006-2952(00)00404-4
– ident: e_1_2_14_55_1
  doi: 10.1093/jxb/erv464
– ident: e_1_2_14_17_1
  doi: 10.1111/tpj.12312
– ident: e_1_2_14_90_1
  doi: 10.1016/j.bbrc.2012.02.044
– ident: e_1_2_14_104_1
  doi: 10.1007/s00425-012-1635-9
– ident: e_1_2_14_3_1
  doi: 10.1111/jipb.12654
– ident: e_1_2_14_67_1
  doi: 10.1371/journal.pone.0236943
– volume: 11
  start-page: 117
  year: 2021
  ident: e_1_2_14_45_1
  article-title: Genome‐wide identification of stress‐associated proteins (SAPs) encoding A20/AN1 zinc finger in almond (Prunus dulcis) and their differential expression during fruit development
  publication-title: Plants (Basel)
– ident: e_1_2_14_109_1
  doi: 10.1007/s11240-019-01677-5
– ident: e_1_2_14_69_1
  doi: 10.1371/journal.pone.0233420
– ident: e_1_2_14_9_1
  doi: 10.1111/pce.13103
– ident: e_1_2_14_66_1
  doi: 10.1007/s00299-015-1825-6
– ident: e_1_2_14_116_1
  doi: 10.1016/j.ijbiomac.2019.04.012
– ident: e_1_2_14_23_1
  doi: 10.1007/s00709-019-01390-2
– ident: e_1_2_14_92_1
  doi: 10.1146/annurev.arplant.55.031903.141701
– ident: e_1_2_14_11_1
  doi: 10.1016/j.ygeno.2007.03.019
– ident: e_1_2_14_39_1
  doi: 10.1016/0378-1119(93)90561-G
– ident: e_1_2_14_76_1
  doi: 10.1016/S1097-2765(00)80022-2
– ident: e_1_2_14_100_1
  doi: 10.1016/j.heliyon.2024.e30933
– ident: e_1_2_14_65_1
  doi: 10.1007/s11248-010-9474-6
– ident: e_1_2_14_61_1
  doi: 10.1016/j.jplph.2018.09.019
– ident: e_1_2_14_71_1
  doi: 10.1038/sj.emboj.7600945
– ident: e_1_2_14_98_1
  doi: 10.1371/journal.pone.0157244
– ident: e_1_2_14_119_1
  doi: 10.3390/pathogens11121426
– ident: e_1_2_14_52_1
  doi: 10.1016/j.jplph.2010.12.013
– ident: e_1_2_14_107_1
  doi: 10.1371/journal.pone.0273416
– ident: e_1_2_14_30_1
  doi: 10.1071/FP17202
– ident: e_1_2_14_78_1
  doi: 10.1104/pp.17.01319
– ident: e_1_2_14_33_1
  doi: 10.1007/s00438-009-0455-5
– ident: e_1_2_14_48_1
  doi: 10.1016/j.tig.2008.05.006
– ident: e_1_2_14_59_1
  doi: 10.1007/s11033-016-4091-y
– ident: e_1_2_14_113_1
  doi: 10.1016/j.pbi.2020.04.006
– ident: e_1_2_14_36_1
  doi: 10.3389/fpls.2019.01453
– ident: e_1_2_14_13_1
  doi: 10.1007/s00438-006-0165-1
– ident: e_1_2_14_85_1
  doi: 10.1073/pnas.0602874103
– ident: e_1_2_14_91_1
  doi: 10.1094/MPMI-04-18-0097-R
– ident: e_1_2_14_40_1
  doi: 10.1080/07391102.2020.1747548
– ident: e_1_2_14_72_1
  doi: 10.1007/s11103-007-9284-2
– ident: e_1_2_14_50_1
  doi: 10.3389/fpls.2022.974396
– ident: e_1_2_14_29_1
  doi: 10.1007/s11103-009-9560-4
– ident: e_1_2_14_42_1
  doi: 10.3390/ijms19092478
– volume: 9
  start-page: 400
  year: 2020
  ident: e_1_2_14_56_1
  article-title: Identification and expression analysis of stress‐associated proteins (SAPs) containing A20/AN1 zinc finger in cucumber
  publication-title: Plants (Basel)
– ident: e_1_2_14_60_1
  doi: 10.1016/S2095-3119(17)61681-2
– ident: e_1_2_14_83_1
  doi: 10.1105/tpc.105.039198
– ident: e_1_2_14_14_1
  doi: 10.1016/j.pld.2020.07.010
– ident: e_1_2_14_53_1
  doi: 10.1111/pce.12892
– ident: e_1_2_14_64_1
  doi: 10.1016/j.cj.2022.03.013
– ident: e_1_2_14_57_1
  doi: 10.15835/nbha47411610
– ident: e_1_2_14_123_1
  doi: 10.1016/j.scienta.2021.110147
– ident: e_1_2_14_96_1
– ident: e_1_2_14_47_1
  doi: 10.1111/tpj.15088
– ident: e_1_2_14_5_1
  doi: 10.1093/pcp/pcr106
– ident: e_1_2_14_6_1
  doi: 10.1089/omi.2011.0095
– ident: e_1_2_14_121_1
  doi: 10.1007/s00299-014-1626-3
– ident: e_1_2_14_88_1
  doi: 10.1038/emboj.2012.241
– ident: e_1_2_14_44_1
  doi: 10.3390/horticulturae8050363
– ident: e_1_2_14_43_1
  doi: 10.1016/j.envexpbot.2019.05.007
– ident: e_1_2_14_32_1
  doi: 10.1007/s00438-016-1252-6
– ident: e_1_2_14_26_1
  doi: 10.1007/s11103-011-9748-2
– ident: e_1_2_14_70_1
  doi: 10.1016/S0378-1119(00)00365-6
– ident: e_1_2_14_97_1
  doi: 10.1093/jxb/erac027
– ident: e_1_2_14_105_1
  doi: 10.1016/j.jplph.2013.01.008
– ident: e_1_2_14_27_1
  doi: 10.1073/pnas.0401572101
– ident: e_1_2_14_12_1
  doi: 10.1016/S0021-9258(18)77165-2
– ident: e_1_2_14_22_1
  doi: 10.3389/fpls.2016.01057
– ident: e_1_2_14_41_1
  doi: 10.3390/ijms232214010
– ident: e_1_2_14_115_1
  doi: 10.1016/j.plantsci.2014.05.016
– ident: e_1_2_14_54_1
  doi: 10.3389/fpls.2022.925744
– ident: e_1_2_14_24_1
  doi: 10.1007/s11240-011-9962-2
– ident: e_1_2_14_63_1
  doi: 10.1371/journal.pone.0020921
– ident: e_1_2_14_106_1
  doi: 10.2135/cropsci2014.01.0047
– ident: e_1_2_14_84_1
  doi: 10.1105/tpc.108.060699
– ident: e_1_2_14_25_1
  doi: 10.1111/j.1469-8137.2011.03740.x
– ident: e_1_2_14_102_1
  doi: 10.1007/s11032-013-9882-4
– ident: e_1_2_14_111_1
  doi: 10.3390/agronomy10060788
– ident: e_1_2_14_35_1
  doi: 10.1038/s41598-017-00471-7
– ident: e_1_2_14_110_1
  doi: 10.1007/s00468-018-1675-2
– ident: e_1_2_14_38_1
  doi: 10.1126/science.289.5488.2350
– ident: e_1_2_14_86_1
  doi: 10.1105/tpc.107.057380
– ident: e_1_2_14_81_1
  doi: 10.1042/BJ20061138
– ident: e_1_2_14_15_1
  doi: 10.3389/fpls.2021.756068
– ident: e_1_2_14_82_1
  doi: 10.3390/ijms231911551
– ident: e_1_2_14_118_1
  doi: 10.3390/horticulturae8020108
– ident: e_1_2_14_93_1
  doi: 10.1016/j.plaphy.2010.01.021
– ident: e_1_2_14_34_1
  doi: 10.1007/s11295-016-1033-8
– ident: e_1_2_14_4_1
  doi: 10.3389/fpls.2019.01336
– ident: e_1_2_14_114_1
  doi: 10.1126/science.1171647
– ident: e_1_2_14_99_1
  doi: 10.1007/s11032-011-9641-3
– ident: e_1_2_14_7_1
  doi: 10.1146/annurev.arplant.53.091401.143329
– ident: e_1_2_14_28_1
  doi: 10.1016/j.jplph.2012.04.007
– ident: e_1_2_14_103_1
  doi: 10.1016/j.plaphy.2021.05.016
– ident: e_1_2_14_80_1
  doi: 10.1146/annurev.biochem.67.1.425
– ident: e_1_2_14_108_1
  doi: 10.1186/s12870-020-02332-4
– ident: e_1_2_14_62_1
  doi: 10.3390/ijms20225782
– ident: e_1_2_14_122_1
  doi: 10.1186/s12284-022-00616-x
– ident: e_1_2_14_79_1
  doi: 10.3390/ijms232214109
– ident: e_1_2_14_74_1
  doi: 10.1016/j.plantsci.2015.05.011
– ident: e_1_2_14_68_1
  doi: 10.1016/j.gene.2008.05.019
– ident: e_1_2_14_31_1
  doi: 10.3390/biom12111583
– ident: e_1_2_14_95_1
  doi: 10.1093/mp/ssn084
– ident: e_1_2_14_46_1
  doi: 10.1007/s11103-012-9964-4
– ident: e_1_2_14_51_1
  doi: 10.1016/S0959-440X(00)00167-6
SSID ssj0009624
Score 2.4754734
SecondaryResourceType review_article
Snippet Every year, unfavorable environmental factors significantly affect crop productivity and threaten food security. Plants are sessile; they cannot move to escape...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2400097
SubjectTerms abiotic and biotic stress
Biological activity
biotic stress
Cellular stress response
Crop production
development
Environmental conditions
Environmental factors
Environmental stress
family
Food plants
Food security
gene expression
genes
Genetic modification
genetically modified organisms
Genome editing
Localization
Plant stress
Proteins
redox regulation
stress response
stress tolerance
stress‐associated protein
tolerance
transgenesis
ubiquitination
zinc finger motif
Zinc finger proteins
Title Research progress on plant stress‐associated protein (SAP) family: Master regulators to deal with environmental stresses
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.202400097
https://www.ncbi.nlm.nih.gov/pubmed/39248672
https://www.proquest.com/docview/3119815152
https://www.proquest.com/docview/3102073752
https://www.proquest.com/docview/3153820103
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTt0wELUqpErdQFsevYVWRkKiXQRy_Uiuu6NVEUICobZI7KKxYyMEStB9LGDVT-g39ks6EyeB26pUKrs87MSJPeMz9swZxrZwlgkjN4QEZAiJUnlI7FCXSZmBCr4EEZrtgqPj7OBUHZ7ps3tR_JEfol9wI8lo9DUJONjJ7h1pqCVLUhBFF8UioBImhy1CRV_u-KNM1mS1RTtDJ2ho5B1rYyp256vPz0p_QM155NpMPftLDLpGR4-Ty53Z1O6429_4HB_zVc_ZYotL-V4cSC_YE1-9ZE9jpsqbZXbbeejxxqEL1SOvK359hf3CY7jJz-8_oO1qX_KG_uGi4u--7p2853EV5QM_AqJl4GN_TknD6vGET2teIlTltBzM7wXd4aX4WD9ZYaf7n799OkjatA2JU6R2HapPgKFyKoTUAHhIR84ayLQNNlXSGetTKZzULkgw1grjLWjpXK51mZVylS1UdeVfMS6k8Sa1RqMBr6RHLGtGWFV4XYYcwdKAJV23Fa7lNKfUGldFZGMWBf3Pov-fA7bdl7-ObB5_LbnRjYKilepJIYf4fkKAYsA2-9soj7TJApWvZ1QGAXgu84fL4DRDbghywNbiCOubg3iVSBCxtmjGyT_aWXxEq6E_e_0_ldbZMzqOAZYbbGE6nvk3iLSm9m0jTb8AJb4iJA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BEYJLeZYuLWAkJOCQNutHsuZWENUC3QpBK3GLbMdGqFVS7ePQnvgJ_EZ-SWfiJGVBgATHOOPEiT32N_bMNwBPcJUJIzc0iREhJFLmIbFDVSZlZmTwpeGhOS6Y7GfjQ_n2k-q8CSkWJvJD9BtupBnNfE0KThvS2xesoZZMSU4cXRSMcBmuUFrvxqr6cMEgpbMmry1aGipBUyPveBtTvr1cf3ld-gVsLmPXZvHZvQG2a3b0OTnaWsztljv7idHxv77rJqy20JTtxLF0Cy756jZcjckqT-_AWeekxxqfLpwhWV2xk2PsGhYjTr5__Wba3vYlaxggvlTs2ced989Z3Eh5wSaGmBnY1H-mvGH1dMbmNSsRrTLaEWY_xN1hUXysn92Fw93XB6_GSZu5IXGSZl6HM6gxQ-lkCKk2xpt05Kw2mbLBplI4bX0quBPKBWG0tVx7a5RwLleqzEqxBitVXfl1YFxor1OrFdrwUniEs3qEVblXZcgRLw0g6fqtcC2tOWXXOC4iITMv6H8W_f8cwNNe_iQSevxWcrMbBkWr2LNCDPH9BAL5AB73t1El6ZzFVL5ekAxi8Fzkf5bBlYY8EcQA7sUh1jcHISvxIGJt3gyUv7SzeImGQ391_18qPYJr44PJXrH3Zv_dBlyn8hhvuQkr8-nCP0DgNbcPG9U6BzWJJj8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIiouPAssFDASEnBIm_UjWXMrlFV5tKqASr1FtmMjRJWs9nGgJ34Cv5FfwkycpF0QIJVjHE_ixDP2N7bnG4DHOMuEkRuaxIgQEinzkNihKpMyMzL40vDQbBfs7We7h_LNkTo6E8Uf-SH6BTeyjGa8JgOflGHrlDTUkifJiaKLYhFW4KLM0hHp9c77UwIpnTVpbdHRUAl6GnlH25jyrWX55WnpN6y5DF2buWd8FUzX6njk5MvmYm433ckvhI7_81nX4EoLTNl21KTrcMFXN-BSTFX59SacdEf0WHOiC8dHVldscowdw2K8yY9v303b175kDf_D54o9_bB98IzFZZTnbM8QLwOb-k-UNayezti8ZiViVUbrwexM1B0Wxcf62Tocjl99fLmbtHkbEidp3HU4fhozlE6GkGpjvElHzmqTKRtsKoXT1qeCO6FcEEZby7W3RgnncqXKrBS3YLWqK38HGBfa69RqhR68FB7BrB6hKPeqDDmipQEkXbcVriU1p9wax0WkY-YF_c-i_58DeNLXn0Q6jz_W3Oi0oGjNelaIIb6fICAfwKP-Nhok7bKYytcLqoMIPBf53-vgPEPnEMQAbkcN65uDgJVYEFGaN3ryj3YWL9Bt6K_unkfoIawd7IyLd6_3396Dy1Qcgy03YHU-Xfj7iLrm9kFjWD8BwKUk9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+progress+on+plant+stress%E2%80%90associated+protein+%28SAP%29+family%3A+Master+regulators+to+deal+with+environmental+stresses&rft.jtitle=BioEssays&rft.au=Ben+Saad%2C+Rania&rft.au=Ben+Romdhane%2C+Walid&rft.au=%C4%8Cmikov%C3%A1%2C+Nat%C3%A1lia&rft.au=Baazaoui%2C+Narjes&rft.date=2024-11-01&rft.issn=0265-9247&rft.volume=46&rft.issue=11+p.e2400097-&rft_id=info:doi/10.1002%2Fbies.202400097&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0265-9247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0265-9247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0265-9247&client=summon