Upper thermal limits in terrestrial ectotherms: how constrained are they?

1. Terrestrial ectotherms are likely to face increased periods of heat stress as mean temperatures and temperature variability increase over the next few decades. Here, we consider the extent to which changes in upper thermal limits, through plasticity or evolution, might be constrained, and we surv...

Full description

Saved in:
Bibliographic Details
Published inFunctional ecology Vol. 27; no. 4; pp. 934 - 949
Main Authors Hoffmann, Ary A., Chown, Steven L., Clusella-Trullas, Susana
Format Journal Article
LanguageEnglish
Published London Blackwell Publishing 01.08.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 1. Terrestrial ectotherms are likely to face increased periods of heat stress as mean temperatures and temperature variability increase over the next few decades. Here, we consider the extent to which changes in upper thermal limits, through plasticity or evolution, might be constrained, and we survey insect and reptile data to identify groups likely to be particularly susceptible to thermal stress. 2. Plastic changes increase thermal limits in many terrestrial ectotherms, but tend to have less effect on upper limits than lower limits. 3. Although comparisons across insect species have normally not taken into account the potential for plastic responses, mid-latitude species seem most prone to experience heat stress now and into the future, consistent with data from lizards and other groups. 4. Evolutionary adaptive potential has only been measured for some species; there is likely to be genetic variation for heat responses in populations, but selection and heritability experiments suggest that upper thermal limits may not increase much. 5. Although related species can differ by several degrees in their upper thermal limits, there is strong phylogenetic signal for upper limits. If these reflect evolutionary constraints, substantial molecular changes may be required to increase upper thermal limits. 6. Findings point to many terrestrial ectotherms having a limited potential to change their thermal limits particularly within the context of an average predicted temperature increase of 2—4 °C for mid-latitude populations over the next few decades.
AbstractList 1. Terrestrial ectotherms are likely to face increased periods of heat stress as mean temperatures and temperature variability increase over the next few decades. Here, we consider the extent to which changes in upper thermal limits, through plasticity or evolution, might be constrained, and we survey insect and reptile data to identify groups likely to be particularly susceptible to thermal stress. 2. Plastic changes increase thermal limits in many terrestrial ectotherms, but tend to have less effect on upper limits than lower limits. 3. Although comparisons across insect species have normally not taken into account the potential for plastic responses, mid‐latitude species seem most prone to experience heat stress now and into the future, consistent with data from lizards and other groups. 4. Evolutionary adaptive potential has only been measured for some species; there is likely to be genetic variation for heat responses in populations, but selection and heritability experiments suggest that upper thermal limits may not increase much. 5. Although related species can differ by several degrees in their upper thermal limits, there is strong phylogenetic signal for upper limits. If these reflect evolutionary constraints, substantial molecular changes may be required to increase upper thermal limits. 6. Findings point to many terrestrial ectotherms having a limited potential to change their thermal limits particularly within the context of an average predicted temperature increase of 2–4 °C for mid‐latitude populations over the next few decades. Lay Summary
1. Terrestrial ectotherms are likely to face increased periods of heat stress as mean temperatures and temperature variability increase over the next few decades. Here, we consider the extent to which changes in upper thermal limits, through plasticity or evolution, might be constrained, and we survey insect and reptile data to identify groups likely to be particularly susceptible to thermal stress. 2. Plastic changes increase thermal limits in many terrestrial ectotherms, but tend to have less effect on upper limits than lower limits. 3. Although comparisons across insect species have normally not taken into account the potential for plastic responses, mid-latitude species seem most prone to experience heat stress now and into the future, consistent with data from lizards and other groups. 4. Evolutionary adaptive potential has only been measured for some species; there is likely to be genetic variation for heat responses in populations, but selection and heritability experiments suggest that upper thermal limits may not increase much. 5. Although related species can differ by several degrees in their upper thermal limits, there is strong phylogenetic signal for upper limits. If these reflect evolutionary constraints, substantial molecular changes may be required to increase upper thermal limits. 6. Findings point to many terrestrial ectotherms having a limited potential to change their thermal limits particularly within the context of an average predicted temperature increase of 2—4 °C for mid-latitude populations over the next few decades.
Summary 1. Terrestrial ectotherms are likely to face increased periods of heat stress as mean temperatures and temperature variability increase over the next few decades. Here, we consider the extent to which changes in upper thermal limits, through plasticity or evolution, might be constrained, and we survey insect and reptile data to identify groups likely to be particularly susceptible to thermal stress. 2. Plastic changes increase thermal limits in many terrestrial ectotherms, but tend to have less effect on upper limits than lower limits. 3. Although comparisons across insect species have normally not taken into account the potential for plastic responses, mid-latitude species seem most prone to experience heat stress now and into the future, consistent with data from lizards and other groups. 4. Evolutionary adaptive potential has only been measured for some species; there is likely to be genetic variation for heat responses in populations, but selection and heritability experiments suggest that upper thermal limits may not increase much. 5. Although related species can differ by several degrees in their upper thermal limits, there is strong phylogenetic signal for upper limits. If these reflect evolutionary constraints, substantial molecular changes may be required to increase upper thermal limits. 6. Findings point to many terrestrial ectotherms having a limited potential to change their thermal limits particularly within the context of an average predicted temperature increase of 2-4 °C for mid-latitude populations over the next few decades. Lay Summary [PUBLICATION ABSTRACT]
1. Terrestrial ectotherms are likely to face increased periods of heat stress as mean temperatures and temperature variability increase over the next few decades. Here, we consider the extent to which changes in upper thermal limits, through plasticity or evolution, might be constrained, and we survey insect and reptile data to identify groups likely to be particularly susceptible to thermal stress. 2. Plastic changes increase thermal limits in many terrestrial ectotherms, but tend to have less effect on upper limits than lower limits. 3. Although comparisons across insect species have normally not taken into account the potential for plastic responses, mid-latitude species seem most prone to experience heat stress now and into the future, consistent with data from lizards and other groups. 4. Evolutionary adaptive potential has only been measured for some species; there is likely to be genetic variation for heat responses in populations, but selection and heritability experiments suggest that upper thermal limits may not increase much. 5. Although related species can differ by several degrees in their upper thermal limits, there is strong phylogenetic signal for upper limits. If these reflect evolutionary constraints, substantial molecular changes may be required to increase upper thermal limits. 6. Findings point to many terrestrial ectotherms having a limited potential to change their thermal limits particularly within the context of an average predicted temperature increase of 2-4 degree C for mid-latitude populations over the next few decades.Original Abstract: Lay Summary
Summary 1. Terrestrial ectotherms are likely to face increased periods of heat stress as mean temperatures and temperature variability increase over the next few decades. Here, we consider the extent to which changes in upper thermal limits, through plasticity or evolution, might be constrained, and we survey insect and reptile data to identify groups likely to be particularly susceptible to thermal stress. 2. Plastic changes increase thermal limits in many terrestrial ectotherms, but tend to have less effect on upper limits than lower limits. 3. Although comparisons across insect species have normally not taken into account the potential for plastic responses, mid‐latitude species seem most prone to experience heat stress now and into the future, consistent with data from lizards and other groups. 4. Evolutionary adaptive potential has only been measured for some species; there is likely to be genetic variation for heat responses in populations, but selection and heritability experiments suggest that upper thermal limits may not increase much. 5. Although related species can differ by several degrees in their upper thermal limits, there is strong phylogenetic signal for upper limits. If these reflect evolutionary constraints, substantial molecular changes may be required to increase upper thermal limits. 6. Findings point to many terrestrial ectotherms having a limited potential to change their thermal limits particularly within the context of an average predicted temperature increase of 2–4 °C for mid‐latitude populations over the next few decades. Lay Summary
Author Hoffmann, Ary A.
Chown, Steven L.
Clusella-Trullas, Susana
Author_xml – sequence: 1
  givenname: Ary A.
  surname: Hoffmann
  fullname: Hoffmann, Ary A.
– sequence: 2
  givenname: Steven L.
  surname: Chown
  fullname: Chown, Steven L.
– sequence: 3
  givenname: Susana
  surname: Clusella-Trullas
  fullname: Clusella-Trullas, Susana
BookMark eNqNkN9LwzAQx4MouKl_glDwxZfWu6RNW0FFhr9A8EWfQ5beMKVrZtKx7b-33WQPezIvCXefz3H5jtlx61piLEJIsD83dYJCZjFPRZZwQJ4AByGT9REb7RvHbARclnGRSnHKxiHUAFBmnI_Y29diQT7qvsnPdRM1dm67ENk26sh7Cp23fZVM57ZEuI2-3Soyru072rZURdrTYG8eztnJTDeBLv7uM_b1_PQ5eY3fP17eJo_vsUlTKWOsOM3y6dTkMqOcV6WURgJmqI0WU6NzlCBBi8pgScZQBgSiKItZClVOkIkzdr2bu_DuZ9mvqOY2GGoa3ZJbBoUplkKWYoteHaC1W_q2326gsECJgD11v6OMdyF4miljO91Z1w5_bBSCGpJWtRoCVUOgakhabZNW635AcTBg4e1c-81_1LudurINbf7tqeenyfDq_cudX4fO-b3PRVogABe_pBygfg
CODEN FECOE5
CitedBy_id crossref_primary_10_1111_gcb_13313
crossref_primary_10_1111_btp_12691
crossref_primary_10_1111_ddi_12606
crossref_primary_10_1111_geb_12904
crossref_primary_10_1111_1365_2656_12699
crossref_primary_10_3389_fphys_2022_992293
crossref_primary_10_3390_ijms241210146
crossref_primary_10_1016_j_aspen_2018_07_024
crossref_primary_10_1111_oik_10797
crossref_primary_10_1016_j_cois_2015_10_001
crossref_primary_10_3390_insects11020102
crossref_primary_10_1016_j_gecco_2015_07_012
crossref_primary_10_1016_j_ijpara_2018_03_004
crossref_primary_10_1016_j_jtherbio_2023_103763
crossref_primary_10_1086_705939
crossref_primary_10_1098_rsos_241765
crossref_primary_10_1111_een_12873
crossref_primary_10_1111_gcb_13427
crossref_primary_10_1016_j_jtherbio_2025_104063
crossref_primary_10_1242_jeb_227801
crossref_primary_10_1111_een_12998
crossref_primary_10_3390_insects9030078
crossref_primary_10_1111_1365_2435_13095
crossref_primary_10_1590_1676_0611_bn_2021_1204
crossref_primary_10_1016_j_jtherbio_2024_103912
crossref_primary_10_1016_j_envpol_2017_10_071
crossref_primary_10_1016_j_cbpc_2024_109884
crossref_primary_10_1016_j_napere_2025_100121
crossref_primary_10_1590_2358_2936e2022012
crossref_primary_10_1038_srep13965
crossref_primary_10_1016_j_jtherbio_2025_104068
crossref_primary_10_1016_j_jtherbio_2018_01_002
crossref_primary_10_1111_oik_09685
crossref_primary_10_1098_rstb_2018_0549
crossref_primary_10_1098_rstb_2018_0548
crossref_primary_10_1098_rstb_2018_0547
crossref_primary_10_1242_jeb_233254
crossref_primary_10_1371_journal_pone_0087535
crossref_primary_10_1111_jeb_13084
crossref_primary_10_1111_1744_7917_12456
crossref_primary_10_1016_j_ijbiomac_2024_139415
crossref_primary_10_1111_eea_12912
crossref_primary_10_1007_s12192_015_0652_6
crossref_primary_10_1016_j_cois_2020_05_005
crossref_primary_10_1111_gcb_15750
crossref_primary_10_1007_s00442_015_3409_0
crossref_primary_10_1016_j_cois_2015_09_001
crossref_primary_10_1093_ee_nvaa011
crossref_primary_10_1093_plankt_fbab044
crossref_primary_10_1093_aesa_saab018
crossref_primary_10_1371_journal_pone_0306823
crossref_primary_10_1111_gcb_16834
crossref_primary_10_1111_ecog_05906
crossref_primary_10_1016_j_pecon_2020_04_002
crossref_primary_10_1111_ddi_12999
crossref_primary_10_1016_j_jinsphys_2021_104209
crossref_primary_10_1111_jbi_13433
crossref_primary_10_1242_jeb_233031
crossref_primary_10_1016_j_cois_2018_07_009
crossref_primary_10_1016_j_jtherbio_2024_103930
crossref_primary_10_1016_j_jtherbio_2022_103338
crossref_primary_10_1111_1365_2435_12906
crossref_primary_10_1016_j_jtherbio_2022_103339
crossref_primary_10_1016_j_cois_2015_09_013
crossref_primary_10_1080_00218839_2016_1260380
crossref_primary_10_1016_j_cois_2015_09_012
crossref_primary_10_1371_journal_pone_0291393
crossref_primary_10_1016_j_cbpa_2015_06_033
crossref_primary_10_1016_j_scitotenv_2023_169443
crossref_primary_10_1111_een_12842
crossref_primary_10_1073_pnas_2011419117
crossref_primary_10_1002_jez_2197
crossref_primary_10_1111_jzo_12850
crossref_primary_10_1073_pnas_1507681113
crossref_primary_10_7717_peerj_7060
crossref_primary_10_1016_j_jinsphys_2019_103946
crossref_primary_10_1093_icb_icae132
crossref_primary_10_1016_j_jtherbio_2016_04_015
crossref_primary_10_1002_ece3_3588
crossref_primary_10_1242_jeb_165308
crossref_primary_10_1890_14_0744_1
crossref_primary_10_1371_journal_pone_0180968
crossref_primary_10_24072_pci_evolbiol_100079
crossref_primary_10_1111_eea_12814
crossref_primary_10_1242_jeb_132696
crossref_primary_10_1111_jeb_13905
crossref_primary_10_1093_ee_nvz154
crossref_primary_10_1016_j_jtherbio_2021_103164
crossref_primary_10_1093_zoolinnean_zlad109
crossref_primary_10_1139_cjz_2015_0188
crossref_primary_10_1016_j_jtherbio_2018_10_011
crossref_primary_10_1111_gcb_14713
crossref_primary_10_1098_rspb_2016_1408
crossref_primary_10_1016_j_heliyon_2024_e36671
crossref_primary_10_1186_s12864_016_2466_z
crossref_primary_10_1002_ece3_3118
crossref_primary_10_1242_jeb_108217
crossref_primary_10_1093_icb_icab087
crossref_primary_10_1111_1365_2656_13996
crossref_primary_10_1038_s41598_023_39637_x
crossref_primary_10_1093_conphys_coaa049
crossref_primary_10_1111_jeb_14090
crossref_primary_10_1007_s00360_013_0776_x
crossref_primary_10_1002_ece3_6991
crossref_primary_10_1111_ele_14228
crossref_primary_10_1111_eva_12127
crossref_primary_10_1016_j_cbpa_2025_111816
crossref_primary_10_1111_ecog_04627
crossref_primary_10_1111_1365_2435_13184
crossref_primary_10_1152_ajpregu_00268_2016
crossref_primary_10_1002_ece3_5782
crossref_primary_10_1002_ece3_5666
crossref_primary_10_1093_biolinnean_blw047
crossref_primary_10_1016_j_tree_2021_05_010
crossref_primary_10_1111_jbi_12553
crossref_primary_10_3390_biology12111379
crossref_primary_10_1016_j_jinsphys_2013_07_008
crossref_primary_10_1016_j_jtherbio_2024_103862
crossref_primary_10_1111_btp_12519
crossref_primary_10_1038_s41598_020_73391_8
crossref_primary_10_1016_j_jtherbio_2021_103066
crossref_primary_10_1111_jac_12401
crossref_primary_10_1098_rstb_2019_0036
crossref_primary_10_1111_een_12970
crossref_primary_10_18353_crustacea_51_0_129
crossref_primary_10_1111_eva_12116
crossref_primary_10_1098_rspb_2024_2679
crossref_primary_10_1016_j_jtherbio_2016_04_001
crossref_primary_10_1007_s10531_019_01855_z
crossref_primary_10_1038_s41598_020_65608_7
crossref_primary_10_3389_fmars_2022_858280
crossref_primary_10_1016_j_jembe_2019_151186
crossref_primary_10_1111_gcb_13407
crossref_primary_10_1016_j_jafr_2023_100528
crossref_primary_10_1038_s41467_024_47645_2
crossref_primary_10_1093_conphys_coab038
crossref_primary_10_1098_rspb_2020_2508
crossref_primary_10_1016_j_jinsphys_2017_09_004
crossref_primary_10_1111_gcb_16429
crossref_primary_10_1093_ee_nvy149
crossref_primary_10_1111_acv_12255
crossref_primary_10_1016_j_zool_2015_03_001
crossref_primary_10_1111_een_12481
crossref_primary_10_1038_s41597_022_01704_9
crossref_primary_10_1111_jeb_13260
crossref_primary_10_1073_pnas_2214199120
crossref_primary_10_1111_een_12364
crossref_primary_10_1007_s00442_018_4154_y
crossref_primary_10_1002_wcc_852
crossref_primary_10_1007_s40823_018_0034_8
crossref_primary_10_1086_687588
crossref_primary_10_1002_zoo_21650
crossref_primary_10_1890_ES14_00436_1
crossref_primary_10_1111_ddi_13307
crossref_primary_10_1111_eea_13039
crossref_primary_10_1242_jeb_154161
crossref_primary_10_1002_ecy_3051
crossref_primary_10_3389_fphys_2022_818485
crossref_primary_10_1111_evo_12992
crossref_primary_10_1093_plankt_fbad037
crossref_primary_10_1242_bio_058619
crossref_primary_10_3389_fevo_2022_1017255
crossref_primary_10_1111_evo_12757
crossref_primary_10_1111_geb_13811
crossref_primary_10_1111_jeb_12390
crossref_primary_10_1111_1365_2656_13363
crossref_primary_10_1111_1365_2656_13368
crossref_primary_10_1002_ece3_1785
crossref_primary_10_1016_j_scitotenv_2023_167605
crossref_primary_10_1016_j_jtherbio_2020_102690
crossref_primary_10_1007_s10530_016_1077_6
crossref_primary_10_1086_728672
crossref_primary_10_1111_jfb_14655
crossref_primary_10_3389_fevo_2019_00080
crossref_primary_10_1670_19_124
crossref_primary_10_1111_1365_2435_13151
crossref_primary_10_1371_journal_pone_0150393
crossref_primary_10_1111_mec_13548
crossref_primary_10_1016_j_jtherbio_2023_103479
crossref_primary_10_1371_journal_pntd_0009729
crossref_primary_10_1111_brv_12639
crossref_primary_10_1371_journal_pone_0198803
crossref_primary_10_1016_j_jinsphys_2021_104287
crossref_primary_10_1016_j_jtherbio_2019_102405
crossref_primary_10_1071_WF21112
crossref_primary_10_1086_702339
crossref_primary_10_1111_1365_2435_12478
crossref_primary_10_1111_een_12324
crossref_primary_10_3390_insects3041171
crossref_primary_10_1016_j_tree_2021_07_001
crossref_primary_10_1038_srep33667
crossref_primary_10_1111_ecog_01616
crossref_primary_10_1016_j_jinsphys_2015_04_014
crossref_primary_10_3389_fgene_2015_00038
crossref_primary_10_1098_rsbl_2019_0613
crossref_primary_10_1098_rstb_2020_0119
crossref_primary_10_1093_conphys_cow053
crossref_primary_10_7717_peerj_6252
crossref_primary_10_1016_j_jtherbio_2018_12_002
crossref_primary_10_1007_s10530_020_02236_2
crossref_primary_10_1038_srep15715
crossref_primary_10_1111_fwb_13598
crossref_primary_10_1111_1365_2435_12119
crossref_primary_10_1111_een_12796
crossref_primary_10_1038_s41467_021_22546_w
crossref_primary_10_1093_conphys_cow056
crossref_primary_10_1111_jbi_12713
crossref_primary_10_3390_insects11030197
crossref_primary_10_1016_j_tree_2020_05_006
crossref_primary_10_1111_1365_2656_12388
crossref_primary_10_1111_een_12792
crossref_primary_10_1016_j_jinsphys_2018_09_002
crossref_primary_10_1111_1365_2656_13358
crossref_primary_10_1111_gcb_15761
crossref_primary_10_1002_ece3_10937
crossref_primary_10_1016_j_jtherbio_2020_102623
crossref_primary_10_1016_j_jtherbio_2020_102744
crossref_primary_10_1111_icad_12153
crossref_primary_10_1098_rsbl_2023_0106
crossref_primary_10_1007_s00040_017_0555_x
crossref_primary_10_1016_j_rsma_2024_103467
crossref_primary_10_1111_1749_4877_12298
crossref_primary_10_1111_icad_12394
crossref_primary_10_7717_peerj_6128
crossref_primary_10_1111_1365_2435_12499
crossref_primary_10_1111_1365_2435_14438
crossref_primary_10_1371_journal_pone_0265361
crossref_primary_10_1371_journal_pone_0164505
crossref_primary_10_1111_nyas_13974
crossref_primary_10_7717_peerj_11734
crossref_primary_10_1016_j_jinsphys_2012_08_012
crossref_primary_10_1111_jbi_12700
crossref_primary_10_1093_conphys_coad044
crossref_primary_10_1093_conphys_coac073
crossref_primary_10_3390_insects11080537
crossref_primary_10_4996_fireecology_130302441
crossref_primary_10_1098_rsbl_2023_0019
crossref_primary_10_1111_1365_2435_13584
crossref_primary_10_1007_s00442_017_3825_4
crossref_primary_10_1016_j_jtherbio_2019_102432
crossref_primary_10_1093_molbev_msy132
crossref_primary_10_1371_journal_pone_0244458
crossref_primary_10_1007_s00040_020_00782_5
crossref_primary_10_1111_evo_12843
crossref_primary_10_1007_s10980_020_00986_x
crossref_primary_10_1111_evo_12617
crossref_primary_10_1111_nyas_12876
crossref_primary_10_1111_1365_2435_12268
crossref_primary_10_1111_ele_12696
crossref_primary_10_1016_j_cbpa_2021_110955
crossref_primary_10_1016_j_cris_2023_100061
crossref_primary_10_1111_geb_13602
crossref_primary_10_1016_j_jinsphys_2016_11_001
crossref_primary_10_1093_biolinnean_blx092
crossref_primary_10_1016_j_jtherbio_2021_102936
crossref_primary_10_3389_fevo_2022_841490
crossref_primary_10_1098_rspb_2024_1628
crossref_primary_10_1038_s41467_021_21263_8
crossref_primary_10_1242_jeb_122127
crossref_primary_10_1534_genetics_115_185736
crossref_primary_10_1093_aesa_saac010
crossref_primary_10_1016_j_jtherbio_2019_102447
crossref_primary_10_1371_journal_pone_0299598
crossref_primary_10_1093_biolinnean_blx088
crossref_primary_10_1093_iob_oby002
crossref_primary_10_1093_ee_nvy130
crossref_primary_10_1017_pab_2019_11
crossref_primary_10_1017_S0007485316001103
crossref_primary_10_1073_pnas_1715598115
crossref_primary_10_1093_cz_zox021
crossref_primary_10_1111_jbi_12808
crossref_primary_10_1111_1365_2435_12310
crossref_primary_10_3389_fgene_2020_619441
crossref_primary_10_1002_jez_2433
crossref_primary_10_1016_j_jinsphys_2024_104616
crossref_primary_10_1111_jen_12795
crossref_primary_10_1111_jeb_13663
crossref_primary_10_1017_S1473550413000438
crossref_primary_10_1002_ecm_1553
crossref_primary_10_1086_686889
crossref_primary_10_7554_eLife_69630
crossref_primary_10_1093_icb_ict015
crossref_primary_10_1111_1365_2435_12687
crossref_primary_10_1111_ddi_13146
crossref_primary_10_1007_s00360_016_1041_x
crossref_primary_10_1002_ece3_5054
crossref_primary_10_1073_pnas_2418199122
crossref_primary_10_1111_eea_12466
crossref_primary_10_1111_eea_13310
crossref_primary_10_1002_fee_2160
crossref_primary_10_1186_s40317_015_0075_2
crossref_primary_10_1371_journal_pone_0070662
crossref_primary_10_1038_s41598_023_43128_4
crossref_primary_10_1111_1365_2435_12568
crossref_primary_10_1016_j_cbpa_2016_03_003
crossref_primary_10_1093_biolinnean_blab049
crossref_primary_10_1093_conphys_cov056
crossref_primary_10_1007_s10750_016_2826_3
crossref_primary_10_1002_ecy_3549
crossref_primary_10_1002_jez_2414
crossref_primary_10_1016_j_cois_2016_08_003
crossref_primary_10_3354_meps12487
crossref_primary_10_1016_j_jembe_2017_01_023
crossref_primary_10_1002_wcc_551
crossref_primary_10_1111_jeb_12436
crossref_primary_10_1111_1365_2435_12219
crossref_primary_10_1002_ecs2_3645
crossref_primary_10_1002_ecm_1517
crossref_primary_10_1111_afe_12227
crossref_primary_10_1111_bij_12846
crossref_primary_10_1146_annurev_ecolsys_011121_021241
crossref_primary_10_3390_biology12040615
crossref_primary_10_1111_geb_12433
crossref_primary_10_1242_jeb_161331
crossref_primary_10_1371_journal_pone_0219759
crossref_primary_10_1016_j_baae_2023_01_002
crossref_primary_10_1242_jeb_230797
crossref_primary_10_1098_rsos_231389
crossref_primary_10_1111_phen_12235
crossref_primary_10_1002_ece3_2929
crossref_primary_10_1002_ecs2_3990
crossref_primary_10_1093_ee_nvaf019
crossref_primary_10_1242_jeb_229336
crossref_primary_10_1111_jzo_13029
crossref_primary_10_1111_1365_2435_12510
crossref_primary_10_1098_rstb_2022_0018
crossref_primary_10_1242_bio_038141
crossref_primary_10_1038_s41598_020_69997_7
crossref_primary_10_1093_jxb_erz257
crossref_primary_10_1016_j_cois_2017_03_006
crossref_primary_10_1002_ece3_9560
crossref_primary_10_1002_jez_2632
crossref_primary_10_1007_s10682_016_9827_6
crossref_primary_10_1186_s12862_015_0476_0
crossref_primary_10_1017_S0007485314000303
crossref_primary_10_7717_peerj_2290
crossref_primary_10_1016_j_scitotenv_2022_161049
crossref_primary_10_1086_699755
crossref_primary_10_1016_j_jtherbio_2021_102997
crossref_primary_10_1002_ecm_1597
crossref_primary_10_1111_geb_12387
crossref_primary_10_1038_s41437_020_0338_4
crossref_primary_10_1038_s41598_018_37493_8
crossref_primary_10_1016_j_jtherbio_2020_102598
crossref_primary_10_1111_phen_12282
crossref_primary_10_1016_j_biocon_2019_05_055
crossref_primary_10_1016_j_jtherbio_2020_102597
crossref_primary_10_1086_716577
crossref_primary_10_1007_s00442_017_4032_z
crossref_primary_10_1016_j_scitotenv_2024_170165
crossref_primary_10_1111_gcb_16338
crossref_primary_10_1186_s13071_020_04479_3
crossref_primary_10_1016_j_jssas_2023_02_004
crossref_primary_10_1111_mec_14572
crossref_primary_10_1146_annurev_ento_041520_074454
crossref_primary_10_1016_j_jinsphys_2024_104648
crossref_primary_10_1111_eea_12144
crossref_primary_10_1016_j_jtherbio_2020_102582
crossref_primary_10_1093_jeb_voae116
crossref_primary_10_1016_j_jtherbio_2020_102580
crossref_primary_10_1111_jeb_13234
crossref_primary_10_1073_pnas_1918162117
crossref_primary_10_1002_evl3_299
crossref_primary_10_1007_s00267_015_0537_6
crossref_primary_10_1111_gcb_16453
crossref_primary_10_1155_2019_6179705
crossref_primary_10_1111_1749_4877_12579
crossref_primary_10_1111_cobi_12769
crossref_primary_10_1098_rspb_2021_0765
crossref_primary_10_1111_1462_2920_16609
crossref_primary_10_1002_ecy_3629
crossref_primary_10_1111_1365_2656_12196
crossref_primary_10_1016_j_envpol_2016_11_014
crossref_primary_10_1098_rspb_2019_0174
crossref_primary_10_1016_j_aquatox_2019_02_005
crossref_primary_10_1111_1365_2435_13507
crossref_primary_10_1111_geb_13570
crossref_primary_10_1016_j_zool_2018_01_002
crossref_primary_10_1371_journal_pone_0050884
crossref_primary_10_1111_gcb_17447
crossref_primary_10_1111_geb_12114
crossref_primary_10_1111_fwb_14190
crossref_primary_10_3389_fphys_2018_00666
crossref_primary_10_1002_ece3_70379
crossref_primary_10_1093_evolut_qpae126
crossref_primary_10_1086_698656
crossref_primary_10_1242_jeb_244514
crossref_primary_10_1371_journal_pone_0151959
crossref_primary_10_1007_s00442_021_05054_y
crossref_primary_10_1093_icb_icw014
crossref_primary_10_1093_icb_icw016
crossref_primary_10_1002_ece3_5440
crossref_primary_10_1016_j_jtherbio_2014_11_009
crossref_primary_10_1038_s41598_019_52034_7
crossref_primary_10_1038_s41559_023_02007_x
crossref_primary_10_1111_1365_2435_13807
crossref_primary_10_1111_1365_2435_13928
crossref_primary_10_1002_ece3_3384
crossref_primary_10_1093_biolinnean_blab103
crossref_primary_10_1002_1438_390X_1016
crossref_primary_10_1111_1749_4877_12309
crossref_primary_10_1111_phen_12400
crossref_primary_10_1086_694781
crossref_primary_10_1016_j_jtherbio_2021_103002
crossref_primary_10_1016_j_anbehav_2021_02_004
crossref_primary_10_1016_j_jtherbio_2015_05_002
crossref_primary_10_1007_s13253_023_00581_y
crossref_primary_10_1016_j_jinsphys_2017_03_003
crossref_primary_10_1098_rspb_2020_0823
crossref_primary_10_1093_icb_icw024
crossref_primary_10_1111_ecog_03427
crossref_primary_10_1016_j_jtherbio_2016_11_012
crossref_primary_10_1111_btp_13371
crossref_primary_10_1111_nyas_13223
crossref_primary_10_1155_2016_2157494
crossref_primary_10_1016_j_tree_2022_03_011
crossref_primary_10_1002_ecy_2643
crossref_primary_10_1111_1365_2435_12609
crossref_primary_10_1242_jeb_245749
crossref_primary_10_1111_een_12902
crossref_primary_10_1126_science_1247579
crossref_primary_10_1098_rsob_240093
crossref_primary_10_1007_s10841_021_00302_1
crossref_primary_10_1016_j_apsoil_2022_104692
crossref_primary_10_1038_ncomms6053
crossref_primary_10_1111_gcb_12521
crossref_primary_10_1371_journal_pone_0191840
crossref_primary_10_1002_ece3_7521
crossref_primary_10_1016_j_jtherbio_2019_02_024
crossref_primary_10_1111_ecog_03458
crossref_primary_10_1016_j_ecolmodel_2016_11_008
crossref_primary_10_1093_icb_icaa140
crossref_primary_10_1111_evo_14388
crossref_primary_10_1111_jeb_12832
crossref_primary_10_1098_rspb_2013_2433
crossref_primary_10_1073_pnas_1815828116
crossref_primary_10_1007_s00360_019_01230_y
crossref_primary_10_7717_peerj_1023
crossref_primary_10_1073_pnas_2116645119
crossref_primary_10_1016_j_jtherbio_2016_07_008
crossref_primary_10_1093_icb_icw004
crossref_primary_10_1111_afe_12501
crossref_primary_10_1016_j_anbehav_2018_06_003
crossref_primary_10_1111_gcb_12750
crossref_primary_10_1186_s12862_020_1589_7
crossref_primary_10_1016_j_biocon_2020_108521
crossref_primary_10_1111_mec_16134
crossref_primary_10_1371_journal_pone_0237201
crossref_primary_10_1098_rspb_2023_2700
crossref_primary_10_1242_jeb_231241
crossref_primary_10_1007_s10201_024_00765_6
crossref_primary_10_3389_fphys_2016_00139
crossref_primary_10_1111_evo_13064
crossref_primary_10_1038_ncomms11447
crossref_primary_10_1111_1744_7917_13157
crossref_primary_10_1038_s41598_021_02491_w
crossref_primary_10_1038_s41558_020_00938_y
crossref_primary_10_1038_s41598_018_27628_2
crossref_primary_10_1242_jeb_246735
crossref_primary_10_1007_s10522_023_10066_7
crossref_primary_10_1111_geb_13121
crossref_primary_10_1002_eap_2310
crossref_primary_10_1016_j_pt_2013_12_010
crossref_primary_10_1098_rstb_2021_0004
crossref_primary_10_1111_ele_12901
crossref_primary_10_1111_1365_2656_12818
crossref_primary_10_1186_s12915_024_02072_z
crossref_primary_10_1111_brv_12496
crossref_primary_10_1016_j_cbpa_2023_111505
crossref_primary_10_1002_ece3_6229
crossref_primary_10_1038_nclimate2945
crossref_primary_10_1016_j_jtherbio_2022_103439
crossref_primary_10_1016_j_ibmb_2013_01_006
crossref_primary_10_1111_phen_12454
crossref_primary_10_1038_s41467_022_32953_2
crossref_primary_10_1098_rsos_201717
crossref_primary_10_1093_jxb_erac039
crossref_primary_10_1098_rstb_2023_0321
crossref_primary_10_1111_eea_12794
crossref_primary_10_1086_708455
crossref_primary_10_1016_j_oneear_2024_03_008
crossref_primary_10_1038_s41598_019_45045_x
crossref_primary_10_1093_iob_obad009
crossref_primary_10_1111_ecog_06884
crossref_primary_10_1016_j_jtherbio_2021_103106
crossref_primary_10_1111_1365_2656_12914
crossref_primary_10_1111_eea_12679
crossref_primary_10_1163_1568539X_00003322
crossref_primary_10_1016_j_cris_2021_100019
crossref_primary_10_3390_ani12040531
crossref_primary_10_1038_s41598_018_25593_4
crossref_primary_10_1371_journal_ppat_1007185
crossref_primary_10_1016_j_cois_2021_06_003
crossref_primary_10_1126_science_aba9287
crossref_primary_10_1002_jez_2582
crossref_primary_10_3389_fevo_2021_688723
crossref_primary_10_1080_21564574_2022_2098393
crossref_primary_10_1111_mec_17548
crossref_primary_10_1111_jbi_13596
crossref_primary_10_1111_jeb_12886
crossref_primary_10_1080_00222933_2024_2322178
crossref_primary_10_1146_annurev_ecolsys_110316_023003
crossref_primary_10_1371_journal_pone_0166243
Cites_doi 10.1016/0022-1910(87)90001-1
10.1111/j.1365-2435.2007.01283.x
10.1111/j.1558-5646.1997.tb02398.x
10.1111/j.1365-3032.2011.00795.x
10.1111/j.1095-8312.2004.00380.x
10.1111/j.1469-185X.2010.00125.x
10.1111/j.1461-0248.2008.01213.x
10.1111/j.1365-2486.2010.02176.x
10.1242/jeb.199.8.1845
10.1111/j.1365-2699.2007.01787.x
10.1086/physzool.58.6.30156067
10.1111/j.1558-5646.1989.tb04247.x
10.1371/journal.pone.0022610
10.1111/j.1365-2435.2008.01538.x
10.1111/j.1420-9101.2005.00928.x
10.1371/journal.pone.0032758
10.1007/BF00345241
10.1242/jeb.054718
10.1111/j.1420-9101.2004.00782.x
10.1038/sj.hdy.6800405
10.1111/j.1420-9101.2011.02318.x
10.1242/jeb.061283
10.1016/j.jinsphys.2012.01.016
10.2307/1543615
10.1073/pnas.92.7.2994
10.1086/physzool.65.5.30158548
10.1242/jeb.204.9.1659
10.1111/j.1420-9101.2010.02061.x
10.1073/pnas.0709472105
10.1034/j.1600-0706.2003.11738.x
10.1007/s00227-009-1354-3
10.1093/acprof:oso/9780198515494.001.0001
10.1111/j.1365-3032.1979.tb00201.x
10.3354/cr00879
10.1007/s00442-004-1605-4
10.1668/0003-1569(2000)040[0597:CCEOBA]2.0.CO;2
10.1126/science.1184695
10.1371/journal.pone.0015284
10.1007/s12192-010-0205-y
10.1016/S0022-1910(98)00059-6
10.1007/s10526-009-9255-4
10.1111/j.1461-9563.2011.00553.x
10.1086/663202
10.1111/j.1365-2435.2011.01908.x
10.1007/s10646-011-0624-2
10.1371/journal.pone.0024802
10.1242/jeb.040170
10.1016/j.bbagrm.2011.03.007
10.1007/s00300-006-0157-y
10.1038/nature07393
10.1098/rspb.2000.1065
10.1146/annurev.physiol.61.1.243
10.1111/j.1461-0248.2008.01229.x
10.1890/08-0579.1
10.1098/rspb.2011.0160
10.1073/pnas.0400522101
10.1016/j.cbpa.2008.12.009
10.1038/nrmicro1390
10.1242/jeb.202.20.2709
10.1098/rspb.1998.0514
10.14411/eje.2002.032
10.1016/0010-406X(70)90915-1
10.1111/j.1752-4571.2007.00011.x
10.1371/journal.pone.0009514
10.1086/600088
10.1242/jeb.037523
10.1016/j.jtherbio.2004.08.073
10.1098/rspb.2010.0008
10.1525/bio.2011.61.5.4
10.1111/j.0014-3820.2000.tb00024.x
10.1016/0022-1910(85)90067-8
10.1186/1471-2148-12-25
10.1098/rspb.2007.0985
10.1098/rspb.2010.1295
10.1098/rstb.2012.0005
10.1379/CSC-207.1
10.1093/genetics/103.1.93
10.1007/s000360050063
10.1242/jeb.205.18.2799
10.1016/0300-9629(82)90266-3
10.1046/j.1461-0248.2002.00296.x
10.1046/j.1365-2435.2001.00516.x
10.1111/j.1420-9101.2010.02144.x
10.1086/284856
10.1002/joc.1276
10.1073/pnas.1105195108
10.1093/icb/icj003
10.1111/j.1365-2486.2010.02277.x
10.1111/j.1365-3032.2010.00736.x
10.1016/j.jtherbio.2007.01.009
10.1111/j.1365-2435.2010.01778.x
10.1086/661780
10.1111/j.1600-0706.2010.19470.x
10.1038/24550
10.1111/j.1365-2435.2008.01491.x
10.1111/j.1365-2915.2011.00950.x
10.1086/316738
10.1098/rspb.2010.2675
10.1016/j.jinsphys.2005.07.010
10.1111/j.1469-185X.2008.00046.x
10.1038/nature08739
10.1073/pnas.0800896105
10.1111/j.1420-9101.2010.02110.x
10.1111/j.1365-2656.2009.01611.x
10.1016/j.jinsphys.2011.04.004
10.1093/jhered/esr027
10.1186/1471-2148-10-363
10.1086/282976
10.1111/j.1365-2435.2009.01541.x
10.1016/S0022-1910(00)00163-3
10.1017/S1464793102006024
10.1111/j.1365-2435.2008.01481.x
10.1371/journal.pone.0009751
10.1002/jez.573
10.1086/510632
10.1371/journal.pone.0032083
10.1086/660021
10.1038/nature09670
10.1126/science.1175443
10.1038/nrg2339
10.1098/rspb.2008.1240
10.1111/j.1420-9101.2010.01965.x
10.1046/j.1365-2435.1998.00160.x
10.1046/j.1420-9101.1994.7010039.x
10.1126/science.1204794
10.1007/BF00139728
10.1086/515853
10.1016/S0306-4565(02)00057-8
10.1016/j.mad.2004.08.010
10.1007/s11692-011-9127-6
10.1098/rspb.2008.1957
10.1016/j.jinsphys.2009.11.006
10.1002/bies.201000124
10.1080/10408410701451948
10.1093/icb/icr015
10.1073/pnas.0708074105
10.1098/rspb.2008.0905
10.1126/science.1167396
10.4269/ajtmh.2006.74.786
10.1093/oxfordjournals.molbev.a003912
10.1126/science.1199158
10.1093/acprof:oso/9780198570875.001.1
10.1016/j.jtherbio.2005.11.026
10.1086/284868
10.1111/j.1365-294X.2008.03945.x
10.1016/j.cryobiol.2008.01.001
10.1046/j.1095-8312.2003.00154.x
10.1016/S1095-6433(02)00045-4
10.1007/s00227-010-1528-z
10.1111/j.1365-2435.2009.01666.x
10.1046/j.1365-2435.1998.00246.x
10.1016/S0065-2806(06)33002-0
10.1111/j.1461-9563.2011.00523.x
10.1111/j.1469-7998.2009.00641.x
10.1016/j.jtherbio.2010.05.006
10.1139/f95-259
10.1111/j.1420-9101.2008.01631.x
10.1016/0010-406X(68)90961-4
10.1111/j.1558‐5646.2012.01685.x
10.1139/z97-783
10.1093/genetics/137.3.783
10.2307/5293
10.1016/j.cbpa.2010.12.010
10.1098/rspb.1939.0035
10.1111/j.1558-5646.2010.01039.x
10.1098/rsta.2010.0292
10.1086/605982
10.1007/s10519-009-9256-1
10.1046/j.1461-0248.2002.00367.x
10.1242/jeb.037630
10.1016/S0022-1910(96)00108-4
10.1016/j.jtherbio.2007.06.001
10.1111/j.1558-5646.2008.00412.x
10.1086/401257
10.2307/3546663
10.1111/j.1365-2486.2011.02518.x
ContentType Journal Article
Copyright 2013 British Ecological Society
2012 The Authors. Functional Ecology © 2012 British Ecological Society
Functional Ecology © 2013 British Ecological Society
Copyright_xml – notice: 2013 British Ecological Society
– notice: 2012 The Authors. Functional Ecology © 2012 British Ecological Society
– notice: Functional Ecology © 2013 British Ecological Society
DBID AAYXX
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
DOI 10.1111/j.1365-2435.2012.02036.x
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Animal Behavior Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef

Entomology Abstracts
Ecology Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1365-2435
EndPage 949
ExternalDocumentID 3027102861
10_1111_j_1365_2435_2012_02036_x
FEC2036
23481002
Genre reviewArticle
GrantInformation_xml – fundername: Australian Research Council
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29H
2AX
2WC
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAISJ
AAKGQ
AAMMB
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACHIC
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGUYK
AGXDD
AHBTC
AHXOZ
AIAGR
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XSW
ZCA
ZZTAW
~02
~IA
~KM
~WT
31~
42X
53G
AAHHS
ABEFU
ABTAH
ACCFJ
ACCMX
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
GTFYD
HF~
HGD
HGLYW
HQ2
HTVGU
JSODD
MVM
VOH
WRC
ZY4
AAYXX
AGHNM
CITATION
7QG
7SN
7SS
8FD
C1K
FR3
P64
RC3
ID FETCH-LOGICAL-c4466-1d2ef7bbc765e72d966c60151aca3bca716060a3dc19ecce50e03898f40d7e053
IEDL.DBID DR2
ISSN 0269-8463
IngestDate Thu Jul 10 19:27:34 EDT 2025
Fri Jul 25 02:25:38 EDT 2025
Thu Apr 24 22:59:54 EDT 2025
Tue Jul 01 01:15:40 EDT 2025
Wed Jan 22 17:01:24 EST 2025
Sun Aug 24 12:10:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4466-1d2ef7bbc765e72d966c60151aca3bca716060a3dc19ecce50e03898f40d7e053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink http://hdl.handle.net/10019.1/121183
PQID 1411816101
PQPubID 1066355
PageCount 16
ParticipantIDs proquest_miscellaneous_1419369305
proquest_journals_1411816101
crossref_citationtrail_10_1111_j_1365_2435_2012_02036_x
crossref_primary_10_1111_j_1365_2435_2012_02036_x
wiley_primary_10_1111_j_1365_2435_2012_02036_x_FEC2036
jstor_primary_23481002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20130801
August 2013
2013-08-00
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 8
  year: 2013
  text: 20130801
  day: 1
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Functional ecology
PublicationYear 2013
Publisher Blackwell Publishing
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing
– name: Wiley Subscription Services, Inc
References 1987; 33
2010; 10
2010; 16
2006; 30
2006; 31
2010; 15
1994; 137
1989; 43
2004; 29
1997; 43
2011; 61
2002; 99
2010; 463
2008; 35
2008; 105
2012; 18
2011; 57
1999; 202
2012; 14
2012; 367
2011; 470
1998; 396
2012; 12
2001; 47
1970; 35
2011; 369
2010; 23
1997; 51
2010; 24
1979; 4
2010; 5
1998; 12
1998; 11
1975; 109
2011; 120
2007; 169
1995; 52
2001; 201
2010; 35
2002; 132
2010; 328
2011; 1809
2002; 5
1956; 31
2004; 140
1998
2000; 73
2008; 56
1993
2009; 174
2010; 280
1991
2011; 6
2001; 204
2010; 43
2009; 79
2006; 46
2009a; 325
2010; 213
2007; 274
2003; 28
1996; 199
1998; 265
1992; 21
2005; 18
2003; 100
2010; 56
2010; 55
2011; 158
1968; 24
2011; 278
2006; 74
2004; 125
2008; 9
2009; 276
1999; 86
2011; 13
2009; 152
2012; 58
2008; 1
2011; 17
2007; 32
2007; 33
1998; 44
2005; 25
2010; 64
1983; 103
2012; 179
2000; 54
2010; 277
2010; 157
1939; 127
2011; 20
1988; 132
2011; 24
2001; 15
2001; 18
2011; 25
2007; 21
2008; 62
2009; 323
1985; 58
2009; 23
2004; 101
2011; 214
2009; 22
2011; 333
2004; 83
1995; 92
1972; 9
2010; 79
2012
1982; 73
2006; 11
2008; 17
2009
2006; 8
2007
2011; 33
2010; 313A
2006; 4
2004
2008; 11
1999; 61
2011; 36
2011; 38
2011; 332
2011; 178
2010; 85
2011; 177
2003; 78
2011; 102
2011; 108
2004; 92
1997; 70
2000; 267
1997; 75
2011; 51
2005; 51
2002; 205
2000; 40
2008; 456
2008; 83
1992; 65
2012; 7
1985; 31
1994; 7
2009; 39
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_13_1
e_1_2_11_118_1
e_1_2_11_29_1
e_1_2_11_125_1
e_1_2_11_4_1
e_1_2_11_106_1
e_1_2_11_148_1
e_1_2_11_48_1
e_1_2_11_121_1
e_1_2_11_167_1
e_1_2_11_102_1
e_1_2_11_144_1
e_1_2_11_163_1
e_1_2_11_140_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_89_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_129_1
e_1_2_11_8_1
e_1_2_11_43_1
e_1_2_11_85_1
e_1_2_11_17_1
e_1_2_11_117_1
e_1_2_11_136_1
e_1_2_11_159_1
e_1_2_11_59_1
e_1_2_11_113_1
e_1_2_11_132_1
e_1_2_11_155_1
e_1_2_11_174_1
e_1_2_11_151_1
e_1_2_11_170_1
e_1_2_11_50_1
e_1_2_11_92_1
e_1_2_11_31_1
e_1_2_11_77_1
Gibbs A.G. (e_1_2_11_63_1) 1999; 202
e_1_2_11_58_1
e_1_2_11_119_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
Hoffmann A.A. (e_1_2_11_76_1) 1991
e_1_2_11_54_1
e_1_2_11_96_1
e_1_2_11_103_1
e_1_2_11_126_1
e_1_2_11_149_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_122_1
e_1_2_11_145_1
e_1_2_11_168_1
e_1_2_11_141_1
Denlinger D.L. (e_1_2_11_46_1) 1998
e_1_2_11_160_1
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_107_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_114_1
e_1_2_11_16_1
e_1_2_11_137_1
e_1_2_11_156_1
e_1_2_11_179_1
e_1_2_11_110_1
e_1_2_11_39_1
e_1_2_11_133_1
e_1_2_11_152_1
e_1_2_11_175_1
Van Berkum F.H. (e_1_2_11_173_1) 1988; 132
e_1_2_11_171_1
e_1_2_11_180_1
e_1_2_11_72_1
e_1_2_11_91_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_99_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_6_1
e_1_2_11_104_1
e_1_2_11_27_1
e_1_2_11_127_1
e_1_2_11_169_1
e_1_2_11_2_1
e_1_2_11_100_1
e_1_2_11_146_1
e_1_2_11_123_1
e_1_2_11_165_1
e_1_2_11_142_1
e_1_2_11_161_1
Petavy G. (e_1_2_11_131_1) 2006; 8
e_1_2_11_83_1
Stephanou G. (e_1_2_11_164_1) 1983; 103
e_1_2_11_60_1
e_1_2_11_45_1
e_1_2_11_68_1
Watanabe M. (e_1_2_11_178_1) 2002; 205
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_108_1
e_1_2_11_22_1
e_1_2_11_64_1
e_1_2_11_115_1
e_1_2_11_138_1
e_1_2_11_15_1
e_1_2_11_111_1
e_1_2_11_134_1
e_1_2_11_38_1
e_1_2_11_157_1
e_1_2_11_19_1
e_1_2_11_176_1
e_1_2_11_153_1
e_1_2_11_130_1
e_1_2_11_172_1
e_1_2_11_94_1
e_1_2_11_181_1
e_1_2_11_71_1
e_1_2_11_90_1
e_1_2_11_10_1
e_1_2_11_56_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
IPCC (e_1_2_11_84_1) 2007
e_1_2_11_33_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_105_1
e_1_2_11_128_1
e_1_2_11_147_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_124_1
e_1_2_11_143_1
e_1_2_11_166_1
e_1_2_11_120_1
e_1_2_11_162_1
e_1_2_11_82_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_86_1
e_1_2_11_109_1
e_1_2_11_18_1
e_1_2_11_139_1
e_1_2_11_116_1
e_1_2_11_158_1
e_1_2_11_37_1
e_1_2_11_135_1
e_1_2_11_154_1
e_1_2_11_177_1
e_1_2_11_112_1
e_1_2_11_150_1
References_xml – volume: 65
  start-page: 885
  year: 1992
  end-page: 905
  article-title: Extreme thermophilia in a central Australian ant,
  publication-title: Physiological Zoology
– volume: 278
  start-page: 2745
  year: 2011
  end-page: 2752
  article-title: Locusts use dynamic thermoregulatory behaviour to optimize nutritional outcomes
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 33
  start-page: 260
  year: 2011
  end-page: 268
  article-title: How will fish that evolved at constant sub‐zero temperatures cope with global warming? Notothenioids as a case study
  publication-title: Bioessays
– volume: 24
  start-page: 93
  year: 1968
  end-page: 111
  article-title: Thermal acclimation in anuran amphibians as a function of latitude and altitude
  publication-title: Comparative Biochemistry and Physiology
– year: 2012
  article-title: Phylogenetic constraints in key functional traits behind species' climate niches: patterns of desiccation and cold resistance across 95 species
  publication-title: Evolution
– volume: 158
  start-page: 382
  year: 2011
  end-page: 390
  article-title: Heat tolerance and its plasticity in Antarctic fishes
  publication-title: Comparative Biochemistry and Physiology a‐Molecular and Integrative Physiology
– volume: 79
  start-page: 397
  year: 2009
  end-page: 421
  article-title: On the prediction of extreme ecological events
  publication-title: Ecological Monographs
– volume: 278
  start-page: 3534
  year: 2011
  end-page: 3543
  article-title: Warming will affect phytoplankton differently: evidence through a mechanistic approach
  publication-title: Proceedings of the Royal Society B‐Biological Sciences
– volume: 105
  start-page: 216
  year: 2008
  end-page: 221
  article-title: Costs and benefits of cold acclimation in field‐released Drosophila
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 367
  start-page: 1665
  year: 2012
  end-page: 1679
  article-title: Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation
  publication-title: Philosophical Transactions of the Royal Society B
– volume: 178
  start-page: S80
  year: 2011
  end-page: S96
  article-title: Thermal tolerance in widespread and tropical Drosophila species: does phenotypic plasticity increase with latitude?
  publication-title: The American Naturalist
– volume: 276
  start-page: 21
  year: 2009
  end-page: 30
  article-title: Space versus phylogeny: disentangling phylogenetic and spatial signals in comparative data
  publication-title: Proceedings of the Royal Society B‐Biological Sciences
– volume: 4
  start-page: 241
  year: 1979
  end-page: 250
  article-title: Neural function in an alpine grylloblattid: a comparison with the house cricket,
  publication-title: Physiological Entomology
– volume: 16
  start-page: 3164
  year: 2010
  end-page: 3169
  article-title: Ecological relevance of laboratory determined temperature limits: colonization potential, biogeography and resilience of Antarctic invertebrates to environmental change
  publication-title: Global Change Biology
– volume: 23
  start-page: 240
  year: 2009
  end-page: 247
  article-title: Lessons from the use of genetically modified in ecological studies: Hsf mutant lines show highly trait‐specific performance in field and laboratory thermal assays
  publication-title: Functional Ecology
– volume: 25
  start-page: 111
  year: 2011
  end-page: 121
  article-title: Estimating the adaptive potential of critical thermal limits: methodological problems and evolutionary implications
  publication-title: Functional Ecology
– volume: 55
  start-page: 423
  year: 2010
  end-page: 434
  article-title: Heat tolerance among different strains of the entomopathogenic nematode
  publication-title: BioControl
– volume: 213
  start-page: 2209
  year: 2010
  end-page: 2218
  article-title: Oxygen limitation and thermal tolerance in two terrestrial arthropod species
  publication-title: Journal of Experimental Biology
– volume: 157
  start-page: 2677
  year: 2010
  end-page: 2687
  article-title: Thermal tolerance of early life history stages: mortality, stress‐induced gene expression and biogeographic patterns
  publication-title: Marine Biology
– volume: 21
  start-page: 289
  year: 1992
  end-page: 302
  article-title: Extreme events in a changing climate: variability is more important than averages
  publication-title: Climatic Change
– volume: 17
  start-page: 4570
  year: 2008
  end-page: 4581
  article-title: QTL for the thermotolerance effect of heat hardening, knockdown resistance to heat and chill‐coma recovery in an intercontinental set of recombinant inbred lines of
  publication-title: Molecular Ecology
– volume: 43
  start-page: 393
  year: 1997
  end-page: 405
  article-title: Comparing different measures of heat resistance in selected lines of
  publication-title: Journal of Insect Physiology
– volume: 35
  start-page: 295
  year: 2008
  end-page: 305
  article-title: Thermal tolerance and geographical range size in the group of European diving beetles (Coleoptera: Dytiscidae)
  publication-title: Journal of Biogeography
– volume: 265
  start-page: 1867
  year: 1998
  end-page: 1870
  article-title: Warmer springs lead to mistimed reproduction in great tits ( )
  publication-title: Proceedings of the Royal Society of London Series B‐Biological Sciences
– volume: 25
  start-page: 445
  year: 2011
  end-page: 453
  article-title: Temperature induces trade‐offs between development and starvation resistance in (L.) larvae
  publication-title: Medical and Veterinary Entomology
– volume: 35
  start-page: 255
  year: 2010
  end-page: 264
  article-title: Within‐generation variation of critical thermal limits in adult Mediterranean and Natal fruit flies and : thermal history affects short‐term responses to temperature
  publication-title: Physiological Entomology
– volume: 18
  start-page: 213
  year: 2005
  end-page: 222
  article-title: Clinal variation and laboratory adaptation in the rainforest species for stress resistance, wing size, wing shape and development time
  publication-title: Journal of Evolutionary Biology
– volume: 35
  start-page: 232
  year: 2010
  end-page: 238
  article-title: Direct and correlated responses to artificial selection for high and low knockdown resistance to high temperature in
  publication-title: Journal of Thermal Biology
– volume: 11
  start-page: 325
  year: 2006
  end-page: 333
  article-title: Phototransduction genes are up‐regulated in a global gene expression study of selected for heat resistance
  publication-title: Cell Stress and Chaperones
– volume: 23
  start-page: 957
  year: 2010
  end-page: 965
  article-title: Developmental acclimation affects clinal variation in stress resistance traits in
  publication-title: Journal of Evolutionary Biology
– volume: 140
  start-page: 442
  year: 2004
  end-page: 449
  article-title: Cold and heat tolerance of drosophilid flies with reference to their latitudinal distributions
  publication-title: Oecologia
– volume: 102
  start-page: 593
  year: 2011
  end-page: 603
  article-title: Differential expression of small heat shock protein genes and , and heat shock gene in fruit flies ( ) along a microclimatic gradient
  publication-title: Journal of Heredity
– volume: 177
  start-page: 738
  year: 2011
  end-page: 751
  article-title: Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change
  publication-title: The American Naturalist
– volume: 1809
  start-page: 459
  year: 2011
  end-page: 468
  article-title: Transgenerational epigenetic inheritance in plants
  publication-title: Biochimica et Biophysica Acta‐Gene Regulatory Mechanisms
– volume: 5
  start-page: e15284
  year: 2010
  article-title: Environmental effects on temperature stress resistance in the tropical butterfly
  publication-title: PLoS ONE
– volume: 276
  start-page: 1459
  year: 2009
  end-page: 1468
  article-title: Physiological tolerances account for range limits and abundance structure in an invasive slug
  publication-title: Proceedings of the Royal Society of London B
– volume: 23
  start-page: 2484
  year: 2010
  end-page: 2493
  article-title: A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of from eastern Australia
  publication-title: Journal of Evolutionary Biology
– volume: 47
  start-page: 649
  year: 2001
  end-page: 660
  article-title: Physiological variation in insects: hierarchical levels and implications
  publication-title: Journal of Insect Physiology
– volume: 20
  start-page: 535
  year: 2011
  end-page: 542
  article-title: Heritability of heat tolerance in a small livebearing fish,
  publication-title: Ecotoxicology
– volume: 313A
  start-page: 35
  year: 2010
  end-page: 44
  article-title: Adult heat tolerance variation in is not related to expression
  publication-title: Journal of Experimental Zoology Part a‐Ecological Genetics and Physiology
– volume: 22
  start-page: 124
  year: 2009
  end-page: 133
  article-title: Demographic factors and genetic variation influence population persistence under environmental change
  publication-title: Journal of Evolutionary Biology
– volume: 15
  start-page: 217
  year: 2001
  end-page: 221
  article-title: Field and laboratory evidence for acclimation without costs in an egg parasitoid
  publication-title: Functional Ecology
– volume: 277
  start-page: 2049
  year: 2010
  end-page: 2057
  article-title: A naturally occurring variant of that is associated with decanalization
  publication-title: Proceedings of the Royal Society of London B
– volume: 46
  start-page: 5
  year: 2006
  end-page: 17
  article-title: Are mountain passes higher in the tropics? Janzen's hypothesis revisited
  publication-title: Integrative and Comparative Biology
– volume: 267
  start-page: 739
  year: 2000
  end-page: 745
  article-title: Thermal tolerance, climatic variability and latitude
  publication-title: Proceedings of the Royal Society of London B
– volume: 39
  start-page: 306
  year: 2009
  end-page: 320
  article-title: Natural variation in Drosophila stressed locomotion meets or exceeds variation caused by mutation: analysis of behavior and performance
  publication-title: Behavior Genetics
– volume: 456
  start-page: 942
  year: 2008
  end-page: 945
  article-title: Parallel adaptations to high temperatures in the Archaean eon
  publication-title: Nature
– volume: 15
  start-page: 463
  year: 2010
  end-page: 466
  article-title: Stress, genomes, and evolution
  publication-title: Cell Stress and Chaperones
– volume: 174
  start-page: 595
  year: 2009
  end-page: 612
  article-title: Macrophysiology: a conceptual reunification
  publication-title: The American Naturalist
– year: 2007
– volume: 201
  start-page: 374
  year: 2001
  end-page: 384
  article-title: Microhabitats, thermal heterogeneity, and patterns of physiological stress in the rocky intertidal zone
  publication-title: Biological Bulletin
– volume: 120
  start-page: 675
  year: 2011
  end-page: 689
  article-title: Will variation among genetic individuals influence species responses to global climate change?
  publication-title: Oikos
– volume: 108
  start-page: 8026
  year: 2011
  end-page: 8029
  article-title: Drinking a hot blood meal elicits a protective heat shock response in mosquitoes
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 1
  start-page: 3
  year: 2008
  end-page: 16
  article-title: Adaptation, extinction and global change
  publication-title: Evolutionary Applications
– volume: 62
  start-page: 1965
  year: 2008
  end-page: 1977
  article-title: A comparative method for studying adaptation to a randomly evolving environment
  publication-title: Evolution
– volume: 274
  start-page: 2935
  year: 2007
  end-page: 2942
  article-title: Critical thermal limits depend on methodological context
  publication-title: Proceedings of the Royal Society of London B
– volume: 17
  start-page: 676
  year: 2011
  end-page: 687
  article-title: Temperature extremes and butterfly fitness: conflicting evidence from life history and immune function
  publication-title: Global Change Biology
– volume: 23
  start-page: 233
  year: 2009
  end-page: 239
  article-title: Dynamics of heat‐induced thermal stress resistance and Hsp70 expression in the springtail,
  publication-title: Functional Ecology
– volume: 31
  start-page: 755
  year: 1985
  end-page: 759
  article-title: Insect cold hardiness: facts and fancy
  publication-title: Journal of Insect Physiology
– volume: 25
  start-page: 1169
  year: 2011
  end-page: 1180
  article-title: Making sense of heat tolerance estimates in ectotherms: lessons from
  publication-title: Functional Ecology
– volume: 18
  start-page: 789
  year: 2005
  end-page: 803
  article-title: Correlated responses to selection for stress resistance and longevity in a laboratory population of
  publication-title: Journal of Evolutionary Biology
– volume: 28
  start-page: 175
  year: 2003
  end-page: 216
  article-title: Adaptation of to temperature extremes: bringing together quantitative and molecular approaches
  publication-title: Journal of Thermal Biology
– volume: 5
  start-page: e9751
  year: 2010
  article-title: Estimating the potential for adaptation of corals to climate warming
  publication-title: PLoS ONE
– volume: 169
  start-page: 175
  year: 2007
  end-page: 183
  article-title: Consequences of heat hardening on a field fitness component in Drosophila depend on environmental temperature
  publication-title: The American Naturalist
– volume: 36
  start-page: 271
  year: 2011
  end-page: 281
  article-title: Parallel evolution of thermophilia: daily and seasonal foraging patterns of heat‐adapted desert ants: and species*
  publication-title: Physiological Entomology
– volume: 32
  start-page: 134
  year: 2007
  end-page: 143
  article-title: Hot hypoxic flies: whole‐organism interactions between hypoxic and thermal stressors in
  publication-title: Journal of Thermal Biology
– volume: 30
  start-page: 39
  year: 2006
  end-page: 43
  article-title: Inducible heat tolerance in Antarctic notothenioid fishes
  publication-title: Polar Biology
– volume: 57
  start-page: 1085
  year: 2011
  end-page: 1089
  article-title: Low temperature thresholds: are chill coma and CT synonymous?
  publication-title: Journal of Insect Physiology
– volume: 333
  start-page: 418
  year: 2011
  end-page: 422
  article-title: Projecting coral reef futures under global warming and ocean acidification
  publication-title: Science
– volume: 214
  start-page: 2329
  year: 2011
  end-page: 2336
  article-title: Temperature‐induced maternal effects and environmental predictability
  publication-title: Journal of Experimental Biology
– volume: 463
  start-page: 662
  year: 2010
  end-page: 665
  article-title: Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons
  publication-title: Nature
– volume: 5
  start-page: e9514
  year: 2010
  article-title: Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer‐like proteins
  publication-title: PLoS ONE
– volume: 44
  start-page: 1091
  year: 1998
  end-page: 1101
  article-title: Hsp70 and larval thermotolerance in : how much is enough and when is more too much?
  publication-title: Journal of Insect Physiology
– volume: 213
  start-page: 870
  year: 2010
  end-page: 880
  article-title: Physiological climatic limits in Drosophila: patterns and implications
  publication-title: Journal of Experimental Biology
– volume: 51
  start-page: 1277
  year: 2005
  end-page: 1285
  article-title: Differences in egg thermotolerance between tropical and temperate populations of the migratory locust (Orthoptera: Acridiidae)
  publication-title: Journal of Insect Physiology
– volume: 11
  start-page: 1027
  year: 2008
  end-page: 1036
  article-title: Beneficial acclimation and the Bogert effect
  publication-title: Ecology Letters
– volume: 105
  start-page: 6668
  year: 2008
  end-page: 6672
  article-title: Impacts of climate warming on terrestrial ectotherms across latitude
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 109
  start-page: 93
  year: 1975
  end-page: 101
  article-title: Temperature adaptation in amphibians
  publication-title: The American Naturalist
– volume: 74
  start-page: 786
  year: 2006
  end-page: 794
  article-title: Phenotypic plasticity and geographic variation in thermal tolerance and water loss of the tsetse (Diptera: Glossinidae): implications for distribution modelling
  publication-title: American Journal of Tropical Medicine and Hygiene
– volume: 83
  start-page: 339
  year: 2008
  end-page: 355
  article-title: Insect thermal tolerance: what is the role of ontogeny, ageing and senescence?
  publication-title: Biological Reviews
– volume: 9
  start-page: 421
  year: 2008
  end-page: 432
  article-title: Detecting genetic responses to environmental change
  publication-title: Nature Reviews Genetics
– volume: 24
  start-page: 694
  year: 2010
  end-page: 700
  article-title: Thermal ramping rate influences evolutionary potential and species differences for upper thermal limits in Drosophila
  publication-title: Functional Ecology
– volume: 24
  start-page: 1897
  year: 2011
  end-page: 1905
  article-title: Temperature niche shift observed in a Lepidoptera population under allochronic divergence
  publication-title: Journal of Evolutionary Biology
– volume: 35
  start-page: 69
  year: 1970
  end-page: 103
  article-title: Thermal acclimation in Australian amphibians
  publication-title: Comparative Biochemistry and Physiology
– volume: 70
  start-page: 403
  year: 1997
  end-page: 414
  article-title: Thermal sensitivity of ‐ evolutionary responses of adults and eggs to laboratory natural selection at different temperatures
  publication-title: Physiological Zoology
– volume: 86
  start-page: 584
  year: 1999
  end-page: 590
  article-title: Elevation and climatic tolerance: a test using dung beetles
  publication-title: Oikos
– volume: 9
  start-page: 23
  year: 1972
  end-page: 46
  article-title: Temperature tolerances of southeast Australian reptiles examined in relation to reptile thermoregulatory behavior and distribution
  publication-title: Oecologia
– volume: 132
  start-page: 506
  year: 1988
  end-page: 520
  article-title: Thermal physiology, phenology, and distribution of tree frogs
  publication-title: The American Naturalist
– year: 2009
– volume: 54
  start-page: 238
  year: 2000
  end-page: 244
  article-title: Direct and correlated responses to artificial selection on acute thermal stress tolerance in a livebearing fish
  publication-title: Evolution
– volume: 137
  start-page: 783
  year: 1994
  end-page: 789
  article-title: Genetic and maternal variation for heat resistance in Drosophila from the field
  publication-title: Genetics
– volume: 43
  start-page: 3
  year: 2010
  end-page: 15
  article-title: Adapting to climate change: a perspective from evolutionary physiology
  publication-title: Climate Research
– volume: 213
  start-page: 881
  year: 2010
  end-page: 893
  article-title: Oxygen‐ and capacity‐limitation of thermal tolerance: a matrix for integrating climate‐related stressor effects in marine ecosystems
  publication-title: Journal of Experimental Biology
– volume: 85
  start-page: 777
  year: 2010
  end-page: 795
  article-title: Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination
  publication-title: Biological Reviews
– volume: 11
  start-page: 1
  year: 1998
  end-page: 20
  article-title: Effects of temperature extremes on genetic variances for life history traits in as determined from parent‐offspring comparisons
  publication-title: Journal of Evolutionary Biology
– volume: 100
  start-page: 71
  year: 2003
  end-page: 78
  article-title: Cold winter microenvironments conserve energy and improve overwintering survival and potential fecundity of the goldenrod gall fly,
  publication-title: Oikos
– volume: 32
  start-page: 396
  year: 2007
  end-page: 405
  article-title: Within‐ and between‐generation effects of temperature on life‐history traits in a butterfly
  publication-title: Journal of Thermal Biology
– volume: 205
  start-page: 2799
  year: 2002
  end-page: 2802
  article-title: Mechanism allowing an insect to survive complete dehydration and extreme temperatures
  publication-title: Journal of Experimental Biology
– volume: 174
  start-page: 204
  year: 2009
  end-page: 220
  article-title: Evolution of thermal physiology in Liolaemus lizards: adaptation, phylogenetic inertia, and niche tracking
  publication-title: The American Naturalist
– volume: 328
  start-page: 894
  year: 2010
  end-page: 899
  article-title: Erosion of lizard diversity by climate change and altered thermal niches
  publication-title: Science
– volume: 21
  start-page: 394
  year: 2007
  end-page: 407
  article-title: Adaptive versus non‐adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments
  publication-title: Functional Ecology
– volume: 18
  start-page: 1272
  year: 2001
  end-page: 1282
  article-title: Hsp70 duplication in the species group: how and when did two become five?
  publication-title: Molecular Biology and Evolution
– volume: 38
  start-page: 258
  year: 2011
  end-page: 277
  article-title: Heritability is not evolvability
  publication-title: Evolutionary Biology
– volume: 325
  start-page: 1244
  year: 2009a
  end-page: 1246
  article-title: Fundamental evolutionary limits in ecological traits drive species distributions
  publication-title: Science
– volume: 204
  start-page: 1659
  year: 2001
  end-page: 1666
  article-title: Rapid cold‐hardening of (Diptera: Drosophilidae) during ecologically based thermoperiodic cycles
  publication-title: Journal of Experimental Biology
– volume: 5
  start-page: 16
  year: 2002
  end-page: 19
  article-title: Natural adaptation to environmental stress via physiological clock‐regulation of stress resistance in Drosophila
  publication-title: Ecology Letters
– volume: 125
  start-page: 651
  year: 2004
  end-page: 663
  article-title: Doxycycline‐regulated over‐expression of has negative effects on stress resistance and life span in adult
  publication-title: Mechanisms of Ageing and Development
– start-page: 7
  year: 1998
  end-page: 53
– volume: 132
  start-page: 327
  year: 1988
  end-page: 343
  article-title: Latitudinal patterns of the thermal sensitivity of sprint speed in lizards
  publication-title: The American Naturalist
– volume: 61
  start-page: 243
  year: 1999
  end-page: 282
  article-title: Heat‐shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology
  publication-title: Annual Review of Physiology
– volume: 5
  start-page: 614
  year: 2002
  end-page: 618
  article-title: Opposing clines for high and low temperature resistance in
  publication-title: Ecology Letters
– volume: 78
  start-page: 181
  year: 2003
  end-page: 195
  article-title: Climatic variability and the evolution of insect freeze tolerance
  publication-title: Biological Reviews
– volume: 12
  start-page: 25
  year: 2012
  article-title: Hsp90 is important for fecundity, longevity, and buffering of cryptic deleterious variation in wild fly populations
  publication-title: BMC Evolutionary Biology
– volume: 23
  start-page: 2529
  year: 2010
  end-page: 2539
  article-title: Phylogenetic comparative approaches for studying niche conservatism
  publication-title: Journal of Evolutionary Biology
– volume: 23
  start-page: 528
  year: 2009
  end-page: 538
  article-title: Integrating biophysical models and evolutionary theory to predict climatic impacts on species' ranges: the dengue mosquito in Australia
  publication-title: Functional Ecology
– volume: 8
  start-page: 149
  year: 2006
  end-page: 167
  article-title: Phenotypic and genetic variability of sternopleural bristle number in under daily thermal stress: developmental instability and anti‐asymmetry
  publication-title: Evolutionary Ecology Research
– start-page: e32758
  year: 2012
  article-title: Validity of thermal ramping assays used to assess thermal tolerance in arthropods
  publication-title: PLoS ONE
– volume: 14
  start-page: 69
  year: 2012
  end-page: 79
  article-title: Effect of latitude and acclimation on the lethal temperatures of the peach‐potato aphid
  publication-title: Agricultural and Forest Entomology
– volume: 12
  start-page: 786
  year: 1998
  end-page: 793
  article-title: Induced thermotolerance and associated expression of the heat‐shock protein Hsp70 in adult
  publication-title: Functional Ecology
– volume: 6
  start-page: e24802
  year: 2011
  article-title: Present limits to heat‐adaptability in corals and population‐level responses to climate extremes
  publication-title: PLoS ONE
– volume: 23
  start-page: 1979
  year: 2010
  end-page: 1988
  article-title: Resistance to environmental stress in : latitudinal variation and adaptation among populations
  publication-title: Journal of Evolutionary Biology
– volume: 31
  start-page: 280
  year: 2006
  end-page: 286
  article-title: Heat tolerance and the effect of mild heat stress on reproductive characters in males
  publication-title: Journal of Thermal Biology
– volume: 199
  start-page: 1845
  year: 1996
  end-page: 1855
  article-title: Adaptation to temperature stress and aerial exposure in congeneric species of intertidal porcelain crabs (genus Petrolisthes): correlation of physiology, biochemistry and morphology with vertical distribution
  publication-title: Journal of Experimental Biology
– volume: 40
  start-page: 597
  year: 2000
  end-page: 630
  article-title: Calculating climate effects on birds and mammals: Impacts on biodiversity, conservation, population parameters, and global community structure
  publication-title: American Zoologist
– volume: 323
  start-page: 1347
  year: 2009
  end-page: 1350
  article-title: Species response to environmental change: impacts of food web interactions and evolution
  publication-title: Science
– volume: 280
  start-page: 49
  year: 2010
  end-page: 59
  article-title: Correlated changes in thermotolerance traits and body color phenotypes in montane populations of : analysis of within‐ and between‐population variations
  publication-title: Journal of Zoology
– year: 2004
– volume: 58
  start-page: 629
  year: 1985
  end-page: 636
  article-title: Thermal responses and temperature tolerance in a dirunal desert ant,
  publication-title: Physiological Zoology
– volume: 179
  start-page: 1
  year: 2012
  end-page: 21
  article-title: Patterns of species ranges, speciation, and extinction
  publication-title: The American Naturalist
– volume: 33
  start-page: 50
  year: 2007
  end-page: 152
  article-title: Physiological diversity in insects: ecological and evolutionary contexts
  publication-title: Advances in Insect Physiology
– volume: 157
  start-page: 707
  year: 2010
  end-page: 714
  article-title: Physiological tolerances across latitudes: thermal sensitivity of larval marine snails ( spp.)
  publication-title: Marine Biology
– volume: 52
  start-page: 2704
  year: 1995
  end-page: 2711
  article-title: Genetic differences in thermal tolerance of eastern mosquitofish ( Poeciliidae) from ambient and thermal ponds
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 11
  start-page: 995
  year: 2008
  end-page: 1003
  article-title: Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species
  publication-title: Ecology Letters
– volume: 33
  start-page: 899
  year: 1987
  end-page: 908
  article-title: Insect cold hardiness: freezing and supercooling ‐ an ecophysiological perspective
  publication-title: Journal of Insect Physiology
– volume: 51
  start-page: 719
  year: 2011
  end-page: 732
  article-title: Complex life cycles and the responses of insects to climate change
  publication-title: Integrative and Comparative Biology
– volume: 23
  start-page: 133
  year: 2009
  end-page: 140
  article-title: Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context
  publication-title: Functional Ecology
– volume: 56
  start-page: 159
  year: 2008
  end-page: 162
  article-title: Rapid thermal adaptation during field temperature variations in
  publication-title: Cryobiology
– volume: 43
  start-page: 485
  year: 1989
  end-page: 503
  article-title: The evolution of maternal characters
  publication-title: Evolution
– volume: 13
  start-page: 333
  year: 2011
  end-page: 340
  article-title: High temperature tolerance and thermal plasticity in emerald ash borer
  publication-title: Agricultural and Forest Entomology
– volume: 103
  start-page: 93
  year: 1983
  end-page: 107
  article-title: Non mendelian inheritance of “heat‐sensitivity” in
  publication-title: Genetics
– volume: 127
  start-page: 473
  year: 1939
  end-page: 487
  article-title: Low temperature and insect activity
  publication-title: Proceedings of the Royal Society of London B
– volume: 4
  start-page: 331
  year: 2006
  end-page: 343
  article-title: Cold‐adapted archaea
  publication-title: Nature Reviews Microbiology
– volume: 470
  start-page: 479
  year: 2011
  end-page: 485
  article-title: Climate change and evolutionary adaptation
  publication-title: Nature
– volume: 56
  start-page: 336
  year: 2010
  end-page: 340
  article-title: Protein and carbohydrate composition of larval food affects tolerance to thermal stress and desiccation in adult
  publication-title: Journal of Insect Physiology
– volume: 214
  start-page: 3713
  year: 2011
  end-page: 3725
  article-title: Ecologically relevant measures of tolerance to potentially lethal temperatures
  publication-title: Journal of Experimental Biology
– volume: 92
  start-page: 257
  year: 2004
  end-page: 262
  article-title: Heat and cold‐induced male sterility in : genetic variation among populations for the duration of sterility
  publication-title: Heredity
– volume: 29
  start-page: 351
  year: 2004
  end-page: 358
  article-title: Thermal stress and neural function: adaptive mechanisms in insect model systems
  publication-title: Journal of Thermal Biology
– volume: 51
  start-page: 173
  year: 1997
  end-page: 179
  article-title: Natural variation in the expression of the heat‐shock protein HSP70 in a population of and its correlation with tolerance of ecologically relevant thermal stress
  publication-title: Evolution
– volume: 61
  start-page: 354
  year: 2011
  end-page: 362
  article-title: Common ecology
  publication-title: BioScience
– volume: 6
  start-page: e22610
  year: 2011
  article-title: Can oxygen set thermal limits in an insect and drive gigantism?
  publication-title: PLoS ONE
– volume: 101
  start-page: 4631
  year: 2004
  end-page: 4636
  article-title: Temperature dependence of metabolic rates for microbial growth, maintenance, and survival
  publication-title: Proceedings of the National Academy of Sciences
– volume: 332
  start-page: 109
  year: 2011
  end-page: 112
  article-title: Differences in thermal tolerance among Sockeye Salmon populations
  publication-title: Science
– volume: 83
  start-page: 197
  year: 2004
  end-page: 205
  article-title: A comparison of behavioural change in Drosophila during exposure to thermal stress
  publication-title: Biological Journal of the Linnean Society
– volume: 276
  start-page: 1939
  year: 2009
  end-page: 1948
  article-title: Why tropical forest lizards are vulnerable to climate warming
  publication-title: Proceedings of the Royal Society of London B
– volume: 396
  start-page: 336
  year: 1998
  end-page: 342
  article-title: Hsp90 as a capacitor for morphological evolution
  publication-title: Nature
– volume: 58
  start-page: 669
  year: 2012
  end-page: 678
  article-title: The effects of acclimation and rates of temperature change on critical thermal limits in (Tenebrionidae) and (Curculionidae)
  publication-title: Journal of Insect Physiology
– volume: 202
  start-page: 2709
  year: 1999
  end-page: 2718
  article-title: Laboratory selection for the comparative physiologist
  publication-title: Journal of Experimental Biology
– volume: 79
  start-page: 194
  year: 2010
  end-page: 204
  article-title: What determines a species' geographical range? Thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera: Dytiscidae)
  publication-title: Journal of Animal Ecology
– volume: 10
  start-page: a363
  year: 2010
  article-title: Genetic constraints for thermal coadaptation in
  publication-title: BMC Evolutionary Biology
– volume: 25
  start-page: 1965
  year: 2005
  end-page: 1978
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: International Journal of Climatology
– volume: 31
  start-page: 75
  year: 1956
  end-page: 87
  article-title: Some principles in the thermal requirements of fishes
  publication-title: The Quarterly Review of Biology
– volume: 7
  start-page: 39
  year: 1994
  end-page: 49
  article-title: Effects of exposure to short‐term heat stress on fitness components in
  publication-title: Journal of Evolutionary Biology
– volume: 73
  start-page: 595
  year: 1982
  end-page: 604
  article-title: Cold‐hardiness strategies of some adult and immature insects overwintering in interior Alaska
  publication-title: Comparative Biochemistry and Physiology A
– volume: 7
  start-page: e32083
  year: 2012
  article-title: Considerations for assessing maximum critical temperatures in small ectothermic animals: insights from leaf‐cutting ants
  publication-title: PLoS ONE
– volume: 92
  start-page: 2994
  year: 1995
  end-page: 2998
  article-title: Heat shock protein synthesis and thermotolerance in , an ant from the Sahara desert
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 64
  start-page: 2921
  year: 2010
  end-page: 2934
  article-title: Three selections are better than one: clinal variation of thermal QTL from independent selection experiments in Drosophila
  publication-title: Evolution
– volume: 73
  start-page: 200
  year: 2000
  end-page: 208
  article-title: A comparative analysis of the upper thermal tolerance limits of eastern Pacific porcelain crabs, genus Petrolisthes: influences of latitude, vertical zonation, acclimation, and phylogeny
  publication-title: Physiological and Biochemical Zoology
– volume: 132
  start-page: 739
  year: 2002
  end-page: 761
  article-title: Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals
  publication-title: Comparative Biochemistry and Physiology A
– volume: 75
  start-page: 1561
  year: 1997
  end-page: 1574
  article-title: The critical thermal maximum: history and critique
  publication-title: Canadian Journal of Zoology
– volume: 105
  start-page: 7088
  year: 2008
  end-page: 7093
  article-title: Human ApoD, an apolipoprotein up‐regulated in neurodegenerative diseases, extends lifespan and increases stress resistance in Drosophila
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 78
  start-page: 401
  year: 2003
  end-page: 414
  article-title: Resistance to temperature extremes in sub‐Antarctic weevils: interspecific variation, population differentiation and acclimation
  publication-title: Biological Journal of the Linnean Society
– volume: 99
  start-page: 225
  year: 2002
  end-page: 239
  article-title: Latitudinal and local geographic mosaics in host plant preferences as shaped by thermal units and voltinism in spp
  publication-title: (Lepidoptera). European Journal of Entomology
– start-page: 234
  year: 1993
  end-page: 250
– volume: 369
  start-page: 67
  year: 2011
  end-page: 84
  article-title: When could global warming reach 4 C?
  publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
– volume: 152
  start-page: 518
  year: 2009
  end-page: 523
  article-title: Dehydration‐induced cross tolerance of larvae to cold and heat is facilitated by trehalose accumulation
  publication-title: Comparative Biochemistry and Physiology A
– volume: 278
  start-page: 1823
  year: 2011
  end-page: 1830
  article-title: Global analysis of thermal tolerance and latitude in ectotherms
  publication-title: Proceedings of the Royal Society B‐Biological Sciences
– year: 1991
– volume: 18
  start-page: 412
  year: 2012
  end-page: 421
  article-title: Can amphibians take the heat? Vulnerability to climate warming in subtropical and temperate larval amphibian communities
  publication-title: Global Change Biology
– volume: 12
  start-page: 45
  year: 1998
  end-page: 55
  article-title: Critical thermal limits in Mediterranean ant species: trade‐off between mortality risk and foraging performance
  publication-title: Functional Ecology
– volume: 33
  start-page: 183
  year: 2007
  end-page: 209
  article-title: Microbial extremophiles at the limits of life
  publication-title: Critical Reviews in Microbiology
– ident: e_1_2_11_9_1
  doi: 10.1016/0022-1910(87)90001-1
– ident: e_1_2_11_62_1
  doi: 10.1111/j.1365-2435.2007.01283.x
– ident: e_1_2_11_100_1
  doi: 10.1111/j.1558-5646.1997.tb02398.x
– ident: e_1_2_11_179_1
  doi: 10.1111/j.1365-3032.2011.00795.x
– ident: e_1_2_11_53_1
  doi: 10.1111/j.1095-8312.2004.00380.x
– ident: e_1_2_11_149_1
  doi: 10.1111/j.1469-185X.2010.00125.x
– ident: e_1_2_11_111_1
  doi: 10.1111/j.1461-0248.2008.01213.x
– ident: e_1_2_11_10_1
  doi: 10.1111/j.1365-2486.2010.02176.x
– ident: e_1_2_11_166_1
  doi: 10.1242/jeb.199.8.1845
– ident: e_1_2_11_29_1
  doi: 10.1111/j.1365-2699.2007.01787.x
– ident: e_1_2_11_112_1
  doi: 10.1086/physzool.58.6.30156067
– volume-title: Evolutionary Genetics and Environmental Stress
  year: 1991
  ident: e_1_2_11_76_1
– ident: e_1_2_11_98_1
  doi: 10.1111/j.1558-5646.1989.tb04247.x
– ident: e_1_2_11_174_1
  doi: 10.1371/journal.pone.0022610
– ident: e_1_2_11_92_1
  doi: 10.1111/j.1365-2435.2008.01538.x
– ident: e_1_2_11_27_1
  doi: 10.1111/j.1420-9101.2005.00928.x
– ident: e_1_2_11_124_1
  doi: 10.1371/journal.pone.0032758
– ident: e_1_2_11_162_1
  doi: 10.1007/BF00345241
– ident: e_1_2_11_28_1
  doi: 10.1242/jeb.054718
– ident: e_1_2_11_65_1
  doi: 10.1111/j.1420-9101.2004.00782.x
– ident: e_1_2_11_176_1
  doi: 10.1038/sj.hdy.6800405
– ident: e_1_2_11_147_1
  doi: 10.1111/j.1420-9101.2011.02318.x
– ident: e_1_2_11_171_1
  doi: 10.1242/jeb.061283
– ident: e_1_2_11_4_1
  doi: 10.1016/j.jinsphys.2012.01.016
– ident: e_1_2_11_72_1
  doi: 10.2307/1543615
– ident: e_1_2_11_60_1
  doi: 10.1073/pnas.92.7.2994
– ident: e_1_2_11_40_1
  doi: 10.1086/physzool.65.5.30158548
– ident: e_1_2_11_95_1
  doi: 10.1242/jeb.204.9.1659
– ident: e_1_2_11_156_1
  doi: 10.1111/j.1420-9101.2010.02061.x
– ident: e_1_2_11_48_1
  doi: 10.1073/pnas.0709472105
– ident: e_1_2_11_85_1
  doi: 10.1034/j.1600-0706.2003.11738.x
– ident: e_1_2_11_181_1
  doi: 10.1007/s00227-009-1354-3
– ident: e_1_2_11_36_1
  doi: 10.1093/acprof:oso/9780198515494.001.0001
– ident: e_1_2_11_118_1
  doi: 10.1111/j.1365-3032.1979.tb00201.x
– ident: e_1_2_11_39_1
  doi: 10.3354/cr00879
– ident: e_1_2_11_96_1
  doi: 10.1007/s00442-004-1605-4
– ident: e_1_2_11_135_1
  doi: 10.1668/0003-1569(2000)040[0597:CCEOBA]2.0.CO;2
– ident: e_1_2_11_155_1
  doi: 10.1126/science.1184695
– ident: e_1_2_11_55_1
  doi: 10.1371/journal.pone.0015284
– ident: e_1_2_11_117_1
  doi: 10.1007/s12192-010-0205-y
– ident: e_1_2_11_101_1
  doi: 10.1016/S0022-1910(98)00059-6
– ident: e_1_2_11_120_1
  doi: 10.1007/s10526-009-9255-4
– ident: e_1_2_11_3_1
  doi: 10.1111/j.1461-9563.2011.00553.x
– ident: e_1_2_11_20_1
  doi: 10.1086/663202
– ident: e_1_2_11_146_1
  doi: 10.1111/j.1365-2435.2011.01908.x
– ident: e_1_2_11_50_1
  doi: 10.1007/s10646-011-0624-2
– ident: e_1_2_11_142_1
  doi: 10.1371/journal.pone.0024802
– volume: 8
  start-page: 149
  year: 2006
  ident: e_1_2_11_131_1
  article-title: Phenotypic and genetic variability of sternopleural bristle number in Drosophila melanogaster under daily thermal stress: developmental instability and anti‐asymmetry
  publication-title: Evolutionary Ecology Research
– ident: e_1_2_11_165_1
  doi: 10.1242/jeb.040170
– ident: e_1_2_11_70_1
  doi: 10.1016/j.bbagrm.2011.03.007
– ident: e_1_2_11_134_1
  doi: 10.1007/s00300-006-0157-y
– ident: e_1_2_11_21_1
  doi: 10.1038/nature07393
– ident: e_1_2_11_2_1
  doi: 10.1098/rspb.2000.1065
– ident: e_1_2_11_54_1
  doi: 10.1146/annurev.physiol.61.1.243
– ident: e_1_2_11_108_1
  doi: 10.1111/j.1461-0248.2008.01229.x
– ident: e_1_2_11_47_1
  doi: 10.1890/08-0579.1
– ident: e_1_2_11_81_1
  doi: 10.1098/rspb.2011.0160
– ident: e_1_2_11_138_1
  doi: 10.1073/pnas.0400522101
– ident: e_1_2_11_13_1
  doi: 10.1016/j.cbpa.2008.12.009
– ident: e_1_2_11_32_1
  doi: 10.1038/nrmicro1390
– volume: 202
  start-page: 2709
  year: 1999
  ident: e_1_2_11_63_1
  article-title: Laboratory selection for the comparative physiologist
  publication-title: Journal of Experimental Biology
  doi: 10.1242/jeb.202.20.2709
– ident: e_1_2_11_175_1
  doi: 10.1098/rspb.1998.0514
– ident: e_1_2_11_150_1
  doi: 10.14411/eje.2002.032
– ident: e_1_2_11_25_1
  doi: 10.1016/0010-406X(70)90915-1
– ident: e_1_2_11_12_1
  doi: 10.1111/j.1752-4571.2007.00011.x
– ident: e_1_2_11_23_1
  doi: 10.1371/journal.pone.0009514
– ident: e_1_2_11_104_1
  doi: 10.1086/600088
– ident: e_1_2_11_137_1
  doi: 10.1242/jeb.037523
– ident: e_1_2_11_143_1
  doi: 10.1016/j.jtherbio.2004.08.073
– ident: e_1_2_11_152_1
  doi: 10.1098/rspb.2010.0008
– ident: e_1_2_11_57_1
  doi: 10.1525/bio.2011.61.5.4
– ident: e_1_2_11_7_1
  doi: 10.1111/j.0014-3820.2000.tb00024.x
– ident: e_1_2_11_11_1
  doi: 10.1016/0022-1910(85)90067-8
– ident: e_1_2_11_34_1
  doi: 10.1186/1471-2148-12-25
– ident: e_1_2_11_170_1
  doi: 10.1098/rspb.2007.0985
– ident: e_1_2_11_168_1
  doi: 10.1098/rspb.2010.1295
– ident: e_1_2_11_83_1
  doi: 10.1098/rstb.2012.0005
– ident: e_1_2_11_121_1
  doi: 10.1379/CSC-207.1
– volume: 103
  start-page: 93
  year: 1983
  ident: e_1_2_11_164_1
  article-title: Non mendelian inheritance of “heat‐sensitivity” in Drosophila melanogaster
  publication-title: Genetics
  doi: 10.1093/genetics/103.1.93
– ident: e_1_2_11_151_1
  doi: 10.1007/s000360050063
– volume: 205
  start-page: 2799
  year: 2002
  ident: e_1_2_11_178_1
  article-title: Mechanism allowing an insect to survive complete dehydration and extreme temperatures
  publication-title: Journal of Experimental Biology
  doi: 10.1242/jeb.205.18.2799
– volume-title: Climate Change 2007
  year: 2007
  ident: e_1_2_11_84_1
– ident: e_1_2_11_115_1
  doi: 10.1016/0300-9629(82)90266-3
– ident: e_1_2_11_159_1
  doi: 10.1046/j.1461-0248.2002.00296.x
– ident: e_1_2_11_172_1
  doi: 10.1046/j.1365-2435.2001.00516.x
– ident: e_1_2_11_43_1
  doi: 10.1111/j.1420-9101.2010.02144.x
– volume: 132
  start-page: 327
  year: 1988
  ident: e_1_2_11_173_1
  article-title: Latitudinal patterns of the thermal sensitivity of sprint speed in lizards
  publication-title: The American Naturalist
  doi: 10.1086/284856
– ident: e_1_2_11_73_1
  doi: 10.1002/joc.1276
– ident: e_1_2_11_14_1
  doi: 10.1073/pnas.1105195108
– ident: e_1_2_11_61_1
  doi: 10.1093/icb/icj003
– ident: e_1_2_11_90_1
  doi: 10.1111/j.1365-2486.2010.02277.x
– ident: e_1_2_11_123_1
  doi: 10.1111/j.1365-3032.2010.00736.x
– ident: e_1_2_11_106_1
  doi: 10.1016/j.jtherbio.2007.01.009
– ident: e_1_2_11_140_1
  doi: 10.1111/j.1365-2435.2010.01778.x
– ident: e_1_2_11_126_1
  doi: 10.1086/661780
– ident: e_1_2_11_133_1
  doi: 10.1111/j.1600-0706.2010.19470.x
– ident: e_1_2_11_144_1
  doi: 10.1038/24550
– ident: e_1_2_11_160_1
  doi: 10.1111/j.1365-2435.2008.01491.x
– ident: e_1_2_11_127_1
  doi: 10.1111/j.1365-2915.2011.00950.x
– ident: e_1_2_11_167_1
  doi: 10.1086/316738
– ident: e_1_2_11_42_1
  doi: 10.1098/rspb.2010.2675
– ident: e_1_2_11_177_1
  doi: 10.1016/j.jinsphys.2005.07.010
– ident: e_1_2_11_22_1
  doi: 10.1111/j.1469-185X.2008.00046.x
– ident: e_1_2_11_161_1
  doi: 10.1038/nature08739
– ident: e_1_2_11_119_1
  doi: 10.1073/pnas.0800896105
– ident: e_1_2_11_153_1
  doi: 10.1111/j.1420-9101.2010.02110.x
– ident: e_1_2_11_30_1
  doi: 10.1111/j.1365-2656.2009.01611.x
– ident: e_1_2_11_71_1
  doi: 10.1016/j.jinsphys.2011.04.004
– ident: e_1_2_11_31_1
  doi: 10.1093/jhered/esr027
– ident: e_1_2_11_49_1
  doi: 10.1186/1471-2148-10-363
– ident: e_1_2_11_157_1
  doi: 10.1086/282976
– ident: e_1_2_11_8_1
  doi: 10.1111/j.1365-2435.2009.01541.x
– ident: e_1_2_11_35_1
  doi: 10.1016/S0022-1910(00)00163-3
– ident: e_1_2_11_154_1
  doi: 10.1017/S1464793102006024
– ident: e_1_2_11_38_1
  doi: 10.1111/j.1365-2435.2008.01481.x
– ident: e_1_2_11_44_1
  doi: 10.1371/journal.pone.0009751
– ident: e_1_2_11_87_1
  doi: 10.1002/jez.573
– ident: e_1_2_11_107_1
  doi: 10.1086/510632
– ident: e_1_2_11_141_1
  doi: 10.1371/journal.pone.0032083
– ident: e_1_2_11_41_1
  doi: 10.1086/660021
– ident: e_1_2_11_77_1
  doi: 10.1038/nature09670
– ident: e_1_2_11_93_1
  doi: 10.1126/science.1175443
– ident: e_1_2_11_79_1
  doi: 10.1038/nrg2339
– ident: e_1_2_11_105_1
  doi: 10.1098/rspb.2008.1240
– ident: e_1_2_11_148_1
  doi: 10.1111/j.1420-9101.2010.01965.x
– ident: e_1_2_11_33_1
  doi: 10.1046/j.1365-2435.1998.00160.x
– ident: e_1_2_11_102_1
  doi: 10.1046/j.1420-9101.1994.7010039.x
– ident: e_1_2_11_128_1
  doi: 10.1126/science.1204794
– ident: e_1_2_11_91_1
  doi: 10.1007/BF00139728
– ident: e_1_2_11_64_1
  doi: 10.1086/515853
– ident: e_1_2_11_78_1
  doi: 10.1016/S0306-4565(02)00057-8
– ident: e_1_2_11_18_1
  doi: 10.1016/j.mad.2004.08.010
– ident: e_1_2_11_67_1
  doi: 10.1007/s11692-011-9127-6
– ident: e_1_2_11_82_1
  doi: 10.1098/rspb.2008.1957
– ident: e_1_2_11_5_1
  doi: 10.1016/j.jinsphys.2009.11.006
– ident: e_1_2_11_130_1
  doi: 10.1002/bies.201000124
– ident: e_1_2_11_132_1
  doi: 10.1080/10408410701451948
– ident: e_1_2_11_97_1
  doi: 10.1093/icb/icr015
– ident: e_1_2_11_103_1
  doi: 10.1073/pnas.0708074105
– ident: e_1_2_11_56_1
  doi: 10.1098/rspb.2008.0905
– ident: e_1_2_11_69_1
  doi: 10.1126/science.1167396
– ident: e_1_2_11_169_1
  doi: 10.4269/ajtmh.2006.74.786
– ident: e_1_2_11_15_1
  doi: 10.1093/oxfordjournals.molbev.a003912
– ident: e_1_2_11_52_1
  doi: 10.1126/science.1199158
– ident: e_1_2_11_6_1
  doi: 10.1093/acprof:oso/9780198570875.001.1
– ident: e_1_2_11_89_1
  doi: 10.1016/j.jtherbio.2005.11.026
– start-page: 7
  volume-title: Temperature Sensitivity in Insects and Application in Integrated Pest Management
  year: 1998
  ident: e_1_2_11_46_1
– ident: e_1_2_11_88_1
  doi: 10.1086/284868
– ident: e_1_2_11_122_1
  doi: 10.1111/j.1365-294X.2008.03945.x
– ident: e_1_2_11_125_1
  doi: 10.1016/j.cryobiol.2008.01.001
– ident: e_1_2_11_99_1
  doi: 10.1046/j.1095-8312.2003.00154.x
– ident: e_1_2_11_136_1
  doi: 10.1016/S1095-6433(02)00045-4
– ident: e_1_2_11_66_1
  doi: 10.1007/s00227-010-1528-z
– ident: e_1_2_11_116_1
  doi: 10.1111/j.1365-2435.2009.01666.x
– ident: e_1_2_11_45_1
  doi: 10.1046/j.1365-2435.1998.00246.x
– ident: e_1_2_11_37_1
  doi: 10.1016/S0065-2806(06)33002-0
– ident: e_1_2_11_158_1
  doi: 10.1111/j.1461-9563.2011.00523.x
– ident: e_1_2_11_129_1
  doi: 10.1111/j.1469-7998.2009.00641.x
– ident: e_1_2_11_145_1
  doi: 10.1016/j.jtherbio.2010.05.006
– ident: e_1_2_11_113_1
  doi: 10.1139/f95-259
– ident: e_1_2_11_180_1
  doi: 10.1111/j.1420-9101.2008.01631.x
– ident: e_1_2_11_24_1
  doi: 10.1016/0010-406X(68)90961-4
– ident: e_1_2_11_94_1
  doi: 10.1111/j.1558‐5646.2012.01685.x
– ident: e_1_2_11_109_1
  doi: 10.1139/z97-783
– ident: e_1_2_11_86_1
  doi: 10.1093/genetics/137.3.783
– ident: e_1_2_11_110_1
  doi: 10.2307/5293
– ident: e_1_2_11_19_1
  doi: 10.1016/j.cbpa.2010.12.010
– ident: e_1_2_11_114_1
  doi: 10.1098/rspb.1939.0035
– ident: e_1_2_11_139_1
  doi: 10.1111/j.1558-5646.2010.01039.x
– ident: e_1_2_11_17_1
  doi: 10.1098/rsta.2010.0292
– ident: e_1_2_11_59_1
  doi: 10.1086/605982
– ident: e_1_2_11_16_1
  doi: 10.1007/s10519-009-9256-1
– ident: e_1_2_11_75_1
  doi: 10.1046/j.1461-0248.2002.00367.x
– ident: e_1_2_11_74_1
  doi: 10.1242/jeb.037630
– ident: e_1_2_11_80_1
  doi: 10.1016/S0022-1910(96)00108-4
– ident: e_1_2_11_163_1
  doi: 10.1016/j.jtherbio.2007.06.001
– ident: e_1_2_11_68_1
  doi: 10.1111/j.1558-5646.2008.00412.x
– ident: e_1_2_11_26_1
  doi: 10.1086/401257
– ident: e_1_2_11_58_1
  doi: 10.2307/3546663
– ident: e_1_2_11_51_1
  doi: 10.1111/j.1365-2486.2011.02518.x
SSID ssj0009522
Score 2.5848885
Snippet 1. Terrestrial ectotherms are likely to face increased periods of heat stress as mean temperatures and temperature variability increase over the next few...
Summary 1. Terrestrial ectotherms are likely to face increased periods of heat stress as mean temperatures and temperature variability increase over the next...
1. Terrestrial ectotherms are likely to face increased periods of heat stress as mean temperatures and temperature variability increase over the next few...
Summary 1. Terrestrial ectotherms are likely to face increased periods of heat stress as mean temperatures and temperature variability increase over the next...
SourceID proquest
crossref
wiley
jstor
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 934
SubjectTerms adaptation
Biological taxonomies
Climate change
comparative analysis
Data processing
Drosophila
Ecological genetics
evolution
Extended Spotlight: Responses to global climate change: insights from organismal physiology
hardening
Heat
Heat tolerance
Human ecology
Insect ecology
insects
Lacertilia
Phenotypic traits
Phylogenetics
plasticity
Species
upper thermal limit
Title Upper thermal limits in terrestrial ectotherms: how constrained are they?
URI https://www.jstor.org/stable/23481002
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2435.2012.02036.x
https://www.proquest.com/docview/1411816101
https://www.proquest.com/docview/1419369305
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kIHjxXYxWWcFrQrJ5tV5ESkoV9CAWegub3Q1Ka1qaFq2_3plNGhvxUMTbwmbKZjKz803nRchVylzF7ZSbMrGF6Xkd12y7nm2qQPG2lE4oGNY7PzwG_YF3P_SHZf4T1sIU_SGqP9xQM_R9jQrOk7yu5DpDC-w9ZmgxS8fULMSTuIH46Imt9d8tAgos6Jhgct16Us-vP1SzVEWyYg2GroNZbY16e2S0eo8iCWVkLeaJJT5_tHj8nxfdJ7slaKW3hZQdkC2VHZLtYozlElaRKFfN6LtuDgjKiyM_IneD6VTNKKLNN9gYY1lVTl8zCp8Vp4OgGlAMIOgn8mv6MnmnArErjrBQkvKZQurlzTEZ9KLnbt8spziYAmPFpiOZSsMkEWHgq5BJ8K8EeIG-wwV3E8HBYbMDm7tSOB2QJ-XbCpv-tVPPliEOrmiSRjbJ1AmhTDJfCV_xBICHa0vuy9TnLBUSWMKZY5Bw9cViUbY4x2OO4zVXB3gZIy9j5GWseRl_GMSpKKdFm48NaJpaKCoChkXNYGEM0lpJSVzeCDm4WFjiC2AVTnlZbYMuY4CGZ2qy0M_gfEW4gg0SaJHY-DBxL-ri6vSvhGdkh-lJH5jb2CKN-WyhzgFvzZMLrUlfV0oZpQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB5EEb34LtbnCl5Tks2r9SKiLfV5EAvels3uBsWalj7Q-uud2aS1FQ8i3haSCZvJzM43mRfAccp9I91UOjpxlRMENd-p-oHrmMjIqtZerDjVO9_eRc1WcPUYPhbjgKgWJu8PMfnhRpphz2tScPohPavlNkULDT6laPGKDapVEFAu0IBvaqR_cc-nOvDmIQUe1Rw0uv5sWs-PT5qxVXm64gwQnYaz1h41VqE9fpM8DeWlMhwkFfXxrcnjP73qGqwUuJWd5YK2DnMm24DFfJLlCFd1VaxK9a_SOSQozo7-Jly2ul3TYwQ4X_FCmyqr-uw5Y_hlaUAIaQKjGIK9o3_CnjpvTBF8pSkWRjPZM0Q9Ot2CVqP-cN50ikEOjqJwseNpbtI4SVQchSbmGl0shY5g6Ekl_URJ9NncyJW-Vl4NRcqErqG-f9U0cHVMsytKMJ91MrMNjGseGhUamSD28F0tQ52GkqdKI0sk98oQjz-ZUEWXc9pmW0x5O8hLQbwUxEtheSney-BNKLt5p49f0JSsVEwIONU1o5Epw95YTERxKPTRy6IqX8SruMujyWVUZ4rRyMx0hvYeGrGIp3AZIisTv96MaNTPabXzV8JDWGo-3N6Im8u7611Y5nbwB6U67sH8oDc0-wi_BsmBVatPA98dwQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9tAEB5CQkovTdLWxM1rC73KrFYvK5cQ_MBOWlNKDbktq90VLUlk4wdJ-us7s5Idu-RgQm8L0ojVaGbnG80L4EsuAqt4rjyTce2FYRp4zSDkno2tahrjJ1pQvfO3Qdwbhlc30U2V_0S1MGV_iOUPN9IMd16Tgo9Nvq7kLkML7T1laImGi6k1EE_uhDFPaYxD-4dYacBbRhREnHpoc4P1rJ4Xn7RmqspsxTUcuopmnTnq7sHt4kXKLJTbxnyWNfSff3o8_p833Yd3FWpll6WYHcCWLd7DbjnH8glXHV2tap3nwjkkqE6O6QfoD8djO2EEN-_xwh3VVU3Z74Lhd6XxIKQHjCII7o7pOfs1emCawCvNsLCGqYkl6qeLjzDsdn62el41xsHTFCz2fCNsnmSZTuLIJsKgg6XRDYx8pVWQaYUeG4-5Coz2UxQoG3FLXf-aechNQpMrarBdjAp7CEwYEVkdWZUh8gi4UZHJIyVybZAlSvh1SBZfTOqqxzlt806u-DrIS0m8lMRL6XgpH-vgLynHZZ-PDWhqTiiWBIKqmtHE1OF4ISWyOhKm6GNRjS-iVdzl5-VlVGaK0KjCjubuHhqwiGdwHWInEhtvRnY7LVp9ei3hGbz53u7Kr_3B9RG8FW7qB-U5HsP2bDK3J4i9ZtmpU6q_efsccA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Upper+thermal+limits+in+terrestrial+ectotherms%3A+how+constrained+are+they%3F&rft.jtitle=Functional+ecology&rft.au=Hoffmann%2C+Ary+A&rft.au=Chown%2C+Steven+L&rft.au=Clusella-Trullas%2C+Susana&rft.date=2013-08-01&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=27&rft.issue=4&rft.spage=934&rft.epage=949&rft_id=info:doi/10.1111%2Fj.1365-2435.2012.02036.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon