Upper thermal limits in terrestrial ectotherms: how constrained are they?
1. Terrestrial ectotherms are likely to face increased periods of heat stress as mean temperatures and temperature variability increase over the next few decades. Here, we consider the extent to which changes in upper thermal limits, through plasticity or evolution, might be constrained, and we surv...
Saved in:
Published in | Functional ecology Vol. 27; no. 4; pp. 934 - 949 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Blackwell Publishing
01.08.2013
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 1. Terrestrial ectotherms are likely to face increased periods of heat stress as mean temperatures and temperature variability increase over the next few decades. Here, we consider the extent to which changes in upper thermal limits, through plasticity or evolution, might be constrained, and we survey insect and reptile data to identify groups likely to be particularly susceptible to thermal stress. 2. Plastic changes increase thermal limits in many terrestrial ectotherms, but tend to have less effect on upper limits than lower limits. 3. Although comparisons across insect species have normally not taken into account the potential for plastic responses, mid-latitude species seem most prone to experience heat stress now and into the future, consistent with data from lizards and other groups. 4. Evolutionary adaptive potential has only been measured for some species; there is likely to be genetic variation for heat responses in populations, but selection and heritability experiments suggest that upper thermal limits may not increase much. 5. Although related species can differ by several degrees in their upper thermal limits, there is strong phylogenetic signal for upper limits. If these reflect evolutionary constraints, substantial molecular changes may be required to increase upper thermal limits. 6. Findings point to many terrestrial ectotherms having a limited potential to change their thermal limits particularly within the context of an average predicted temperature increase of 2—4 °C for mid-latitude populations over the next few decades. |
---|---|
AbstractList | 1.
Terrestrial ectotherms are likely to face increased periods of heat stress as mean temperatures and temperature variability increase over the next few decades. Here, we consider the extent to which changes in upper thermal limits, through plasticity or evolution, might be constrained, and we survey insect and reptile data to identify groups likely to be particularly susceptible to thermal stress.
2.
Plastic changes increase thermal limits in many terrestrial ectotherms, but tend to have less effect on upper limits than lower limits.
3.
Although comparisons across insect species have normally not taken into account the potential for plastic responses, mid‐latitude species seem most prone to experience heat stress now and into the future, consistent with data from lizards and other groups.
4.
Evolutionary adaptive potential has only been measured for some species; there is likely to be genetic variation for heat responses in populations, but selection and heritability experiments suggest that upper thermal limits may not increase much.
5.
Although related species can differ by several degrees in their upper thermal limits, there is strong phylogenetic signal for upper limits. If these reflect evolutionary constraints, substantial molecular changes may be required to increase upper thermal limits.
6.
Findings point to many terrestrial ectotherms having a limited potential to change their thermal limits particularly within the context of an average predicted temperature increase of 2–4 °C for mid‐latitude populations over the next few decades.
Lay Summary 1. Terrestrial ectotherms are likely to face increased periods of heat stress as mean temperatures and temperature variability increase over the next few decades. Here, we consider the extent to which changes in upper thermal limits, through plasticity or evolution, might be constrained, and we survey insect and reptile data to identify groups likely to be particularly susceptible to thermal stress. 2. Plastic changes increase thermal limits in many terrestrial ectotherms, but tend to have less effect on upper limits than lower limits. 3. Although comparisons across insect species have normally not taken into account the potential for plastic responses, mid-latitude species seem most prone to experience heat stress now and into the future, consistent with data from lizards and other groups. 4. Evolutionary adaptive potential has only been measured for some species; there is likely to be genetic variation for heat responses in populations, but selection and heritability experiments suggest that upper thermal limits may not increase much. 5. Although related species can differ by several degrees in their upper thermal limits, there is strong phylogenetic signal for upper limits. If these reflect evolutionary constraints, substantial molecular changes may be required to increase upper thermal limits. 6. Findings point to many terrestrial ectotherms having a limited potential to change their thermal limits particularly within the context of an average predicted temperature increase of 2—4 °C for mid-latitude populations over the next few decades. Summary 1. Terrestrial ectotherms are likely to face increased periods of heat stress as mean temperatures and temperature variability increase over the next few decades. Here, we consider the extent to which changes in upper thermal limits, through plasticity or evolution, might be constrained, and we survey insect and reptile data to identify groups likely to be particularly susceptible to thermal stress. 2. Plastic changes increase thermal limits in many terrestrial ectotherms, but tend to have less effect on upper limits than lower limits. 3. Although comparisons across insect species have normally not taken into account the potential for plastic responses, mid-latitude species seem most prone to experience heat stress now and into the future, consistent with data from lizards and other groups. 4. Evolutionary adaptive potential has only been measured for some species; there is likely to be genetic variation for heat responses in populations, but selection and heritability experiments suggest that upper thermal limits may not increase much. 5. Although related species can differ by several degrees in their upper thermal limits, there is strong phylogenetic signal for upper limits. If these reflect evolutionary constraints, substantial molecular changes may be required to increase upper thermal limits. 6. Findings point to many terrestrial ectotherms having a limited potential to change their thermal limits particularly within the context of an average predicted temperature increase of 2-4 °C for mid-latitude populations over the next few decades. Lay Summary [PUBLICATION ABSTRACT] 1. Terrestrial ectotherms are likely to face increased periods of heat stress as mean temperatures and temperature variability increase over the next few decades. Here, we consider the extent to which changes in upper thermal limits, through plasticity or evolution, might be constrained, and we survey insect and reptile data to identify groups likely to be particularly susceptible to thermal stress. 2. Plastic changes increase thermal limits in many terrestrial ectotherms, but tend to have less effect on upper limits than lower limits. 3. Although comparisons across insect species have normally not taken into account the potential for plastic responses, mid-latitude species seem most prone to experience heat stress now and into the future, consistent with data from lizards and other groups. 4. Evolutionary adaptive potential has only been measured for some species; there is likely to be genetic variation for heat responses in populations, but selection and heritability experiments suggest that upper thermal limits may not increase much. 5. Although related species can differ by several degrees in their upper thermal limits, there is strong phylogenetic signal for upper limits. If these reflect evolutionary constraints, substantial molecular changes may be required to increase upper thermal limits. 6. Findings point to many terrestrial ectotherms having a limited potential to change their thermal limits particularly within the context of an average predicted temperature increase of 2-4 degree C for mid-latitude populations over the next few decades.Original Abstract: Lay Summary Summary 1. Terrestrial ectotherms are likely to face increased periods of heat stress as mean temperatures and temperature variability increase over the next few decades. Here, we consider the extent to which changes in upper thermal limits, through plasticity or evolution, might be constrained, and we survey insect and reptile data to identify groups likely to be particularly susceptible to thermal stress. 2. Plastic changes increase thermal limits in many terrestrial ectotherms, but tend to have less effect on upper limits than lower limits. 3. Although comparisons across insect species have normally not taken into account the potential for plastic responses, mid‐latitude species seem most prone to experience heat stress now and into the future, consistent with data from lizards and other groups. 4. Evolutionary adaptive potential has only been measured for some species; there is likely to be genetic variation for heat responses in populations, but selection and heritability experiments suggest that upper thermal limits may not increase much. 5. Although related species can differ by several degrees in their upper thermal limits, there is strong phylogenetic signal for upper limits. If these reflect evolutionary constraints, substantial molecular changes may be required to increase upper thermal limits. 6. Findings point to many terrestrial ectotherms having a limited potential to change their thermal limits particularly within the context of an average predicted temperature increase of 2–4 °C for mid‐latitude populations over the next few decades. Lay Summary |
Author | Hoffmann, Ary A. Chown, Steven L. Clusella-Trullas, Susana |
Author_xml | – sequence: 1 givenname: Ary A. surname: Hoffmann fullname: Hoffmann, Ary A. – sequence: 2 givenname: Steven L. surname: Chown fullname: Chown, Steven L. – sequence: 3 givenname: Susana surname: Clusella-Trullas fullname: Clusella-Trullas, Susana |
BookMark | eNqNkN9LwzAQx4MouKl_glDwxZfWu6RNW0FFhr9A8EWfQ5beMKVrZtKx7b-33WQPezIvCXefz3H5jtlx61piLEJIsD83dYJCZjFPRZZwQJ4AByGT9REb7RvHbARclnGRSnHKxiHUAFBmnI_Y29diQT7qvsnPdRM1dm67ENk26sh7Cp23fZVM57ZEuI2-3Soyru072rZURdrTYG8eztnJTDeBLv7uM_b1_PQ5eY3fP17eJo_vsUlTKWOsOM3y6dTkMqOcV6WURgJmqI0WU6NzlCBBi8pgScZQBgSiKItZClVOkIkzdr2bu_DuZ9mvqOY2GGoa3ZJbBoUplkKWYoteHaC1W_q2326gsECJgD11v6OMdyF4miljO91Z1w5_bBSCGpJWtRoCVUOgakhabZNW635AcTBg4e1c-81_1LudurINbf7tqeenyfDq_cudX4fO-b3PRVogABe_pBygfg |
CODEN | FECOE5 |
CitedBy_id | crossref_primary_10_1111_gcb_13313 crossref_primary_10_1111_btp_12691 crossref_primary_10_1111_ddi_12606 crossref_primary_10_1111_geb_12904 crossref_primary_10_1111_1365_2656_12699 crossref_primary_10_3389_fphys_2022_992293 crossref_primary_10_3390_ijms241210146 crossref_primary_10_1016_j_aspen_2018_07_024 crossref_primary_10_1111_oik_10797 crossref_primary_10_1016_j_cois_2015_10_001 crossref_primary_10_3390_insects11020102 crossref_primary_10_1016_j_gecco_2015_07_012 crossref_primary_10_1016_j_ijpara_2018_03_004 crossref_primary_10_1016_j_jtherbio_2023_103763 crossref_primary_10_1086_705939 crossref_primary_10_1098_rsos_241765 crossref_primary_10_1111_een_12873 crossref_primary_10_1111_gcb_13427 crossref_primary_10_1016_j_jtherbio_2025_104063 crossref_primary_10_1242_jeb_227801 crossref_primary_10_1111_een_12998 crossref_primary_10_3390_insects9030078 crossref_primary_10_1111_1365_2435_13095 crossref_primary_10_1590_1676_0611_bn_2021_1204 crossref_primary_10_1016_j_jtherbio_2024_103912 crossref_primary_10_1016_j_envpol_2017_10_071 crossref_primary_10_1016_j_cbpc_2024_109884 crossref_primary_10_1016_j_napere_2025_100121 crossref_primary_10_1590_2358_2936e2022012 crossref_primary_10_1038_srep13965 crossref_primary_10_1016_j_jtherbio_2025_104068 crossref_primary_10_1016_j_jtherbio_2018_01_002 crossref_primary_10_1111_oik_09685 crossref_primary_10_1098_rstb_2018_0549 crossref_primary_10_1098_rstb_2018_0548 crossref_primary_10_1098_rstb_2018_0547 crossref_primary_10_1242_jeb_233254 crossref_primary_10_1371_journal_pone_0087535 crossref_primary_10_1111_jeb_13084 crossref_primary_10_1111_1744_7917_12456 crossref_primary_10_1016_j_ijbiomac_2024_139415 crossref_primary_10_1111_eea_12912 crossref_primary_10_1007_s12192_015_0652_6 crossref_primary_10_1016_j_cois_2020_05_005 crossref_primary_10_1111_gcb_15750 crossref_primary_10_1007_s00442_015_3409_0 crossref_primary_10_1016_j_cois_2015_09_001 crossref_primary_10_1093_ee_nvaa011 crossref_primary_10_1093_plankt_fbab044 crossref_primary_10_1093_aesa_saab018 crossref_primary_10_1371_journal_pone_0306823 crossref_primary_10_1111_gcb_16834 crossref_primary_10_1111_ecog_05906 crossref_primary_10_1016_j_pecon_2020_04_002 crossref_primary_10_1111_ddi_12999 crossref_primary_10_1016_j_jinsphys_2021_104209 crossref_primary_10_1111_jbi_13433 crossref_primary_10_1242_jeb_233031 crossref_primary_10_1016_j_cois_2018_07_009 crossref_primary_10_1016_j_jtherbio_2024_103930 crossref_primary_10_1016_j_jtherbio_2022_103338 crossref_primary_10_1111_1365_2435_12906 crossref_primary_10_1016_j_jtherbio_2022_103339 crossref_primary_10_1016_j_cois_2015_09_013 crossref_primary_10_1080_00218839_2016_1260380 crossref_primary_10_1016_j_cois_2015_09_012 crossref_primary_10_1371_journal_pone_0291393 crossref_primary_10_1016_j_cbpa_2015_06_033 crossref_primary_10_1016_j_scitotenv_2023_169443 crossref_primary_10_1111_een_12842 crossref_primary_10_1073_pnas_2011419117 crossref_primary_10_1002_jez_2197 crossref_primary_10_1111_jzo_12850 crossref_primary_10_1073_pnas_1507681113 crossref_primary_10_7717_peerj_7060 crossref_primary_10_1016_j_jinsphys_2019_103946 crossref_primary_10_1093_icb_icae132 crossref_primary_10_1016_j_jtherbio_2016_04_015 crossref_primary_10_1002_ece3_3588 crossref_primary_10_1242_jeb_165308 crossref_primary_10_1890_14_0744_1 crossref_primary_10_1371_journal_pone_0180968 crossref_primary_10_24072_pci_evolbiol_100079 crossref_primary_10_1111_eea_12814 crossref_primary_10_1242_jeb_132696 crossref_primary_10_1111_jeb_13905 crossref_primary_10_1093_ee_nvz154 crossref_primary_10_1016_j_jtherbio_2021_103164 crossref_primary_10_1093_zoolinnean_zlad109 crossref_primary_10_1139_cjz_2015_0188 crossref_primary_10_1016_j_jtherbio_2018_10_011 crossref_primary_10_1111_gcb_14713 crossref_primary_10_1098_rspb_2016_1408 crossref_primary_10_1016_j_heliyon_2024_e36671 crossref_primary_10_1186_s12864_016_2466_z crossref_primary_10_1002_ece3_3118 crossref_primary_10_1242_jeb_108217 crossref_primary_10_1093_icb_icab087 crossref_primary_10_1111_1365_2656_13996 crossref_primary_10_1038_s41598_023_39637_x crossref_primary_10_1093_conphys_coaa049 crossref_primary_10_1111_jeb_14090 crossref_primary_10_1007_s00360_013_0776_x crossref_primary_10_1002_ece3_6991 crossref_primary_10_1111_ele_14228 crossref_primary_10_1111_eva_12127 crossref_primary_10_1016_j_cbpa_2025_111816 crossref_primary_10_1111_ecog_04627 crossref_primary_10_1111_1365_2435_13184 crossref_primary_10_1152_ajpregu_00268_2016 crossref_primary_10_1002_ece3_5782 crossref_primary_10_1002_ece3_5666 crossref_primary_10_1093_biolinnean_blw047 crossref_primary_10_1016_j_tree_2021_05_010 crossref_primary_10_1111_jbi_12553 crossref_primary_10_3390_biology12111379 crossref_primary_10_1016_j_jinsphys_2013_07_008 crossref_primary_10_1016_j_jtherbio_2024_103862 crossref_primary_10_1111_btp_12519 crossref_primary_10_1038_s41598_020_73391_8 crossref_primary_10_1016_j_jtherbio_2021_103066 crossref_primary_10_1111_jac_12401 crossref_primary_10_1098_rstb_2019_0036 crossref_primary_10_1111_een_12970 crossref_primary_10_18353_crustacea_51_0_129 crossref_primary_10_1111_eva_12116 crossref_primary_10_1098_rspb_2024_2679 crossref_primary_10_1016_j_jtherbio_2016_04_001 crossref_primary_10_1007_s10531_019_01855_z crossref_primary_10_1038_s41598_020_65608_7 crossref_primary_10_3389_fmars_2022_858280 crossref_primary_10_1016_j_jembe_2019_151186 crossref_primary_10_1111_gcb_13407 crossref_primary_10_1016_j_jafr_2023_100528 crossref_primary_10_1038_s41467_024_47645_2 crossref_primary_10_1093_conphys_coab038 crossref_primary_10_1098_rspb_2020_2508 crossref_primary_10_1016_j_jinsphys_2017_09_004 crossref_primary_10_1111_gcb_16429 crossref_primary_10_1093_ee_nvy149 crossref_primary_10_1111_acv_12255 crossref_primary_10_1016_j_zool_2015_03_001 crossref_primary_10_1111_een_12481 crossref_primary_10_1038_s41597_022_01704_9 crossref_primary_10_1111_jeb_13260 crossref_primary_10_1073_pnas_2214199120 crossref_primary_10_1111_een_12364 crossref_primary_10_1007_s00442_018_4154_y crossref_primary_10_1002_wcc_852 crossref_primary_10_1007_s40823_018_0034_8 crossref_primary_10_1086_687588 crossref_primary_10_1002_zoo_21650 crossref_primary_10_1890_ES14_00436_1 crossref_primary_10_1111_ddi_13307 crossref_primary_10_1111_eea_13039 crossref_primary_10_1242_jeb_154161 crossref_primary_10_1002_ecy_3051 crossref_primary_10_3389_fphys_2022_818485 crossref_primary_10_1111_evo_12992 crossref_primary_10_1093_plankt_fbad037 crossref_primary_10_1242_bio_058619 crossref_primary_10_3389_fevo_2022_1017255 crossref_primary_10_1111_evo_12757 crossref_primary_10_1111_geb_13811 crossref_primary_10_1111_jeb_12390 crossref_primary_10_1111_1365_2656_13363 crossref_primary_10_1111_1365_2656_13368 crossref_primary_10_1002_ece3_1785 crossref_primary_10_1016_j_scitotenv_2023_167605 crossref_primary_10_1016_j_jtherbio_2020_102690 crossref_primary_10_1007_s10530_016_1077_6 crossref_primary_10_1086_728672 crossref_primary_10_1111_jfb_14655 crossref_primary_10_3389_fevo_2019_00080 crossref_primary_10_1670_19_124 crossref_primary_10_1111_1365_2435_13151 crossref_primary_10_1371_journal_pone_0150393 crossref_primary_10_1111_mec_13548 crossref_primary_10_1016_j_jtherbio_2023_103479 crossref_primary_10_1371_journal_pntd_0009729 crossref_primary_10_1111_brv_12639 crossref_primary_10_1371_journal_pone_0198803 crossref_primary_10_1016_j_jinsphys_2021_104287 crossref_primary_10_1016_j_jtherbio_2019_102405 crossref_primary_10_1071_WF21112 crossref_primary_10_1086_702339 crossref_primary_10_1111_1365_2435_12478 crossref_primary_10_1111_een_12324 crossref_primary_10_3390_insects3041171 crossref_primary_10_1016_j_tree_2021_07_001 crossref_primary_10_1038_srep33667 crossref_primary_10_1111_ecog_01616 crossref_primary_10_1016_j_jinsphys_2015_04_014 crossref_primary_10_3389_fgene_2015_00038 crossref_primary_10_1098_rsbl_2019_0613 crossref_primary_10_1098_rstb_2020_0119 crossref_primary_10_1093_conphys_cow053 crossref_primary_10_7717_peerj_6252 crossref_primary_10_1016_j_jtherbio_2018_12_002 crossref_primary_10_1007_s10530_020_02236_2 crossref_primary_10_1038_srep15715 crossref_primary_10_1111_fwb_13598 crossref_primary_10_1111_1365_2435_12119 crossref_primary_10_1111_een_12796 crossref_primary_10_1038_s41467_021_22546_w crossref_primary_10_1093_conphys_cow056 crossref_primary_10_1111_jbi_12713 crossref_primary_10_3390_insects11030197 crossref_primary_10_1016_j_tree_2020_05_006 crossref_primary_10_1111_1365_2656_12388 crossref_primary_10_1111_een_12792 crossref_primary_10_1016_j_jinsphys_2018_09_002 crossref_primary_10_1111_1365_2656_13358 crossref_primary_10_1111_gcb_15761 crossref_primary_10_1002_ece3_10937 crossref_primary_10_1016_j_jtherbio_2020_102623 crossref_primary_10_1016_j_jtherbio_2020_102744 crossref_primary_10_1111_icad_12153 crossref_primary_10_1098_rsbl_2023_0106 crossref_primary_10_1007_s00040_017_0555_x crossref_primary_10_1016_j_rsma_2024_103467 crossref_primary_10_1111_1749_4877_12298 crossref_primary_10_1111_icad_12394 crossref_primary_10_7717_peerj_6128 crossref_primary_10_1111_1365_2435_12499 crossref_primary_10_1111_1365_2435_14438 crossref_primary_10_1371_journal_pone_0265361 crossref_primary_10_1371_journal_pone_0164505 crossref_primary_10_1111_nyas_13974 crossref_primary_10_7717_peerj_11734 crossref_primary_10_1016_j_jinsphys_2012_08_012 crossref_primary_10_1111_jbi_12700 crossref_primary_10_1093_conphys_coad044 crossref_primary_10_1093_conphys_coac073 crossref_primary_10_3390_insects11080537 crossref_primary_10_4996_fireecology_130302441 crossref_primary_10_1098_rsbl_2023_0019 crossref_primary_10_1111_1365_2435_13584 crossref_primary_10_1007_s00442_017_3825_4 crossref_primary_10_1016_j_jtherbio_2019_102432 crossref_primary_10_1093_molbev_msy132 crossref_primary_10_1371_journal_pone_0244458 crossref_primary_10_1007_s00040_020_00782_5 crossref_primary_10_1111_evo_12843 crossref_primary_10_1007_s10980_020_00986_x crossref_primary_10_1111_evo_12617 crossref_primary_10_1111_nyas_12876 crossref_primary_10_1111_1365_2435_12268 crossref_primary_10_1111_ele_12696 crossref_primary_10_1016_j_cbpa_2021_110955 crossref_primary_10_1016_j_cris_2023_100061 crossref_primary_10_1111_geb_13602 crossref_primary_10_1016_j_jinsphys_2016_11_001 crossref_primary_10_1093_biolinnean_blx092 crossref_primary_10_1016_j_jtherbio_2021_102936 crossref_primary_10_3389_fevo_2022_841490 crossref_primary_10_1098_rspb_2024_1628 crossref_primary_10_1038_s41467_021_21263_8 crossref_primary_10_1242_jeb_122127 crossref_primary_10_1534_genetics_115_185736 crossref_primary_10_1093_aesa_saac010 crossref_primary_10_1016_j_jtherbio_2019_102447 crossref_primary_10_1371_journal_pone_0299598 crossref_primary_10_1093_biolinnean_blx088 crossref_primary_10_1093_iob_oby002 crossref_primary_10_1093_ee_nvy130 crossref_primary_10_1017_pab_2019_11 crossref_primary_10_1017_S0007485316001103 crossref_primary_10_1073_pnas_1715598115 crossref_primary_10_1093_cz_zox021 crossref_primary_10_1111_jbi_12808 crossref_primary_10_1111_1365_2435_12310 crossref_primary_10_3389_fgene_2020_619441 crossref_primary_10_1002_jez_2433 crossref_primary_10_1016_j_jinsphys_2024_104616 crossref_primary_10_1111_jen_12795 crossref_primary_10_1111_jeb_13663 crossref_primary_10_1017_S1473550413000438 crossref_primary_10_1002_ecm_1553 crossref_primary_10_1086_686889 crossref_primary_10_7554_eLife_69630 crossref_primary_10_1093_icb_ict015 crossref_primary_10_1111_1365_2435_12687 crossref_primary_10_1111_ddi_13146 crossref_primary_10_1007_s00360_016_1041_x crossref_primary_10_1002_ece3_5054 crossref_primary_10_1073_pnas_2418199122 crossref_primary_10_1111_eea_12466 crossref_primary_10_1111_eea_13310 crossref_primary_10_1002_fee_2160 crossref_primary_10_1186_s40317_015_0075_2 crossref_primary_10_1371_journal_pone_0070662 crossref_primary_10_1038_s41598_023_43128_4 crossref_primary_10_1111_1365_2435_12568 crossref_primary_10_1016_j_cbpa_2016_03_003 crossref_primary_10_1093_biolinnean_blab049 crossref_primary_10_1093_conphys_cov056 crossref_primary_10_1007_s10750_016_2826_3 crossref_primary_10_1002_ecy_3549 crossref_primary_10_1002_jez_2414 crossref_primary_10_1016_j_cois_2016_08_003 crossref_primary_10_3354_meps12487 crossref_primary_10_1016_j_jembe_2017_01_023 crossref_primary_10_1002_wcc_551 crossref_primary_10_1111_jeb_12436 crossref_primary_10_1111_1365_2435_12219 crossref_primary_10_1002_ecs2_3645 crossref_primary_10_1002_ecm_1517 crossref_primary_10_1111_afe_12227 crossref_primary_10_1111_bij_12846 crossref_primary_10_1146_annurev_ecolsys_011121_021241 crossref_primary_10_3390_biology12040615 crossref_primary_10_1111_geb_12433 crossref_primary_10_1242_jeb_161331 crossref_primary_10_1371_journal_pone_0219759 crossref_primary_10_1016_j_baae_2023_01_002 crossref_primary_10_1242_jeb_230797 crossref_primary_10_1098_rsos_231389 crossref_primary_10_1111_phen_12235 crossref_primary_10_1002_ece3_2929 crossref_primary_10_1002_ecs2_3990 crossref_primary_10_1093_ee_nvaf019 crossref_primary_10_1242_jeb_229336 crossref_primary_10_1111_jzo_13029 crossref_primary_10_1111_1365_2435_12510 crossref_primary_10_1098_rstb_2022_0018 crossref_primary_10_1242_bio_038141 crossref_primary_10_1038_s41598_020_69997_7 crossref_primary_10_1093_jxb_erz257 crossref_primary_10_1016_j_cois_2017_03_006 crossref_primary_10_1002_ece3_9560 crossref_primary_10_1002_jez_2632 crossref_primary_10_1007_s10682_016_9827_6 crossref_primary_10_1186_s12862_015_0476_0 crossref_primary_10_1017_S0007485314000303 crossref_primary_10_7717_peerj_2290 crossref_primary_10_1016_j_scitotenv_2022_161049 crossref_primary_10_1086_699755 crossref_primary_10_1016_j_jtherbio_2021_102997 crossref_primary_10_1002_ecm_1597 crossref_primary_10_1111_geb_12387 crossref_primary_10_1038_s41437_020_0338_4 crossref_primary_10_1038_s41598_018_37493_8 crossref_primary_10_1016_j_jtherbio_2020_102598 crossref_primary_10_1111_phen_12282 crossref_primary_10_1016_j_biocon_2019_05_055 crossref_primary_10_1016_j_jtherbio_2020_102597 crossref_primary_10_1086_716577 crossref_primary_10_1007_s00442_017_4032_z crossref_primary_10_1016_j_scitotenv_2024_170165 crossref_primary_10_1111_gcb_16338 crossref_primary_10_1186_s13071_020_04479_3 crossref_primary_10_1016_j_jssas_2023_02_004 crossref_primary_10_1111_mec_14572 crossref_primary_10_1146_annurev_ento_041520_074454 crossref_primary_10_1016_j_jinsphys_2024_104648 crossref_primary_10_1111_eea_12144 crossref_primary_10_1016_j_jtherbio_2020_102582 crossref_primary_10_1093_jeb_voae116 crossref_primary_10_1016_j_jtherbio_2020_102580 crossref_primary_10_1111_jeb_13234 crossref_primary_10_1073_pnas_1918162117 crossref_primary_10_1002_evl3_299 crossref_primary_10_1007_s00267_015_0537_6 crossref_primary_10_1111_gcb_16453 crossref_primary_10_1155_2019_6179705 crossref_primary_10_1111_1749_4877_12579 crossref_primary_10_1111_cobi_12769 crossref_primary_10_1098_rspb_2021_0765 crossref_primary_10_1111_1462_2920_16609 crossref_primary_10_1002_ecy_3629 crossref_primary_10_1111_1365_2656_12196 crossref_primary_10_1016_j_envpol_2016_11_014 crossref_primary_10_1098_rspb_2019_0174 crossref_primary_10_1016_j_aquatox_2019_02_005 crossref_primary_10_1111_1365_2435_13507 crossref_primary_10_1111_geb_13570 crossref_primary_10_1016_j_zool_2018_01_002 crossref_primary_10_1371_journal_pone_0050884 crossref_primary_10_1111_gcb_17447 crossref_primary_10_1111_geb_12114 crossref_primary_10_1111_fwb_14190 crossref_primary_10_3389_fphys_2018_00666 crossref_primary_10_1002_ece3_70379 crossref_primary_10_1093_evolut_qpae126 crossref_primary_10_1086_698656 crossref_primary_10_1242_jeb_244514 crossref_primary_10_1371_journal_pone_0151959 crossref_primary_10_1007_s00442_021_05054_y crossref_primary_10_1093_icb_icw014 crossref_primary_10_1093_icb_icw016 crossref_primary_10_1002_ece3_5440 crossref_primary_10_1016_j_jtherbio_2014_11_009 crossref_primary_10_1038_s41598_019_52034_7 crossref_primary_10_1038_s41559_023_02007_x crossref_primary_10_1111_1365_2435_13807 crossref_primary_10_1111_1365_2435_13928 crossref_primary_10_1002_ece3_3384 crossref_primary_10_1093_biolinnean_blab103 crossref_primary_10_1002_1438_390X_1016 crossref_primary_10_1111_1749_4877_12309 crossref_primary_10_1111_phen_12400 crossref_primary_10_1086_694781 crossref_primary_10_1016_j_jtherbio_2021_103002 crossref_primary_10_1016_j_anbehav_2021_02_004 crossref_primary_10_1016_j_jtherbio_2015_05_002 crossref_primary_10_1007_s13253_023_00581_y crossref_primary_10_1016_j_jinsphys_2017_03_003 crossref_primary_10_1098_rspb_2020_0823 crossref_primary_10_1093_icb_icw024 crossref_primary_10_1111_ecog_03427 crossref_primary_10_1016_j_jtherbio_2016_11_012 crossref_primary_10_1111_btp_13371 crossref_primary_10_1111_nyas_13223 crossref_primary_10_1155_2016_2157494 crossref_primary_10_1016_j_tree_2022_03_011 crossref_primary_10_1002_ecy_2643 crossref_primary_10_1111_1365_2435_12609 crossref_primary_10_1242_jeb_245749 crossref_primary_10_1111_een_12902 crossref_primary_10_1126_science_1247579 crossref_primary_10_1098_rsob_240093 crossref_primary_10_1007_s10841_021_00302_1 crossref_primary_10_1016_j_apsoil_2022_104692 crossref_primary_10_1038_ncomms6053 crossref_primary_10_1111_gcb_12521 crossref_primary_10_1371_journal_pone_0191840 crossref_primary_10_1002_ece3_7521 crossref_primary_10_1016_j_jtherbio_2019_02_024 crossref_primary_10_1111_ecog_03458 crossref_primary_10_1016_j_ecolmodel_2016_11_008 crossref_primary_10_1093_icb_icaa140 crossref_primary_10_1111_evo_14388 crossref_primary_10_1111_jeb_12832 crossref_primary_10_1098_rspb_2013_2433 crossref_primary_10_1073_pnas_1815828116 crossref_primary_10_1007_s00360_019_01230_y crossref_primary_10_7717_peerj_1023 crossref_primary_10_1073_pnas_2116645119 crossref_primary_10_1016_j_jtherbio_2016_07_008 crossref_primary_10_1093_icb_icw004 crossref_primary_10_1111_afe_12501 crossref_primary_10_1016_j_anbehav_2018_06_003 crossref_primary_10_1111_gcb_12750 crossref_primary_10_1186_s12862_020_1589_7 crossref_primary_10_1016_j_biocon_2020_108521 crossref_primary_10_1111_mec_16134 crossref_primary_10_1371_journal_pone_0237201 crossref_primary_10_1098_rspb_2023_2700 crossref_primary_10_1242_jeb_231241 crossref_primary_10_1007_s10201_024_00765_6 crossref_primary_10_3389_fphys_2016_00139 crossref_primary_10_1111_evo_13064 crossref_primary_10_1038_ncomms11447 crossref_primary_10_1111_1744_7917_13157 crossref_primary_10_1038_s41598_021_02491_w crossref_primary_10_1038_s41558_020_00938_y crossref_primary_10_1038_s41598_018_27628_2 crossref_primary_10_1242_jeb_246735 crossref_primary_10_1007_s10522_023_10066_7 crossref_primary_10_1111_geb_13121 crossref_primary_10_1002_eap_2310 crossref_primary_10_1016_j_pt_2013_12_010 crossref_primary_10_1098_rstb_2021_0004 crossref_primary_10_1111_ele_12901 crossref_primary_10_1111_1365_2656_12818 crossref_primary_10_1186_s12915_024_02072_z crossref_primary_10_1111_brv_12496 crossref_primary_10_1016_j_cbpa_2023_111505 crossref_primary_10_1002_ece3_6229 crossref_primary_10_1038_nclimate2945 crossref_primary_10_1016_j_jtherbio_2022_103439 crossref_primary_10_1016_j_ibmb_2013_01_006 crossref_primary_10_1111_phen_12454 crossref_primary_10_1038_s41467_022_32953_2 crossref_primary_10_1098_rsos_201717 crossref_primary_10_1093_jxb_erac039 crossref_primary_10_1098_rstb_2023_0321 crossref_primary_10_1111_eea_12794 crossref_primary_10_1086_708455 crossref_primary_10_1016_j_oneear_2024_03_008 crossref_primary_10_1038_s41598_019_45045_x crossref_primary_10_1093_iob_obad009 crossref_primary_10_1111_ecog_06884 crossref_primary_10_1016_j_jtherbio_2021_103106 crossref_primary_10_1111_1365_2656_12914 crossref_primary_10_1111_eea_12679 crossref_primary_10_1163_1568539X_00003322 crossref_primary_10_1016_j_cris_2021_100019 crossref_primary_10_3390_ani12040531 crossref_primary_10_1038_s41598_018_25593_4 crossref_primary_10_1371_journal_ppat_1007185 crossref_primary_10_1016_j_cois_2021_06_003 crossref_primary_10_1126_science_aba9287 crossref_primary_10_1002_jez_2582 crossref_primary_10_3389_fevo_2021_688723 crossref_primary_10_1080_21564574_2022_2098393 crossref_primary_10_1111_mec_17548 crossref_primary_10_1111_jbi_13596 crossref_primary_10_1111_jeb_12886 crossref_primary_10_1080_00222933_2024_2322178 crossref_primary_10_1146_annurev_ecolsys_110316_023003 crossref_primary_10_1371_journal_pone_0166243 |
Cites_doi | 10.1016/0022-1910(87)90001-1 10.1111/j.1365-2435.2007.01283.x 10.1111/j.1558-5646.1997.tb02398.x 10.1111/j.1365-3032.2011.00795.x 10.1111/j.1095-8312.2004.00380.x 10.1111/j.1469-185X.2010.00125.x 10.1111/j.1461-0248.2008.01213.x 10.1111/j.1365-2486.2010.02176.x 10.1242/jeb.199.8.1845 10.1111/j.1365-2699.2007.01787.x 10.1086/physzool.58.6.30156067 10.1111/j.1558-5646.1989.tb04247.x 10.1371/journal.pone.0022610 10.1111/j.1365-2435.2008.01538.x 10.1111/j.1420-9101.2005.00928.x 10.1371/journal.pone.0032758 10.1007/BF00345241 10.1242/jeb.054718 10.1111/j.1420-9101.2004.00782.x 10.1038/sj.hdy.6800405 10.1111/j.1420-9101.2011.02318.x 10.1242/jeb.061283 10.1016/j.jinsphys.2012.01.016 10.2307/1543615 10.1073/pnas.92.7.2994 10.1086/physzool.65.5.30158548 10.1242/jeb.204.9.1659 10.1111/j.1420-9101.2010.02061.x 10.1073/pnas.0709472105 10.1034/j.1600-0706.2003.11738.x 10.1007/s00227-009-1354-3 10.1093/acprof:oso/9780198515494.001.0001 10.1111/j.1365-3032.1979.tb00201.x 10.3354/cr00879 10.1007/s00442-004-1605-4 10.1668/0003-1569(2000)040[0597:CCEOBA]2.0.CO;2 10.1126/science.1184695 10.1371/journal.pone.0015284 10.1007/s12192-010-0205-y 10.1016/S0022-1910(98)00059-6 10.1007/s10526-009-9255-4 10.1111/j.1461-9563.2011.00553.x 10.1086/663202 10.1111/j.1365-2435.2011.01908.x 10.1007/s10646-011-0624-2 10.1371/journal.pone.0024802 10.1242/jeb.040170 10.1016/j.bbagrm.2011.03.007 10.1007/s00300-006-0157-y 10.1038/nature07393 10.1098/rspb.2000.1065 10.1146/annurev.physiol.61.1.243 10.1111/j.1461-0248.2008.01229.x 10.1890/08-0579.1 10.1098/rspb.2011.0160 10.1073/pnas.0400522101 10.1016/j.cbpa.2008.12.009 10.1038/nrmicro1390 10.1242/jeb.202.20.2709 10.1098/rspb.1998.0514 10.14411/eje.2002.032 10.1016/0010-406X(70)90915-1 10.1111/j.1752-4571.2007.00011.x 10.1371/journal.pone.0009514 10.1086/600088 10.1242/jeb.037523 10.1016/j.jtherbio.2004.08.073 10.1098/rspb.2010.0008 10.1525/bio.2011.61.5.4 10.1111/j.0014-3820.2000.tb00024.x 10.1016/0022-1910(85)90067-8 10.1186/1471-2148-12-25 10.1098/rspb.2007.0985 10.1098/rspb.2010.1295 10.1098/rstb.2012.0005 10.1379/CSC-207.1 10.1093/genetics/103.1.93 10.1007/s000360050063 10.1242/jeb.205.18.2799 10.1016/0300-9629(82)90266-3 10.1046/j.1461-0248.2002.00296.x 10.1046/j.1365-2435.2001.00516.x 10.1111/j.1420-9101.2010.02144.x 10.1086/284856 10.1002/joc.1276 10.1073/pnas.1105195108 10.1093/icb/icj003 10.1111/j.1365-2486.2010.02277.x 10.1111/j.1365-3032.2010.00736.x 10.1016/j.jtherbio.2007.01.009 10.1111/j.1365-2435.2010.01778.x 10.1086/661780 10.1111/j.1600-0706.2010.19470.x 10.1038/24550 10.1111/j.1365-2435.2008.01491.x 10.1111/j.1365-2915.2011.00950.x 10.1086/316738 10.1098/rspb.2010.2675 10.1016/j.jinsphys.2005.07.010 10.1111/j.1469-185X.2008.00046.x 10.1038/nature08739 10.1073/pnas.0800896105 10.1111/j.1420-9101.2010.02110.x 10.1111/j.1365-2656.2009.01611.x 10.1016/j.jinsphys.2011.04.004 10.1093/jhered/esr027 10.1186/1471-2148-10-363 10.1086/282976 10.1111/j.1365-2435.2009.01541.x 10.1016/S0022-1910(00)00163-3 10.1017/S1464793102006024 10.1111/j.1365-2435.2008.01481.x 10.1371/journal.pone.0009751 10.1002/jez.573 10.1086/510632 10.1371/journal.pone.0032083 10.1086/660021 10.1038/nature09670 10.1126/science.1175443 10.1038/nrg2339 10.1098/rspb.2008.1240 10.1111/j.1420-9101.2010.01965.x 10.1046/j.1365-2435.1998.00160.x 10.1046/j.1420-9101.1994.7010039.x 10.1126/science.1204794 10.1007/BF00139728 10.1086/515853 10.1016/S0306-4565(02)00057-8 10.1016/j.mad.2004.08.010 10.1007/s11692-011-9127-6 10.1098/rspb.2008.1957 10.1016/j.jinsphys.2009.11.006 10.1002/bies.201000124 10.1080/10408410701451948 10.1093/icb/icr015 10.1073/pnas.0708074105 10.1098/rspb.2008.0905 10.1126/science.1167396 10.4269/ajtmh.2006.74.786 10.1093/oxfordjournals.molbev.a003912 10.1126/science.1199158 10.1093/acprof:oso/9780198570875.001.1 10.1016/j.jtherbio.2005.11.026 10.1086/284868 10.1111/j.1365-294X.2008.03945.x 10.1016/j.cryobiol.2008.01.001 10.1046/j.1095-8312.2003.00154.x 10.1016/S1095-6433(02)00045-4 10.1007/s00227-010-1528-z 10.1111/j.1365-2435.2009.01666.x 10.1046/j.1365-2435.1998.00246.x 10.1016/S0065-2806(06)33002-0 10.1111/j.1461-9563.2011.00523.x 10.1111/j.1469-7998.2009.00641.x 10.1016/j.jtherbio.2010.05.006 10.1139/f95-259 10.1111/j.1420-9101.2008.01631.x 10.1016/0010-406X(68)90961-4 10.1111/j.1558‐5646.2012.01685.x 10.1139/z97-783 10.1093/genetics/137.3.783 10.2307/5293 10.1016/j.cbpa.2010.12.010 10.1098/rspb.1939.0035 10.1111/j.1558-5646.2010.01039.x 10.1098/rsta.2010.0292 10.1086/605982 10.1007/s10519-009-9256-1 10.1046/j.1461-0248.2002.00367.x 10.1242/jeb.037630 10.1016/S0022-1910(96)00108-4 10.1016/j.jtherbio.2007.06.001 10.1111/j.1558-5646.2008.00412.x 10.1086/401257 10.2307/3546663 10.1111/j.1365-2486.2011.02518.x |
ContentType | Journal Article |
Copyright | 2013 British Ecological Society 2012 The Authors. Functional Ecology © 2012 British Ecological Society Functional Ecology © 2013 British Ecological Society |
Copyright_xml | – notice: 2013 British Ecological Society – notice: 2012 The Authors. Functional Ecology © 2012 British Ecological Society – notice: Functional Ecology © 2013 British Ecological Society |
DBID | AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 |
DOI | 10.1111/j.1365-2435.2012.02036.x |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Entomology Abstracts Ecology Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1365-2435 |
EndPage | 949 |
ExternalDocumentID | 3027102861 10_1111_j_1365_2435_2012_02036_x FEC2036 23481002 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Australian Research Council |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29H 2AX 2WC 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAISJ AAKGQ AAMMB AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEML ABJNI ABLJU ABPLY ABPVW ABSQW ABTLG ABXSQ ACAHQ ACCZN ACFBH ACGFO ACGFS ACHIC ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUPB AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGUYK AGXDD AHBTC AHXOZ AIAGR AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ UB1 V8K W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 XSW ZCA ZZTAW ~02 ~IA ~KM ~WT 31~ 42X 53G AAHHS ABEFU ABTAH ACCFJ ACCMX ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX GTFYD HF~ HGD HGLYW HQ2 HTVGU JSODD MVM VOH WRC ZY4 AAYXX AGHNM CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 |
ID | FETCH-LOGICAL-c4466-1d2ef7bbc765e72d966c60151aca3bca716060a3dc19ecce50e03898f40d7e053 |
IEDL.DBID | DR2 |
ISSN | 0269-8463 |
IngestDate | Thu Jul 10 19:27:34 EDT 2025 Fri Jul 25 02:25:38 EDT 2025 Thu Apr 24 22:59:54 EDT 2025 Tue Jul 01 01:15:40 EDT 2025 Wed Jan 22 17:01:24 EST 2025 Sun Aug 24 12:10:35 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4466-1d2ef7bbc765e72d966c60151aca3bca716060a3dc19ecce50e03898f40d7e053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | http://hdl.handle.net/10019.1/121183 |
PQID | 1411816101 |
PQPubID | 1066355 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_1419369305 proquest_journals_1411816101 crossref_citationtrail_10_1111_j_1365_2435_2012_02036_x crossref_primary_10_1111_j_1365_2435_2012_02036_x wiley_primary_10_1111_j_1365_2435_2012_02036_x_FEC2036 jstor_primary_23481002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20130801 August 2013 2013-08-00 |
PublicationDateYYYYMMDD | 2013-08-01 |
PublicationDate_xml | – month: 8 year: 2013 text: 20130801 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Functional ecology |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing – name: Wiley Subscription Services, Inc |
References | 1987; 33 2010; 10 2010; 16 2006; 30 2006; 31 2010; 15 1994; 137 1989; 43 2004; 29 1997; 43 2011; 61 2002; 99 2010; 463 2008; 35 2008; 105 2012; 18 2011; 57 1999; 202 2012; 14 2012; 367 2011; 470 1998; 396 2012; 12 2001; 47 1970; 35 2011; 369 2010; 23 1997; 51 2010; 24 1979; 4 2010; 5 1998; 12 1998; 11 1975; 109 2011; 120 2007; 169 1995; 52 2001; 201 2010; 35 2002; 132 2010; 328 2011; 1809 2002; 5 1956; 31 2004; 140 1998 2000; 73 2008; 56 1993 2009; 174 2010; 280 1991 2011; 6 2001; 204 2010; 43 2009; 79 2006; 46 2009a; 325 2010; 213 2007; 274 2003; 28 1996; 199 1998; 265 1992; 21 2005; 18 2003; 100 2010; 56 2010; 55 2011; 158 1968; 24 2011; 278 2006; 74 2004; 125 2008; 9 2009; 276 1999; 86 2011; 13 2009; 152 2012; 58 2008; 1 2011; 17 2007; 32 2007; 33 1998; 44 2005; 25 2010; 64 1983; 103 2012; 179 2000; 54 2010; 277 2010; 157 1939; 127 2011; 20 1988; 132 2011; 24 2001; 15 2001; 18 2011; 25 2007; 21 2008; 62 2009; 323 1985; 58 2009; 23 2004; 101 2011; 214 2009; 22 2011; 333 2004; 83 1995; 92 1972; 9 2010; 79 2012 1982; 73 2006; 11 2008; 17 2009 2006; 8 2007 2011; 33 2010; 313A 2006; 4 2004 2008; 11 1999; 61 2011; 36 2011; 38 2011; 332 2011; 178 2010; 85 2011; 177 2003; 78 2011; 102 2011; 108 2004; 92 1997; 70 2000; 267 1997; 75 2011; 51 2005; 51 2002; 205 2000; 40 2008; 456 2008; 83 1992; 65 2012; 7 1985; 31 1994; 7 2009; 39 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 e_1_2_11_13_1 e_1_2_11_118_1 e_1_2_11_29_1 e_1_2_11_125_1 e_1_2_11_4_1 e_1_2_11_106_1 e_1_2_11_148_1 e_1_2_11_48_1 e_1_2_11_121_1 e_1_2_11_167_1 e_1_2_11_102_1 e_1_2_11_144_1 e_1_2_11_163_1 e_1_2_11_140_1 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_89_1 e_1_2_11_24_1 e_1_2_11_62_1 e_1_2_11_129_1 e_1_2_11_8_1 e_1_2_11_43_1 e_1_2_11_85_1 e_1_2_11_17_1 e_1_2_11_117_1 e_1_2_11_136_1 e_1_2_11_159_1 e_1_2_11_59_1 e_1_2_11_113_1 e_1_2_11_132_1 e_1_2_11_155_1 e_1_2_11_174_1 e_1_2_11_151_1 e_1_2_11_170_1 e_1_2_11_50_1 e_1_2_11_92_1 e_1_2_11_31_1 e_1_2_11_77_1 Gibbs A.G. (e_1_2_11_63_1) 1999; 202 e_1_2_11_58_1 e_1_2_11_119_1 e_1_2_11_35_1 e_1_2_11_73_1 e_1_2_11_12_1 Hoffmann A.A. (e_1_2_11_76_1) 1991 e_1_2_11_54_1 e_1_2_11_96_1 e_1_2_11_103_1 e_1_2_11_126_1 e_1_2_11_149_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_122_1 e_1_2_11_145_1 e_1_2_11_168_1 e_1_2_11_141_1 Denlinger D.L. (e_1_2_11_46_1) 1998 e_1_2_11_160_1 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_107_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_114_1 e_1_2_11_16_1 e_1_2_11_137_1 e_1_2_11_156_1 e_1_2_11_179_1 e_1_2_11_110_1 e_1_2_11_39_1 e_1_2_11_133_1 e_1_2_11_152_1 e_1_2_11_175_1 Van Berkum F.H. (e_1_2_11_173_1) 1988; 132 e_1_2_11_171_1 e_1_2_11_180_1 e_1_2_11_72_1 e_1_2_11_91_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_99_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_95_1 e_1_2_11_11_1 e_1_2_11_6_1 e_1_2_11_104_1 e_1_2_11_27_1 e_1_2_11_127_1 e_1_2_11_169_1 e_1_2_11_2_1 e_1_2_11_100_1 e_1_2_11_146_1 e_1_2_11_123_1 e_1_2_11_165_1 e_1_2_11_142_1 e_1_2_11_161_1 Petavy G. (e_1_2_11_131_1) 2006; 8 e_1_2_11_83_1 Stephanou G. (e_1_2_11_164_1) 1983; 103 e_1_2_11_60_1 e_1_2_11_45_1 e_1_2_11_68_1 Watanabe M. (e_1_2_11_178_1) 2002; 205 e_1_2_11_41_1 e_1_2_11_87_1 e_1_2_11_108_1 e_1_2_11_22_1 e_1_2_11_64_1 e_1_2_11_115_1 e_1_2_11_138_1 e_1_2_11_15_1 e_1_2_11_111_1 e_1_2_11_134_1 e_1_2_11_38_1 e_1_2_11_157_1 e_1_2_11_19_1 e_1_2_11_176_1 e_1_2_11_153_1 e_1_2_11_130_1 e_1_2_11_172_1 e_1_2_11_94_1 e_1_2_11_181_1 e_1_2_11_71_1 e_1_2_11_90_1 e_1_2_11_10_1 e_1_2_11_56_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_98_1 IPCC (e_1_2_11_84_1) 2007 e_1_2_11_33_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_105_1 e_1_2_11_128_1 e_1_2_11_147_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_101_1 e_1_2_11_124_1 e_1_2_11_143_1 e_1_2_11_166_1 e_1_2_11_120_1 e_1_2_11_162_1 e_1_2_11_82_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_86_1 e_1_2_11_109_1 e_1_2_11_18_1 e_1_2_11_139_1 e_1_2_11_116_1 e_1_2_11_158_1 e_1_2_11_37_1 e_1_2_11_135_1 e_1_2_11_154_1 e_1_2_11_177_1 e_1_2_11_112_1 e_1_2_11_150_1 |
References_xml | – volume: 65 start-page: 885 year: 1992 end-page: 905 article-title: Extreme thermophilia in a central Australian ant, publication-title: Physiological Zoology – volume: 278 start-page: 2745 year: 2011 end-page: 2752 article-title: Locusts use dynamic thermoregulatory behaviour to optimize nutritional outcomes publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 33 start-page: 260 year: 2011 end-page: 268 article-title: How will fish that evolved at constant sub‐zero temperatures cope with global warming? Notothenioids as a case study publication-title: Bioessays – volume: 24 start-page: 93 year: 1968 end-page: 111 article-title: Thermal acclimation in anuran amphibians as a function of latitude and altitude publication-title: Comparative Biochemistry and Physiology – year: 2012 article-title: Phylogenetic constraints in key functional traits behind species' climate niches: patterns of desiccation and cold resistance across 95 species publication-title: Evolution – volume: 158 start-page: 382 year: 2011 end-page: 390 article-title: Heat tolerance and its plasticity in Antarctic fishes publication-title: Comparative Biochemistry and Physiology a‐Molecular and Integrative Physiology – volume: 79 start-page: 397 year: 2009 end-page: 421 article-title: On the prediction of extreme ecological events publication-title: Ecological Monographs – volume: 278 start-page: 3534 year: 2011 end-page: 3543 article-title: Warming will affect phytoplankton differently: evidence through a mechanistic approach publication-title: Proceedings of the Royal Society B‐Biological Sciences – volume: 105 start-page: 216 year: 2008 end-page: 221 article-title: Costs and benefits of cold acclimation in field‐released Drosophila publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 367 start-page: 1665 year: 2012 end-page: 1679 article-title: Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation publication-title: Philosophical Transactions of the Royal Society B – volume: 178 start-page: S80 year: 2011 end-page: S96 article-title: Thermal tolerance in widespread and tropical Drosophila species: does phenotypic plasticity increase with latitude? publication-title: The American Naturalist – volume: 276 start-page: 21 year: 2009 end-page: 30 article-title: Space versus phylogeny: disentangling phylogenetic and spatial signals in comparative data publication-title: Proceedings of the Royal Society B‐Biological Sciences – volume: 4 start-page: 241 year: 1979 end-page: 250 article-title: Neural function in an alpine grylloblattid: a comparison with the house cricket, publication-title: Physiological Entomology – volume: 16 start-page: 3164 year: 2010 end-page: 3169 article-title: Ecological relevance of laboratory determined temperature limits: colonization potential, biogeography and resilience of Antarctic invertebrates to environmental change publication-title: Global Change Biology – volume: 23 start-page: 240 year: 2009 end-page: 247 article-title: Lessons from the use of genetically modified in ecological studies: Hsf mutant lines show highly trait‐specific performance in field and laboratory thermal assays publication-title: Functional Ecology – volume: 25 start-page: 111 year: 2011 end-page: 121 article-title: Estimating the adaptive potential of critical thermal limits: methodological problems and evolutionary implications publication-title: Functional Ecology – volume: 55 start-page: 423 year: 2010 end-page: 434 article-title: Heat tolerance among different strains of the entomopathogenic nematode publication-title: BioControl – volume: 213 start-page: 2209 year: 2010 end-page: 2218 article-title: Oxygen limitation and thermal tolerance in two terrestrial arthropod species publication-title: Journal of Experimental Biology – volume: 157 start-page: 2677 year: 2010 end-page: 2687 article-title: Thermal tolerance of early life history stages: mortality, stress‐induced gene expression and biogeographic patterns publication-title: Marine Biology – volume: 21 start-page: 289 year: 1992 end-page: 302 article-title: Extreme events in a changing climate: variability is more important than averages publication-title: Climatic Change – volume: 17 start-page: 4570 year: 2008 end-page: 4581 article-title: QTL for the thermotolerance effect of heat hardening, knockdown resistance to heat and chill‐coma recovery in an intercontinental set of recombinant inbred lines of publication-title: Molecular Ecology – volume: 43 start-page: 393 year: 1997 end-page: 405 article-title: Comparing different measures of heat resistance in selected lines of publication-title: Journal of Insect Physiology – volume: 35 start-page: 295 year: 2008 end-page: 305 article-title: Thermal tolerance and geographical range size in the group of European diving beetles (Coleoptera: Dytiscidae) publication-title: Journal of Biogeography – volume: 265 start-page: 1867 year: 1998 end-page: 1870 article-title: Warmer springs lead to mistimed reproduction in great tits ( ) publication-title: Proceedings of the Royal Society of London Series B‐Biological Sciences – volume: 25 start-page: 445 year: 2011 end-page: 453 article-title: Temperature induces trade‐offs between development and starvation resistance in (L.) larvae publication-title: Medical and Veterinary Entomology – volume: 35 start-page: 255 year: 2010 end-page: 264 article-title: Within‐generation variation of critical thermal limits in adult Mediterranean and Natal fruit flies and : thermal history affects short‐term responses to temperature publication-title: Physiological Entomology – volume: 18 start-page: 213 year: 2005 end-page: 222 article-title: Clinal variation and laboratory adaptation in the rainforest species for stress resistance, wing size, wing shape and development time publication-title: Journal of Evolutionary Biology – volume: 35 start-page: 232 year: 2010 end-page: 238 article-title: Direct and correlated responses to artificial selection for high and low knockdown resistance to high temperature in publication-title: Journal of Thermal Biology – volume: 11 start-page: 325 year: 2006 end-page: 333 article-title: Phototransduction genes are up‐regulated in a global gene expression study of selected for heat resistance publication-title: Cell Stress and Chaperones – volume: 23 start-page: 957 year: 2010 end-page: 965 article-title: Developmental acclimation affects clinal variation in stress resistance traits in publication-title: Journal of Evolutionary Biology – volume: 140 start-page: 442 year: 2004 end-page: 449 article-title: Cold and heat tolerance of drosophilid flies with reference to their latitudinal distributions publication-title: Oecologia – volume: 102 start-page: 593 year: 2011 end-page: 603 article-title: Differential expression of small heat shock protein genes and , and heat shock gene in fruit flies ( ) along a microclimatic gradient publication-title: Journal of Heredity – volume: 177 start-page: 738 year: 2011 end-page: 751 article-title: Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change publication-title: The American Naturalist – volume: 1809 start-page: 459 year: 2011 end-page: 468 article-title: Transgenerational epigenetic inheritance in plants publication-title: Biochimica et Biophysica Acta‐Gene Regulatory Mechanisms – volume: 5 start-page: e15284 year: 2010 article-title: Environmental effects on temperature stress resistance in the tropical butterfly publication-title: PLoS ONE – volume: 276 start-page: 1459 year: 2009 end-page: 1468 article-title: Physiological tolerances account for range limits and abundance structure in an invasive slug publication-title: Proceedings of the Royal Society of London B – volume: 23 start-page: 2484 year: 2010 end-page: 2493 article-title: A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of from eastern Australia publication-title: Journal of Evolutionary Biology – volume: 47 start-page: 649 year: 2001 end-page: 660 article-title: Physiological variation in insects: hierarchical levels and implications publication-title: Journal of Insect Physiology – volume: 20 start-page: 535 year: 2011 end-page: 542 article-title: Heritability of heat tolerance in a small livebearing fish, publication-title: Ecotoxicology – volume: 313A start-page: 35 year: 2010 end-page: 44 article-title: Adult heat tolerance variation in is not related to expression publication-title: Journal of Experimental Zoology Part a‐Ecological Genetics and Physiology – volume: 22 start-page: 124 year: 2009 end-page: 133 article-title: Demographic factors and genetic variation influence population persistence under environmental change publication-title: Journal of Evolutionary Biology – volume: 15 start-page: 217 year: 2001 end-page: 221 article-title: Field and laboratory evidence for acclimation without costs in an egg parasitoid publication-title: Functional Ecology – volume: 277 start-page: 2049 year: 2010 end-page: 2057 article-title: A naturally occurring variant of that is associated with decanalization publication-title: Proceedings of the Royal Society of London B – volume: 46 start-page: 5 year: 2006 end-page: 17 article-title: Are mountain passes higher in the tropics? Janzen's hypothesis revisited publication-title: Integrative and Comparative Biology – volume: 267 start-page: 739 year: 2000 end-page: 745 article-title: Thermal tolerance, climatic variability and latitude publication-title: Proceedings of the Royal Society of London B – volume: 39 start-page: 306 year: 2009 end-page: 320 article-title: Natural variation in Drosophila stressed locomotion meets or exceeds variation caused by mutation: analysis of behavior and performance publication-title: Behavior Genetics – volume: 456 start-page: 942 year: 2008 end-page: 945 article-title: Parallel adaptations to high temperatures in the Archaean eon publication-title: Nature – volume: 15 start-page: 463 year: 2010 end-page: 466 article-title: Stress, genomes, and evolution publication-title: Cell Stress and Chaperones – volume: 174 start-page: 595 year: 2009 end-page: 612 article-title: Macrophysiology: a conceptual reunification publication-title: The American Naturalist – year: 2007 – volume: 201 start-page: 374 year: 2001 end-page: 384 article-title: Microhabitats, thermal heterogeneity, and patterns of physiological stress in the rocky intertidal zone publication-title: Biological Bulletin – volume: 120 start-page: 675 year: 2011 end-page: 689 article-title: Will variation among genetic individuals influence species responses to global climate change? publication-title: Oikos – volume: 108 start-page: 8026 year: 2011 end-page: 8029 article-title: Drinking a hot blood meal elicits a protective heat shock response in mosquitoes publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 1 start-page: 3 year: 2008 end-page: 16 article-title: Adaptation, extinction and global change publication-title: Evolutionary Applications – volume: 62 start-page: 1965 year: 2008 end-page: 1977 article-title: A comparative method for studying adaptation to a randomly evolving environment publication-title: Evolution – volume: 274 start-page: 2935 year: 2007 end-page: 2942 article-title: Critical thermal limits depend on methodological context publication-title: Proceedings of the Royal Society of London B – volume: 17 start-page: 676 year: 2011 end-page: 687 article-title: Temperature extremes and butterfly fitness: conflicting evidence from life history and immune function publication-title: Global Change Biology – volume: 23 start-page: 233 year: 2009 end-page: 239 article-title: Dynamics of heat‐induced thermal stress resistance and Hsp70 expression in the springtail, publication-title: Functional Ecology – volume: 31 start-page: 755 year: 1985 end-page: 759 article-title: Insect cold hardiness: facts and fancy publication-title: Journal of Insect Physiology – volume: 25 start-page: 1169 year: 2011 end-page: 1180 article-title: Making sense of heat tolerance estimates in ectotherms: lessons from publication-title: Functional Ecology – volume: 18 start-page: 789 year: 2005 end-page: 803 article-title: Correlated responses to selection for stress resistance and longevity in a laboratory population of publication-title: Journal of Evolutionary Biology – volume: 28 start-page: 175 year: 2003 end-page: 216 article-title: Adaptation of to temperature extremes: bringing together quantitative and molecular approaches publication-title: Journal of Thermal Biology – volume: 5 start-page: e9751 year: 2010 article-title: Estimating the potential for adaptation of corals to climate warming publication-title: PLoS ONE – volume: 169 start-page: 175 year: 2007 end-page: 183 article-title: Consequences of heat hardening on a field fitness component in Drosophila depend on environmental temperature publication-title: The American Naturalist – volume: 36 start-page: 271 year: 2011 end-page: 281 article-title: Parallel evolution of thermophilia: daily and seasonal foraging patterns of heat‐adapted desert ants: and species* publication-title: Physiological Entomology – volume: 32 start-page: 134 year: 2007 end-page: 143 article-title: Hot hypoxic flies: whole‐organism interactions between hypoxic and thermal stressors in publication-title: Journal of Thermal Biology – volume: 30 start-page: 39 year: 2006 end-page: 43 article-title: Inducible heat tolerance in Antarctic notothenioid fishes publication-title: Polar Biology – volume: 57 start-page: 1085 year: 2011 end-page: 1089 article-title: Low temperature thresholds: are chill coma and CT synonymous? publication-title: Journal of Insect Physiology – volume: 333 start-page: 418 year: 2011 end-page: 422 article-title: Projecting coral reef futures under global warming and ocean acidification publication-title: Science – volume: 214 start-page: 2329 year: 2011 end-page: 2336 article-title: Temperature‐induced maternal effects and environmental predictability publication-title: Journal of Experimental Biology – volume: 463 start-page: 662 year: 2010 end-page: 665 article-title: Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons publication-title: Nature – volume: 5 start-page: e9514 year: 2010 article-title: Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer‐like proteins publication-title: PLoS ONE – volume: 44 start-page: 1091 year: 1998 end-page: 1101 article-title: Hsp70 and larval thermotolerance in : how much is enough and when is more too much? publication-title: Journal of Insect Physiology – volume: 213 start-page: 870 year: 2010 end-page: 880 article-title: Physiological climatic limits in Drosophila: patterns and implications publication-title: Journal of Experimental Biology – volume: 51 start-page: 1277 year: 2005 end-page: 1285 article-title: Differences in egg thermotolerance between tropical and temperate populations of the migratory locust (Orthoptera: Acridiidae) publication-title: Journal of Insect Physiology – volume: 11 start-page: 1027 year: 2008 end-page: 1036 article-title: Beneficial acclimation and the Bogert effect publication-title: Ecology Letters – volume: 105 start-page: 6668 year: 2008 end-page: 6672 article-title: Impacts of climate warming on terrestrial ectotherms across latitude publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 109 start-page: 93 year: 1975 end-page: 101 article-title: Temperature adaptation in amphibians publication-title: The American Naturalist – volume: 74 start-page: 786 year: 2006 end-page: 794 article-title: Phenotypic plasticity and geographic variation in thermal tolerance and water loss of the tsetse (Diptera: Glossinidae): implications for distribution modelling publication-title: American Journal of Tropical Medicine and Hygiene – volume: 83 start-page: 339 year: 2008 end-page: 355 article-title: Insect thermal tolerance: what is the role of ontogeny, ageing and senescence? publication-title: Biological Reviews – volume: 9 start-page: 421 year: 2008 end-page: 432 article-title: Detecting genetic responses to environmental change publication-title: Nature Reviews Genetics – volume: 24 start-page: 694 year: 2010 end-page: 700 article-title: Thermal ramping rate influences evolutionary potential and species differences for upper thermal limits in Drosophila publication-title: Functional Ecology – volume: 24 start-page: 1897 year: 2011 end-page: 1905 article-title: Temperature niche shift observed in a Lepidoptera population under allochronic divergence publication-title: Journal of Evolutionary Biology – volume: 35 start-page: 69 year: 1970 end-page: 103 article-title: Thermal acclimation in Australian amphibians publication-title: Comparative Biochemistry and Physiology – volume: 70 start-page: 403 year: 1997 end-page: 414 article-title: Thermal sensitivity of ‐ evolutionary responses of adults and eggs to laboratory natural selection at different temperatures publication-title: Physiological Zoology – volume: 86 start-page: 584 year: 1999 end-page: 590 article-title: Elevation and climatic tolerance: a test using dung beetles publication-title: Oikos – volume: 9 start-page: 23 year: 1972 end-page: 46 article-title: Temperature tolerances of southeast Australian reptiles examined in relation to reptile thermoregulatory behavior and distribution publication-title: Oecologia – volume: 132 start-page: 506 year: 1988 end-page: 520 article-title: Thermal physiology, phenology, and distribution of tree frogs publication-title: The American Naturalist – year: 2009 – volume: 54 start-page: 238 year: 2000 end-page: 244 article-title: Direct and correlated responses to artificial selection on acute thermal stress tolerance in a livebearing fish publication-title: Evolution – volume: 137 start-page: 783 year: 1994 end-page: 789 article-title: Genetic and maternal variation for heat resistance in Drosophila from the field publication-title: Genetics – volume: 43 start-page: 3 year: 2010 end-page: 15 article-title: Adapting to climate change: a perspective from evolutionary physiology publication-title: Climate Research – volume: 213 start-page: 881 year: 2010 end-page: 893 article-title: Oxygen‐ and capacity‐limitation of thermal tolerance: a matrix for integrating climate‐related stressor effects in marine ecosystems publication-title: Journal of Experimental Biology – volume: 85 start-page: 777 year: 2010 end-page: 795 article-title: Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination publication-title: Biological Reviews – volume: 11 start-page: 1 year: 1998 end-page: 20 article-title: Effects of temperature extremes on genetic variances for life history traits in as determined from parent‐offspring comparisons publication-title: Journal of Evolutionary Biology – volume: 100 start-page: 71 year: 2003 end-page: 78 article-title: Cold winter microenvironments conserve energy and improve overwintering survival and potential fecundity of the goldenrod gall fly, publication-title: Oikos – volume: 32 start-page: 396 year: 2007 end-page: 405 article-title: Within‐ and between‐generation effects of temperature on life‐history traits in a butterfly publication-title: Journal of Thermal Biology – volume: 205 start-page: 2799 year: 2002 end-page: 2802 article-title: Mechanism allowing an insect to survive complete dehydration and extreme temperatures publication-title: Journal of Experimental Biology – volume: 174 start-page: 204 year: 2009 end-page: 220 article-title: Evolution of thermal physiology in Liolaemus lizards: adaptation, phylogenetic inertia, and niche tracking publication-title: The American Naturalist – volume: 328 start-page: 894 year: 2010 end-page: 899 article-title: Erosion of lizard diversity by climate change and altered thermal niches publication-title: Science – volume: 21 start-page: 394 year: 2007 end-page: 407 article-title: Adaptive versus non‐adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments publication-title: Functional Ecology – volume: 18 start-page: 1272 year: 2001 end-page: 1282 article-title: Hsp70 duplication in the species group: how and when did two become five? publication-title: Molecular Biology and Evolution – volume: 38 start-page: 258 year: 2011 end-page: 277 article-title: Heritability is not evolvability publication-title: Evolutionary Biology – volume: 325 start-page: 1244 year: 2009a end-page: 1246 article-title: Fundamental evolutionary limits in ecological traits drive species distributions publication-title: Science – volume: 204 start-page: 1659 year: 2001 end-page: 1666 article-title: Rapid cold‐hardening of (Diptera: Drosophilidae) during ecologically based thermoperiodic cycles publication-title: Journal of Experimental Biology – volume: 5 start-page: 16 year: 2002 end-page: 19 article-title: Natural adaptation to environmental stress via physiological clock‐regulation of stress resistance in Drosophila publication-title: Ecology Letters – volume: 125 start-page: 651 year: 2004 end-page: 663 article-title: Doxycycline‐regulated over‐expression of has negative effects on stress resistance and life span in adult publication-title: Mechanisms of Ageing and Development – start-page: 7 year: 1998 end-page: 53 – volume: 132 start-page: 327 year: 1988 end-page: 343 article-title: Latitudinal patterns of the thermal sensitivity of sprint speed in lizards publication-title: The American Naturalist – volume: 61 start-page: 243 year: 1999 end-page: 282 article-title: Heat‐shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology publication-title: Annual Review of Physiology – volume: 5 start-page: 614 year: 2002 end-page: 618 article-title: Opposing clines for high and low temperature resistance in publication-title: Ecology Letters – volume: 78 start-page: 181 year: 2003 end-page: 195 article-title: Climatic variability and the evolution of insect freeze tolerance publication-title: Biological Reviews – volume: 12 start-page: 25 year: 2012 article-title: Hsp90 is important for fecundity, longevity, and buffering of cryptic deleterious variation in wild fly populations publication-title: BMC Evolutionary Biology – volume: 23 start-page: 2529 year: 2010 end-page: 2539 article-title: Phylogenetic comparative approaches for studying niche conservatism publication-title: Journal of Evolutionary Biology – volume: 23 start-page: 528 year: 2009 end-page: 538 article-title: Integrating biophysical models and evolutionary theory to predict climatic impacts on species' ranges: the dengue mosquito in Australia publication-title: Functional Ecology – volume: 8 start-page: 149 year: 2006 end-page: 167 article-title: Phenotypic and genetic variability of sternopleural bristle number in under daily thermal stress: developmental instability and anti‐asymmetry publication-title: Evolutionary Ecology Research – start-page: e32758 year: 2012 article-title: Validity of thermal ramping assays used to assess thermal tolerance in arthropods publication-title: PLoS ONE – volume: 14 start-page: 69 year: 2012 end-page: 79 article-title: Effect of latitude and acclimation on the lethal temperatures of the peach‐potato aphid publication-title: Agricultural and Forest Entomology – volume: 12 start-page: 786 year: 1998 end-page: 793 article-title: Induced thermotolerance and associated expression of the heat‐shock protein Hsp70 in adult publication-title: Functional Ecology – volume: 6 start-page: e24802 year: 2011 article-title: Present limits to heat‐adaptability in corals and population‐level responses to climate extremes publication-title: PLoS ONE – volume: 23 start-page: 1979 year: 2010 end-page: 1988 article-title: Resistance to environmental stress in : latitudinal variation and adaptation among populations publication-title: Journal of Evolutionary Biology – volume: 31 start-page: 280 year: 2006 end-page: 286 article-title: Heat tolerance and the effect of mild heat stress on reproductive characters in males publication-title: Journal of Thermal Biology – volume: 199 start-page: 1845 year: 1996 end-page: 1855 article-title: Adaptation to temperature stress and aerial exposure in congeneric species of intertidal porcelain crabs (genus Petrolisthes): correlation of physiology, biochemistry and morphology with vertical distribution publication-title: Journal of Experimental Biology – volume: 40 start-page: 597 year: 2000 end-page: 630 article-title: Calculating climate effects on birds and mammals: Impacts on biodiversity, conservation, population parameters, and global community structure publication-title: American Zoologist – volume: 323 start-page: 1347 year: 2009 end-page: 1350 article-title: Species response to environmental change: impacts of food web interactions and evolution publication-title: Science – volume: 280 start-page: 49 year: 2010 end-page: 59 article-title: Correlated changes in thermotolerance traits and body color phenotypes in montane populations of : analysis of within‐ and between‐population variations publication-title: Journal of Zoology – year: 2004 – volume: 58 start-page: 629 year: 1985 end-page: 636 article-title: Thermal responses and temperature tolerance in a dirunal desert ant, publication-title: Physiological Zoology – volume: 179 start-page: 1 year: 2012 end-page: 21 article-title: Patterns of species ranges, speciation, and extinction publication-title: The American Naturalist – volume: 33 start-page: 50 year: 2007 end-page: 152 article-title: Physiological diversity in insects: ecological and evolutionary contexts publication-title: Advances in Insect Physiology – volume: 157 start-page: 707 year: 2010 end-page: 714 article-title: Physiological tolerances across latitudes: thermal sensitivity of larval marine snails ( spp.) publication-title: Marine Biology – volume: 52 start-page: 2704 year: 1995 end-page: 2711 article-title: Genetic differences in thermal tolerance of eastern mosquitofish ( Poeciliidae) from ambient and thermal ponds publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 11 start-page: 995 year: 2008 end-page: 1003 article-title: Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species publication-title: Ecology Letters – volume: 33 start-page: 899 year: 1987 end-page: 908 article-title: Insect cold hardiness: freezing and supercooling ‐ an ecophysiological perspective publication-title: Journal of Insect Physiology – volume: 51 start-page: 719 year: 2011 end-page: 732 article-title: Complex life cycles and the responses of insects to climate change publication-title: Integrative and Comparative Biology – volume: 23 start-page: 133 year: 2009 end-page: 140 article-title: Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context publication-title: Functional Ecology – volume: 56 start-page: 159 year: 2008 end-page: 162 article-title: Rapid thermal adaptation during field temperature variations in publication-title: Cryobiology – volume: 43 start-page: 485 year: 1989 end-page: 503 article-title: The evolution of maternal characters publication-title: Evolution – volume: 13 start-page: 333 year: 2011 end-page: 340 article-title: High temperature tolerance and thermal plasticity in emerald ash borer publication-title: Agricultural and Forest Entomology – volume: 103 start-page: 93 year: 1983 end-page: 107 article-title: Non mendelian inheritance of “heat‐sensitivity” in publication-title: Genetics – volume: 127 start-page: 473 year: 1939 end-page: 487 article-title: Low temperature and insect activity publication-title: Proceedings of the Royal Society of London B – volume: 4 start-page: 331 year: 2006 end-page: 343 article-title: Cold‐adapted archaea publication-title: Nature Reviews Microbiology – volume: 470 start-page: 479 year: 2011 end-page: 485 article-title: Climate change and evolutionary adaptation publication-title: Nature – volume: 56 start-page: 336 year: 2010 end-page: 340 article-title: Protein and carbohydrate composition of larval food affects tolerance to thermal stress and desiccation in adult publication-title: Journal of Insect Physiology – volume: 214 start-page: 3713 year: 2011 end-page: 3725 article-title: Ecologically relevant measures of tolerance to potentially lethal temperatures publication-title: Journal of Experimental Biology – volume: 92 start-page: 257 year: 2004 end-page: 262 article-title: Heat and cold‐induced male sterility in : genetic variation among populations for the duration of sterility publication-title: Heredity – volume: 29 start-page: 351 year: 2004 end-page: 358 article-title: Thermal stress and neural function: adaptive mechanisms in insect model systems publication-title: Journal of Thermal Biology – volume: 51 start-page: 173 year: 1997 end-page: 179 article-title: Natural variation in the expression of the heat‐shock protein HSP70 in a population of and its correlation with tolerance of ecologically relevant thermal stress publication-title: Evolution – volume: 61 start-page: 354 year: 2011 end-page: 362 article-title: Common ecology publication-title: BioScience – volume: 6 start-page: e22610 year: 2011 article-title: Can oxygen set thermal limits in an insect and drive gigantism? publication-title: PLoS ONE – volume: 101 start-page: 4631 year: 2004 end-page: 4636 article-title: Temperature dependence of metabolic rates for microbial growth, maintenance, and survival publication-title: Proceedings of the National Academy of Sciences – volume: 332 start-page: 109 year: 2011 end-page: 112 article-title: Differences in thermal tolerance among Sockeye Salmon populations publication-title: Science – volume: 83 start-page: 197 year: 2004 end-page: 205 article-title: A comparison of behavioural change in Drosophila during exposure to thermal stress publication-title: Biological Journal of the Linnean Society – volume: 276 start-page: 1939 year: 2009 end-page: 1948 article-title: Why tropical forest lizards are vulnerable to climate warming publication-title: Proceedings of the Royal Society of London B – volume: 396 start-page: 336 year: 1998 end-page: 342 article-title: Hsp90 as a capacitor for morphological evolution publication-title: Nature – volume: 58 start-page: 669 year: 2012 end-page: 678 article-title: The effects of acclimation and rates of temperature change on critical thermal limits in (Tenebrionidae) and (Curculionidae) publication-title: Journal of Insect Physiology – volume: 202 start-page: 2709 year: 1999 end-page: 2718 article-title: Laboratory selection for the comparative physiologist publication-title: Journal of Experimental Biology – volume: 79 start-page: 194 year: 2010 end-page: 204 article-title: What determines a species' geographical range? Thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera: Dytiscidae) publication-title: Journal of Animal Ecology – volume: 10 start-page: a363 year: 2010 article-title: Genetic constraints for thermal coadaptation in publication-title: BMC Evolutionary Biology – volume: 25 start-page: 1965 year: 2005 end-page: 1978 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: International Journal of Climatology – volume: 31 start-page: 75 year: 1956 end-page: 87 article-title: Some principles in the thermal requirements of fishes publication-title: The Quarterly Review of Biology – volume: 7 start-page: 39 year: 1994 end-page: 49 article-title: Effects of exposure to short‐term heat stress on fitness components in publication-title: Journal of Evolutionary Biology – volume: 73 start-page: 595 year: 1982 end-page: 604 article-title: Cold‐hardiness strategies of some adult and immature insects overwintering in interior Alaska publication-title: Comparative Biochemistry and Physiology A – volume: 7 start-page: e32083 year: 2012 article-title: Considerations for assessing maximum critical temperatures in small ectothermic animals: insights from leaf‐cutting ants publication-title: PLoS ONE – volume: 92 start-page: 2994 year: 1995 end-page: 2998 article-title: Heat shock protein synthesis and thermotolerance in , an ant from the Sahara desert publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 64 start-page: 2921 year: 2010 end-page: 2934 article-title: Three selections are better than one: clinal variation of thermal QTL from independent selection experiments in Drosophila publication-title: Evolution – volume: 73 start-page: 200 year: 2000 end-page: 208 article-title: A comparative analysis of the upper thermal tolerance limits of eastern Pacific porcelain crabs, genus Petrolisthes: influences of latitude, vertical zonation, acclimation, and phylogeny publication-title: Physiological and Biochemical Zoology – volume: 132 start-page: 739 year: 2002 end-page: 761 article-title: Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals publication-title: Comparative Biochemistry and Physiology A – volume: 75 start-page: 1561 year: 1997 end-page: 1574 article-title: The critical thermal maximum: history and critique publication-title: Canadian Journal of Zoology – volume: 105 start-page: 7088 year: 2008 end-page: 7093 article-title: Human ApoD, an apolipoprotein up‐regulated in neurodegenerative diseases, extends lifespan and increases stress resistance in Drosophila publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 78 start-page: 401 year: 2003 end-page: 414 article-title: Resistance to temperature extremes in sub‐Antarctic weevils: interspecific variation, population differentiation and acclimation publication-title: Biological Journal of the Linnean Society – volume: 99 start-page: 225 year: 2002 end-page: 239 article-title: Latitudinal and local geographic mosaics in host plant preferences as shaped by thermal units and voltinism in spp publication-title: (Lepidoptera). European Journal of Entomology – start-page: 234 year: 1993 end-page: 250 – volume: 369 start-page: 67 year: 2011 end-page: 84 article-title: When could global warming reach 4 C? publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences – volume: 152 start-page: 518 year: 2009 end-page: 523 article-title: Dehydration‐induced cross tolerance of larvae to cold and heat is facilitated by trehalose accumulation publication-title: Comparative Biochemistry and Physiology A – volume: 278 start-page: 1823 year: 2011 end-page: 1830 article-title: Global analysis of thermal tolerance and latitude in ectotherms publication-title: Proceedings of the Royal Society B‐Biological Sciences – year: 1991 – volume: 18 start-page: 412 year: 2012 end-page: 421 article-title: Can amphibians take the heat? Vulnerability to climate warming in subtropical and temperate larval amphibian communities publication-title: Global Change Biology – volume: 12 start-page: 45 year: 1998 end-page: 55 article-title: Critical thermal limits in Mediterranean ant species: trade‐off between mortality risk and foraging performance publication-title: Functional Ecology – volume: 33 start-page: 183 year: 2007 end-page: 209 article-title: Microbial extremophiles at the limits of life publication-title: Critical Reviews in Microbiology – ident: e_1_2_11_9_1 doi: 10.1016/0022-1910(87)90001-1 – ident: e_1_2_11_62_1 doi: 10.1111/j.1365-2435.2007.01283.x – ident: e_1_2_11_100_1 doi: 10.1111/j.1558-5646.1997.tb02398.x – ident: e_1_2_11_179_1 doi: 10.1111/j.1365-3032.2011.00795.x – ident: e_1_2_11_53_1 doi: 10.1111/j.1095-8312.2004.00380.x – ident: e_1_2_11_149_1 doi: 10.1111/j.1469-185X.2010.00125.x – ident: e_1_2_11_111_1 doi: 10.1111/j.1461-0248.2008.01213.x – ident: e_1_2_11_10_1 doi: 10.1111/j.1365-2486.2010.02176.x – ident: e_1_2_11_166_1 doi: 10.1242/jeb.199.8.1845 – ident: e_1_2_11_29_1 doi: 10.1111/j.1365-2699.2007.01787.x – ident: e_1_2_11_112_1 doi: 10.1086/physzool.58.6.30156067 – volume-title: Evolutionary Genetics and Environmental Stress year: 1991 ident: e_1_2_11_76_1 – ident: e_1_2_11_98_1 doi: 10.1111/j.1558-5646.1989.tb04247.x – ident: e_1_2_11_174_1 doi: 10.1371/journal.pone.0022610 – ident: e_1_2_11_92_1 doi: 10.1111/j.1365-2435.2008.01538.x – ident: e_1_2_11_27_1 doi: 10.1111/j.1420-9101.2005.00928.x – ident: e_1_2_11_124_1 doi: 10.1371/journal.pone.0032758 – ident: e_1_2_11_162_1 doi: 10.1007/BF00345241 – ident: e_1_2_11_28_1 doi: 10.1242/jeb.054718 – ident: e_1_2_11_65_1 doi: 10.1111/j.1420-9101.2004.00782.x – ident: e_1_2_11_176_1 doi: 10.1038/sj.hdy.6800405 – ident: e_1_2_11_147_1 doi: 10.1111/j.1420-9101.2011.02318.x – ident: e_1_2_11_171_1 doi: 10.1242/jeb.061283 – ident: e_1_2_11_4_1 doi: 10.1016/j.jinsphys.2012.01.016 – ident: e_1_2_11_72_1 doi: 10.2307/1543615 – ident: e_1_2_11_60_1 doi: 10.1073/pnas.92.7.2994 – ident: e_1_2_11_40_1 doi: 10.1086/physzool.65.5.30158548 – ident: e_1_2_11_95_1 doi: 10.1242/jeb.204.9.1659 – ident: e_1_2_11_156_1 doi: 10.1111/j.1420-9101.2010.02061.x – ident: e_1_2_11_48_1 doi: 10.1073/pnas.0709472105 – ident: e_1_2_11_85_1 doi: 10.1034/j.1600-0706.2003.11738.x – ident: e_1_2_11_181_1 doi: 10.1007/s00227-009-1354-3 – ident: e_1_2_11_36_1 doi: 10.1093/acprof:oso/9780198515494.001.0001 – ident: e_1_2_11_118_1 doi: 10.1111/j.1365-3032.1979.tb00201.x – ident: e_1_2_11_39_1 doi: 10.3354/cr00879 – ident: e_1_2_11_96_1 doi: 10.1007/s00442-004-1605-4 – ident: e_1_2_11_135_1 doi: 10.1668/0003-1569(2000)040[0597:CCEOBA]2.0.CO;2 – ident: e_1_2_11_155_1 doi: 10.1126/science.1184695 – ident: e_1_2_11_55_1 doi: 10.1371/journal.pone.0015284 – ident: e_1_2_11_117_1 doi: 10.1007/s12192-010-0205-y – ident: e_1_2_11_101_1 doi: 10.1016/S0022-1910(98)00059-6 – ident: e_1_2_11_120_1 doi: 10.1007/s10526-009-9255-4 – ident: e_1_2_11_3_1 doi: 10.1111/j.1461-9563.2011.00553.x – ident: e_1_2_11_20_1 doi: 10.1086/663202 – ident: e_1_2_11_146_1 doi: 10.1111/j.1365-2435.2011.01908.x – ident: e_1_2_11_50_1 doi: 10.1007/s10646-011-0624-2 – ident: e_1_2_11_142_1 doi: 10.1371/journal.pone.0024802 – volume: 8 start-page: 149 year: 2006 ident: e_1_2_11_131_1 article-title: Phenotypic and genetic variability of sternopleural bristle number in Drosophila melanogaster under daily thermal stress: developmental instability and anti‐asymmetry publication-title: Evolutionary Ecology Research – ident: e_1_2_11_165_1 doi: 10.1242/jeb.040170 – ident: e_1_2_11_70_1 doi: 10.1016/j.bbagrm.2011.03.007 – ident: e_1_2_11_134_1 doi: 10.1007/s00300-006-0157-y – ident: e_1_2_11_21_1 doi: 10.1038/nature07393 – ident: e_1_2_11_2_1 doi: 10.1098/rspb.2000.1065 – ident: e_1_2_11_54_1 doi: 10.1146/annurev.physiol.61.1.243 – ident: e_1_2_11_108_1 doi: 10.1111/j.1461-0248.2008.01229.x – ident: e_1_2_11_47_1 doi: 10.1890/08-0579.1 – ident: e_1_2_11_81_1 doi: 10.1098/rspb.2011.0160 – ident: e_1_2_11_138_1 doi: 10.1073/pnas.0400522101 – ident: e_1_2_11_13_1 doi: 10.1016/j.cbpa.2008.12.009 – ident: e_1_2_11_32_1 doi: 10.1038/nrmicro1390 – volume: 202 start-page: 2709 year: 1999 ident: e_1_2_11_63_1 article-title: Laboratory selection for the comparative physiologist publication-title: Journal of Experimental Biology doi: 10.1242/jeb.202.20.2709 – ident: e_1_2_11_175_1 doi: 10.1098/rspb.1998.0514 – ident: e_1_2_11_150_1 doi: 10.14411/eje.2002.032 – ident: e_1_2_11_25_1 doi: 10.1016/0010-406X(70)90915-1 – ident: e_1_2_11_12_1 doi: 10.1111/j.1752-4571.2007.00011.x – ident: e_1_2_11_23_1 doi: 10.1371/journal.pone.0009514 – ident: e_1_2_11_104_1 doi: 10.1086/600088 – ident: e_1_2_11_137_1 doi: 10.1242/jeb.037523 – ident: e_1_2_11_143_1 doi: 10.1016/j.jtherbio.2004.08.073 – ident: e_1_2_11_152_1 doi: 10.1098/rspb.2010.0008 – ident: e_1_2_11_57_1 doi: 10.1525/bio.2011.61.5.4 – ident: e_1_2_11_7_1 doi: 10.1111/j.0014-3820.2000.tb00024.x – ident: e_1_2_11_11_1 doi: 10.1016/0022-1910(85)90067-8 – ident: e_1_2_11_34_1 doi: 10.1186/1471-2148-12-25 – ident: e_1_2_11_170_1 doi: 10.1098/rspb.2007.0985 – ident: e_1_2_11_168_1 doi: 10.1098/rspb.2010.1295 – ident: e_1_2_11_83_1 doi: 10.1098/rstb.2012.0005 – ident: e_1_2_11_121_1 doi: 10.1379/CSC-207.1 – volume: 103 start-page: 93 year: 1983 ident: e_1_2_11_164_1 article-title: Non mendelian inheritance of “heat‐sensitivity” in Drosophila melanogaster publication-title: Genetics doi: 10.1093/genetics/103.1.93 – ident: e_1_2_11_151_1 doi: 10.1007/s000360050063 – volume: 205 start-page: 2799 year: 2002 ident: e_1_2_11_178_1 article-title: Mechanism allowing an insect to survive complete dehydration and extreme temperatures publication-title: Journal of Experimental Biology doi: 10.1242/jeb.205.18.2799 – volume-title: Climate Change 2007 year: 2007 ident: e_1_2_11_84_1 – ident: e_1_2_11_115_1 doi: 10.1016/0300-9629(82)90266-3 – ident: e_1_2_11_159_1 doi: 10.1046/j.1461-0248.2002.00296.x – ident: e_1_2_11_172_1 doi: 10.1046/j.1365-2435.2001.00516.x – ident: e_1_2_11_43_1 doi: 10.1111/j.1420-9101.2010.02144.x – volume: 132 start-page: 327 year: 1988 ident: e_1_2_11_173_1 article-title: Latitudinal patterns of the thermal sensitivity of sprint speed in lizards publication-title: The American Naturalist doi: 10.1086/284856 – ident: e_1_2_11_73_1 doi: 10.1002/joc.1276 – ident: e_1_2_11_14_1 doi: 10.1073/pnas.1105195108 – ident: e_1_2_11_61_1 doi: 10.1093/icb/icj003 – ident: e_1_2_11_90_1 doi: 10.1111/j.1365-2486.2010.02277.x – ident: e_1_2_11_123_1 doi: 10.1111/j.1365-3032.2010.00736.x – ident: e_1_2_11_106_1 doi: 10.1016/j.jtherbio.2007.01.009 – ident: e_1_2_11_140_1 doi: 10.1111/j.1365-2435.2010.01778.x – ident: e_1_2_11_126_1 doi: 10.1086/661780 – ident: e_1_2_11_133_1 doi: 10.1111/j.1600-0706.2010.19470.x – ident: e_1_2_11_144_1 doi: 10.1038/24550 – ident: e_1_2_11_160_1 doi: 10.1111/j.1365-2435.2008.01491.x – ident: e_1_2_11_127_1 doi: 10.1111/j.1365-2915.2011.00950.x – ident: e_1_2_11_167_1 doi: 10.1086/316738 – ident: e_1_2_11_42_1 doi: 10.1098/rspb.2010.2675 – ident: e_1_2_11_177_1 doi: 10.1016/j.jinsphys.2005.07.010 – ident: e_1_2_11_22_1 doi: 10.1111/j.1469-185X.2008.00046.x – ident: e_1_2_11_161_1 doi: 10.1038/nature08739 – ident: e_1_2_11_119_1 doi: 10.1073/pnas.0800896105 – ident: e_1_2_11_153_1 doi: 10.1111/j.1420-9101.2010.02110.x – ident: e_1_2_11_30_1 doi: 10.1111/j.1365-2656.2009.01611.x – ident: e_1_2_11_71_1 doi: 10.1016/j.jinsphys.2011.04.004 – ident: e_1_2_11_31_1 doi: 10.1093/jhered/esr027 – ident: e_1_2_11_49_1 doi: 10.1186/1471-2148-10-363 – ident: e_1_2_11_157_1 doi: 10.1086/282976 – ident: e_1_2_11_8_1 doi: 10.1111/j.1365-2435.2009.01541.x – ident: e_1_2_11_35_1 doi: 10.1016/S0022-1910(00)00163-3 – ident: e_1_2_11_154_1 doi: 10.1017/S1464793102006024 – ident: e_1_2_11_38_1 doi: 10.1111/j.1365-2435.2008.01481.x – ident: e_1_2_11_44_1 doi: 10.1371/journal.pone.0009751 – ident: e_1_2_11_87_1 doi: 10.1002/jez.573 – ident: e_1_2_11_107_1 doi: 10.1086/510632 – ident: e_1_2_11_141_1 doi: 10.1371/journal.pone.0032083 – ident: e_1_2_11_41_1 doi: 10.1086/660021 – ident: e_1_2_11_77_1 doi: 10.1038/nature09670 – ident: e_1_2_11_93_1 doi: 10.1126/science.1175443 – ident: e_1_2_11_79_1 doi: 10.1038/nrg2339 – ident: e_1_2_11_105_1 doi: 10.1098/rspb.2008.1240 – ident: e_1_2_11_148_1 doi: 10.1111/j.1420-9101.2010.01965.x – ident: e_1_2_11_33_1 doi: 10.1046/j.1365-2435.1998.00160.x – ident: e_1_2_11_102_1 doi: 10.1046/j.1420-9101.1994.7010039.x – ident: e_1_2_11_128_1 doi: 10.1126/science.1204794 – ident: e_1_2_11_91_1 doi: 10.1007/BF00139728 – ident: e_1_2_11_64_1 doi: 10.1086/515853 – ident: e_1_2_11_78_1 doi: 10.1016/S0306-4565(02)00057-8 – ident: e_1_2_11_18_1 doi: 10.1016/j.mad.2004.08.010 – ident: e_1_2_11_67_1 doi: 10.1007/s11692-011-9127-6 – ident: e_1_2_11_82_1 doi: 10.1098/rspb.2008.1957 – ident: e_1_2_11_5_1 doi: 10.1016/j.jinsphys.2009.11.006 – ident: e_1_2_11_130_1 doi: 10.1002/bies.201000124 – ident: e_1_2_11_132_1 doi: 10.1080/10408410701451948 – ident: e_1_2_11_97_1 doi: 10.1093/icb/icr015 – ident: e_1_2_11_103_1 doi: 10.1073/pnas.0708074105 – ident: e_1_2_11_56_1 doi: 10.1098/rspb.2008.0905 – ident: e_1_2_11_69_1 doi: 10.1126/science.1167396 – ident: e_1_2_11_169_1 doi: 10.4269/ajtmh.2006.74.786 – ident: e_1_2_11_15_1 doi: 10.1093/oxfordjournals.molbev.a003912 – ident: e_1_2_11_52_1 doi: 10.1126/science.1199158 – ident: e_1_2_11_6_1 doi: 10.1093/acprof:oso/9780198570875.001.1 – ident: e_1_2_11_89_1 doi: 10.1016/j.jtherbio.2005.11.026 – start-page: 7 volume-title: Temperature Sensitivity in Insects and Application in Integrated Pest Management year: 1998 ident: e_1_2_11_46_1 – ident: e_1_2_11_88_1 doi: 10.1086/284868 – ident: e_1_2_11_122_1 doi: 10.1111/j.1365-294X.2008.03945.x – ident: e_1_2_11_125_1 doi: 10.1016/j.cryobiol.2008.01.001 – ident: e_1_2_11_99_1 doi: 10.1046/j.1095-8312.2003.00154.x – ident: e_1_2_11_136_1 doi: 10.1016/S1095-6433(02)00045-4 – ident: e_1_2_11_66_1 doi: 10.1007/s00227-010-1528-z – ident: e_1_2_11_116_1 doi: 10.1111/j.1365-2435.2009.01666.x – ident: e_1_2_11_45_1 doi: 10.1046/j.1365-2435.1998.00246.x – ident: e_1_2_11_37_1 doi: 10.1016/S0065-2806(06)33002-0 – ident: e_1_2_11_158_1 doi: 10.1111/j.1461-9563.2011.00523.x – ident: e_1_2_11_129_1 doi: 10.1111/j.1469-7998.2009.00641.x – ident: e_1_2_11_145_1 doi: 10.1016/j.jtherbio.2010.05.006 – ident: e_1_2_11_113_1 doi: 10.1139/f95-259 – ident: e_1_2_11_180_1 doi: 10.1111/j.1420-9101.2008.01631.x – ident: e_1_2_11_24_1 doi: 10.1016/0010-406X(68)90961-4 – ident: e_1_2_11_94_1 doi: 10.1111/j.1558‐5646.2012.01685.x – ident: e_1_2_11_109_1 doi: 10.1139/z97-783 – ident: e_1_2_11_86_1 doi: 10.1093/genetics/137.3.783 – ident: e_1_2_11_110_1 doi: 10.2307/5293 – ident: e_1_2_11_19_1 doi: 10.1016/j.cbpa.2010.12.010 – ident: e_1_2_11_114_1 doi: 10.1098/rspb.1939.0035 – ident: e_1_2_11_139_1 doi: 10.1111/j.1558-5646.2010.01039.x – ident: e_1_2_11_17_1 doi: 10.1098/rsta.2010.0292 – ident: e_1_2_11_59_1 doi: 10.1086/605982 – ident: e_1_2_11_16_1 doi: 10.1007/s10519-009-9256-1 – ident: e_1_2_11_75_1 doi: 10.1046/j.1461-0248.2002.00367.x – ident: e_1_2_11_74_1 doi: 10.1242/jeb.037630 – ident: e_1_2_11_80_1 doi: 10.1016/S0022-1910(96)00108-4 – ident: e_1_2_11_163_1 doi: 10.1016/j.jtherbio.2007.06.001 – ident: e_1_2_11_68_1 doi: 10.1111/j.1558-5646.2008.00412.x – ident: e_1_2_11_26_1 doi: 10.1086/401257 – ident: e_1_2_11_58_1 doi: 10.2307/3546663 – ident: e_1_2_11_51_1 doi: 10.1111/j.1365-2486.2011.02518.x |
SSID | ssj0009522 |
Score | 2.5848885 |
Snippet | 1. Terrestrial ectotherms are likely to face increased periods of heat stress as mean temperatures and temperature variability increase over the next few... Summary 1. Terrestrial ectotherms are likely to face increased periods of heat stress as mean temperatures and temperature variability increase over the next... 1. Terrestrial ectotherms are likely to face increased periods of heat stress as mean temperatures and temperature variability increase over the next few... Summary 1. Terrestrial ectotherms are likely to face increased periods of heat stress as mean temperatures and temperature variability increase over the next... |
SourceID | proquest crossref wiley jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 934 |
SubjectTerms | adaptation Biological taxonomies Climate change comparative analysis Data processing Drosophila Ecological genetics evolution Extended Spotlight: Responses to global climate change: insights from organismal physiology hardening Heat Heat tolerance Human ecology Insect ecology insects Lacertilia Phenotypic traits Phylogenetics plasticity Species upper thermal limit |
Title | Upper thermal limits in terrestrial ectotherms: how constrained are they? |
URI | https://www.jstor.org/stable/23481002 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2435.2012.02036.x https://www.proquest.com/docview/1411816101 https://www.proquest.com/docview/1419369305 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kIHjxXYxWWcFrQrJ5tV5ESkoV9CAWegub3Q1Ka1qaFq2_3plNGhvxUMTbwmbKZjKz803nRchVylzF7ZSbMrGF6Xkd12y7nm2qQPG2lE4oGNY7PzwG_YF3P_SHZf4T1sIU_SGqP9xQM_R9jQrOk7yu5DpDC-w9ZmgxS8fULMSTuIH46Imt9d8tAgos6Jhgct16Us-vP1SzVEWyYg2GroNZbY16e2S0eo8iCWVkLeaJJT5_tHj8nxfdJ7slaKW3hZQdkC2VHZLtYozlElaRKFfN6LtuDgjKiyM_IneD6VTNKKLNN9gYY1lVTl8zCp8Vp4OgGlAMIOgn8mv6MnmnArErjrBQkvKZQurlzTEZ9KLnbt8spziYAmPFpiOZSsMkEWHgq5BJ8K8EeIG-wwV3E8HBYbMDm7tSOB2QJ-XbCpv-tVPPliEOrmiSRjbJ1AmhTDJfCV_xBICHa0vuy9TnLBUSWMKZY5Bw9cViUbY4x2OO4zVXB3gZIy9j5GWseRl_GMSpKKdFm48NaJpaKCoChkXNYGEM0lpJSVzeCDm4WFjiC2AVTnlZbYMuY4CGZ2qy0M_gfEW4gg0SaJHY-DBxL-ri6vSvhGdkh-lJH5jb2CKN-WyhzgFvzZMLrUlfV0oZpQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB5EEb34LtbnCl5Tks2r9SKiLfV5EAvels3uBsWalj7Q-uud2aS1FQ8i3haSCZvJzM43mRfAccp9I91UOjpxlRMENd-p-oHrmMjIqtZerDjVO9_eRc1WcPUYPhbjgKgWJu8PMfnhRpphz2tScPohPavlNkULDT6laPGKDapVEFAu0IBvaqR_cc-nOvDmIQUe1Rw0uv5sWs-PT5qxVXm64gwQnYaz1h41VqE9fpM8DeWlMhwkFfXxrcnjP73qGqwUuJWd5YK2DnMm24DFfJLlCFd1VaxK9a_SOSQozo7-Jly2ul3TYwQ4X_FCmyqr-uw5Y_hlaUAIaQKjGIK9o3_CnjpvTBF8pSkWRjPZM0Q9Ot2CVqP-cN50ikEOjqJwseNpbtI4SVQchSbmGl0shY5g6Ekl_URJ9NncyJW-Vl4NRcqErqG-f9U0cHVMsytKMJ91MrMNjGseGhUamSD28F0tQ52GkqdKI0sk98oQjz-ZUEWXc9pmW0x5O8hLQbwUxEtheSney-BNKLt5p49f0JSsVEwIONU1o5Epw95YTERxKPTRy6IqX8SruMujyWVUZ4rRyMx0hvYeGrGIp3AZIisTv96MaNTPabXzV8JDWGo-3N6Im8u7611Y5nbwB6U67sH8oDc0-wi_BsmBVatPA98dwQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEB5CQkovTdLWxM1rC73KrFYvK5cQ_MBOWlNKDbktq90VLUlk4wdJ-us7s5Idu-RgQm8L0ojVaGbnG80L4EsuAqt4rjyTce2FYRp4zSDkno2tahrjJ1pQvfO3Qdwbhlc30U2V_0S1MGV_iOUPN9IMd16Tgo9Nvq7kLkML7T1laImGi6k1EE_uhDFPaYxD-4dYacBbRhREnHpoc4P1rJ4Xn7RmqspsxTUcuopmnTnq7sHt4kXKLJTbxnyWNfSff3o8_p833Yd3FWpll6WYHcCWLd7DbjnH8glXHV2tap3nwjkkqE6O6QfoD8djO2EEN-_xwh3VVU3Z74Lhd6XxIKQHjCII7o7pOfs1emCawCvNsLCGqYkl6qeLjzDsdn62el41xsHTFCz2fCNsnmSZTuLIJsKgg6XRDYx8pVWQaYUeG4-5Coz2UxQoG3FLXf-aechNQpMrarBdjAp7CEwYEVkdWZUh8gi4UZHJIyVybZAlSvh1SBZfTOqqxzlt806u-DrIS0m8lMRL6XgpH-vgLynHZZ-PDWhqTiiWBIKqmtHE1OF4ISWyOhKm6GNRjS-iVdzl5-VlVGaK0KjCjubuHhqwiGdwHWInEhtvRnY7LVp9ei3hGbz53u7Kr_3B9RG8FW7qB-U5HsP2bDK3J4i9ZtmpU6q_efsccA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Upper+thermal+limits+in+terrestrial+ectotherms%3A+how+constrained+are+they%3F&rft.jtitle=Functional+ecology&rft.au=Hoffmann%2C+Ary+A&rft.au=Chown%2C+Steven+L&rft.au=Clusella-Trullas%2C+Susana&rft.date=2013-08-01&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=27&rft.issue=4&rft.spage=934&rft.epage=949&rft_id=info:doi/10.1111%2Fj.1365-2435.2012.02036.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon |