Newly plant-derived carbon in the deeper vadose zone of a sandy agricultural soil does not stimulate denitrification

•δ13C in bulk C showed no C4-plant-derived C 20 years past C3-C4 plant transition.•δ13C in DOC and respired C revealed C4-plant derived C allocation in deep vadose zone.•Cold-DOC and its chemical lability increased at soil depths below 130 cm.•Soil respiration or denitrification enzyme activity did...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 448; p. 116936
Main Authors Xu, Wenyi, Lennart Ambus, Per
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •δ13C in bulk C showed no C4-plant-derived C 20 years past C3-C4 plant transition.•δ13C in DOC and respired C revealed C4-plant derived C allocation in deep vadose zone.•Cold-DOC and its chemical lability increased at soil depths below 130 cm.•Soil respiration or denitrification enzyme activity did not rise at depths < 130 cm.•Deeper soil plant-derived C may not drive denitrification to mitigate NO3– leaching. Analysis of stable carbon (C) isotopic signatures (δ13C) in various soil C pools provides useful information on soil C sources, transport, and availability. Understanding the extent of deeper soil (below 40 cm) sequestration and transport of plant derived C is of particular interest as this provides a source for microorganisms to drive biological denitrification (as indicated by denitrification enzyme activity, DEA) and hence mitigate the nitrate leaching to groundwater. Meanwhile, studies on deeper soil C sequestration are rare due to methodological constraints. This study was done in deeper vadose zone (0–160 cm) of a sandy agricultural soil in a humid and temperature zone after a C3-C4 vegetation change taking advantage of the marked isotopic differences between C3 and C4 plants. It took place in a site previously grown with C3 crops (beet, barley, grass), but where C4 crops (maize) were grown continuously for the last 20 years. The other site where C3 crops were continuously grown was used for comparison. Specifically, the δ13C signature in top and deeper soil layers was used to distinguish between old C3– and newly C4-plant derived C in four C pools, i.e., bulk soil C, hot- and cold-water extractable C, and respired CO2-C. The δ13C signature between C3 soils and C3-C4 shifted soils was similar for bulk soil C but significantly different for water extractable and respired C pools. Hence, we estimated that the contribution of newly derived C to bulk soil C was negligible, whereas the contributions to the other C pools amounted up to 28.4 % along the soil profile. This emphasizes the importance of simultaneously analysing δ13C signature in various soil C pools to accurately assess C vertical transport and distribution. The concentrations of cold-DOC and values of specific ultraviolet visible absorbance of the wavelengths 254 and 280 nm decreased from 50 to 130 cm soil depths, while they increased below these depths. However, this suggested rise in C chemical quality at the deepest soil depths did not cause an increase in soil respiration activity or DEA, which was attributed to the protective effects of iron and aluminium oxides on C decomposition. Upon the application of labile C and N substrates, the deepest soil layers displayed a significantly increased DEA, suggesting the presence of a relatively abundant population of active denitrifying organisms. Overall, this study documents the presence of plant-derived C in the deeper vadose zone. Meanwhile, this particular C pool might not be an important substrate to drive deep-soil denitrification due to constraints imposed by the protection by metal oxides.
AbstractList •δ13C in bulk C showed no C4-plant-derived C 20 years past C3-C4 plant transition.•δ13C in DOC and respired C revealed C4-plant derived C allocation in deep vadose zone.•Cold-DOC and its chemical lability increased at soil depths below 130 cm.•Soil respiration or denitrification enzyme activity did not rise at depths < 130 cm.•Deeper soil plant-derived C may not drive denitrification to mitigate NO3– leaching. Analysis of stable carbon (C) isotopic signatures (δ13C) in various soil C pools provides useful information on soil C sources, transport, and availability. Understanding the extent of deeper soil (below 40 cm) sequestration and transport of plant derived C is of particular interest as this provides a source for microorganisms to drive biological denitrification (as indicated by denitrification enzyme activity, DEA) and hence mitigate the nitrate leaching to groundwater. Meanwhile, studies on deeper soil C sequestration are rare due to methodological constraints. This study was done in deeper vadose zone (0–160 cm) of a sandy agricultural soil in a humid and temperature zone after a C3-C4 vegetation change taking advantage of the marked isotopic differences between C3 and C4 plants. It took place in a site previously grown with C3 crops (beet, barley, grass), but where C4 crops (maize) were grown continuously for the last 20 years. The other site where C3 crops were continuously grown was used for comparison. Specifically, the δ13C signature in top and deeper soil layers was used to distinguish between old C3– and newly C4-plant derived C in four C pools, i.e., bulk soil C, hot- and cold-water extractable C, and respired CO2-C. The δ13C signature between C3 soils and C3-C4 shifted soils was similar for bulk soil C but significantly different for water extractable and respired C pools. Hence, we estimated that the contribution of newly derived C to bulk soil C was negligible, whereas the contributions to the other C pools amounted up to 28.4 % along the soil profile. This emphasizes the importance of simultaneously analysing δ13C signature in various soil C pools to accurately assess C vertical transport and distribution. The concentrations of cold-DOC and values of specific ultraviolet visible absorbance of the wavelengths 254 and 280 nm decreased from 50 to 130 cm soil depths, while they increased below these depths. However, this suggested rise in C chemical quality at the deepest soil depths did not cause an increase in soil respiration activity or DEA, which was attributed to the protective effects of iron and aluminium oxides on C decomposition. Upon the application of labile C and N substrates, the deepest soil layers displayed a significantly increased DEA, suggesting the presence of a relatively abundant population of active denitrifying organisms. Overall, this study documents the presence of plant-derived C in the deeper vadose zone. Meanwhile, this particular C pool might not be an important substrate to drive deep-soil denitrification due to constraints imposed by the protection by metal oxides.
Analysis of stable carbon (C) isotopic signatures (δ¹³C) in various soil C pools provides useful information on soil C sources, transport, and availability. Understanding the extent of deeper soil (below 40 cm) sequestration and transport of plant derived C is of particular interest as this provides a source for microorganisms to drive biological denitrification (as indicated by denitrification enzyme activity, DEA) and hence mitigate the nitrate leaching to groundwater. Meanwhile, studies on deeper soil C sequestration are rare due to methodological constraints. This study was done in deeper vadose zone (0–160 cm) of a sandy agricultural soil in a humid and temperature zone after a C₃-C₄ vegetation change taking advantage of the marked isotopic differences between C₃ and C₄ plants. It took place in a site previously grown with C₃ crops (beet, barley, grass), but where C₄ crops (maize) were grown continuously for the last 20 years. The other site where C₃ crops were continuously grown was used for comparison. Specifically, the δ¹³C signature in top and deeper soil layers was used to distinguish between old C₃– and newly C₄-plant derived C in four C pools, i.e., bulk soil C, hot- and cold-water extractable C, and respired CO₂-C. The δ¹³C signature between C₃ soils and C₃-C₄ shifted soils was similar for bulk soil C but significantly different for water extractable and respired C pools. Hence, we estimated that the contribution of newly derived C to bulk soil C was negligible, whereas the contributions to the other C pools amounted up to 28.4 % along the soil profile. This emphasizes the importance of simultaneously analysing δ¹³C signature in various soil C pools to accurately assess C vertical transport and distribution. The concentrations of cold-DOC and values of specific ultraviolet visible absorbance of the wavelengths 254 and 280 nm decreased from 50 to 130 cm soil depths, while they increased below these depths. However, this suggested rise in C chemical quality at the deepest soil depths did not cause an increase in soil respiration activity or DEA, which was attributed to the protective effects of iron and aluminium oxides on C decomposition. Upon the application of labile C and N substrates, the deepest soil layers displayed a significantly increased DEA, suggesting the presence of a relatively abundant population of active denitrifying organisms. Overall, this study documents the presence of plant-derived C in the deeper vadose zone. Meanwhile, this particular C pool might not be an important substrate to drive deep-soil denitrification due to constraints imposed by the protection by metal oxides.
Analysis of stable carbon (C) isotopic signatures (δ13C) in various soil C pools provides useful information on soil C sources, transport, and availability. Understanding the extent of deeper soil (below 40 cm) sequestration and transport of plant derived C is of particular interest as this provides a source for microorganisms to drive biological denitrification (as indicated by denitrification enzyme activity, DEA) and hence mitigate the nitrate leaching to groundwater. Meanwhile, studies on deeper soil C sequestration are rare due to methodological constraints. This study was done in deeper vadose zone (0–160 cm) of a sandy agricultural soil in a humid and temperature zone after a C3-C4 vegetation change taking advantage of the marked isotopic differences between C3 and C4 plants. It took place in a site previously grown with C3 crops (beet, barley, grass), but where C4 crops (maize) were grown continuously for the last 20 years. The other site where C3 crops were continuously grown was used for comparison. Specifically, the δ13C signature in top and deeper soil layers was used to distinguish between old C3– and newly C4-plant derived C in four C pools, i.e., bulk soil C, hot- and cold-water extractable C, and respired CO2-C. The δ13C signature between C3 soils and C3-C4 shifted soils was similar for bulk soil C but significantly different for water extractable and respired C pools. Hence, we estimated that the contribution of newly derived C to bulk soil C was negligible, whereas the contributions to the other C pools amounted up to 28.4 % along the soil profile. This emphasizes the importance of simultaneously analysing δ13C signature in various soil C pools to accurately assess C vertical transport and distribution. The concentrations of cold-DOC and values of specific ultraviolet visible absorbance of the wavelengths 254 and 280 nm decreased from 50 to 130 cm soil depths, while they increased below these depths. However, this suggested rise in C chemical quality at the deepest soil depths did not cause an increase in soil respiration activity or DEA, which was attributed to the protective effects of iron and aluminium oxides on C decomposition. Upon the application of labile C and N substrates, the deepest soil layers displayed a significantly increased DEA, suggesting the presence of a relatively abundant population of active denitrifying organisms. Overall, this study documents the presence of plant-derived C in the deeper vadose zone. Meanwhile, this particular C pool might not be an important substrate to drive deep-soil denitrification due to constraints imposed by the protection by metal oxides.
Analysis of stable carbon (C) isotopic signatures ( delta 13 C) in various soil C pools provides useful information on soil C sources, transport, and availability. Understanding the extent of deeper soil (below 40 cm) sequestration and transport of plant derived C is of particular interest as this provides a source for microorganisms to drive biological denitrification (as indicated by denitrification enzyme activity, DEA) and hence mitigate the nitrate leaching to groundwater. Meanwhile, studies on deeper soil C sequestration are rare due to methodological constraints. This study was done in deeper vadose zone (0 -160 cm) of a sandy agricultural soil in a humid and temperature zone after a C 3 -C 4 vegetation change taking advantage of the marked isotopic differences between C 3 and C 4 plants. It took place in a site previously grown with C 3 crops (beet, barley, grass), but where C 4 crops (maize) were grown continuously for the last 20 years. The other site where C 3 crops were continuously grown was used for comparison. Specifically, the delta 13 C signature in top and deeper soil layers was used to distinguish between old C 3 - and newly C 4 -plant derived C in four C pools, i.e., bulk soil C, hot- and cold-water extractable C, and respired CO 2 -C. The delta 13 C signature between C 3 soils and C 3 -C 4 shifted soils was similar for bulk soil C but significantly different for water extractable and respired C pools. Hence, we estimated that the contribution of newly derived C to bulk soil C was negligible, whereas the contributions to the other C pools amounted up to 28.4 % along the soil profile. This emphasizes the importance of simultaneously analysing delta 13 C signature in various soil C pools to accurately assess C vertical transport and distribution. The concentrations of cold-DOC and values of specific ultraviolet visible absorbance of the wavelengths 254 and 280 nm decreased from 50 to 130 cm soil depths, while they increased below these depths. However, this suggested rise in C chemical quality at the deepest soil depths did not cause an increase in soil respiration activity or DEA, which was attributed to the protective effects of iron and aluminium oxides on C decomposition. Upon the application of labile C and N substrates, the deepest soil layers displayed a significantly increased DEA, suggesting the presence of a relatively abundant population of active denitrifying organisms. Overall, this study documents the presence of plantderived C in the deeper vadose zone. Meanwhile, this particular C pool might not be an important substrate to drive deep-soil denitrification due to constraints imposed by the protection by metal oxides.
ArticleNumber 116936
Author Lennart Ambus, Per
Xu, Wenyi
Author_xml – sequence: 1
  givenname: Wenyi
  orcidid: 0000-0002-9516-4395
  surname: Xu
  fullname: Xu, Wenyi
  email: wenyi.xu@slu.se
  organization: Department of Soil and Environment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, Uppsala, Sweden
– sequence: 2
  givenname: Per
  surname: Lennart Ambus
  fullname: Lennart Ambus, Per
  organization: Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark
BackLink https://res.slu.se/id/publ/131220$$DView record from Swedish Publication Index
BookMark eNqFkU-PFCEQxTtmTZxd_QqGo5duKeihu2-ajX822awXPRMaipEJAyPQs5n99DK2mnjyVKHy3q-KetfNVYgBm-Y10A4oiLf7bofRYDqojlHWdwBi4uJZs4FxYK1g2-mq2dCqbAcq4EVznfO-PgfK6KYpD_joz-ToVShthbgTGqJVmmMgLpDyHYlBPGIiJ2ViRvJUh5NoiSJZBXMmapecXnxZkvIkR-eJiZhJiIXk4g6LV-WCCK4kZ51WxcXwsnlulc_46ne9ab59_PD19nN7_-XT3e37-1b3_ba0VmvQRoFhXPSW834SMGzBWlDcoBLzZEYYRM96PcwcZs2wZ2Ic7Sw4jGrmN83dyjVR7eUxuYNKZxmVk78aMe2kSsVpj1JT5COnHMxEe4swg4WRcs71zMepx8rqVlZ-xOMy_0PLfplVuhSZUQIHxmg1vFkNxxR_LJiLPLis0ddLY1yy5IwKRicxsioVq1SnmHNC-5cOVF4ylnv5J2N5yViuGVfju9WI9Yonh3UH7TBoNC6hLvWb7n-InzAqtro
Cites_doi 10.1002/hyp.10748
10.1016/S0341-8162(85)80031-X
10.1111/j.1365-2389.2010.01246.x
10.1016/j.soilbio.2015.07.021
10.1016/j.geoderma.2014.09.002
10.1007/s11104-010-0391-5
10.1002/jpln.200625111
10.1007/s00374-005-0055-4
10.1007/s11368-021-03034-6
10.1016/S0038-0717(03)00186-X
10.1016/j.soilbio.2016.08.023
10.1111/j.1365-2389.2006.00809.x
10.1016/j.still.2019.104361
10.1029/2001GB001850
10.1007/s11104-004-0278-4
10.1088/1748-9326/ab2c11
10.1111/ejss.12038
10.1016/j.soilbio.2010.09.028
10.1039/c4em00108g
10.1016/j.geoderma.2019.113998
10.1016/j.soilbio.2017.01.006
10.1007/s10533-008-9263-y
10.1016/j.still.2017.03.008
10.1016/j.soilbio.2009.02.007
10.1016/j.scitotenv.2019.05.327
10.5194/bg-20-827-2023
10.1111/1462-2920.14027
10.1016/j.soilbio.2021.108356
10.1002/(SICI)1522-2624(200004)163:2<157::AID-JPLN157>3.0.CO;2-9
10.1111/geb.13159
10.1016/j.apsoil.2009.04.005
10.1016/j.geoderma.2014.07.015
10.1016/j.scitotenv.2015.09.127
10.1016/j.catena.2020.104589
10.1016/j.ecolind.2021.107364
10.1016/j.soilbio.2005.08.012
10.3389/fenvs.2018.00140
10.1016/j.scitotenv.2020.139113
10.1080/10643389.2017.1309186
10.1016/j.eja.2004.01.002
10.1016/S0038-0717(99)00136-4
10.1016/j.soilbio.2013.02.010
10.1007/s10021-021-00676-y
10.1016/j.scitotenv.2019.135375
10.1016/j.soilbio.2020.108117
10.1016/j.soilbio.2012.06.007
10.1002/jpln.200521711
10.1016/j.geoderma.2018.11.021
10.1016/j.soilbio.2015.10.015
10.1016/j.palaeo.2015.08.012
10.1016/j.soilbio.2007.09.022
10.1016/bs.agron.2019.02.001
10.1016/j.watres.2019.114977
10.1016/B978-0-12-385531-2.00001-3
10.2136/sssaj2006.0056
10.1016/j.soilbio.2007.09.016
10.1016/j.still.2019.05.005
10.1111/gcb.12907
10.3389/fmicb.2012.00348
10.1016/j.geoderma.2012.08.024
10.1016/j.soilbio.2003.07.002
10.1016/0016-7037(58)90033-4
10.5194/bg-10-1675-2013
10.1016/j.soilbio.2011.06.008
10.1016/j.apsoil.2023.104877
10.1016/j.scitotenv.2022.153894
10.1016/j.soilbio.2014.04.017
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
CorporateAuthor Sveriges lantbruksuniversitet
CorporateAuthor_xml – name: Sveriges lantbruksuniversitet
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
ADTPV
AOWAS
D8T
ZZAVC
DOA
DOI 10.1016/j.geoderma.2024.116936
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID oai_doaj_org_article_c0e383031d904fe1b1f180333cb3894e
oai_slubar_slu_se_131220
10_1016_j_geoderma_2024_116936
S0016706124001654
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
ADVLN
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSZ
T5K
VH1
WUQ
XPP
Y6R
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ADTPV
AOWAS
D8T
ZZAVC
ID FETCH-LOGICAL-c445t-fcc1cda1d2364f334961751ff1a3dea6b9d8176424c7b31bc2e42688fb6318ab3
IEDL.DBID .~1
ISSN 0016-7061
1872-6259
IngestDate Wed Aug 27 01:32:03 EDT 2025
Thu Aug 21 06:45:27 EDT 2025
Fri Aug 22 20:37:33 EDT 2025
Tue Jul 01 04:05:03 EDT 2025
Sat Aug 10 15:31:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Respired CO2-C
Ultraviolet visible spectral analyse
Bulk soil carbon
Denitrification enzyme activity
δ13C signature
Incubation experiment
Hot- and cold-water extractable carbon
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-fcc1cda1d2364f334961751ff1a3dea6b9d8176424c7b31bc2e42688fb6318ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9516-4395
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0016706124001654
PQID 3206209682
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_c0e383031d904fe1b1f180333cb3894e
swepub_primary_oai_slubar_slu_se_131220
proquest_miscellaneous_3206209682
crossref_primary_10_1016_j_geoderma_2024_116936
elsevier_sciencedirect_doi_10_1016_j_geoderma_2024_116936
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Dimkpa, Fugice, Singh, Lewis (b0080) 2020; 731
Flessa, Ludwig, Heil, Merbach (b0095) 2000; 163
Novara, La Mantia, Rühl, Badalucco, Kuzyakov, Gristina, Laudicina (b0230) 2014; 235
Tückmantel, Leuschner, Preusser, Kandeler, Angst, Mueller, Meier (b0325) 2017; 107
Balstrøm, Breuning-Madsen, Krüger, Jensen, Greve (b0020) 2013; 192
Singh, Ghoshal, Singh (b0305) 2009; 42
Rodríguez, Schlenger, García-Valverde (b0270) 2016; 541
Shahid, Nayak, Puree, Tripathi, Lal, Gautam, Bhattacharyya, Mohanty, Kumar, Panda, Kumar, Shukla (b0300) 2017; 170
Rumpel, Kögel-Knabner (b0275) 2010; 338
Wu, Song, Liu, Zhao, Zhang (b0345) 2020; 192
Xiaosong, Zhengyi, Zijian, Songyan, Xiaolei, Xianlin, Mingming (b0350) 2023
Baumert, Vasilyeva, Vladimirov, Meier, Kögel-Knabner, Mueller (b0035) 2018; 6
Schneckenberger, Kuzyakov (b0290) 2007; 170
Team, R.C., 2019. R: A language and environment for statistical computing (Version 3.6. 1)[Software package]. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from.
Fontoura, de Castro Pias, Tiecher, Cherubin, de Moraes, Bayer (b0100) 2019; 193
Das, Purakayastha, Das, Ahmed, Kumar, Biswas, Walia, Singh, Shukla, Yadava (b0075) 2019; 684
Scheibe, Sierra, Spohn (b0280) 2023; 20
Collins, Elliott, Paustian, Bundy, Dick, Huggins, Smucker, Paul (b0070) 2000; 32
Jones, Willett (b0135) 2006; 38
Stone, DeForest, Plante (b0315) 2014; 75
Xin, Liu, Chen, Duan, Wei, Zheng, Li (b0355) 2019; 165
Madsen, Jensen, Jakobsen, Platou (b0205) 1985; 12
Liu, Min, Wu, Pei, Shen (b0185) 2022; 825
Bolan, Adriano, Kunhikrishnan, James, McDowell, Senesi (b0050) 2011; 110
Pataki, Ehleringer, Flanagan, Yakir, Bowling, Still, Buchmann, Kaplan, Berry (b0235) 2003; 17
Bankó, Tóth, Marton, Hoffmann (b0025) 2021; 126
Guillaume, Damris, Kuzyakov (b0120) 2015; 21
Lenth, R., 2020. Emmeans: Estimated Marginal Means, aka Least-Squares Means. Rpackage version 1.4. 7. 2020.
Novara, Gristina, Kuzyakov, Schillaci, Laudicina, La Mantia (b0225) 2013; 64
Hakeem, Sabir, Ozturk, Akhtar, Ibrahim (b0130) 2017; 242
Kramer, Gleixner (b0145) 2008; 40
Gunina, Kuzyakov (b0125) 2015; 90
Li, Hur (b0170) 2017; 47
Gartzia-Bengoetxea, Virto, Arias-González, Enrique, Fernández-Ugalde, Barré (b0105) 2020; 358
Puga, Grutzmacher, Cerri, Ribeirinho, de Andrade (b0255) 2020; 704
Müller, Kramer, Haslwimmer, Marhan, Scheunemann, Butenschön, Scheu, Kandeler (b0215) 2016; 93
Wang, Ren, Xu, Geng, Du, Li (b0335) 2021; 21
Müller, Alewell, Hagedorn (b0210) 2009; 41
Loeppmann, Blagodatskaya, Pausch, Kuzyakov (b0195) 2016; 103
Schimel, Schaeffer (b0285) 2012; 3
Xu, Prieme, Cooper, Mörsdorf, Semenchuk, Elberling, Grogan, Ambus (b0360) 2021; 160
Cappelen (b0055) 2021
Pausch, Kuzyakov (b0240) 2012; 55
Peacock, Evans, Fenner, Freeman, Gough, Jones, Lebron (b0245) 2014; 16
Kristiansen, Hansen, Jensen, Christensen (b0155) 2005; 22
Ramesh, Bolan, Kirkham, Wijesekara, Kanchikerimath, Rao, Sandeep, Rinklebe, Ok, Choudhury (b0260) 2019; 156
Schrumpf, Kaiser, Guggenberger, Persson, Kögel-Knabner, Schulze (b0295) 2013; 10
Lützow, Kögel-Knabner, Ekschmitt, Matzner, Guggenberger, Marschner, Flessa (b0200) 2006; 57
Bailey, Pries, Lajtha (b0010) 2019; 14
Balesdent, Mariotti (b0015) 1996
Keeling (b0140) 1958; 13
Chen, Wang, Zhang, Qin, Wei, Wang, Hu, Liu (b0060) 2018; 20
Soana, Vincenzi, Colombani, Mastrocicco, Fano, Castaldelli (b0310) 2022; 25
Ghani, Dexter, Perrott (b0110) 2003; 35
Li, Pei, Dijkstra, Nie, Pendall (b0180) 2021; 154
Don, Schulze (b0085) 2008; 91
Peterson, Curtin, Thomas, Clough, Meenken (b0250) 2013; 61
Ascott, Wang, Stuart, Ward, Hart (b0005) 2016; 30
Vinther, Hansen, Eriksen (b0330) 2006; 43
Kristiansen, Brandt, Hansen, Magid, Christensen (b0150) 2004; 36
Xu, Zhao, Ma, Yang, Ambus, Liu, Luo (b0365) 2023; 188
Ghani, Müller, Dodd, Mackay (b0115) 2010; 61
Liu, Zhang, Li, Hallett, Zhang, Peng (b0190) 2019; 337
Basu, Agrawal, Sanyal, Mahato, Kumar, Sarkar (b0030) 2015; 440
Li, Li, Zhang, Shao, Gao, Zhang (b0175) 2019; 195
Rasse, Mulder, Moni, Chenu (b0265) 2006; 70
Fang, Moncrieff (b0090) 2005; 268
Blagodatskaya, Yuyukina, Blagodatsky, Kuzyakov (b0045) 2011; 43
Werth, Kuzyakov (b0340) 2008; 40
Benbi, Brar, Toor, Singh (b0040) 2015; 237
Ni, Liao, Tan, Peng, Wang, Yue, Wu, Yang (b0220) 2020; 29
Christensen, Olesen, Hansen, Thomsen (b0065) 2011; 43
Landgraf, Leinweber, Makeschin (b0160) 2006; 169
Basu (10.1016/j.geoderma.2024.116936_b0030) 2015; 440
Ghani (10.1016/j.geoderma.2024.116936_b0115) 2010; 61
Fang (10.1016/j.geoderma.2024.116936_b0090) 2005; 268
Flessa (10.1016/j.geoderma.2024.116936_b0095) 2000; 163
Loeppmann (10.1016/j.geoderma.2024.116936_b0195) 2016; 103
Gunina (10.1016/j.geoderma.2024.116936_b0125) 2015; 90
Novara (10.1016/j.geoderma.2024.116936_b0225) 2013; 64
Li (10.1016/j.geoderma.2024.116936_b0180) 2021; 154
Novara (10.1016/j.geoderma.2024.116936_b0230) 2014; 235
Lützow (10.1016/j.geoderma.2024.116936_b0200) 2006; 57
Collins (10.1016/j.geoderma.2024.116936_b0070) 2000; 32
Chen (10.1016/j.geoderma.2024.116936_b0060) 2018; 20
Landgraf (10.1016/j.geoderma.2024.116936_b0160) 2006; 169
Li (10.1016/j.geoderma.2024.116936_b0170) 2017; 47
Dimkpa (10.1016/j.geoderma.2024.116936_b0080) 2020; 731
Peacock (10.1016/j.geoderma.2024.116936_b0245) 2014; 16
Schrumpf (10.1016/j.geoderma.2024.116936_b0295) 2013; 10
Rumpel (10.1016/j.geoderma.2024.116936_b0275) 2010; 338
Kristiansen (10.1016/j.geoderma.2024.116936_b0155) 2005; 22
Puga (10.1016/j.geoderma.2024.116936_b0255) 2020; 704
Don (10.1016/j.geoderma.2024.116936_b0085) 2008; 91
Kristiansen (10.1016/j.geoderma.2024.116936_b0150) 2004; 36
Xin (10.1016/j.geoderma.2024.116936_b0355) 2019; 165
Cappelen (10.1016/j.geoderma.2024.116936_b0055) 2021
Ni (10.1016/j.geoderma.2024.116936_b0220) 2020; 29
Pataki (10.1016/j.geoderma.2024.116936_b0235) 2003; 17
Ramesh (10.1016/j.geoderma.2024.116936_b0260) 2019; 156
Scheibe (10.1016/j.geoderma.2024.116936_b0280) 2023; 20
Rodríguez (10.1016/j.geoderma.2024.116936_b0270) 2016; 541
Shahid (10.1016/j.geoderma.2024.116936_b0300) 2017; 170
Xiaosong (10.1016/j.geoderma.2024.116936_b0350) 2023
Vinther (10.1016/j.geoderma.2024.116936_b0330) 2006; 43
Müller (10.1016/j.geoderma.2024.116936_b0210) 2009; 41
Müller (10.1016/j.geoderma.2024.116936_b0215) 2016; 93
Xu (10.1016/j.geoderma.2024.116936_b0360) 2021; 160
Wu (10.1016/j.geoderma.2024.116936_b0345) 2020; 192
Liu (10.1016/j.geoderma.2024.116936_b0185) 2022; 825
Soana (10.1016/j.geoderma.2024.116936_b0310) 2022; 25
Schneckenberger (10.1016/j.geoderma.2024.116936_b0290) 2007; 170
Bolan (10.1016/j.geoderma.2024.116936_b0050) 2011; 110
Ghani (10.1016/j.geoderma.2024.116936_b0110) 2003; 35
Hakeem (10.1016/j.geoderma.2024.116936_b0130) 2017; 242
Kramer (10.1016/j.geoderma.2024.116936_b0145) 2008; 40
Tückmantel (10.1016/j.geoderma.2024.116936_b0325) 2017; 107
Rasse (10.1016/j.geoderma.2024.116936_b0265) 2006; 70
Christensen (10.1016/j.geoderma.2024.116936_b0065) 2011; 43
10.1016/j.geoderma.2024.116936_b0320
Benbi (10.1016/j.geoderma.2024.116936_b0040) 2015; 237
10.1016/j.geoderma.2024.116936_b0165
Gartzia-Bengoetxea (10.1016/j.geoderma.2024.116936_b0105) 2020; 358
Werth (10.1016/j.geoderma.2024.116936_b0340) 2008; 40
Bailey (10.1016/j.geoderma.2024.116936_b0010) 2019; 14
Balesdent (10.1016/j.geoderma.2024.116936_b0015) 1996
Li (10.1016/j.geoderma.2024.116936_b0175) 2019; 195
Guillaume (10.1016/j.geoderma.2024.116936_b0120) 2015; 21
Blagodatskaya (10.1016/j.geoderma.2024.116936_b0045) 2011; 43
Keeling (10.1016/j.geoderma.2024.116936_b0140) 1958; 13
Pausch (10.1016/j.geoderma.2024.116936_b0240) 2012; 55
Ascott (10.1016/j.geoderma.2024.116936_b0005) 2016; 30
Baumert (10.1016/j.geoderma.2024.116936_b0035) 2018; 6
Wang (10.1016/j.geoderma.2024.116936_b0335) 2021; 21
Bankó (10.1016/j.geoderma.2024.116936_b0025) 2021; 126
Madsen (10.1016/j.geoderma.2024.116936_b0205) 1985; 12
Balstrøm (10.1016/j.geoderma.2024.116936_b0020) 2013; 192
Singh (10.1016/j.geoderma.2024.116936_b0305) 2009; 42
Schimel (10.1016/j.geoderma.2024.116936_b0285) 2012; 3
Xu (10.1016/j.geoderma.2024.116936_b0365) 2023; 188
Das (10.1016/j.geoderma.2024.116936_b0075) 2019; 684
Jones (10.1016/j.geoderma.2024.116936_b0135) 2006; 38
Stone (10.1016/j.geoderma.2024.116936_b0315) 2014; 75
Fontoura (10.1016/j.geoderma.2024.116936_b0100) 2019; 193
Peterson (10.1016/j.geoderma.2024.116936_b0250) 2013; 61
Liu (10.1016/j.geoderma.2024.116936_b0190) 2019; 337
References_xml – volume: 16
  start-page: 1445
  year: 2014
  end-page: 1461
  ident: b0245
  article-title: UV-visible absorbance spectroscopy as a proxy for peatland dissolved organic carbon (DOC) quantity and quality: considerations on wavelength and absorbance degradation
  publication-title: Environ. Sci. Processes Impacts
– volume: 684
  start-page: 682
  year: 2019
  end-page: 693
  ident: b0075
  article-title: Long-term fertilization and manuring with different organics alter stability of carbon in colloidal organo-mineral fraction in soils of varying clay mineralogy
  publication-title: Sci. Total Environ.
– volume: 17
  year: 2003
  ident: b0235
  article-title: The application and interpretation of Keeling plots in terrestrial carbon cycle research
  publication-title: Global Biogeochem. Cycles
– volume: 338
  start-page: 143
  year: 2010
  end-page: 158
  ident: b0275
  article-title: Deep soil organic matter—a key but poorly understood component of terrestrial C cycle
  publication-title: Plant Soil
– volume: 42
  start-page: 243
  year: 2009
  end-page: 253
  ident: b0305
  article-title: Soil carbon dioxide flux, carbon sequestration and crop productivity in a tropical dryland agroecosystem: Influence of organic inputs of varying resource quality
  publication-title: Appl. Soil Ecol.
– volume: 64
  start-page: 466
  year: 2013
  end-page: 475
  ident: b0225
  article-title: Turnover and availability of soil organic carbon under different M editerranean land-uses as estimated by 13C natural abundance
  publication-title: Eur. J. Soil Sci.
– volume: 36
  start-page: 99
  year: 2004
  end-page: 105
  ident: b0150
  article-title: 13C signature of CO2 evolved from incubated maize residues and maize-derived sheep faeces
  publication-title: Soil Biol. Biochem.
– volume: 90
  start-page: 87
  year: 2015
  end-page: 100
  ident: b0125
  article-title: Sugars in soil and sweets for microorganisms: review of origin, content, composition and fate
  publication-title: Soil Biol. Biochem.
– volume: 13
  start-page: 322
  year: 1958
  end-page: 334
  ident: b0140
  article-title: The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas
  publication-title: Geochim. Cosmochim. Acta
– volume: 237
  start-page: 149
  year: 2015
  end-page: 158
  ident: b0040
  article-title: Total and labile pools of soil organic carbon in cultivated and undisturbed soils in northern India
  publication-title: Geoderma
– volume: 165
  year: 2019
  ident: b0355
  article-title: The missing nitrogen pieces: A critical review on the distribution, transformation, and budget of nitrogen in the vadose zone-groundwater system
  publication-title: Water Res.
– volume: 3
  start-page: 348
  year: 2012
  ident: b0285
  article-title: Microbial control over carbon cycling in soil
  publication-title: Front. Microbiol.
– volume: 358
  year: 2020
  ident: b0105
  article-title: Mineral control of organic carbon storage in acid temperate forest soils in the Basque Country
  publication-title: Geoderma
– volume: 75
  start-page: 237
  year: 2014
  end-page: 247
  ident: b0315
  article-title: Changes in extracellular enzyme activity and microbial community structure with soil depth at the Luquillo Critical Zone Observatory
  publication-title: Soil Biol. Biochem.
– volume: 242
  start-page: 183
  year: 2017
  end-page: 217
  ident: b0130
  article-title: Nitrate and nitrogen oxides: sources, health effects and their remediation
  publication-title: Rev. Environ. Contam. Toxicol.
– volume: 30
  start-page: 1903
  year: 2016
  end-page: 1915
  ident: b0005
  article-title: Quantification of nitrate storage in the vadose (unsaturated) zone: a missing component of terrestrial N budgets
  publication-title: Hydrol. Process.
– volume: 55
  start-page: 40
  year: 2012
  end-page: 47
  ident: b0240
  article-title: Soil organic carbon decomposition from recently added and older sources estimated by δ13C values of CO2 and organic matter
  publication-title: Soil Biol. Biochem.
– volume: 160
  year: 2021
  ident: b0360
  article-title: Deepened snow enhances gross nitrogen cycling among Pan-Arctic tundra soils during both winter and summer
  publication-title: Soil Biol. Biochem.
– volume: 193
  start-page: 27
  year: 2019
  end-page: 41
  ident: b0100
  article-title: Effect of gypsum rates and lime with different reactivity on soil acidity and crop grain yields in a subtropical Oxisol under no-tillage
  publication-title: Soil Tillage Res.
– volume: 12
  start-page: 363
  year: 1985
  end-page: 371
  ident: b0205
  article-title: A method for identification and mapping potentially acid sulfate soils in Jutland, Denmark
  publication-title: Catena
– volume: 154
  year: 2021
  ident: b0180
  article-title: Microbial carbon use efficiency, biomass residence time and temperature sensitivity across ecosystems and soil depths
  publication-title: Soil Biol. Biochem.
– volume: 25
  start-page: 633
  year: 2022
  end-page: 647
  ident: b0310
  article-title: Soil Denitrification, the Missing Piece in the Puzzle of Nitrogen Budget in Lowland Agricultural Basins
  publication-title: Ecosystems
– volume: 10
  start-page: 1675
  year: 2013
  end-page: 1691
  ident: b0295
  article-title: Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals
  publication-title: Biogeosciences
– volume: 21
  start-page: 3580
  year: 2021
  end-page: 3589
  ident: b0335
  article-title: Characteristics of water extractable organic carbon fractions in the soil profiles of Picea asperata and Betula albosinensis forests
  publication-title: J. Soil. Sediment.
– volume: 93
  start-page: 79
  year: 2016
  end-page: 89
  ident: b0215
  article-title: Carbon transfer from maize roots and litter into bacteria and fungi depends on soil depth and time
  publication-title: Soil Biol. Biochem.
– volume: 40
  start-page: 425
  year: 2008
  end-page: 433
  ident: b0145
  article-title: Soil organic matter in soil depth profiles: distinct carbon preferences of microbial groups during carbon transformation
  publication-title: Soil Biol. Biochem.
– year: 2023
  ident: b0350
  article-title: Low soil C: N ratio resulted in the accumulation and leaching of nitrite and nitrate in agricultural soil under heavy rainfall
  publication-title: Pedosphere
– volume: 704
  year: 2020
  ident: b0255
  article-title: Biochar-based nitrogen fertilizers: greenhouse gas emissions, use efficiency, and maize yield in tropical soils
  publication-title: Sci. Total Environ.
– volume: 541
  start-page: 623
  year: 2016
  end-page: 637
  ident: b0270
  article-title: Monitoring changes in the structure and properties of humic substances following ozonation using UV–Vis, FTIR and 1H NMR techniques
  publication-title: Sci. Total Environ.
– volume: 14
  year: 2019
  ident: b0010
  article-title: What do we know about soil carbon destabilization?
  publication-title: Environ. Res. Lett.
– start-page: 83
  year: 1996
  end-page: 111
  ident: b0015
  article-title: Measurement of soil organic matter turnover using 13C natural abundance
  publication-title: Mass Spectrom. Soil.
– volume: 20
  start-page: 827
  year: 2023
  end-page: 838
  ident: b0280
  article-title: Recently fixed carbon fuels microbial activity several meters below the soil surface
  publication-title: Biogeosciences
– volume: 38
  start-page: 991
  year: 2006
  end-page: 999
  ident: b0135
  article-title: Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil
  publication-title: Soil Biol. Biochem.
– volume: 61
  start-page: 96
  year: 2013
  end-page: 104
  ident: b0250
  article-title: Denitrification in vadose zone material amended with dissolved organic matter from topsoil and subsoil
  publication-title: Soil Biol. Biochem.
– volume: 103
  start-page: 274
  year: 2016
  end-page: 283
  ident: b0195
  article-title: Enzyme properties down the soil profile-A matter of substrate quality in rhizosphere and detritusphere
  publication-title: Soil Biol. Biochem.
– reference: Team, R.C., 2019. R: A language and environment for statistical computing (Version 3.6. 1)[Software package]. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from.
– volume: 192
  start-page: 453
  year: 2013
  end-page: 462
  ident: b0020
  article-title: A statistically based mapping of the influence of geology and land use on soil pH: A case study from Denmark
  publication-title: Geoderma
– volume: 110
  start-page: 1
  year: 2011
  end-page: 75
  ident: b0050
  article-title: Dissolved organic matter: biogeochemistry, dynamics, and environmental significance in soils
  publication-title: Adv. Agron.
– volume: 61
  start-page: 525
  year: 2010
  end-page: 538
  ident: b0115
  article-title: Dissolved organic matter leaching in some contrasting New Zealand pasture soils
  publication-title: Eur. J. Soil Sci.
– volume: 337
  start-page: 1077
  year: 2019
  end-page: 1085
  ident: b0190
  article-title: Temporal dynamics and vertical distribution of newly-derived carbon from a C3/C4 conversion in an Ultisol after 30-yr fertilization
  publication-title: Geoderma
– volume: 170
  start-page: 136
  year: 2017
  end-page: 146
  ident: b0300
  article-title: Carbon and nitrogen fractions and stocks under 41 years of chemical and organic fertilization in a sub-humid tropical rice soil
  publication-title: Soil Tillage Res.
– volume: 22
  start-page: 107
  year: 2005
  end-page: 117
  ident: b0155
  article-title: Natural 13C abundance and carbon storage in Danish soils under continuous silage maize
  publication-title: Eur. J. Agron.
– volume: 57
  start-page: 426
  year: 2006
  end-page: 445
  ident: b0200
  article-title: Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions–a review
  publication-title: Eur. J. Soil Sci.
– volume: 170
  start-page: 538
  year: 2007
  end-page: 542
  ident: b0290
  article-title: Carbon sequestration under Miscanthus in sandy and loamy soils estimated by natural 13C abundance
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 47
  start-page: 131
  year: 2017
  end-page: 154
  ident: b0170
  article-title: Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: A review
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 70
  start-page: 2097
  year: 2006
  end-page: 2105
  ident: b0265
  article-title: Carbon turnover kinetics with depth in a French loamy soil
  publication-title: Soil Sci. Soc. Am. J.
– start-page: 21
  year: 2021
  ident: b0055
  article-title: World Weather Records 1991–2020
  publication-title: DMI Report
– volume: 169
  start-page: 76
  year: 2006
  end-page: 82
  ident: b0160
  article-title: Cold and hot water–extractable organic matter as indicators of litter decomposition in forest soils
  publication-title: J. Plant Nutr. Soil Sci.
– reference: Lenth, R., 2020. Emmeans: Estimated Marginal Means, aka Least-Squares Means. Rpackage version 1.4. 7. 2020.
– volume: 188
  year: 2023
  ident: b0365
  article-title: Effects of long-term organic fertilizer substitutions on soil nitrous oxide emissions and nitrogen cycling gene abundance in a greenhouse vegetable field
  publication-title: Appl. Soil Ecol.
– volume: 440
  start-page: 22
  year: 2015
  end-page: 32
  ident: b0030
  article-title: Carbon isotopic ratios of modern C3–C4 plants from the Gangetic Plain, India and its implications to paleovegetational reconstruction
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
– volume: 268
  start-page: 243
  year: 2005
  end-page: 253
  ident: b0090
  article-title: The variation of soil microbial respiration with depth in relation to soil carbon composition
  publication-title: Plant and Soil
– volume: 126
  year: 2021
  ident: b0025
  article-title: Hot-water extractable C and N as indicators for 4p1000 goals in a temperate-climate long-term field experiment: A case study from Hungary
  publication-title: Ecol. Ind.
– volume: 163
  start-page: 157
  year: 2000
  end-page: 163
  ident: b0095
  article-title: The origin of soil organic C, dissolved organic C and respiration in a long-term maize experiment in Halle, Germany, determined by 13C natural abundance
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 195
  year: 2019
  ident: b0175
  article-title: Effects of fertilization and straw return methods on the soil carbon pool and CO2 emission in a reclaimed mine spoil in Shanxi Province, China
  publication-title: Soil Tillage Res.
– volume: 41
  start-page: 1066
  year: 2009
  end-page: 1074
  ident: b0210
  article-title: Effective retention of litter-derived dissolved organic carbon in organic layers
  publication-title: Soil Biol. Biochem.
– volume: 107
  start-page: 188
  year: 2017
  end-page: 197
  ident: b0325
  article-title: Root exudation patterns in a beech forest: dependence on soil depth, root morphology, and environment
  publication-title: Soil Biol. Biochem.
– volume: 32
  start-page: 157
  year: 2000
  end-page: 168
  ident: b0070
  article-title: Soil carbon pools and fluxes in long-term corn belt agroecosystems
  publication-title: Soil Biol. Biochem.
– volume: 43
  start-page: 159
  year: 2011
  end-page: 166
  ident: b0045
  article-title: Turnover of soil organic matter and of microbial biomass under C3–C4 vegetation change: Consideration of 13C fractionation and preferential substrate utilization
  publication-title: Soil Biol. Biochem.
– volume: 825
  year: 2022
  ident: b0185
  article-title: Evaluating nitrate transport and accumulation in the deep vadose zone of the intensive agricultural region, North China Plain
  publication-title: Sci. Total Environ.
– volume: 20
  start-page: 980
  year: 2018
  end-page: 992
  ident: b0060
  article-title: Organic carbon availability limiting microbial denitrification in the deep vadose zone
  publication-title: Environ. Microbiol.
– volume: 91
  start-page: 117
  year: 2008
  end-page: 131
  ident: b0085
  article-title: Controls on fluxes and export of dissolved organic carbon in grasslands with contrasting soil types
  publication-title: Biogeochemistry
– volume: 192
  year: 2020
  ident: b0345
  article-title: Regolith property controls on nitrate accumulation in a typical vadose zone in subtropical China
  publication-title: Catena
– volume: 29
  start-page: 1829
  year: 2020
  end-page: 1839
  ident: b0220
  article-title: The vertical distribution and control of microbial necromass carbon in forest soils
  publication-title: Glob. Ecol. Biogeogr.
– volume: 6
  start-page: 140
  year: 2018
  ident: b0035
  article-title: Root exudates induce soil macroaggregation facilitated by fungi in subsoil
  publication-title: Front. Environ. Sci.
– volume: 43
  start-page: 1961
  year: 2011
  end-page: 1967
  ident: b0065
  article-title: Annual variation in δ13C values of maize and wheat: Effect on estimates of decadal scale soil carbon turnover
  publication-title: Soil Biol. Biochem.
– volume: 235
  start-page: 191
  year: 2014
  end-page: 198
  ident: b0230
  article-title: Dynamics of soil organic carbon pools after agricultural abandonment
  publication-title: Geoderma
– volume: 21
  start-page: 3548
  year: 2015
  end-page: 3560
  ident: b0120
  article-title: Losses of soil carbon by converting tropical forest to plantations: erosion and decomposition estimated by delta(13) C
  publication-title: Glob. Chang. Biol.
– volume: 156
  start-page: 1
  year: 2019
  end-page: 107
  ident: b0260
  article-title: Soil organic carbon dynamics: Impact of land use changes and management practices: A review
  publication-title: Adv. Agron.
– volume: 43
  start-page: 12
  year: 2006
  end-page: 19
  ident: b0330
  article-title: Leaching of soil organic carbon and nitrogen in sandy soils after cultivating grass-clover swards
  publication-title: Biol. Fertil. Soils
– volume: 35
  start-page: 1231
  year: 2003
  end-page: 1243
  ident: b0110
  article-title: Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation
  publication-title: Soil Biol. Biochem.
– volume: 40
  start-page: 625
  year: 2008
  end-page: 637
  ident: b0340
  article-title: Root-derived carbon in soil respiration and microbial biomass determined by 14C and 13C
  publication-title: Soil Biol. Biochem.
– volume: 731
  year: 2020
  ident: b0080
  article-title: Development of fertilizers for enhanced nitrogen use efficiency–Trends and perspectives
  publication-title: Sci. Total Environ.
– volume: 30
  start-page: 1903
  year: 2016
  ident: 10.1016/j.geoderma.2024.116936_b0005
  article-title: Quantification of nitrate storage in the vadose (unsaturated) zone: a missing component of terrestrial N budgets
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.10748
– volume: 12
  start-page: 363
  year: 1985
  ident: 10.1016/j.geoderma.2024.116936_b0205
  article-title: A method for identification and mapping potentially acid sulfate soils in Jutland, Denmark
  publication-title: Catena
  doi: 10.1016/S0341-8162(85)80031-X
– volume: 61
  start-page: 525
  year: 2010
  ident: 10.1016/j.geoderma.2024.116936_b0115
  article-title: Dissolved organic matter leaching in some contrasting New Zealand pasture soils
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2010.01246.x
– volume: 90
  start-page: 87
  year: 2015
  ident: 10.1016/j.geoderma.2024.116936_b0125
  article-title: Sugars in soil and sweets for microorganisms: review of origin, content, composition and fate
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.07.021
– start-page: 83
  year: 1996
  ident: 10.1016/j.geoderma.2024.116936_b0015
  article-title: Measurement of soil organic matter turnover using 13C natural abundance
  publication-title: Mass Spectrom. Soil.
– volume: 237
  start-page: 149
  year: 2015
  ident: 10.1016/j.geoderma.2024.116936_b0040
  article-title: Total and labile pools of soil organic carbon in cultivated and undisturbed soils in northern India
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.09.002
– start-page: 21
  year: 2021
  ident: 10.1016/j.geoderma.2024.116936_b0055
  article-title: World Weather Records 1991–2020
  publication-title: DMI Report
– volume: 338
  start-page: 143
  year: 2010
  ident: 10.1016/j.geoderma.2024.116936_b0275
  article-title: Deep soil organic matter—a key but poorly understood component of terrestrial C cycle
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0391-5
– volume: 170
  start-page: 538
  year: 2007
  ident: 10.1016/j.geoderma.2024.116936_b0290
  article-title: Carbon sequestration under Miscanthus in sandy and loamy soils estimated by natural 13C abundance
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.200625111
– volume: 43
  start-page: 12
  year: 2006
  ident: 10.1016/j.geoderma.2024.116936_b0330
  article-title: Leaching of soil organic carbon and nitrogen in sandy soils after cultivating grass-clover swards
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-005-0055-4
– volume: 21
  start-page: 3580
  year: 2021
  ident: 10.1016/j.geoderma.2024.116936_b0335
  article-title: Characteristics of water extractable organic carbon fractions in the soil profiles of Picea asperata and Betula albosinensis forests
  publication-title: J. Soil. Sediment.
  doi: 10.1007/s11368-021-03034-6
– volume: 35
  start-page: 1231
  year: 2003
  ident: 10.1016/j.geoderma.2024.116936_b0110
  article-title: Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(03)00186-X
– volume: 103
  start-page: 274
  year: 2016
  ident: 10.1016/j.geoderma.2024.116936_b0195
  article-title: Enzyme properties down the soil profile-A matter of substrate quality in rhizosphere and detritusphere
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2016.08.023
– volume: 57
  start-page: 426
  year: 2006
  ident: 10.1016/j.geoderma.2024.116936_b0200
  article-title: Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions–a review
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2006.00809.x
– volume: 195
  year: 2019
  ident: 10.1016/j.geoderma.2024.116936_b0175
  article-title: Effects of fertilization and straw return methods on the soil carbon pool and CO2 emission in a reclaimed mine spoil in Shanxi Province, China
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2019.104361
– volume: 17
  year: 2003
  ident: 10.1016/j.geoderma.2024.116936_b0235
  article-title: The application and interpretation of Keeling plots in terrestrial carbon cycle research
  publication-title: Global Biogeochem. Cycles
  doi: 10.1029/2001GB001850
– volume: 268
  start-page: 243
  year: 2005
  ident: 10.1016/j.geoderma.2024.116936_b0090
  article-title: The variation of soil microbial respiration with depth in relation to soil carbon composition
  publication-title: Plant and Soil
  doi: 10.1007/s11104-004-0278-4
– volume: 14
  year: 2019
  ident: 10.1016/j.geoderma.2024.116936_b0010
  article-title: What do we know about soil carbon destabilization?
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab2c11
– volume: 64
  start-page: 466
  year: 2013
  ident: 10.1016/j.geoderma.2024.116936_b0225
  article-title: Turnover and availability of soil organic carbon under different M editerranean land-uses as estimated by 13C natural abundance
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12038
– volume: 43
  start-page: 159
  year: 2011
  ident: 10.1016/j.geoderma.2024.116936_b0045
  article-title: Turnover of soil organic matter and of microbial biomass under C3–C4 vegetation change: Consideration of 13C fractionation and preferential substrate utilization
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2010.09.028
– volume: 16
  start-page: 1445
  year: 2014
  ident: 10.1016/j.geoderma.2024.116936_b0245
  article-title: UV-visible absorbance spectroscopy as a proxy for peatland dissolved organic carbon (DOC) quantity and quality: considerations on wavelength and absorbance degradation
  publication-title: Environ. Sci. Processes Impacts
  doi: 10.1039/c4em00108g
– volume: 358
  year: 2020
  ident: 10.1016/j.geoderma.2024.116936_b0105
  article-title: Mineral control of organic carbon storage in acid temperate forest soils in the Basque Country
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.113998
– volume: 107
  start-page: 188
  year: 2017
  ident: 10.1016/j.geoderma.2024.116936_b0325
  article-title: Root exudation patterns in a beech forest: dependence on soil depth, root morphology, and environment
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2017.01.006
– volume: 91
  start-page: 117
  year: 2008
  ident: 10.1016/j.geoderma.2024.116936_b0085
  article-title: Controls on fluxes and export of dissolved organic carbon in grasslands with contrasting soil types
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-008-9263-y
– volume: 170
  start-page: 136
  year: 2017
  ident: 10.1016/j.geoderma.2024.116936_b0300
  article-title: Carbon and nitrogen fractions and stocks under 41 years of chemical and organic fertilization in a sub-humid tropical rice soil
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2017.03.008
– volume: 41
  start-page: 1066
  year: 2009
  ident: 10.1016/j.geoderma.2024.116936_b0210
  article-title: Effective retention of litter-derived dissolved organic carbon in organic layers
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2009.02.007
– ident: 10.1016/j.geoderma.2024.116936_b0320
– year: 2023
  ident: 10.1016/j.geoderma.2024.116936_b0350
  article-title: Low soil C: N ratio resulted in the accumulation and leaching of nitrite and nitrate in agricultural soil under heavy rainfall
  publication-title: Pedosphere
– volume: 684
  start-page: 682
  year: 2019
  ident: 10.1016/j.geoderma.2024.116936_b0075
  article-title: Long-term fertilization and manuring with different organics alter stability of carbon in colloidal organo-mineral fraction in soils of varying clay mineralogy
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.05.327
– volume: 20
  start-page: 827
  year: 2023
  ident: 10.1016/j.geoderma.2024.116936_b0280
  article-title: Recently fixed carbon fuels microbial activity several meters below the soil surface
  publication-title: Biogeosciences
  doi: 10.5194/bg-20-827-2023
– volume: 20
  start-page: 980
  year: 2018
  ident: 10.1016/j.geoderma.2024.116936_b0060
  article-title: Organic carbon availability limiting microbial denitrification in the deep vadose zone
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.14027
– volume: 160
  year: 2021
  ident: 10.1016/j.geoderma.2024.116936_b0360
  article-title: Deepened snow enhances gross nitrogen cycling among Pan-Arctic tundra soils during both winter and summer
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2021.108356
– volume: 163
  start-page: 157
  year: 2000
  ident: 10.1016/j.geoderma.2024.116936_b0095
  article-title: The origin of soil organic C, dissolved organic C and respiration in a long-term maize experiment in Halle, Germany, determined by 13C natural abundance
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/(SICI)1522-2624(200004)163:2<157::AID-JPLN157>3.0.CO;2-9
– ident: 10.1016/j.geoderma.2024.116936_b0165
– volume: 29
  start-page: 1829
  year: 2020
  ident: 10.1016/j.geoderma.2024.116936_b0220
  article-title: The vertical distribution and control of microbial necromass carbon in forest soils
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/geb.13159
– volume: 42
  start-page: 243
  year: 2009
  ident: 10.1016/j.geoderma.2024.116936_b0305
  article-title: Soil carbon dioxide flux, carbon sequestration and crop productivity in a tropical dryland agroecosystem: Influence of organic inputs of varying resource quality
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2009.04.005
– volume: 235
  start-page: 191
  year: 2014
  ident: 10.1016/j.geoderma.2024.116936_b0230
  article-title: Dynamics of soil organic carbon pools after agricultural abandonment
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.07.015
– volume: 541
  start-page: 623
  year: 2016
  ident: 10.1016/j.geoderma.2024.116936_b0270
  article-title: Monitoring changes in the structure and properties of humic substances following ozonation using UV–Vis, FTIR and 1H NMR techniques
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.09.127
– volume: 192
  year: 2020
  ident: 10.1016/j.geoderma.2024.116936_b0345
  article-title: Regolith property controls on nitrate accumulation in a typical vadose zone in subtropical China
  publication-title: Catena
  doi: 10.1016/j.catena.2020.104589
– volume: 126
  year: 2021
  ident: 10.1016/j.geoderma.2024.116936_b0025
  article-title: Hot-water extractable C and N as indicators for 4p1000 goals in a temperate-climate long-term field experiment: A case study from Hungary
  publication-title: Ecol. Ind.
  doi: 10.1016/j.ecolind.2021.107364
– volume: 38
  start-page: 991
  year: 2006
  ident: 10.1016/j.geoderma.2024.116936_b0135
  article-title: Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2005.08.012
– volume: 6
  start-page: 140
  year: 2018
  ident: 10.1016/j.geoderma.2024.116936_b0035
  article-title: Root exudates induce soil macroaggregation facilitated by fungi in subsoil
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2018.00140
– volume: 731
  year: 2020
  ident: 10.1016/j.geoderma.2024.116936_b0080
  article-title: Development of fertilizers for enhanced nitrogen use efficiency–Trends and perspectives
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.139113
– volume: 47
  start-page: 131
  year: 2017
  ident: 10.1016/j.geoderma.2024.116936_b0170
  article-title: Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: A review
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2017.1309186
– volume: 22
  start-page: 107
  year: 2005
  ident: 10.1016/j.geoderma.2024.116936_b0155
  article-title: Natural 13C abundance and carbon storage in Danish soils under continuous silage maize
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2004.01.002
– volume: 32
  start-page: 157
  year: 2000
  ident: 10.1016/j.geoderma.2024.116936_b0070
  article-title: Soil carbon pools and fluxes in long-term corn belt agroecosystems
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(99)00136-4
– volume: 61
  start-page: 96
  year: 2013
  ident: 10.1016/j.geoderma.2024.116936_b0250
  article-title: Denitrification in vadose zone material amended with dissolved organic matter from topsoil and subsoil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2013.02.010
– volume: 25
  start-page: 633
  year: 2022
  ident: 10.1016/j.geoderma.2024.116936_b0310
  article-title: Soil Denitrification, the Missing Piece in the Puzzle of Nitrogen Budget in Lowland Agricultural Basins
  publication-title: Ecosystems
  doi: 10.1007/s10021-021-00676-y
– volume: 704
  year: 2020
  ident: 10.1016/j.geoderma.2024.116936_b0255
  article-title: Biochar-based nitrogen fertilizers: greenhouse gas emissions, use efficiency, and maize yield in tropical soils
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.135375
– volume: 154
  year: 2021
  ident: 10.1016/j.geoderma.2024.116936_b0180
  article-title: Microbial carbon use efficiency, biomass residence time and temperature sensitivity across ecosystems and soil depths
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2020.108117
– volume: 55
  start-page: 40
  year: 2012
  ident: 10.1016/j.geoderma.2024.116936_b0240
  article-title: Soil organic carbon decomposition from recently added and older sources estimated by δ13C values of CO2 and organic matter
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2012.06.007
– volume: 169
  start-page: 76
  year: 2006
  ident: 10.1016/j.geoderma.2024.116936_b0160
  article-title: Cold and hot water–extractable organic matter as indicators of litter decomposition in forest soils
  publication-title: J. Plant Nutr. Soil Sci.
  doi: 10.1002/jpln.200521711
– volume: 337
  start-page: 1077
  year: 2019
  ident: 10.1016/j.geoderma.2024.116936_b0190
  article-title: Temporal dynamics and vertical distribution of newly-derived carbon from a C3/C4 conversion in an Ultisol after 30-yr fertilization
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.11.021
– volume: 93
  start-page: 79
  year: 2016
  ident: 10.1016/j.geoderma.2024.116936_b0215
  article-title: Carbon transfer from maize roots and litter into bacteria and fungi depends on soil depth and time
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.10.015
– volume: 440
  start-page: 22
  year: 2015
  ident: 10.1016/j.geoderma.2024.116936_b0030
  article-title: Carbon isotopic ratios of modern C3–C4 plants from the Gangetic Plain, India and its implications to paleovegetational reconstruction
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
  doi: 10.1016/j.palaeo.2015.08.012
– volume: 40
  start-page: 625
  year: 2008
  ident: 10.1016/j.geoderma.2024.116936_b0340
  article-title: Root-derived carbon in soil respiration and microbial biomass determined by 14C and 13C
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2007.09.022
– volume: 156
  start-page: 1
  year: 2019
  ident: 10.1016/j.geoderma.2024.116936_b0260
  article-title: Soil organic carbon dynamics: Impact of land use changes and management practices: A review
  publication-title: Adv. Agron.
  doi: 10.1016/bs.agron.2019.02.001
– volume: 165
  year: 2019
  ident: 10.1016/j.geoderma.2024.116936_b0355
  article-title: The missing nitrogen pieces: A critical review on the distribution, transformation, and budget of nitrogen in the vadose zone-groundwater system
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.114977
– volume: 110
  start-page: 1
  year: 2011
  ident: 10.1016/j.geoderma.2024.116936_b0050
  article-title: Dissolved organic matter: biogeochemistry, dynamics, and environmental significance in soils
  publication-title: Adv. Agron.
  doi: 10.1016/B978-0-12-385531-2.00001-3
– volume: 70
  start-page: 2097
  year: 2006
  ident: 10.1016/j.geoderma.2024.116936_b0265
  article-title: Carbon turnover kinetics with depth in a French loamy soil
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2006.0056
– volume: 40
  start-page: 425
  year: 2008
  ident: 10.1016/j.geoderma.2024.116936_b0145
  article-title: Soil organic matter in soil depth profiles: distinct carbon preferences of microbial groups during carbon transformation
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2007.09.016
– volume: 242
  start-page: 183
  year: 2017
  ident: 10.1016/j.geoderma.2024.116936_b0130
  article-title: Nitrate and nitrogen oxides: sources, health effects and their remediation
  publication-title: Rev. Environ. Contam. Toxicol.
– volume: 193
  start-page: 27
  year: 2019
  ident: 10.1016/j.geoderma.2024.116936_b0100
  article-title: Effect of gypsum rates and lime with different reactivity on soil acidity and crop grain yields in a subtropical Oxisol under no-tillage
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2019.05.005
– volume: 21
  start-page: 3548
  year: 2015
  ident: 10.1016/j.geoderma.2024.116936_b0120
  article-title: Losses of soil carbon by converting tropical forest to plantations: erosion and decomposition estimated by delta(13) C
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12907
– volume: 3
  start-page: 348
  year: 2012
  ident: 10.1016/j.geoderma.2024.116936_b0285
  article-title: Microbial control over carbon cycling in soil
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2012.00348
– volume: 192
  start-page: 453
  year: 2013
  ident: 10.1016/j.geoderma.2024.116936_b0020
  article-title: A statistically based mapping of the influence of geology and land use on soil pH: A case study from Denmark
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.08.024
– volume: 36
  start-page: 99
  year: 2004
  ident: 10.1016/j.geoderma.2024.116936_b0150
  article-title: 13C signature of CO2 evolved from incubated maize residues and maize-derived sheep faeces
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2003.07.002
– volume: 13
  start-page: 322
  year: 1958
  ident: 10.1016/j.geoderma.2024.116936_b0140
  article-title: The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(58)90033-4
– volume: 10
  start-page: 1675
  year: 2013
  ident: 10.1016/j.geoderma.2024.116936_b0295
  article-title: Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals
  publication-title: Biogeosciences
  doi: 10.5194/bg-10-1675-2013
– volume: 43
  start-page: 1961
  year: 2011
  ident: 10.1016/j.geoderma.2024.116936_b0065
  article-title: Annual variation in δ13C values of maize and wheat: Effect on estimates of decadal scale soil carbon turnover
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.06.008
– volume: 188
  year: 2023
  ident: 10.1016/j.geoderma.2024.116936_b0365
  article-title: Effects of long-term organic fertilizer substitutions on soil nitrous oxide emissions and nitrogen cycling gene abundance in a greenhouse vegetable field
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2023.104877
– volume: 825
  year: 2022
  ident: 10.1016/j.geoderma.2024.116936_b0185
  article-title: Evaluating nitrate transport and accumulation in the deep vadose zone of the intensive agricultural region, North China Plain
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.153894
– volume: 75
  start-page: 237
  year: 2014
  ident: 10.1016/j.geoderma.2024.116936_b0315
  article-title: Changes in extracellular enzyme activity and microbial community structure with soil depth at the Luquillo Critical Zone Observatory
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2014.04.017
SSID ssj0017020
Score 2.4343812
Snippet •δ13C in bulk C showed no C4-plant-derived C 20 years past C3-C4 plant transition.•δ13C in DOC and respired C revealed C4-plant derived C allocation in deep...
Analysis of stable carbon (C) isotopic signatures (δ¹³C) in various soil C pools provides useful information on soil C sources, transport, and availability....
Analysis of stable carbon (C) isotopic signatures ( delta 13 C) in various soil C pools provides useful information on soil C sources, transport, and...
Analysis of stable carbon (C) isotopic signatures (δ13C) in various soil C pools provides useful information on soil C sources, transport, and availability....
SourceID doaj
swepub
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 116936
SubjectTerms absorbance
agricultural soils
aluminum
barley
beets
Bulk soil carbon
carbon
carbon sequestration
carbon sinks
corn
denitrification
Denitrification enzyme activity
enzyme activity
grasses
groundwater
Hot- and cold-water extractable carbon
Incubation experiment
iron
Markvetenskap
nitrates
Respired CO2-C
soil profiles
soil respiration
Soil Science
temperature
Ultraviolet visible spectral analyse
vadose zone
vegetation
δ13C signature
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXEQRPxaZJX0cVZRH0pOAt5DGRlbVd2q6w_nonfazryYunQinpNDOZ7wuZfkPIRWQRxuNEBBrxJRDM5EHmUhvwGMExd8rFzv8o_PiUjF_Ew2v8utLqy9eEdfLA3cRdmRBwE4WhZ_NQOGCaOZaFnHOjEWsF-OyLmDdspvrzgxRZ0Mr_wO_oDd9arFUaigTmiSRvRZl_oKhV7P-FSKuMc1VFtEWe-22y1VNGet2ZukPWoNglm9dvVS-bAXukwVw1XdDZFOcpQAswhVlqVKXLgk4KiiSPWoAZVPRT2bIG-lUWQEtHFa1VYRdULUfDN9XlZEptCTUtyoZiDvjwPb78ELj-K19b1Lpzn7zc3z3fjoO-n0JghIibwBnDjFXMetF4x71UPJIH5hxT3IJKdG4zluKGRJhUc6ZNBIjfWeZ0gitfaX5A1gs075BQ5CWpcSCMUApTbZSB02keqzSzyjFhRuRqmFo562Qz5FBP9i4HZ0jvDNk5Y0RuvAeWT3vZ6_YGBoPsg0H-FQwjkg_-kz2D6JgBDjX504DzweESl5g_N1EFlPNa8ihMMMaSLBqRyy4SfplZT-daVf4ia5CMsygKj_7jc47Jhjewqzc8IetNNYdT5ECNPmvD_Rs0CAca
  priority: 102
  providerName: Directory of Open Access Journals
Title Newly plant-derived carbon in the deeper vadose zone of a sandy agricultural soil does not stimulate denitrification
URI https://dx.doi.org/10.1016/j.geoderma.2024.116936
https://www.proquest.com/docview/3206209682
https://res.slu.se/id/publ/131220
https://doaj.org/article/c0e383031d904fe1b1f180333cb3894e
Volume 448
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhubSH0vRBt49FhUJP7lqW_DpuQ8K2pTk1kJvQMzhs7cX2FpJDfntnZHuze-qhJ2Nj5EHf-JuRPfOJkE-JhTCeZiLSEF8iwUwZFT63EU8hOJZe-dRjo_DPy2x1Jb5fp9dH5GzqhcGyypH7B04PbD1eWYyzudhUFfb4sizHCC3i0JODHewiRy__8rAr82B5PEozsizCu_e6hG8BI9xwLOgPJQLYIyuDVPNjgAo6_gdxaj8P3dcWDfHo4jl5NiaSdDnYekqOXP2CPF3etKOYhntJemCw9R3drGH2IrAAiM1So1rd1LSqKaR-1Dq3cS39o2zTOXrf1I42niraqdreUbUbDZ7UNdWa2sZ1tG56CszwG3f-wiGAFVqsOAogvyJXF-e_zlbRuMtCZIRI-8gbw4xVzKKUvOcoIA8pBfOeKW6dynRpC5bDMkWYXHOmTeIgqheF1xnwgdL8NTmuwbw3hEK2khvvhBFKAQEnhfM6L1OVF1Z5JsyMLKaplZtBTENOVWa3cgJDIhhyAGNGviICu7tRDDtcaNobOXqDNLGDdTawky1j4R3TzLMi5pwbDemYcDNSTvjJA9-Coap_GvBxAlzCi4d_U1Ttmm0neRJnCSwAi2RGPg-ecGBmt95q1eJBdk4yzpIkfvsflrwjT_BsKD58T477dus-QELU63nw-Dk5WX77sbqch88KfwH_SA39
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhNBEG2FcAAOiFUxayOBODWeXmY7cAhL5JDllEi5Nb1GE5kZa2YMMgd-ih-kehZjnzignCyNrXapq_q9ak3VK4ReMws0HieCaOAXIqjJSeZTS3gM5Jh75WMfGoVPTpPZufhyEV_soN9jL0woqxywv8f0Dq2HJ9NhN6eLogg9vjRJA0OLqOvJGSorj9zqB9zbmveHn8DJbxg7-Hz2cUaG0QLECBG3xBtDjVXUBv10z4NqOvAo9Z4qbp1KdG4zmkJuLkyqOdWGOaCyLPM6gUOgNId1b6CbAuAijE1492tdV0LTaNCCpAkJ5m20JV9BUIQJZ53gERMAV0neaUP_ZcRucMAWMW4mvptiph0BHtxDd4fMFe_3m3Mf7bjyAbqzf1kP6h3uIWoBMucrvJiDuwhYAEhqsVG1rkpclBhyTWydW7gaf1e2ahz-WZUOVx4r3KjSrrBarwb_1FTFHNvKNbisWgxQ9C2MGgtLAAzVocSpi6pH6Pxa9v4x2i3BvD2EIT1KjXfCCKUA8VnmvE7zWKWZVZ4KM0HTcWvlolfvkGNZ25UcnSGDM2TvjAn6EDyw_nVQ3-4eVPWlHMJPmsjBxR7g0OaR8I5q6mkWcc6NhvxPuAnKR__JrWCGpYp_GvBqdLiEkx5e36jSVctGchYlDG6cGZugt30kbJnZzJda1eFDNk5SThmLnvyHJS_RrdnZybE8Pjw9eopuh2_6ysdnaLetl-45ZGOtftFFP0Zfr_u4_QHUQki8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Newly+plant-derived+carbon+in+the+deeper+vadose+zone+of+a+sandy+agricultural+soil+does+not+stimulate+denitrification&rft.jtitle=Geoderma&rft.au=Xu%2C+Wenyi&rft.au=Lennart+Ambus%2C+Per&rft.date=2024-08-01&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=448&rft_id=info:doi/10.1016%2Fj.geoderma.2024.116936&rft.externalDocID=S0016706124001654
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon