Research progress on plant stress‐associated protein (SAP) family: Master regulators to deal with environmental stresses
Every year, unfavorable environmental factors significantly affect crop productivity and threaten food security. Plants are sessile; they cannot move to escape unfavorable environmental conditions, and therefore, they activate a variety of defense pathways. Among them are processes regulated by stre...
Saved in:
Published in | BioEssays Vol. 46; no. 11; pp. e2400097 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Every year, unfavorable environmental factors significantly affect crop productivity and threaten food security. Plants are sessile; they cannot move to escape unfavorable environmental conditions, and therefore, they activate a variety of defense pathways. Among them are processes regulated by stress‐associated proteins (SAPs). SAPs have a specific zinc finger domain (A20) at the N‐terminus and either AN1 or C2H2 at the C‐terminus. SAP proteins are involved in many biological processes and in response to various abiotic or biotic constraints. Most SAPs play a role in conferring transgenic stress resistance and are stress‐inducible. The emerging field of SAPs in abiotic or biotic stress response regulation has attracted the attention of researchers. Although SAPs interact with various proteins to perform their functions, the exact mechanisms of these interactions remain incompletely understood. This review aims to provide a comprehensive understanding of SAPs, covering their diversity, structure, expression, and subcellular localization. SAPs play a pivotal role in enabling crosstalk between abiotic and biotic stress signaling pathways, making them essential for developing stress‐tolerant crops without yield penalties. Collectively, understanding the complex regulation of SAPs in stress responses can contribute to enhancing tolerance against various environmental stresses through several techniques such as transgenesis, classical breeding, or gene editing.
The graphical illustrates the role played by plant stress‐associated proteins (SAPs) during environmental stress conditions. A comprehensive understanding of SAPs diversity, structure, localization, and expression highlights their involvement in stress signaling pathways and critical biological processes. Thus, SAPs can facilitate the development of crops resistant to multiple stresses without yield penalties. |
---|---|
AbstractList | Every year, unfavorable environmental factors significantly affect crop productivity and threaten food security. Plants are sessile; they cannot move to escape unfavorable environmental conditions, and therefore, they activate a variety of defense pathways. Among them are processes regulated by stress‐associated proteins (SAPs). SAPs have a specific zinc finger domain (A20) at the N‐terminus and either AN1 or C2H2 at the C‐terminus. SAP proteins are involved in many biological processes and in response to various abiotic or biotic constraints. Most SAPs play a role in conferring transgenic stress resistance and are stress‐inducible. The emerging field of SAPs in abiotic or biotic stress response regulation has attracted the attention of researchers. Although SAPs interact with various proteins to perform their functions, the exact mechanisms of these interactions remain incompletely understood. This review aims to provide a comprehensive understanding of SAPs, covering their diversity, structure, expression, and subcellular localization. SAPs play a pivotal role in enabling crosstalk between abiotic and biotic stress signaling pathways, making them essential for developing stress‐tolerant crops without yield penalties. Collectively, understanding the complex regulation of SAPs in stress responses can contribute to enhancing tolerance against various environmental stresses through several techniques such as transgenesis, classical breeding, or gene editing.
The graphical illustrates the role played by plant stress‐associated proteins (SAPs) during environmental stress conditions. A comprehensive understanding of SAPs diversity, structure, localization, and expression highlights their involvement in stress signaling pathways and critical biological processes. Thus, SAPs can facilitate the development of crops resistant to multiple stresses without yield penalties. Every year, unfavorable environmental factors significantly affect crop productivity and threaten food security. Plants are sessile; they cannot move to escape unfavorable environmental conditions, and therefore, they activate a variety of defense pathways. Among them are processes regulated by stress‐associated proteins (SAPs). SAPs have a specific zinc finger domain (A20) at the N‐terminus and either AN1 or C2H2 at the C‐terminus. SAP proteins are involved in many biological processes and in response to various abiotic or biotic constraints. Most SAPs play a role in conferring transgenic stress resistance and are stress‐inducible. The emerging field of SAPs in abiotic or biotic stress response regulation has attracted the attention of researchers. Although SAPs interact with various proteins to perform their functions, the exact mechanisms of these interactions remain incompletely understood. This review aims to provide a comprehensive understanding of SAPs, covering their diversity, structure, expression, and subcellular localization. SAPs play a pivotal role in enabling crosstalk between abiotic and biotic stress signaling pathways, making them essential for developing stress‐tolerant crops without yield penalties. Collectively, understanding the complex regulation of SAPs in stress responses can contribute to enhancing tolerance against various environmental stresses through several techniques such as transgenesis, classical breeding, or gene editing. Every year, unfavorable environmental factors significantly affect crop productivity and threaten food security. Plants are sessile; they cannot move to escape unfavorable environmental conditions, and therefore, they activate a variety of defense pathways. Among them are processes regulated by stress-associated proteins (SAPs). SAPs have a specific zinc finger domain (A20) at the N-terminus and either AN1 or C2H2 at the C-terminus. SAP proteins are involved in many biological processes and in response to various abiotic or biotic constraints. Most SAPs play a role in conferring transgenic stress resistance and are stress-inducible. The emerging field of SAPs in abiotic or biotic stress response regulation has attracted the attention of researchers. Although SAPs interact with various proteins to perform their functions, the exact mechanisms of these interactions remain incompletely understood. This review aims to provide a comprehensive understanding of SAPs, covering their diversity, structure, expression, and subcellular localization. SAPs play a pivotal role in enabling crosstalk between abiotic and biotic stress signaling pathways, making them essential for developing stress-tolerant crops without yield penalties. Collectively, understanding the complex regulation of SAPs in stress responses can contribute to enhancing tolerance against various environmental stresses through several techniques such as transgenesis, classical breeding, or gene editing.Every year, unfavorable environmental factors significantly affect crop productivity and threaten food security. Plants are sessile; they cannot move to escape unfavorable environmental conditions, and therefore, they activate a variety of defense pathways. Among them are processes regulated by stress-associated proteins (SAPs). SAPs have a specific zinc finger domain (A20) at the N-terminus and either AN1 or C2H2 at the C-terminus. SAP proteins are involved in many biological processes and in response to various abiotic or biotic constraints. Most SAPs play a role in conferring transgenic stress resistance and are stress-inducible. The emerging field of SAPs in abiotic or biotic stress response regulation has attracted the attention of researchers. Although SAPs interact with various proteins to perform their functions, the exact mechanisms of these interactions remain incompletely understood. This review aims to provide a comprehensive understanding of SAPs, covering their diversity, structure, expression, and subcellular localization. SAPs play a pivotal role in enabling crosstalk between abiotic and biotic stress signaling pathways, making them essential for developing stress-tolerant crops without yield penalties. Collectively, understanding the complex regulation of SAPs in stress responses can contribute to enhancing tolerance against various environmental stresses through several techniques such as transgenesis, classical breeding, or gene editing. |
Author | Čmiková, Natália Ben Saad, Rania Baazaoui, Narjes Kačániová, Miroslava Ben Akacha, Bouthaina Ben Hsouna, Anis Ben Romdhane, Walid Maisto, Maria Garzoli, Stefania Bouteraa, Mohamed Taieb Chouaibi, Yosra Wiszniewska, Alina |
Author_xml | – sequence: 1 givenname: Rania surname: Ben Saad fullname: Ben Saad, Rania organization: University of Sfax – sequence: 2 givenname: Walid orcidid: 0000-0002-7797-5813 surname: Ben Romdhane fullname: Ben Romdhane, Walid email: walid.brm3@gmail.com organization: King Saud University – sequence: 3 givenname: Natália surname: Čmiková fullname: Čmiková, Natália organization: Slovak University of Agriculture – sequence: 4 givenname: Narjes surname: Baazaoui fullname: Baazaoui, Narjes organization: King Khalid University – sequence: 5 givenname: Mohamed Taieb surname: Bouteraa fullname: Bouteraa, Mohamed Taieb organization: University of Sfax – sequence: 6 givenname: Bouthaina surname: Ben Akacha fullname: Ben Akacha, Bouthaina organization: University of Sfax – sequence: 7 givenname: Yosra surname: Chouaibi fullname: Chouaibi, Yosra organization: University of Sfax – sequence: 8 givenname: Maria surname: Maisto fullname: Maisto, Maria organization: University of Naples Federico II – sequence: 9 givenname: Anis surname: Ben Hsouna fullname: Ben Hsouna, Anis organization: University of Monastir – sequence: 10 givenname: Stefania surname: Garzoli fullname: Garzoli, Stefania organization: Sapienza University – sequence: 11 givenname: Alina surname: Wiszniewska fullname: Wiszniewska, Alina organization: University of Agriculture in Kraków – sequence: 12 givenname: Miroslava surname: Kačániová fullname: Kačániová, Miroslava email: miroslava.kacaniova@gmail.com organization: University of Economics and Human Sciences in Warsaw |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39248672$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1PFTEUhhsDkQu6dWmauMHFXPsxnQ93SBBJMBrR9eRM5wyUzLTXtiO5rPgJ_kZ-iR0uYkJidHXSk-c5pyfvLtmyziIhLzhbcsbEm9ZgWAomcsZYXT4hC64Ez3hVVltkwUShslrk5Q7ZDeFyRgqRPyU7MjWrohQLcv0FA4LXF3Tl3bnHEKizdDWAjTTE-X178xNCcNpAxG6mIhpL988OPr-mPYxmWL-lHyFE9NTj-TRAdD7Q6GiHMNArEy8o2h_GOzuijam1GYvhGdnuYQj4_L7ukW_vj74efshOPx2fHB6cZjrPizLTnHMAnuu871kNgMAq3dZQqLZvWS513SKTQkulewl124oaW1BS61KprujkHtnfzE1__z5hiM1ogsYh3YhuCo3kSlaCcSb_A2WClbJUIqGvHqGXbvI2HZIoXldc8Tvq5T01tSN2zcqbEfy6-R1AApYbQHsXgsf-AeGsmRNu5oSbh4STkD8StIkQjbPRgxn-rtUb7coMuP7HkubdydHZH_cXHma9YA |
CitedBy_id | crossref_primary_10_1111_pbr_13277 |
Cites_doi | 10.1016/j.immuni.2013.03.008 10.3390/genes13101766 10.2298/ABS170529028Z 10.1038/35013076 10.1111/mpp.12793 10.1111/ppl.12728 10.1111/j.1399-3054.2008.01103.x 10.1111/pce.12621 10.1016/j.gene.2023.147284 10.1111/jipb.12706 10.1007/s00344-021-10344-z 10.1371/journal.ppat.1007288 10.1016/j.plaphy.2011.01.004 10.3389/fpls.2017.00994 10.1016/j.bbrc.2012.06.092 10.1007/s13562-021-00704-x 10.1007/s10142-008-0078-7 10.1111/j.1365-3040.2011.02441.x 10.3389/fpls.2021.609351 10.1002/bies.201200181 10.1016/S0006-2952(00)00404-4 10.1093/jxb/erv464 10.1111/tpj.12312 10.1016/j.bbrc.2012.02.044 10.1007/s00425-012-1635-9 10.1111/jipb.12654 10.1371/journal.pone.0236943 10.1007/s11240-019-01677-5 10.1371/journal.pone.0233420 10.1111/pce.13103 10.1007/s00299-015-1825-6 10.1016/j.ijbiomac.2019.04.012 10.1007/s00709-019-01390-2 10.1146/annurev.arplant.55.031903.141701 10.1016/j.ygeno.2007.03.019 10.1016/0378-1119(93)90561-G 10.1016/S1097-2765(00)80022-2 10.1016/j.heliyon.2024.e30933 10.1007/s11248-010-9474-6 10.1016/j.jplph.2018.09.019 10.1038/sj.emboj.7600945 10.1371/journal.pone.0157244 10.3390/pathogens11121426 10.1016/j.jplph.2010.12.013 10.1371/journal.pone.0273416 10.1071/FP17202 10.1104/pp.17.01319 10.1007/s00438-009-0455-5 10.1016/j.tig.2008.05.006 10.1007/s11033-016-4091-y 10.1016/j.pbi.2020.04.006 10.3389/fpls.2019.01453 10.1007/s00438-006-0165-1 10.1073/pnas.0602874103 10.1094/MPMI-04-18-0097-R 10.1080/07391102.2020.1747548 10.1007/s11103-007-9284-2 10.3389/fpls.2022.974396 10.1007/s11103-009-9560-4 10.3390/ijms19092478 10.1016/S2095-3119(17)61681-2 10.1105/tpc.105.039198 10.1016/j.pld.2020.07.010 10.1111/pce.12892 10.1016/j.cj.2022.03.013 10.15835/nbha47411610 10.1016/j.scienta.2021.110147 10.1111/tpj.15088 10.1093/pcp/pcr106 10.1089/omi.2011.0095 10.1007/s00299-014-1626-3 10.1038/emboj.2012.241 10.3390/horticulturae8050363 10.1016/j.envexpbot.2019.05.007 10.1007/s00438-016-1252-6 10.1007/s11103-011-9748-2 10.1016/S0378-1119(00)00365-6 10.1093/jxb/erac027 10.1016/j.jplph.2013.01.008 10.1073/pnas.0401572101 10.1016/S0021-9258(18)77165-2 10.3389/fpls.2016.01057 10.3390/ijms232214010 10.1016/j.plantsci.2014.05.016 10.3389/fpls.2022.925744 10.1007/s11240-011-9962-2 10.1371/journal.pone.0020921 10.2135/cropsci2014.01.0047 10.1105/tpc.108.060699 10.1111/j.1469-8137.2011.03740.x 10.1007/s11032-013-9882-4 10.3390/agronomy10060788 10.1038/s41598-017-00471-7 10.1007/s00468-018-1675-2 10.1126/science.289.5488.2350 10.1105/tpc.107.057380 10.1042/BJ20061138 10.3389/fpls.2021.756068 10.3390/ijms231911551 10.3390/horticulturae8020108 10.1016/j.plaphy.2010.01.021 10.1007/s11295-016-1033-8 10.3389/fpls.2019.01336 10.1126/science.1171647 10.1007/s11032-011-9641-3 10.1146/annurev.arplant.53.091401.143329 10.1016/j.jplph.2012.04.007 10.1016/j.plaphy.2021.05.016 10.1146/annurev.biochem.67.1.425 10.1186/s12870-020-02332-4 10.3390/ijms20225782 10.1186/s12284-022-00616-x 10.3390/ijms232214109 10.1016/j.plantsci.2015.05.011 10.1016/j.gene.2008.05.019 10.3390/biom12111583 10.1093/mp/ssn084 10.1007/s11103-012-9964-4 10.1016/S0959-440X(00)00167-6 |
ContentType | Journal Article |
Copyright | 2024 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2024 Wiley Periodicals LLC. |
DBID | AAYXX CITATION NPM 7QL 7QO 7QP 7QR 7SS 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1002/bies.202400097 |
DatabaseName | CrossRef PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef PubMed Virology and AIDS Abstracts AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1521-1878 |
EndPage | n/a |
ExternalDocumentID | 39248672 10_1002_bies_202400097 BIES202400097 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Deanship of Scientific Research at King Khalid University – fundername: Narjes Baazaoui funderid: RGP. 2/88/45 – fundername: Narjes Baazaoui grantid: RGP. 2/88/45 – fundername: Program contract 2023-2026 – fundername: The Tunisian Ministry of Higher Education and Scientific Research |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACKIV ACKOT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BY8 C45 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KD1 KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWR RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UDS V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ XG1 XV2 Y6R YYQ YZZ ZGI ZUP ZXP ZY4 ZZTAW ~IA ~KM ~WT AAMMB AAYXX AEFGJ AETEA AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION NPM 7QL 7QO 7QP 7QR 7SS 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c4467-c111aa14c4ff09aaea08cb9a65bfb043c9be032c35cf3a9bb29eba53cc755d6d3 |
IEDL.DBID | DR2 |
ISSN | 0265-9247 1521-1878 |
IngestDate | Fri Jul 11 16:15:02 EDT 2025 Fri Jul 11 05:40:57 EDT 2025 Mon Jul 21 12:12:25 EDT 2025 Mon Jul 21 06:04:55 EDT 2025 Thu Apr 24 23:05:24 EDT 2025 Thu Jul 24 02:06:44 EDT 2025 Wed Jan 22 17:15:38 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | development redox regulation ubiquitination abiotic and biotic stress stress‐associated protein gene expression tolerance |
Language | English |
License | 2024 Wiley Periodicals LLC. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4467-c111aa14c4ff09aaea08cb9a65bfb043c9be032c35cf3a9bb29eba53cc755d6d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-7797-5813 |
OpenAccessLink | https://hdl.handle.net/11573/1719538 |
PMID | 39248672 |
PQID | 3119815152 |
PQPubID | 37030 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_3153820103 proquest_miscellaneous_3102073752 proquest_journals_3119815152 pubmed_primary_39248672 crossref_primary_10_1002_bies_202400097 crossref_citationtrail_10_1002_bies_202400097 wiley_primary_10_1002_bies_202400097_BIES202400097 |
PublicationCentury | 2000 |
PublicationDate | November 2024 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cambridge |
PublicationTitle | BioEssays |
PublicationTitleAlternate | Bioessays |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1993; 128 2000; 256 2020; 20 2019; 10 2022; 23 2011; 52 2020; 15 2023; 862 2018; 41 2021; 285 2011; 191 2021; 165 2020; 10 2018; 45 2016; 39 2019; 165 2019; 20 2006; 25 2000; 405 2012; 419 2008; 24 2008; 20 2018; 32 2021; 43 2019; 32 2011; 75 2007; 90 2024; 10 2012; 35 2011; 6 1998; 67 2012; 31 2016; 12 2016; 11 2018; 19 2004; 55 2016; 7 2018; 17 2018; 231 2010; 48 2015; 237 2013; 76 2022; 8 2019; 47 2022; 12 2022; 13 2022; 15 2022; 10 1998; 1 2022; 11 2013; 170 2016; 291 2008; 133 2012; 236 2022; 17 2014; 33 2018; 14 2006; 103 2017; 40 2015; 34 2017; 7 2017; 8 2002; 53 2022; 73 2017; 44 2008; 8 2020; 56 2011; 15 2012; 169 2008; 420 2021; 30 1990; 265 2011; 168 2000; 289 2021; 39 2020; 9 2018; 70 2011; 20 2000; 60 2009; 282 2008; 66 2001; 11 2021; 41 2009; 324 2010; 72 2014; 54 2004; 101 2012; 80 2021; 105 2011; 30 2006; 18 2006 2017; 175 2018; 60 2012; 424 2006; 276 2006; 399 2021; 12 2011; 107 2021; 11 2013; 38 2013; 32 2013; 35 2019; 256 2019; 139 2011; 49 2009; 2 2014; 225 2016; 67 2019; 132 e_1_2_14_114_1 e_1_2_14_73_1 e_1_2_14_96_1 e_1_2_14_110_1 e_1_2_14_31_1 e_1_2_14_50_1 e_1_2_14_92_1 e_1_2_14_35_1 e_1_2_14_12_1 e_1_2_14_54_1 e_1_2_14_39_1 e_1_2_14_77_1 e_1_2_14_16_1 e_1_2_14_58_1 e_1_2_14_6_1 e_1_2_14_121_1 e_1_2_14_107_1 e_1_2_14_103_1 e_1_2_14_85_1 e_1_2_14_2_1 e_1_2_14_20_1 e_1_2_14_62_1 e_1_2_14_81_1 e_1_2_14_24_1 e_1_2_14_43_1 e_1_2_14_66_1 e_1_2_14_28_1 e_1_2_14_89_1 e_1_2_14_47_1 Fatima S. (e_1_2_14_45_1) 2021; 11 e_1_2_14_119_1 e_1_2_14_115_1 e_1_2_14_72_1 e_1_2_14_95_1 e_1_2_14_111_1 e_1_2_14_30_1 e_1_2_14_53_1 e_1_2_14_91_1 e_1_2_14_11_1 e_1_2_14_34_1 e_1_2_14_57_1 e_1_2_14_15_1 e_1_2_14_38_1 e_1_2_14_76_1 e_1_2_14_99_1 Lai W. (e_1_2_14_56_1) 2020; 9 e_1_2_14_120_1 e_1_2_14_7_1 e_1_2_14_108_1 e_1_2_14_104_1 e_1_2_14_84_1 e_1_2_14_100_1 e_1_2_14_42_1 e_1_2_14_80_1 e_1_2_14_3_1 e_1_2_14_61_1 e_1_2_14_23_1 e_1_2_14_46_1 e_1_2_14_65_1 e_1_2_14_27_1 e_1_2_14_88_1 e_1_2_14_69_1 e_1_2_14_116_1 e_1_2_14_94_1 e_1_2_14_112_1 e_1_2_14_75_1 e_1_2_14_52_1 e_1_2_14_90_1 e_1_2_14_71_1 e_1_2_14_10_1 e_1_2_14_33_1 e_1_2_14_14_1 e_1_2_14_98_1 e_1_2_14_37_1 e_1_2_14_79_1 e_1_2_14_8_1 e_1_2_14_109_1 e_1_2_14_123_1 e_1_2_14_105_1 e_1_2_14_60_1 e_1_2_14_83_1 e_1_2_14_101_1 e_1_2_14_41_1 e_1_2_14_64_1 e_1_2_14_4_1 e_1_2_14_68_1 e_1_2_14_22_1 e_1_2_14_87_1 e_1_2_14_49_1 e_1_2_14_26_1 e_1_2_14_19_1 e_1_2_14_117_1 e_1_2_14_113_1 e_1_2_14_74_1 e_1_2_14_97_1 e_1_2_14_51_1 e_1_2_14_70_1 e_1_2_14_93_1 e_1_2_14_13_1 e_1_2_14_32_1 e_1_2_14_55_1 e_1_2_14_17_1 e_1_2_14_36_1 e_1_2_14_59_1 e_1_2_14_78_1 e_1_2_14_29_1 e_1_2_14_5_1 e_1_2_14_122_1 e_1_2_14_9_1 e_1_2_14_106_1 e_1_2_14_102_1 e_1_2_14_86_1 e_1_2_14_63_1 e_1_2_14_40_1 e_1_2_14_82_1 e_1_2_14_67_1 e_1_2_14_21_1 e_1_2_14_44_1 e_1_2_14_25_1 e_1_2_14_48_1 e_1_2_14_18_1 e_1_2_14_118_1 |
References_xml | – volume: 66 start-page: 445 year: 2008 end-page: 462 article-title: Overexpression of , a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice publication-title: Plant Molecular Biology – volume: 33 start-page: 1425 year: 2014 end-page: 40 article-title: OsiSAP1 overexpression improves water‐deficit stress tolerance in transgenic rice by affecting expression of endogenous stress‐related genes publication-title: Plant Cell Rep. – volume: 45 start-page: 378 year: 2018 end-page: 91 article-title: The gene isolated from the halotolerant improves salt and ionic tolerance in transgenic tobacco lines publication-title: Functional Plant Biology – volume: 18 start-page: 1084 year: 2006 end-page: 1098 article-title: The E3 ubiquitin ligase activity of Arabidopsis plant U‐BOX17 and its functional tobacco homolog ACRE276 are required for cell death and defense publication-title: Plant Cell – volume: 60 start-page: 745 year: 2018 end-page: 756 article-title: Cold signaling in plants: Insights into mechanisms and regulation publication-title: Journal of Integrative Plant Biology – volume: 10 start-page: 1336 year: 2019 article-title: Potential mechanisms of abiotic stress tolerance in crop plants induced by thiourea publication-title: Frontiers in Plant Science – volume: 8 start-page: 108 year: 2022 article-title: Identification and expression analysis of zinc finger A20/AN1 stress‐associated genes responding to abiotic stress in Eggplant publication-title: Horticulturae – volume: 105 start-page: 1072 year: 2021 end-page: 1082 article-title: The emergence and evolution of intron‐poor and intronless genes in intron‐rich plant gene families publication-title: Plant Journal – volume: 24 start-page: 375 year: 2008 end-page: 378 article-title: Rapidly regulated genes are intron poor publication-title: Trends in Genetics – volume: 73 start-page: 2420 year: 2022 end-page: 2433 article-title: A stress‐associated protein OsSAP8 modulates gibberellic acid biosynthesis by reducing the promotive effect of transcription factor OsbZIP58 on OsKO2 publication-title: Journal of Experimental Botany – volume: 56 start-page: 99 year: 2020 end-page: 108 article-title: Plant NLRs get by with a little help from their friends publication-title: Current Opinion in Plant Biology – volume: 41 start-page: 848 year: 2021 end-page: 862 article-title: Expression of an A20/AN1 stress‐associated protein from in rice deregulates stress‐related genes publication-title: Journal of Plant Growth Regulation – volume: 236 start-page: 567 year: 2012 end-page: 577 article-title: Overexpression of a stress‐associated protein gene ( ) leads to nitric oxide accumulation and confers osmotic and salt stress tolerance in transgenic tobacco publication-title: Planta – volume: 43 start-page: 152 year: 2021 end-page: 162 article-title: Genomic characterization and expression profiles of stress‐associated proteins (SAPs) in castor bean ( ) publication-title: Plant Divers – volume: 289 start-page: 2350 year: 2000 end-page: 2354 article-title: Failure to regulate TNF‐induced NF‐kappaB and cell death responses in A20‐deficient mice publication-title: Science – volume: 20 start-page: 1003 year: 2011 end-page: 1018 article-title: Promoter of the gene from the halophyte grass directs developmental‐regulated, stress‐inducible, and organ‐specific gene expression in transgenic tobacco publication-title: Transgenic Research – year: 2006 article-title: The NF‐kB‐mediated control of ROS and JNK signaling – volume: 17 year: 2022 article-title: Genome‐wide in silico identification and characterization of the stress associated protein (SAP) gene family encoding A20/AN1 zinc‐finger proteins in potato ( L.) publication-title: PLoS ONE – volume: 20 start-page: 156 year: 2020 article-title: Identification, gene expression and genetic polymorphism of zinc finger A20/AN1 stress‐associated genes, , in salt stressed barley from Kazakhstan publication-title: BMC Plant Biology – volume: 32 start-page: 823 year: 2018 end-page: 833 article-title: Downregulation of stress‐associated protein 1 (PagSAP1) increases salt stress tolerance in poplar ( × ) publication-title: Trees – volume: 10 start-page: 1453 year: 2019 article-title: Genomic analysis of stress associated proteins in soybean and the role of GmSAP16 in abiotic stress responses in and soybean publication-title: Frontiers in Plant Science – volume: 34 start-page: 1791 year: 2015 end-page: 1806 article-title: The promoter of the gene from the halophyte grass directs a stress‐inducible expression pattern in transgenic rice plants publication-title: Plant Cell Reports – volume: 35 start-page: 626 year: 2012 end-page: 643 article-title: Expression of the gene in rice confers broad tolerance to abiotic stresses through maintenance of photosynthesis publication-title: Plant, Cell and Environment – volume: 15 year: 2020 article-title: Characterization of a novel gene promoter from : Tissue specificity and environmental stress responsiveness publication-title: PLoS ONE – volume: 47 start-page: 1168 year: 2019 end-page: 1177 article-title: Identification and characterization of a SEPALLATA‐like MADS‐box gene from cucumber ( L.) publication-title: Notulae Botanicae Horti Agrobotanici – volume: 256 start-page: 113 year: 2000 end-page: 121 article-title: Cloning and characterization of AWP1, a novel protein that associates with serine/threonine kinase PRK1 in vivo publication-title: Gene – volume: 11 start-page: 1426 year: 2022 article-title: Genome‐wide identification and characterisation of stress‐associated protein gene family to biotic and abiotic stresses of grapevine publication-title: Pathogens – volume: 8 start-page: 363 year: 2022 article-title: Genome‐wide analyses of tea plant stress‐associated proteins (SAPs) reveal the role of in increased drought tolerance in transgenic tomatoes publication-title: Horticulturae – volume: 165 start-page: 1 year: 2021 end-page: 9 article-title: Comprehensive analysis of the stress associated protein (SAP) gene family in and the function of in salt tolerance publication-title: Plant Physiology and Biochemistry – volume: 10 start-page: 1601 year: 2022 end-page: 1610 article-title: A soybean A20/AN1 domain‐containing stress‐associated protein gene activated by GmAREB3, increases drought stress resistance in soybean by mediating ABA signaling publication-title: Crop Journal – volume: 12 year: 2021 article-title: Differential functions of pepper stress‐associated proteins in response to abiotic stresses publication-title: Frontiers in Plant Science – volume: 420 start-page: 135 year: 2008 end-page: 144 article-title: Expression analysis of rice A20/AN1‐type zinc finger genes and characterization of ZFP177 that contributes to temperature stress tolerance publication-title: Gene – volume: 23 year: 2022 article-title: Comprehensive identification and functional analysis of stress‐associated protein (SAP) genes in osmotic stress in maize publication-title: International Journal of Molecular Sciences – volume: 10 start-page: 788 year: 2020 article-title: The role of stress‐responsive transcription factors in modulating abiotic stress tolerance in Plants publication-title: Agronomy‐Basel – volume: 60 start-page: 1143 year: 2000 end-page: 1151 article-title: A20 and A20‐binding proteins as cellular inhibitors of nuclear factor‐κB‐dependent gene expression and apoptosis publication-title: Biochemical Pharmacology – volume: 60 start-page: 805 year: 2018 end-page: 826 article-title: Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack publication-title: Journal of Integrative Plant Biology – volume: 6 year: 2011 article-title: A novel stress‐associated protein ‘AtSAP10’ from confers tolerance to nickel, manganese, zinc, and high temperature stress publication-title: PLoS ONE – volume: 132 start-page: 888 year: 2019 end-page: 896 article-title: Stress associated protein from : Heterologous expression, antioxidant and antimicrobial activities with its preservative effect against inoculated in beef meat publication-title: International Journal of Biological Macromolecules – volume: 170 start-page: 874 year: 2013 end-page: 877 article-title: stress associated protein 1 gene ( ) overexpression confers tolerance to abiotic stress and impacts proline accumulation in transgenic tobacco publication-title: Journal of Plant Physiology – volume: 7 start-page: 1057 year: 2016 article-title: Rice stress associated protein 1 (OsSAP1) interacts with aminotransferase (OsAMTR1) and pathogenesis‐related 1a protein (OsSCP) and regulates abiotic stress responses publication-title: Frontiers in Plant Science – volume: 7 start-page: 332 year: 2017 article-title: Dual regulation of water retention and cell growth by a stress‐associated protein (SAP) gene in publication-title: Scientific Reports – volume: 52 start-page: 1569 year: 2011 end-page: 1582 article-title: Achievements and challenges in understanding plant abiotic stress responses and tolerance publication-title: Plant & Cell Physiology – volume: 419 start-page: 436 year: 2012 end-page: 440 article-title: Polyubiquitin recognition by AtSAP5, an A20‐type zinc finger containing protein from publication-title: Biochemical and Biophysical Research Communications – volume: 862 year: 2023 article-title: AoSAP8‐P encoding A20 and/or AN1 type zinc finger protein in L. Improving stress tolerance in transgenic publication-title: Gene – volume: 282 start-page: 153 year: 2009 end-page: 164 article-title: Characterization and phylogenetic analysis of environmental stress‐responsive SAP gene family encoding A20/AN1 zinc finger proteins in tomato publication-title: Molecular Genetics and Genomics – volume: 75 start-page: 451 year: 2011 end-page: 466 article-title: SAP5 functions as a positive regulator of stress responses and exhibits E3 ubiquitin ligase activity publication-title: Plant Molecular Biology – volume: 324 start-page: 742 year: 2009 end-page: 744 article-title: Innate immunity in plants: An arms race between pattern recognition receptors in plants and effectors in microbial pathogens publication-title: Science – volume: 13 start-page: 1766 year: 2022 article-title: Identification, phylogeny, divergence, structure, and expression analysis of A20/AN1 zinc finger domain containing stress‐associated proteins (SAPs) genes in Jatropha curcas publication-title: L. Genes – volume: 23 year: 2022 article-title: Identification and analysis of stress‐associated proteins (SAPs) protein family and drought tolerance of ZmSAP8 in transgenic publication-title: International Journal of Molecular Sciences – volume: 67 start-page: 315 year: 2016 end-page: 326 article-title: An A20/AN1‐type zinc finger protein modulates gibberellins and abscisic acid contents and increases sensitivity to abiotic stress in rice ( ) publication-title: Journal of Experimental Botany – volume: 32 start-page: 566 year: 2019 end-page: 582 article-title: Tomato stress‐associated protein 4 contributes positively to immunity against necrotrophic fungus publication-title: Molecular Plant‐Microbe Interactions – volume: 17 start-page: 507 year: 2018 end-page: 516 article-title: A wheat gene TaSAP17‐D encoding an AN1/AN1 zinc finger protein improves salt stress tolerance in transgenic publication-title: Journal of Integrative Agriculture – volume: 399 start-page: 361 year: 2006 end-page: 372 article-title: Ubiquitin‐binding domains publication-title: Biochemical Journal – volume: 15 year: 2020 article-title: A LmSAP protein modulates gibberellic acid homeostasis via its A20 domain under abiotic stress conditions publication-title: PLoS ONE – volume: 39 start-page: 2106 year: 2021 end-page: 2117 article-title: Global transcriptome analysis of novel stress associated protein (SAP) genes expression dynamism of combined abiotic stresses in (L.) publication-title: Journal of Biomolecular Structure & Dynamics – volume: 165 start-page: 108 year: 2019 end-page: 119 article-title: Genome‐wide identification of stress‐associated proteins (SAP) with A20/AN1 zinc finger domains associated with abiotic stresses responses in publication-title: Environmental and Experimental Botany – volume: 13 year: 2022 article-title: Knockdown of PagSAP11 confers drought resistance and promotes lateral shoot growth in hybrid poplar ( x var. ) publication-title: Frontiers in Plant Science – volume: 20 start-page: 1899 year: 2008 end-page: 1914 article-title: PUB22 and PUB23 are homologous U‐box E3 ubiquitin ligases that play combinatory roles in response to drought stress publication-title: Plant Cell – volume: 191 start-page: 721 year: 2011 end-page: 732 article-title: Rice A20/AN1 zinc‐finger containing stress‐associated proteins (SAP1/11) and a receptor‐like cytoplasmic kinase (OsRLCK253) interact via A20 zinc‐finger and confer abiotic stress tolerance in transgenic plants publication-title: New Phytologist – volume: 90 start-page: 265 year: 2007 end-page: 275 article-title: Phylogenetic and expression analysis of ZnF‐AN1 genes in plants publication-title: Genomics – volume: 12 year: 2021 article-title: Cloning and characterization of TaSAP7‐A, a member of the stress‐associated protein family in common wheat publication-title: Frontiers in Plant Science – volume: 30 start-page: 779 year: 2021 end-page: 792 article-title: Structural evolution and function of stress associated proteins in regulating biotic and abiotic stress responses in plants publication-title: Journal of Plant Biochemistry and Biotechnology – volume: 128 start-page: 181 year: 1993 end-page: 188 article-title: Two related localized mRNAs from encode ubiquitin‐like fusion proteins publication-title: Gene – volume: 25 start-page: 554 year: 2006 end-page: 564 article-title: A novel ubiquitin‐binding protein ZNF216 functioning in muscle atrophy publication-title: Embo Journal – volume: 169 start-page: 1261 year: 2012 end-page: 1270 article-title: Expression of in cotton up‐regulates putative stress‐responsive genes and improves the tolerance to rapidly developing water deficit and moderate heat stress publication-title: Journal of Plant Physiology – volume: 31 start-page: 3856 year: 2012 end-page: 3870 article-title: Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF‐kappaB regulation publication-title: Embo Journal – volume: 53 start-page: 247 year: 2002 end-page: 273 article-title: Salt and drought stress signal transduction in plants publication-title: Annual Review of Plant Biology – volume: 1 start-page: 213 year: 1998 end-page: 222 article-title: Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of development publication-title: Molecular Cell – volume: 80 start-page: 503 year: 2012 end-page: 517 article-title: MusaSAP1, a A20/AN1 zinc finger gene from banana functions as a positive regulator in different stress responses publication-title: Plant Molecular Biology – volume: 265 start-page: 14705 year: 1990 end-page: 14708 article-title: The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein publication-title: Journal of Biological Chemistry – volume: 49 start-page: 303 year: 2011 end-page: 310 article-title: A stress‐associated protein containing A20/AN1 zing‐finger domains expressed in seeds publication-title: Plant Physiology and Biochemistry – volume: 19 start-page: 2478 year: 2018 article-title: Genome‐wide analysis and cloning of the apple stress‐associated protein gene family reveals MdSAP15, which confers tolerance to drought and osmotic stresses in transgenic publication-title: International Journal of Molecular Sciences – volume: 10 year: 2024 article-title: stress‐associated protein promotes water deficit resilience in engineered durum wheat publication-title: Heliyon – volume: 175 start-page: 1878 year: 2017 end-page: 1892 article-title: The E3 ligase TaSAP5 alters drought stress responses by promoting the degradation of DRIP proteins publication-title: Plant Physiology – volume: 15 start-page: 69 year: 2022 article-title: OsSAP6 pBrnositively regulates soda saline‐alkaline stress tolerance in rice publication-title: Rice – volume: 139 start-page: 249 year: 2019 end-page: 259 article-title: Stress associated protein 1 regulates the development of glandular trichomes in publication-title: Plant Cell Tissue and Organ – volume: 54 start-page: 2724 year: 2014 end-page: 2734 article-title: Function analysis of sugarcane A20/AN1 zinc‐finger protein gene in transgenic tobacco publication-title: Crop Science – volume: 12 start-page: 1 year: 2016 end-page: 16 article-title: Genome‐wide survey and expression analysis of the stress‐associated protein gene family in desert poplar, publication-title: Tree Genetics & Genomes – volume: 11 start-page: 39 year: 2001 end-page: 46 article-title: Zinc finger proteins: New insights into structural and functional diversity publication-title: Current Opinion in Structural Biology – volume: 70 start-page: 87 year: 2018 end-page: 98 article-title: Genome‐wide identification and characterization of stress‐associated protein (SAP) gene family encoding A20/AN1 zinc‐finger proteins in publication-title: Archives of Biological Sciences – volume: 23 year: 2022 article-title: Genome‐wide identification of the A20/AN1 zinc finger protein family genes in and its two relatives and function analysis of IbSAP16 in salinity tolerance publication-title: International Journal of Molecular Sciences – volume: 11 year: 2016 article-title: Overexpression of OsSAP16 regulates photosynthesis and the expression of a broad range of stress response genes in rice ( L.) publication-title: PLoS ONE – volume: 11 start-page: 117 year: 2021 article-title: Genome‐wide identification of stress‐associated proteins (SAPs) encoding A20/AN1 zinc finger in almond ( ) and their differential expression during fruit development publication-title: Plants (Basel) – volume: 424 start-page: 1 year: 2012 end-page: 6 article-title: Human intronless genes: Functional groups, associated diseases, evolution, and mRNA processing in absence of splicing publication-title: Biochemical and Biophysical Research Communications – volume: 8 start-page: 301 year: 2008 end-page: 307 article-title: A20/AN1 zinc‐finger domain‐containing proteins in plants and animals represent common elements in stress response publication-title: Functional & Integrative Genomics – volume: 231 start-page: 234 year: 2018 end-page: 243 article-title: A stress‐associated protein, LmSAP, from the halophyte provides tolerance to heavy metals in tobacco through increased ROS scavenging and metal detoxification processes publication-title: Journal of Plant Physiology – volume: 225 start-page: 68 year: 2014 end-page: 76 article-title: Rice SAPs are responsive to multiple biotic stresses and overexpression of OsSAP1, an A20/AN1 zinc‐finger protein, enhances the basal resistance against pathogen infection in tobacco publication-title: Plant Science – volume: 165 start-page: 690 year: 2019 end-page: 700 article-title: The role of C2H2 zinc finger proteins in plant responses to abiotic stresses publication-title: Physiologia Plantarum – volume: 237 start-page: 80 year: 2015 end-page: 92 article-title: Rice OsiSAP7 negatively regulates ABA stress signalling and imparts sensitivity to water‐deficit stress in publication-title: Plant Science – volume: 55 start-page: 373 year: 2004 end-page: 399 article-title: Reactive oxygen species: Metabolism, oxidative stress, and signal transduction publication-title: Annual Review of Plant Biology – volume: 32 start-page: 437 year: 2013 end-page: 449 article-title: A novel stress‐associated protein SbSAP14 from confers tolerance to salt stress in transgenic rice publication-title: Molecular Breeding – volume: 103 start-page: 8281 year: 2006 end-page: 8286 article-title: The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1 publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 20 start-page: 815 year: 2019 end-page: 830 article-title: Tomato SlSAP3, a member of the stress‐associated protein family, is a positive regulator of immunity against pv. tomato DC3000 publication-title: Molecular plant pathology – volume: 44 start-page: 5 year: 2017 end-page: 9 article-title: Isolation and characterization of , a gene which enhances the salinity tolerance of publication-title: Molecular Biology Reports – volume: 67 start-page: 425 year: 1998 end-page: 479 article-title: The ubiquitin system publication-title: Annual Review of Biochemistry – volume: 256 start-page: 1333 year: 2019 end-page: 1344 article-title: Functional domain analysis of LmSAP protein reveals the crucial role of the zinc‐finger A20 domain in abiotic stress tolerance publication-title: Protoplasma – volume: 285 year: 2021 article-title: A stress associated protein from Chinese wild , VaSAP15, enhances the cold tolerance of transgenic grapes publication-title: Scientia Horticulturae – volume: 133 start-page: 566 year: 2008 end-page: 583 article-title: The dynamic thiol‐disulphide redox proteome of the chloroplast as revealed by differential electrophoretic mobility publication-title: Physiologia Plantarum – volume: 72 start-page: 171 year: 2010 end-page: 190 article-title: Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc‐finger “ ” gene isolated from the halophyte grass publication-title: Plant Molecular Biology – volume: 291 start-page: 2199 year: 2016 end-page: 2213 article-title: Genome‐wide identification and expression analysis of stress‐associated proteins (SAPs) containing A20/AN1 zinc finger in cotton publication-title: Molecular Genetics and Genomics – volume: 20 start-page: 5782 year: 2019 article-title: A stress‐associated protein, PtSAP13, from provides tolerance to salt stress publication-title: International Journal of Molecular Sciences – volume: 41 start-page: 1171 year: 2018 end-page: 1185 article-title: A stress‐associated protein, AtSAP13, from provides tolerance to multiple abiotic stresses publication-title: Plant, Cell and Environment – volume: 38 start-page: 896 year: 2013 end-page: 905 article-title: Dimerization and ubiquitin mediated recruitment of A20, a complex deubiquitinating enzyme publication-title: Immunity – volume: 48 start-page: 351 year: 2010 end-page: 358 article-title: Redox regulation of water stress responses in field‐grown plants. Role of hydrogen peroxide and ascorbate publication-title: Plant Physiology and Biochemistry – volume: 8 start-page: 994 year: 2017 article-title: Expression of the gene enhances rice yield under field drought at the reproductive stage publication-title: Frontiers in Plant Science – volume: 76 start-page: 481 year: 2013 end-page: 493 article-title: AtMBP‐1, an alternative translation product of LOS2, affects abscisic acid responses and is modulated by the E3 ubiquitin ligase AtSAP5 publication-title: Plant Journal – volume: 20 start-page: 1693 year: 2008 end-page: 1707 article-title: DREB2A‐interacting proteins function as RING E3 ligases and negatively regulate plant drought stress–responsive gene expression publication-title: The Plant Cell – volume: 14 year: 2018 article-title: Plant A20/AN1 protein serves as the important hub to mediate antiviral immunity publication-title: Plos Pathogens – volume: 39 start-page: 951 year: 2016 end-page: 964 article-title: Stress‐triggered redox signalling: What's in prospect? publication-title: Plant, Cell and Environment – volume: 2 start-page: 357 year: 2009 end-page: 367 article-title: Redox‐dependent regulation of the stress‐induced zinc‐finger protein SAP12 in publication-title: Molecular Plant – volume: 13 year: 2022 article-title: Multifaceted roles of zinc finger proteins in regulating various agronomic traits in rice publication-title: Frontiers in Plant Science – volume: 30 start-page: 521 year: 2011 end-page: 33 article-title: Marker‐free transgenic durum wheat cv. Karim expressing the AlSAP gene exhibits a high level of tolerance to salinity and dehydration stresses publication-title: Molecular Breeding – volume: 35 start-page: 639 year: 2013 end-page: 648 article-title: SAPs as novel regulators of abiotic stress response in plants publication-title: BioEssays – volume: 405 start-page: 462 year: 2000 end-page: 466 article-title: Targeted destabilization of HY5 during light‐regulated development of publication-title: Nature – volume: 40 start-page: 702 year: 2017 end-page: 716 article-title: stress associated protein 9 mediates biotic and abiotic stress responsive ABA signaling via the proteasome pathway publication-title: Plant, Cell and Environment – volume: 15 start-page: 839 year: 2011 end-page: 857 article-title: Transcription regulation of abiotic stress responses in rice: A combined action of transcription factors and epigenetic mechanisms publication-title: Omics – volume: 101 start-page: 6309 year: 2004 end-page: 6314 article-title: Overexpression of a zinc‐finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco publication-title: PNAS – volume: 12 start-page: 1583 year: 2022 article-title: Evaluation of halophyte biopotential as an unused natural resource: The case of publication-title: Biomolecules – volume: 168 start-page: 1098 year: 2011 end-page: 1105 article-title: OsDOG, a gibberellin‐induced A20/AN1 zinc‐finger protein, negatively regulates gibberellin‐mediated cell elongation in rice publication-title: Journal of Plant Physiology – volume: 276 start-page: 565 year: 2006 end-page: 575 article-title: Genome‐wide analysis of the stress associated protein (SAP) gene family containing A20/AN1 zinc‐finger(s) in rice and their phylogenetic relationship with publication-title: Molecular Genetics and Genomics – volume: 107 start-page: 101 year: 2011 end-page: 112 article-title: A putative maize zinc‐finger protein gene, ZmAN13, participates in abiotic stress response publication-title: Plant Cell, Tissue and Organ – volume: 9 start-page: 400 year: 2020 article-title: Identification and expression analysis of stress‐associated proteins (SAPs) containing A20/AN1 zinc finger in cucumber publication-title: Plants (Basel) – ident: e_1_2_14_89_1 doi: 10.1016/j.immuni.2013.03.008 – ident: e_1_2_14_117_1 doi: 10.3390/genes13101766 – ident: e_1_2_14_10_1 doi: 10.2298/ABS170529028Z – ident: e_1_2_14_77_1 doi: 10.1038/35013076 – ident: e_1_2_14_73_1 doi: 10.1111/mpp.12793 – ident: e_1_2_14_19_1 doi: 10.1111/ppl.12728 – ident: e_1_2_14_94_1 doi: 10.1111/j.1399-3054.2008.01103.x – ident: e_1_2_14_87_1 doi: 10.1111/pce.12621 – ident: e_1_2_14_120_1 doi: 10.1016/j.gene.2023.147284 – ident: e_1_2_14_2_1 doi: 10.1111/jipb.12706 – ident: e_1_2_14_21_1 doi: 10.1007/s00344-021-10344-z – ident: e_1_2_14_16_1 doi: 10.1371/journal.ppat.1007288 – ident: e_1_2_14_18_1 doi: 10.1016/j.plaphy.2011.01.004 – ident: e_1_2_14_101_1 doi: 10.3389/fpls.2017.00994 – ident: e_1_2_14_49_1 doi: 10.1016/j.bbrc.2012.06.092 – ident: e_1_2_14_20_1 doi: 10.1007/s13562-021-00704-x – ident: e_1_2_14_37_1 doi: 10.1007/s10142-008-0078-7 – ident: e_1_2_14_58_1 doi: 10.1111/j.1365-3040.2011.02441.x – ident: e_1_2_14_75_1 doi: 10.3389/fpls.2021.609351 – ident: e_1_2_14_8_1 doi: 10.1002/bies.201200181 – ident: e_1_2_14_112_1 doi: 10.1016/S0006-2952(00)00404-4 – ident: e_1_2_14_55_1 doi: 10.1093/jxb/erv464 – ident: e_1_2_14_17_1 doi: 10.1111/tpj.12312 – ident: e_1_2_14_90_1 doi: 10.1016/j.bbrc.2012.02.044 – ident: e_1_2_14_104_1 doi: 10.1007/s00425-012-1635-9 – ident: e_1_2_14_3_1 doi: 10.1111/jipb.12654 – ident: e_1_2_14_67_1 doi: 10.1371/journal.pone.0236943 – volume: 11 start-page: 117 year: 2021 ident: e_1_2_14_45_1 article-title: Genome‐wide identification of stress‐associated proteins (SAPs) encoding A20/AN1 zinc finger in almond (Prunus dulcis) and their differential expression during fruit development publication-title: Plants (Basel) – ident: e_1_2_14_109_1 doi: 10.1007/s11240-019-01677-5 – ident: e_1_2_14_69_1 doi: 10.1371/journal.pone.0233420 – ident: e_1_2_14_9_1 doi: 10.1111/pce.13103 – ident: e_1_2_14_66_1 doi: 10.1007/s00299-015-1825-6 – ident: e_1_2_14_116_1 doi: 10.1016/j.ijbiomac.2019.04.012 – ident: e_1_2_14_23_1 doi: 10.1007/s00709-019-01390-2 – ident: e_1_2_14_92_1 doi: 10.1146/annurev.arplant.55.031903.141701 – ident: e_1_2_14_11_1 doi: 10.1016/j.ygeno.2007.03.019 – ident: e_1_2_14_39_1 doi: 10.1016/0378-1119(93)90561-G – ident: e_1_2_14_76_1 doi: 10.1016/S1097-2765(00)80022-2 – ident: e_1_2_14_100_1 doi: 10.1016/j.heliyon.2024.e30933 – ident: e_1_2_14_65_1 doi: 10.1007/s11248-010-9474-6 – ident: e_1_2_14_61_1 doi: 10.1016/j.jplph.2018.09.019 – ident: e_1_2_14_71_1 doi: 10.1038/sj.emboj.7600945 – ident: e_1_2_14_98_1 doi: 10.1371/journal.pone.0157244 – ident: e_1_2_14_119_1 doi: 10.3390/pathogens11121426 – ident: e_1_2_14_52_1 doi: 10.1016/j.jplph.2010.12.013 – ident: e_1_2_14_107_1 doi: 10.1371/journal.pone.0273416 – ident: e_1_2_14_30_1 doi: 10.1071/FP17202 – ident: e_1_2_14_78_1 doi: 10.1104/pp.17.01319 – ident: e_1_2_14_33_1 doi: 10.1007/s00438-009-0455-5 – ident: e_1_2_14_48_1 doi: 10.1016/j.tig.2008.05.006 – ident: e_1_2_14_59_1 doi: 10.1007/s11033-016-4091-y – ident: e_1_2_14_113_1 doi: 10.1016/j.pbi.2020.04.006 – ident: e_1_2_14_36_1 doi: 10.3389/fpls.2019.01453 – ident: e_1_2_14_13_1 doi: 10.1007/s00438-006-0165-1 – ident: e_1_2_14_85_1 doi: 10.1073/pnas.0602874103 – ident: e_1_2_14_91_1 doi: 10.1094/MPMI-04-18-0097-R – ident: e_1_2_14_40_1 doi: 10.1080/07391102.2020.1747548 – ident: e_1_2_14_72_1 doi: 10.1007/s11103-007-9284-2 – ident: e_1_2_14_50_1 doi: 10.3389/fpls.2022.974396 – ident: e_1_2_14_29_1 doi: 10.1007/s11103-009-9560-4 – ident: e_1_2_14_42_1 doi: 10.3390/ijms19092478 – volume: 9 start-page: 400 year: 2020 ident: e_1_2_14_56_1 article-title: Identification and expression analysis of stress‐associated proteins (SAPs) containing A20/AN1 zinc finger in cucumber publication-title: Plants (Basel) – ident: e_1_2_14_60_1 doi: 10.1016/S2095-3119(17)61681-2 – ident: e_1_2_14_83_1 doi: 10.1105/tpc.105.039198 – ident: e_1_2_14_14_1 doi: 10.1016/j.pld.2020.07.010 – ident: e_1_2_14_53_1 doi: 10.1111/pce.12892 – ident: e_1_2_14_64_1 doi: 10.1016/j.cj.2022.03.013 – ident: e_1_2_14_57_1 doi: 10.15835/nbha47411610 – ident: e_1_2_14_123_1 doi: 10.1016/j.scienta.2021.110147 – ident: e_1_2_14_96_1 – ident: e_1_2_14_47_1 doi: 10.1111/tpj.15088 – ident: e_1_2_14_5_1 doi: 10.1093/pcp/pcr106 – ident: e_1_2_14_6_1 doi: 10.1089/omi.2011.0095 – ident: e_1_2_14_121_1 doi: 10.1007/s00299-014-1626-3 – ident: e_1_2_14_88_1 doi: 10.1038/emboj.2012.241 – ident: e_1_2_14_44_1 doi: 10.3390/horticulturae8050363 – ident: e_1_2_14_43_1 doi: 10.1016/j.envexpbot.2019.05.007 – ident: e_1_2_14_32_1 doi: 10.1007/s00438-016-1252-6 – ident: e_1_2_14_26_1 doi: 10.1007/s11103-011-9748-2 – ident: e_1_2_14_70_1 doi: 10.1016/S0378-1119(00)00365-6 – ident: e_1_2_14_97_1 doi: 10.1093/jxb/erac027 – ident: e_1_2_14_105_1 doi: 10.1016/j.jplph.2013.01.008 – ident: e_1_2_14_27_1 doi: 10.1073/pnas.0401572101 – ident: e_1_2_14_12_1 doi: 10.1016/S0021-9258(18)77165-2 – ident: e_1_2_14_22_1 doi: 10.3389/fpls.2016.01057 – ident: e_1_2_14_41_1 doi: 10.3390/ijms232214010 – ident: e_1_2_14_115_1 doi: 10.1016/j.plantsci.2014.05.016 – ident: e_1_2_14_54_1 doi: 10.3389/fpls.2022.925744 – ident: e_1_2_14_24_1 doi: 10.1007/s11240-011-9962-2 – ident: e_1_2_14_63_1 doi: 10.1371/journal.pone.0020921 – ident: e_1_2_14_106_1 doi: 10.2135/cropsci2014.01.0047 – ident: e_1_2_14_84_1 doi: 10.1105/tpc.108.060699 – ident: e_1_2_14_25_1 doi: 10.1111/j.1469-8137.2011.03740.x – ident: e_1_2_14_102_1 doi: 10.1007/s11032-013-9882-4 – ident: e_1_2_14_111_1 doi: 10.3390/agronomy10060788 – ident: e_1_2_14_35_1 doi: 10.1038/s41598-017-00471-7 – ident: e_1_2_14_110_1 doi: 10.1007/s00468-018-1675-2 – ident: e_1_2_14_38_1 doi: 10.1126/science.289.5488.2350 – ident: e_1_2_14_86_1 doi: 10.1105/tpc.107.057380 – ident: e_1_2_14_81_1 doi: 10.1042/BJ20061138 – ident: e_1_2_14_15_1 doi: 10.3389/fpls.2021.756068 – ident: e_1_2_14_82_1 doi: 10.3390/ijms231911551 – ident: e_1_2_14_118_1 doi: 10.3390/horticulturae8020108 – ident: e_1_2_14_93_1 doi: 10.1016/j.plaphy.2010.01.021 – ident: e_1_2_14_34_1 doi: 10.1007/s11295-016-1033-8 – ident: e_1_2_14_4_1 doi: 10.3389/fpls.2019.01336 – ident: e_1_2_14_114_1 doi: 10.1126/science.1171647 – ident: e_1_2_14_99_1 doi: 10.1007/s11032-011-9641-3 – ident: e_1_2_14_7_1 doi: 10.1146/annurev.arplant.53.091401.143329 – ident: e_1_2_14_28_1 doi: 10.1016/j.jplph.2012.04.007 – ident: e_1_2_14_103_1 doi: 10.1016/j.plaphy.2021.05.016 – ident: e_1_2_14_80_1 doi: 10.1146/annurev.biochem.67.1.425 – ident: e_1_2_14_108_1 doi: 10.1186/s12870-020-02332-4 – ident: e_1_2_14_62_1 doi: 10.3390/ijms20225782 – ident: e_1_2_14_122_1 doi: 10.1186/s12284-022-00616-x – ident: e_1_2_14_79_1 doi: 10.3390/ijms232214109 – ident: e_1_2_14_74_1 doi: 10.1016/j.plantsci.2015.05.011 – ident: e_1_2_14_68_1 doi: 10.1016/j.gene.2008.05.019 – ident: e_1_2_14_31_1 doi: 10.3390/biom12111583 – ident: e_1_2_14_95_1 doi: 10.1093/mp/ssn084 – ident: e_1_2_14_46_1 doi: 10.1007/s11103-012-9964-4 – ident: e_1_2_14_51_1 doi: 10.1016/S0959-440X(00)00167-6 |
SSID | ssj0009624 |
Score | 2.4754734 |
SecondaryResourceType | review_article |
Snippet | Every year, unfavorable environmental factors significantly affect crop productivity and threaten food security. Plants are sessile; they cannot move to escape... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2400097 |
SubjectTerms | abiotic and biotic stress Biological activity biotic stress Cellular stress response Crop production development Environmental conditions Environmental factors Environmental stress family Food plants Food security gene expression genes Genetic modification genetically modified organisms Genome editing Localization Plant stress Proteins redox regulation stress response stress tolerance stress‐associated protein tolerance transgenesis ubiquitination zinc finger motif Zinc finger proteins |
Title | Research progress on plant stress‐associated protein (SAP) family: Master regulators to deal with environmental stresses |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.202400097 https://www.ncbi.nlm.nih.gov/pubmed/39248672 https://www.proquest.com/docview/3119815152 https://www.proquest.com/docview/3102073752 https://www.proquest.com/docview/3153820103 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTt0wELUqpErdQFsevYVWRkKiXQRy_Uiuu6NVEUICobZI7KKxYyMEStB9LGDVT-g39ks6EyeB26pUKrs87MSJPeMz9swZxrZwlgkjN4QEZAiJUnlI7FCXSZmBCr4EEZrtgqPj7OBUHZ7ps3tR_JEfol9wI8lo9DUJONjJ7h1pqCVLUhBFF8UioBImhy1CRV_u-KNM1mS1RTtDJ2ho5B1rYyp256vPz0p_QM155NpMPftLDLpGR4-Ty53Z1O6429_4HB_zVc_ZYotL-V4cSC_YE1-9ZE9jpsqbZXbbeejxxqEL1SOvK359hf3CY7jJz-8_oO1qX_KG_uGi4u--7p2853EV5QM_AqJl4GN_TknD6vGET2teIlTltBzM7wXd4aX4WD9ZYaf7n799OkjatA2JU6R2HapPgKFyKoTUAHhIR84ayLQNNlXSGetTKZzULkgw1grjLWjpXK51mZVylS1UdeVfMS6k8Sa1RqMBr6RHLGtGWFV4XYYcwdKAJV23Fa7lNKfUGldFZGMWBf3Pov-fA7bdl7-ObB5_LbnRjYKilepJIYf4fkKAYsA2-9soj7TJApWvZ1QGAXgu84fL4DRDbghywNbiCOubg3iVSBCxtmjGyT_aWXxEq6E_e_0_ldbZMzqOAZYbbGE6nvk3iLSm9m0jTb8AJb4iJA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BEYJLeZYuLWAkJOCQNutHsuZWENUC3QpBK3GLbMdGqFVS7ePQnvgJ_EZ-SWfiJGVBgATHOOPEiT32N_bMNwBPcJUJIzc0iREhJFLmIbFDVSZlZmTwpeGhOS6Y7GfjQ_n2k-q8CSkWJvJD9BtupBnNfE0KThvS2xesoZZMSU4cXRSMcBmuUFrvxqr6cMEgpbMmry1aGipBUyPveBtTvr1cf3ld-gVsLmPXZvHZvQG2a3b0OTnaWsztljv7idHxv77rJqy20JTtxLF0Cy756jZcjckqT-_AWeekxxqfLpwhWV2xk2PsGhYjTr5__Wba3vYlaxggvlTs2ced989Z3Eh5wSaGmBnY1H-mvGH1dMbmNSsRrTLaEWY_xN1hUXysn92Fw93XB6_GSZu5IXGSZl6HM6gxQ-lkCKk2xpt05Kw2mbLBplI4bX0quBPKBWG0tVx7a5RwLleqzEqxBitVXfl1YFxor1OrFdrwUniEs3qEVblXZcgRLw0g6fqtcC2tOWXXOC4iITMv6H8W_f8cwNNe_iQSevxWcrMbBkWr2LNCDPH9BAL5AB73t1El6ZzFVL5ekAxi8Fzkf5bBlYY8EcQA7sUh1jcHISvxIGJt3gyUv7SzeImGQ391_18qPYJr44PJXrH3Zv_dBlyn8hhvuQkr8-nCP0DgNbcPG9U6BzWJJj8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIiouPAssFDASEnBIm_UjWXMrlFV5tKqASr1FtmMjRJWs9nGgJ34Cv5FfwkycpF0QIJVjHE_ixDP2N7bnG4DHOMuEkRuaxIgQEinzkNihKpMyMzL40vDQbBfs7We7h_LNkTo6E8Uf-SH6BTeyjGa8JgOflGHrlDTUkifJiaKLYhFW4KLM0hHp9c77UwIpnTVpbdHRUAl6GnlH25jyrWX55WnpN6y5DF2buWd8FUzX6njk5MvmYm433ckvhI7_81nX4EoLTNl21KTrcMFXN-BSTFX59SacdEf0WHOiC8dHVldscowdw2K8yY9v303b175kDf_D54o9_bB98IzFZZTnbM8QLwOb-k-UNayezti8ZiViVUbrwexM1B0Wxcf62Tocjl99fLmbtHkbEidp3HU4fhozlE6GkGpjvElHzmqTKRtsKoXT1qeCO6FcEEZby7W3RgnncqXKrBS3YLWqK38HGBfa69RqhR68FB7BrB6hKPeqDDmipQEkXbcVriU1p9wax0WkY-YF_c-i_58DeNLXn0Q6jz_W3Oi0oGjNelaIIb6fICAfwKP-Nhok7bKYytcLqoMIPBf53-vgPEPnEMQAbkcN65uDgJVYEFGaN3ryj3YWL9Bt6K_unkfoIawd7IyLd6_3396Dy1Qcgy03YHU-Xfj7iLrm9kFjWD8BwKUk9w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+progress+on+plant+stress%E2%80%90associated+protein+%28SAP%29+family%3A+Master+regulators+to+deal+with+environmental+stresses&rft.jtitle=BioEssays&rft.au=Ben+Saad%2C+Rania&rft.au=Ben+Romdhane%2C+Walid&rft.au=%C4%8Cmikov%C3%A1%2C+Nat%C3%A1lia&rft.au=Baazaoui%2C+Narjes&rft.date=2024-11-01&rft.issn=0265-9247&rft.volume=46&rft.issue=11+p.e2400097-&rft_id=info:doi/10.1002%2Fbies.202400097&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0265-9247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0265-9247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0265-9247&client=summon |