Molecularly‐Engineered, 4D‐Printed Liquid Crystal Elastomer Actuators
Three‐dimensional structures that undergo reversible shape changes in response to mild stimuli enable a wide range of smart devices, such as soft robots or implantable medical devices. Herein, a dual thiol‐ene reaction scheme is used to synthesize a class of liquid crystal (LC) elastomers that can b...
Saved in:
Published in | Advanced functional materials Vol. 29; no. 3 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
17.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Three‐dimensional structures that undergo reversible shape changes in response to mild stimuli enable a wide range of smart devices, such as soft robots or implantable medical devices. Herein, a dual thiol‐ene reaction scheme is used to synthesize a class of liquid crystal (LC) elastomers that can be 3D printed into complex shapes and subsequently undergo controlled shape change. Through controlling the phase transition temperature of polymerizable LC inks, morphing 3D structures with tunable actuation temperature (28 ± 2 to 105 ± 1 °C) are fabricated. Finally, multiple LC inks are 3D printed into single structures to allow for the production of untethered, thermo‐responsive structures that sequentially and reversibly undergo multiple shape changes.
Novel inks for printable liquid crystal elastomers (LCEs) are reported herein. The 3D‐printed LCE structures undergo controlled and reversible shape change upon heating. By controlling the reaction parameters (e.g., reaction type, mesogen concentration, or crosslinking density), a wide range of LCEs are synthesized and characterized for their use as soft actuators. |
---|---|
AbstractList | Three‐dimensional structures that undergo reversible shape changes in response to mild stimuli enable a wide range of smart devices, such as soft robots or implantable medical devices. Herein, a dual thiol‐ene reaction scheme is used to synthesize a class of liquid crystal (LC) elastomers that can be 3D printed into complex shapes and subsequently undergo controlled shape change. Through controlling the phase transition temperature of polymerizable LC inks, morphing 3D structures with tunable actuation temperature (28 ± 2 to 105 ± 1 °C) are fabricated. Finally, multiple LC inks are 3D printed into single structures to allow for the production of untethered, thermo‐responsive structures that sequentially and reversibly undergo multiple shape changes. Three‐dimensional structures that undergo reversible shape changes in response to mild stimuli enable a wide range of smart devices, such as soft robots or implantable medical devices. Herein, a dual thiol‐ene reaction scheme is used to synthesize a class of liquid crystal (LC) elastomers that can be 3D printed into complex shapes and subsequently undergo controlled shape change. Through controlling the phase transition temperature of polymerizable LC inks, morphing 3D structures with tunable actuation temperature (28 ± 2 to 105 ± 1 °C) are fabricated. Finally, multiple LC inks are 3D printed into single structures to allow for the production of untethered, thermo‐responsive structures that sequentially and reversibly undergo multiple shape changes. Novel inks for printable liquid crystal elastomers (LCEs) are reported herein. The 3D‐printed LCE structures undergo controlled and reversible shape change upon heating. By controlling the reaction parameters (e.g., reaction type, mesogen concentration, or crosslinking density), a wide range of LCEs are synthesized and characterized for their use as soft actuators. |
Author | Stefan, Mihaela C. Ambulo, Cedric P. Shankar, M. Ravi Raval, Vyom Kim, Hyun De, Rohit Cue, John Michael O. Ware, Taylor H. Searles, Kyle Saed, Mohand O. Siddiqui, Danyal A. |
Author_xml | – sequence: 1 givenname: Mohand O. orcidid: 0000-0001-5154-6378 surname: Saed fullname: Saed, Mohand O. organization: University of Texas at Dallas – sequence: 2 givenname: Cedric P. surname: Ambulo fullname: Ambulo, Cedric P. organization: University of Texas at Dallas – sequence: 3 givenname: Hyun surname: Kim fullname: Kim, Hyun organization: University of Texas at Dallas – sequence: 4 givenname: Rohit surname: De fullname: De, Rohit organization: University of Texas at Dallas – sequence: 5 givenname: Vyom surname: Raval fullname: Raval, Vyom organization: University of Texas at Dallas – sequence: 6 givenname: Kyle surname: Searles fullname: Searles, Kyle organization: University of Texas at Dallas – sequence: 7 givenname: Danyal A. surname: Siddiqui fullname: Siddiqui, Danyal A. organization: University of Texas at Dallas – sequence: 8 givenname: John Michael O. surname: Cue fullname: Cue, John Michael O. organization: University of Texas at Dallas – sequence: 9 givenname: Mihaela C. surname: Stefan fullname: Stefan, Mihaela C. organization: University of Texas at Dallas – sequence: 10 givenname: M. Ravi surname: Shankar fullname: Shankar, M. Ravi organization: University of Pittsburgh – sequence: 11 givenname: Taylor H. orcidid: 0000-0001-7996-7393 surname: Ware fullname: Ware, Taylor H. email: Taylor.ware@utdallas.edu organization: University of Texas at Dallas |
BookMark | eNqFkL9OwzAQxi1UJNrCyhyJlQTbce10rPoHKrWCASQ2y3EuKJUbt3YilK2PwDPyJLgqKiPT3Xf6fXenb4B6ta0BoVuCE4IxfVBFuU0oJhnmjNAL1Cec8DjFNOude_J-hQbebzAmQqSsj5Zra0C3RjnTfR--5vVHVQM4KO4jNguDF1fVDRTRqtq3VRFNXecbZaK5Ub6xW3DRRDetaqzz1-iyVMbDzW8dorfF_HX6FK-eH5fTySrWjHEaMz0SnGrFgNEs5SznQqnwPw-C50ELYAUZK0xokZdUUzXKApwLnuelyFQ6RHenvTtn9y34Rm5s6-pwUlLC-ZhnhKaBSk6UdtZ7B6XcuWqrXCcJlse45DEueY4rGMYnw2dloPuHlpPZYv3n_QF2J3Gp |
CitedBy_id | crossref_primary_10_1088_1361_665X_ac3404 crossref_primary_10_3390_molecules28124858 crossref_primary_10_3390_app10207254 crossref_primary_10_1002_adma_202002640 crossref_primary_10_1002_adma_202302706 crossref_primary_10_1016_j_compositesb_2023_110585 crossref_primary_10_1088_2399_7532_aba1d9 crossref_primary_10_1039_D0TB00754D crossref_primary_10_1002_adma_202302824 crossref_primary_10_1126_sciadv_abg3677 crossref_primary_10_1002_adfm_202210353 crossref_primary_10_1021_acs_langmuir_2c00490 crossref_primary_10_1002_admt_201900293 crossref_primary_10_1515_nanoph_2021_0652 crossref_primary_10_1002_asia_202300340 crossref_primary_10_1002_admt_202400074 crossref_primary_10_1038_s41563_024_01845_9 crossref_primary_10_1021_acsaelm_2c00458 crossref_primary_10_1002_adma_202002753 crossref_primary_10_1021_acsmacrolett_0c00265 crossref_primary_10_3390_app10093020 crossref_primary_10_1002_chem_202301030 crossref_primary_10_1016_j_finmec_2022_100074 crossref_primary_10_3390_cryst10050420 crossref_primary_10_1142_S2737549822300012 crossref_primary_10_1002_adma_201906564 crossref_primary_10_1126_sciadv_abc0034 crossref_primary_10_1007_s40820_023_01286_0 crossref_primary_10_1021_acsami_9b17393 crossref_primary_10_1039_D1MH01377G crossref_primary_10_1016_j_ijsolstr_2023_112500 crossref_primary_10_1002_adma_202101955 crossref_primary_10_1088_1361_665X_abdcfe crossref_primary_10_1002_admt_202300909 crossref_primary_10_1002_adfm_201901890 crossref_primary_10_1016_j_compscitech_2022_109460 crossref_primary_10_1021_jacs_4c01642 crossref_primary_10_1039_D0PY00217H crossref_primary_10_1002_adfm_202402403 crossref_primary_10_1016_j_finmec_2022_100081 crossref_primary_10_1039_D2SM01256A crossref_primary_10_1146_annurev_control_061022_012035 crossref_primary_10_1007_s40843_023_2474_8 crossref_primary_10_3390_ma14164521 crossref_primary_10_1016_j_engfracmech_2022_108584 crossref_primary_10_1002_aisy_202300607 crossref_primary_10_1021_acsami_9b19342 crossref_primary_10_1039_D2SM00166G crossref_primary_10_1002_pol_20210718 crossref_primary_10_1039_D1MH01810H crossref_primary_10_1002_ange_202202577 crossref_primary_10_1016_j_mee_2022_111874 crossref_primary_10_1002_adma_202313745 crossref_primary_10_1002_admi_201901996 crossref_primary_10_1016_j_polymer_2023_125944 crossref_primary_10_1039_D2ME00124A crossref_primary_10_1002_advs_202204003 crossref_primary_10_1021_acsami_2c23028 crossref_primary_10_1080_17452759_2022_2087096 crossref_primary_10_3390_jmmp6010004 crossref_primary_10_1002_smll_202104440 crossref_primary_10_3390_biomimetics8020196 crossref_primary_10_1073_pnas_2215028119 crossref_primary_10_1557_s43578_021_00381_5 crossref_primary_10_1021_acsapm_3c01335 crossref_primary_10_1016_j_addma_2022_102861 crossref_primary_10_1021_acsami_1c21096 crossref_primary_10_1002_adma_202101298 crossref_primary_10_1021_acsami_2c03392 crossref_primary_10_1021_acs_macromol_0c01757 crossref_primary_10_1021_acsami_9b18037 crossref_primary_10_1021_acs_macromol_9b01218 crossref_primary_10_1016_j_polymer_2024_126726 crossref_primary_10_1093_pnasnexus_pgad042 crossref_primary_10_1002_admt_202101732 crossref_primary_10_1016_j_isci_2023_106357 crossref_primary_10_1021_acsami_1c18424 crossref_primary_10_1038_s42004_024_01141_2 crossref_primary_10_1080_19475411_2022_2133188 crossref_primary_10_1002_adfm_202007125 crossref_primary_10_1111_ner_13364 crossref_primary_10_1021_acs_langmuir_3c01593 crossref_primary_10_1038_s41598_020_63508_4 crossref_primary_10_1002_anie_202000181 crossref_primary_10_1002_smll_202100910 crossref_primary_10_1002_adma_202109198 crossref_primary_10_1002_rpm_20230030 crossref_primary_10_1126_scirobotics_aax7044 crossref_primary_10_1002_advs_202308350 crossref_primary_10_1016_j_trechm_2019_11_003 crossref_primary_10_1002_adom_202000732 crossref_primary_10_1021_acs_chemrev_0c01057 crossref_primary_10_1002_adma_202006191 crossref_primary_10_1073_pnas_2200265119 crossref_primary_10_1103_PhysRevE_107_064501 crossref_primary_10_1002_adma_202207349 crossref_primary_10_1021_acsami_4c04275 crossref_primary_10_1021_acsami_1c02656 crossref_primary_10_1002_ange_202000181 crossref_primary_10_1063_5_0014619 crossref_primary_10_1088_1361_665X_ac34bf crossref_primary_10_1002_adma_202300220 crossref_primary_10_1021_acsmacrolett_2c00359 crossref_primary_10_1021_acsami_0c13341 crossref_primary_10_3390_ma13143094 crossref_primary_10_1002_adfm_202107795 crossref_primary_10_3390_textiles1020015 crossref_primary_10_1016_j_mechmat_2022_104329 crossref_primary_10_1002_adma_202303740 crossref_primary_10_1002_admt_202300727 crossref_primary_10_1021_acsami_1c07327 crossref_primary_10_1021_acsami_2c06462 crossref_primary_10_1021_acsami_0c07331 crossref_primary_10_1016_j_compositesb_2024_111346 crossref_primary_10_1063_5_0021143 crossref_primary_10_1021_jacs_1c03661 crossref_primary_10_1038_s41578_022_00450_z crossref_primary_10_1002_marc_202100768 crossref_primary_10_1002_adma_202101814 crossref_primary_10_1021_cbe_4c00028 crossref_primary_10_1021_cbe_4c00027 crossref_primary_10_1002_adma_202104390 crossref_primary_10_1021_acs_chemrev_1c00761 crossref_primary_10_1038_s41467_024_45980_y crossref_primary_10_1038_s41467_024_48353_7 crossref_primary_10_1021_acsami_1c20707 crossref_primary_10_1021_acs_macromol_3c01038 crossref_primary_10_1002_app_50136 crossref_primary_10_1038_s41578_021_00359_z crossref_primary_10_3390_molecules25184246 crossref_primary_10_1007_s00170_020_04927_5 crossref_primary_10_1039_D2MH00232A crossref_primary_10_1039_C9TC03625C crossref_primary_10_1016_j_biomaterials_2022_121912 crossref_primary_10_1002_anie_202103008 crossref_primary_10_1016_j_sna_2023_114348 crossref_primary_10_1016_j_polymer_2019_121904 crossref_primary_10_1038_s41467_023_42594_8 crossref_primary_10_1002_advs_202206486 crossref_primary_10_1021_acsami_0c08289 crossref_primary_10_1002_adma_202209566 crossref_primary_10_1002_anie_202202577 crossref_primary_10_1007_s10965_024_03918_4 crossref_primary_10_1016_j_colsurfb_2022_113110 crossref_primary_10_1021_acsami_0c19051 crossref_primary_10_1021_acsami_4c06130 crossref_primary_10_1002_marc_202000456 crossref_primary_10_1002_adma_202000609 crossref_primary_10_1002_advs_202001000 crossref_primary_10_1088_1361_665X_ab7ab0 crossref_primary_10_1021_acsami_9b04480 crossref_primary_10_1089_soro_2020_0135 crossref_primary_10_1002_adfm_202005929 crossref_primary_10_1246_cl_200652 crossref_primary_10_1002_adfm_202400742 crossref_primary_10_1088_2399_7532_abcbe1 crossref_primary_10_1002_adfm_202210614 crossref_primary_10_1016_j_cossms_2020_100869 crossref_primary_10_1016_j_mattod_2020_06_005 crossref_primary_10_1002_adfm_202100564 crossref_primary_10_1002_aisy_201900163 crossref_primary_10_1007_s42493_022_00074_z crossref_primary_10_1002_adma_202204890 crossref_primary_10_1021_acsmaterialslett_9b00262 crossref_primary_10_1039_D1SM00432H crossref_primary_10_1039_C9SM02237F crossref_primary_10_1039_D3SM01374J crossref_primary_10_1021_acs_chemmater_0c04659 crossref_primary_10_1021_jacs_9b06757 crossref_primary_10_1039_D0SM00278J crossref_primary_10_3390_act9010010 crossref_primary_10_1016_j_cej_2022_139054 crossref_primary_10_1021_acs_macromol_3c02015 crossref_primary_10_1039_D0TB00392A crossref_primary_10_3390_molecules25051241 crossref_primary_10_1002_adma_202210419 crossref_primary_10_1002_adma_202310743 crossref_primary_10_1021_acsami_2c18993 crossref_primary_10_3389_frobt_2022_868682 crossref_primary_10_1126_scirobotics_adf4753 crossref_primary_10_1021_acsami_3c14783 crossref_primary_10_3390_polym13111889 crossref_primary_10_1063_5_0075471 crossref_primary_10_1021_acsapm_1c01598 crossref_primary_10_1016_j_bios_2024_116328 crossref_primary_10_1039_D0SM01905D crossref_primary_10_1021_acsnano_3c03942 crossref_primary_10_1002_smll_202400786 crossref_primary_10_1021_acsapm_0c01423 crossref_primary_10_1002_adfm_202106843 crossref_primary_10_1021_acs_macromol_3c01869 crossref_primary_10_1088_2399_7532_ab6d1e crossref_primary_10_1002_admi_202202513 crossref_primary_10_1021_acs_macromol_2c02194 crossref_primary_10_1002_ange_202308793 crossref_primary_10_5254_RCT_D_23_00034 crossref_primary_10_1016_j_compositesa_2023_107943 crossref_primary_10_1002_admt_202101568 crossref_primary_10_1016_j_matchemphys_2022_126930 crossref_primary_10_1038_s41377_022_01046_6 crossref_primary_10_3390_act8040074 crossref_primary_10_1002_adma_202312263 crossref_primary_10_1002_adfm_202009835 crossref_primary_10_1039_D3SM01084H crossref_primary_10_1016_j_jmps_2024_105718 crossref_primary_10_1002_aisy_202100065 crossref_primary_10_1002_adma_202107855 crossref_primary_10_1021_acsmacrolett_2c00754 crossref_primary_10_1021_acscentsci_1c00829 crossref_primary_10_1038_s41467_019_14015_2 crossref_primary_10_1080_19475411_2024_2332645 crossref_primary_10_1002_adma_202002541 crossref_primary_10_1039_D4MH00289J crossref_primary_10_1002_admt_202100944 crossref_primary_10_1039_C9NR07035D crossref_primary_10_1039_D3MH00271C crossref_primary_10_1002_adfm_202301142 crossref_primary_10_3390_ma12193065 crossref_primary_10_1002_adfm_202005560 crossref_primary_10_1002_marc_202000385 crossref_primary_10_1039_D3SM01584J crossref_primary_10_1021_acsami_3c17068 crossref_primary_10_1002_adfm_202203236 crossref_primary_10_1002_adfm_201905063 crossref_primary_10_1016_j_amf_2024_200115 crossref_primary_10_1016_j_matt_2024_03_013 crossref_primary_10_1002_adma_202108855 crossref_primary_10_1002_mame_202100121 crossref_primary_10_1021_acsmaterialslett_4c00937 crossref_primary_10_1002_admt_202100133 crossref_primary_10_1021_acs_chemrev_1c00330 crossref_primary_10_1007_s40843_023_2635_4 crossref_primary_10_1002_advs_202001379 crossref_primary_10_1016_j_coche_2020_03_004 crossref_primary_10_1016_j_eurpolymj_2019_109287 crossref_primary_10_1021_acsmacrolett_3c00512 crossref_primary_10_1515_nanoph_2019_0483 crossref_primary_10_1002_adom_201900091 crossref_primary_10_1039_D3CC04227H crossref_primary_10_1002_aisy_202100163 crossref_primary_10_1002_ange_202103008 crossref_primary_10_1002_anie_202308793 crossref_primary_10_1016_j_apmt_2023_101842 |
Cites_doi | 10.1038/s41928-018-0024-1 10.1002/polb.23892 10.1021/acsmacrolett.7b00822 10.1209/0295-5075/25/7/008 10.1093/oso/9780198527671.001.0001 10.1002/adma.201704407 10.1039/C7SM01380A 10.1038/nature25443 10.1021/acsmacrolett.5b00511 10.1002/marc.201500079 10.1002/marc.1981.030020413 10.1063/1.4819837 10.1002/adma.200904059 10.1038/nature03496 10.1002/adma.201706164 10.1038/nature14543 10.1038/srep13616 10.1038/nmat3812 10.1088/1361-648X/aa5706 10.1038/nmat4433 10.1126/science.1215309 10.1039/b907907f 10.1016/j.progpolymsci.2015.04.001 10.1002/polb.24287 10.1038/nmat4544 10.1021/ma001639q 10.1088/0964-1726/23/9/094007 10.1038/nmat1391 10.1002/adma.201706383 10.1002/marc.1994.030150402 10.1039/C7SM02110K 10.1002/adma.201401804 10.1002/marc.201700710 10.1002/adma.200901522 10.1126/science.1261019 10.1002/macp.1988.021890117 10.1098/rspa.2010.0352 10.1080/02656730500271692 10.1039/C8SM01178H 10.1038/nature19100 10.1038/s41586-018-0185-0 10.1002/polb.24249 10.1002/adma.201606509 10.1002/ange.201800366 10.1002/marc.200700460 10.1038/nature21003 10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M 10.1016/0032-3861(96)83704-9 10.1016/j.polymer.2014.06.088 10.1039/C5RA01039J 10.1002/anie.200903924 10.1021/acsami.7b11851 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201806412 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adfm_201806412 ADFM201806412 |
Genre | article |
GrantInformation_xml | – fundername: Air Force Office of Scientific Research funderid: FA9550‐17‐1‐0328 – fundername: Leggett and Platt Inc |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT .Y3 31~ AAMNL AAYXX ACBWZ ACRPL ACYXJ ASPBG AVWKF AZFZN CITATION FEDTE HF~ HVGLF LW6 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c4462-4c5762ca4e428364b67aa10068366b64b7e4d19a012dbf2c2a58a4eb76bbf78a3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Thu Oct 10 18:08:44 EDT 2024 Fri Dec 06 09:19:26 EST 2024 Sat Aug 24 00:59:20 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4462-4c5762ca4e428364b67aa10068366b64b7e4d19a012dbf2c2a58a4eb76bbf78a3 |
ORCID | 0000-0001-5154-6378 0000-0001-7996-7393 |
PQID | 2166968123 |
PQPubID | 2045204 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2166968123 crossref_primary_10_1002_adfm_201806412 wiley_primary_10_1002_adfm_201806412_ADFM201806412 |
PublicationCentury | 2000 |
PublicationDate | January 17, 2019 |
PublicationDateYYYYMMDD | 2019-01-17 |
PublicationDate_xml | – month: 01 year: 2019 text: January 17, 2019 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 6 2015; 14 2015; 36 2015; 5 2009; 21 2015; 4 2015; 347 2015; 521 2016; 107 2005; 434 1981; 2 2010; 467 2016; 54 2014; 26 2016; 540 2013; 103 1988; 189 1994; 25 2005; 21 2017; 29 2016; 15 1996; 37 2014; 23 2017; 9 2007; 28 2010; 22 2018; 130 2018; 39 2010; 49 2002; 41 2018; 1 2016; 536 2018; 558 2017; 55 2017; 13 2018; 554 2005; 4 2014; 13 2018; 30 1994; 15 2001; 34 2012; 335 2009; 19 2014; 55 2015; 49‐50 2003; 120 2018; 14 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Warner M. (e_1_2_7_25_1) 2003 e_1_2_7_50_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 Saed M. O. (e_1_2_7_40_1) 2016; 107 |
References_xml | – volume: 28 start-page: 2062 year: 2007 publication-title: Macromol. Rapid Commun. – volume: 13 start-page: 7537 year: 2017 publication-title: Soft Matter – volume: 540 start-page: 371 year: 2016 publication-title: Nature – volume: 14 start-page: 951 year: 2018 publication-title: Soft Matter – volume: 34 start-page: 5868 year: 2001 publication-title: Macromolecules – volume: 467 start-page: 1121 year: 2010 publication-title: Proc. R. Soc. London, Ser. A – volume: 54 start-page: 38 year: 2016 publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 536 start-page: 451 year: 2016 publication-title: Nature – volume: 14 start-page: 6024 year: 2018 publication-title: Soft Matter – volume: 55 start-page: 157 year: 2017 publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 558 start-page: 274 year: 2018 publication-title: Nature – volume: 434 start-page: 879 year: 2005 publication-title: Nature – volume: 29 start-page: 133003 year: 2017 publication-title: J. Phys.: Condens. Matter – volume: 30 start-page: 1706164 year: 2018 publication-title: Adv. Mater. – volume: 55 start-page: 5897 year: 2014 publication-title: Polymer – volume: 103 start-page: 131901 year: 2013 publication-title: Appl. Phys. Lett. – volume: 39 start-page: 1700710 year: 2018 publication-title: Macromol. Rapid Commun. – volume: 4 start-page: 942 year: 2015 publication-title: ACS Macro Lett. – volume: 15 start-page: 303 year: 1994 publication-title: Macromol. Rapid Commun. – volume: 15 start-page: 413 year: 2016 publication-title: Nat. Mater. – volume: 6 start-page: 1290 year: 2017 publication-title: ACS Macro Lett. – volume: 347 start-page: 982 year: 2015 publication-title: Science – volume: 26 start-page: 5930 year: 2014 publication-title: Adv. Mater. – volume: 4 start-page: 491 year: 2005 publication-title: Nat. Mater. – volume: 23 start-page: 094007 year: 2014 publication-title: Smart Mater. Struct. – volume: 13 start-page: 36 year: 2014 publication-title: Nat. Mater. – volume: 37 start-page: 1561 year: 1996 publication-title: Polymer – volume: 335 start-page: 1201 year: 2012 publication-title: Science – volume: 30 start-page: 1706383 year: 2018 publication-title: Adv. Mater. – volume: 55 start-page: 395 year: 2017 publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 22 start-page: 3366 year: 2010 publication-title: Adv. Mater. – volume: 1 start-page: 102 year: 2018 publication-title: Nat. Electron. – volume: 521 start-page: 467 year: 2015 publication-title: Nature – volume: 21 start-page: 745 year: 2005 publication-title: Int. J. Hyperthermia – volume: 5 start-page: 13616 year: 2015 publication-title: Sci. Rep. – volume: 41 start-page: 2034 year: 2002 publication-title: Angew. Chem., Int. Ed. – volume: 2 start-page: 317 year: 1981 publication-title: Makromol. Chem., Rapid Commun. – volume: 130 start-page: 5767 year: 2018 publication-title: Angew. Chem. – volume: 107 start-page: e53546 year: 2016 publication-title: J. Visualized Exp. – volume: 120 year: 2003 – volume: 25 start-page: 521 year: 1994 publication-title: EPL – volume: 49‐50 start-page: 79 year: 2015 publication-title: Prog. Polym. Sci. – volume: 14 start-page: 1087 year: 2015 publication-title: Nat. Mater. – volume: 554 start-page: 81 year: 2018 publication-title: Nature – volume: 30 start-page: 1704407 year: 2018 publication-title: Adv. Mater. – volume: 5 start-page: 18997 year: 2015 publication-title: RSC Adv. – volume: 21 start-page: 4859 year: 2009 publication-title: Adv. Mater. – volume: 29 start-page: 1606509 year: 2017 publication-title: Adv. Mater. – volume: 49 start-page: 1540 year: 2010 publication-title: Angew. Chem., Int. Ed. – volume: 36 start-page: 1211 year: 2015 publication-title: Macromol. Rapid Commun. – volume: 9 start-page: 37332 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 19 start-page: 7208 year: 2009 publication-title: J. Mater. Chem. – volume: 189 start-page: 185 year: 1988 publication-title: Makromol. Chem. – ident: e_1_2_7_2_1 doi: 10.1038/s41928-018-0024-1 – ident: e_1_2_7_38_1 doi: 10.1002/polb.23892 – ident: e_1_2_7_41_1 doi: 10.1021/acsmacrolett.7b00822 – ident: e_1_2_7_50_1 doi: 10.1209/0295-5075/25/7/008 – volume-title: Liquid Crystal Elastomers year: 2003 ident: e_1_2_7_25_1 doi: 10.1093/oso/9780198527671.001.0001 contributor: fullname: Warner M. – ident: e_1_2_7_14_1 doi: 10.1002/adma.201704407 – ident: e_1_2_7_43_1 doi: 10.1039/C7SM01380A – ident: e_1_2_7_9_1 doi: 10.1038/nature25443 – ident: e_1_2_7_35_1 doi: 10.1021/acsmacrolett.5b00511 – ident: e_1_2_7_24_1 doi: 10.1002/marc.201500079 – ident: e_1_2_7_26_1 doi: 10.1002/marc.1981.030020413 – ident: e_1_2_7_19_1 doi: 10.1063/1.4819837 – ident: e_1_2_7_4_1 doi: 10.1002/adma.200904059 – ident: e_1_2_7_11_1 doi: 10.1038/nature03496 – ident: e_1_2_7_31_1 doi: 10.1002/adma.201706164 – ident: e_1_2_7_13_1 doi: 10.1038/nature14543 – ident: e_1_2_7_20_1 doi: 10.1038/srep13616 – ident: e_1_2_7_28_1 doi: 10.1038/nmat3812 – ident: e_1_2_7_15_1 doi: 10.1088/1361-648X/aa5706 – ident: e_1_2_7_10_1 doi: 10.1038/nmat4433 – ident: e_1_2_7_7_1 doi: 10.1126/science.1215309 – ident: e_1_2_7_34_1 doi: 10.1039/b907907f – ident: e_1_2_7_5_1 doi: 10.1016/j.progpolymsci.2015.04.001 – ident: e_1_2_7_27_1 doi: 10.1002/polb.24287 – ident: e_1_2_7_21_1 doi: 10.1038/nmat4544 – ident: e_1_2_7_3_1 doi: 10.1021/ma001639q – ident: e_1_2_7_23_1 doi: 10.1088/0964-1726/23/9/094007 – ident: e_1_2_7_12_1 doi: 10.1038/nmat1391 – ident: e_1_2_7_22_1 doi: 10.1002/adma.201706383 – ident: e_1_2_7_48_1 doi: 10.1002/marc.1994.030150402 – ident: e_1_2_7_53_1 doi: 10.1039/C7SM02110K – ident: e_1_2_7_49_1 doi: 10.1002/adma.201401804 – ident: e_1_2_7_32_1 doi: 10.1002/marc.201700710 – ident: e_1_2_7_17_1 doi: 10.1002/adma.200901522 – ident: e_1_2_7_29_1 doi: 10.1126/science.1261019 – ident: e_1_2_7_33_1 doi: 10.1002/macp.1988.021890117 – ident: e_1_2_7_51_1 doi: 10.1098/rspa.2010.0352 – ident: e_1_2_7_52_1 doi: 10.1080/02656730500271692 – ident: e_1_2_7_44_1 doi: 10.1039/C8SM01178H – ident: e_1_2_7_1_1 doi: 10.1038/nature19100 – ident: e_1_2_7_8_1 doi: 10.1038/s41586-018-0185-0 – ident: e_1_2_7_45_1 doi: 10.1002/polb.24249 – ident: e_1_2_7_37_1 doi: 10.1002/adma.201606509 – ident: e_1_2_7_39_1 doi: 10.1002/ange.201800366 – ident: e_1_2_7_16_1 doi: 10.1002/marc.200700460 – ident: e_1_2_7_18_1 doi: 10.1038/nature21003 – ident: e_1_2_7_6_1 doi: 10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M – ident: e_1_2_7_47_1 doi: 10.1016/0032-3861(96)83704-9 – ident: e_1_2_7_46_1 doi: 10.1016/j.polymer.2014.06.088 – ident: e_1_2_7_36_1 doi: 10.1039/C5RA01039J – volume: 107 start-page: e53546 year: 2016 ident: e_1_2_7_40_1 publication-title: J. Visualized Exp. contributor: fullname: Saed M. O. – ident: e_1_2_7_42_1 doi: 10.1002/anie.200903924 – ident: e_1_2_7_30_1 doi: 10.1021/acsami.7b11851 |
SSID | ssj0017734 |
Score | 2.6923842 |
Snippet | Three‐dimensional structures that undergo reversible shape changes in response to mild stimuli enable a wide range of smart devices, such as soft robots or... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | 4D printing Actuation actuators Chemical synthesis Crystal structure Crystals Elastomers Inks liquid crystal elastomers Liquid crystals Materials science Medical devices Medical electronics Medical equipment Morphing multi‐materials printing Phase transitions soft robots Three dimensional printing Transition temperature |
Title | Molecularly‐Engineered, 4D‐Printed Liquid Crystal Elastomer Actuators |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201806412 https://www.proquest.com/docview/2166968123 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELYQEwz8IwoFZUBiIW3sOnYzVv1RQRQhRKVukc92pIrSQpoOZeIReEaeBDtp0pYFCTY7iSPnbOe-s---Q-gSMLDAD3wX7PY9BSLdIBCRq6Ma-MIYLJAeF_TuWbdPbwf-YCWKP-OHKDbc7MpI_9d2gQuYVpekoUJFNpIc141STdMM4xq3Pn2tx4I_CnOeHSszbB288CBnbfRIdb35ulZaQs1VwJpqnM4uEnlfM0eT58osgYp8_0Hj-J-P2UM7CzjqNLL5s4829PgAba-QFB6im16eQXc0__r4zO9pde3QlrnwEFvKCeXcDd9mQ-U047kBnCOnbWB5MnnRsdOwMSo2qc8R6nfaT82uu0jA4EpjJRKXSmONECmotrRsjALjQmAbVVJjDEyda6pwIIySUxARSYRfNw8DZwARr4vaMdocT8b6BDmUcx4Jz1dSc6pMESTRFDyqwPeoJiV0lQ9A-JrxbIQZozIJrXDCQjglVM7HJ1yst2lIMLMsP0YNlxBJBf3LW8JGq9Mraqd_aXSGtkzZepu5mJfRZhLP9LlBKAlcpLPwG4733uk |
link.rule.ids | 314,780,784,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG6MHtSDbyM-92DixUVaui17JAIBBWIMJNw2nW03ISIowgFP_gR_o7_Ezi7Lw4uJ3rbd7aY77ew8OvMNIZdAQfie77mA7nsOLHR9X0WuifLgKWuwQHxc0GiKapvfdbw0mhBzYRJ8iJnDDTkj_l8jg6ND-maOGqp0hKnktGClKtYZXrM8TzGqq_Q4Q5CiUiYHy4JiiBftpLiNOXazPH5ZLs2VzUWVNZY5lW0C6WyTUJOn7HgE2fD9B5Djvz5nh2xNNVKnmGyhXbJi-ntkcwGncJ_UGmkR3d7k6-MzvWf0tcNLtuNhiKgT2ql3X8dd7dwOJ1bn7Dllq5mPBs9m6BQxTQXr-hyQdqXcuq260xoMbmgNReby0BokLFTcIDKb4CCkUhQTS_JCgG1LwzX1lZVzGiIWMuUV7MMgBUAkCyp_SFb7g745Ig6XUkYq5-nQSK7tJYTMcMhxDV6OG5YhV-kKBC8J1EaQgCqzAIkTzIiTIafpAgVTlnsLGBUI9GMlcYawmNK_vCUoliqNWev4L4MuyHq11agH9Vrz_oRs2H4MPnOpPCWro-HYnFmFZQTn8Zb8Bpj24wo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PT8IwFG-MJkYP_jeiqDuYeHFAS9eyI2EQUCDESMJt6Vu7hIiACAc8-RH8jH4S240N8GKit7Vbl-613fu99r3fQ-gGMDDXcR0bzPY9BRLYritCW4VFcIQ2WCA6Lmi1Wb1L73tObyWKP-aHSDfczMqI_tdmgY9lmF-ShgoZmkhyXNJK1aQZ3qKMuIY933tMCaQw5_G5MsPGwwv3EtrGAsmvt19XS0usuYpYI5VT20ci6WzsafKcm00hF7z_4HH8z9ccoL0FHrXK8QQ6RBtqeIR2V1gKj1GjlaTQHcy_Pj6Te0reWdTTFZ2J4ZyQVrP_OutLqzKZa8Q5sKoal09HL2pilU2Qisnqc4K6tepTpW4vMjDYgTYTiU0DbY6QQFBleNkYBcaFwCaspMgY6DJXVGJXaC0nISQBEU5JPwycAYS8JIqnaHM4GqozZFHOeSgKjgwUp1JfQkAUhQKV4BSoIhl0mwyAP46JNvyYUpn4Rjh-KpwMyibj4y8W3JtPMDM0P1oPZxCJBP3LW_yyV2ulpfO_NLpG2x2v5jcb7YcLtKOrjeeZjXkWbU4nM3Wp0coUrqIJ-Q0IHuG5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecularly%E2%80%90Engineered%2C+4D%E2%80%90Printed+Liquid+Crystal+Elastomer+Actuators&rft.jtitle=Advanced+functional+materials&rft.au=Saed%2C+Mohand+O.&rft.au=Ambulo%2C+Cedric+P.&rft.au=Kim%2C+Hyun&rft.au=De%2C+Rohit&rft.date=2019-01-17&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=3&rft_id=info:doi/10.1002%2Fadfm.201806412&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201806412 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |