Efficient succinic acid production from lignocellulosic biomass by simultaneous utilization of glucose and xylose in engineered Escherichia coli
•We constructed a recombinant Escherichia coli strain named BA305.•BA305 improved utilization of glucose and xylose anaerobically.•BA305 consumed sugar mixture simultaneously during anaerobic fermentations.•Fed-batch fermentation of sugarcane bagasse hydrolysate was achieved in BA305.•39.3 g L−1 suc...
Saved in:
Published in | Bioresource technology Vol. 149; pp. 84 - 91 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.12.2013
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We constructed a recombinant Escherichia coli strain named BA305.•BA305 improved utilization of glucose and xylose anaerobically.•BA305 consumed sugar mixture simultaneously during anaerobic fermentations.•Fed-batch fermentation of sugarcane bagasse hydrolysate was achieved in BA305.•39.3 g L−1 succinic acid was generated by BA305 in the hydrolysate fermentation.
To enhance succinic acid formation during xylose fermentation in Escherichia coli, overexpression of ATP-forming phosphoenolpyruvate carboxykinase (PEPCK) from Bacillus subtilis 168 in an ldhA, pflB, and ppc deletion strain resulted in a significant increase in cell mass and succinic acid production. However, BA204 displays a low yield of glucose fermentation and sequential glucose–xylose utilization under regulation by the phosphotransferase system (PTS). To improve the capability of glucose fermentation and simultaneously consume sugar mixture for succinic acid production, a pflB, ldhA, ppc, and ptsG deletion strain overexpressing ATP-forming PEPCK, named E. coli BA305, was constructed. As a result, after 120h fed-batch fermentation of sugarcane bagasse hydrolysate, the dry cell weight and succinic acid concentration in BA305 were 4.58gL−1 and 39.3gL−1, respectively. |
---|---|
AbstractList | To enhance succinic acid formation during xylose fermentation in Escherichia coli, overexpression of ATP-forming phosphoenolpyruvate carboxykinase (PEPCK) from Bacillus subtilis 168 in an ldhA, pflB, and ppc deletion strain resulted in a significant increase in cell mass and succinic acid production. However, BA204 displays a low yield of glucose fermentation and sequential glucose-xylose utilization under regulation by the phosphotransferase system (PTS). To improve the capability of glucose fermentation and simultaneously consume sugar mixture for succinic acid production, a pflB, ldhA, ppc, and ptsG deletion strain overexpressing ATP-forming PEPCK, named E. coli BA305, was constructed. As a result, after 120 h fed-batch fermentation of sugarcane bagasse hydrolysate, the dry cell weight and succinic acid concentration in BA305 were 4.58 g L(-1) and 39.3 g L(-1), respectively.To enhance succinic acid formation during xylose fermentation in Escherichia coli, overexpression of ATP-forming phosphoenolpyruvate carboxykinase (PEPCK) from Bacillus subtilis 168 in an ldhA, pflB, and ppc deletion strain resulted in a significant increase in cell mass and succinic acid production. However, BA204 displays a low yield of glucose fermentation and sequential glucose-xylose utilization under regulation by the phosphotransferase system (PTS). To improve the capability of glucose fermentation and simultaneously consume sugar mixture for succinic acid production, a pflB, ldhA, ppc, and ptsG deletion strain overexpressing ATP-forming PEPCK, named E. coli BA305, was constructed. As a result, after 120 h fed-batch fermentation of sugarcane bagasse hydrolysate, the dry cell weight and succinic acid concentration in BA305 were 4.58 g L(-1) and 39.3 g L(-1), respectively. To enhance succinic acid formation during xylose fermentation in Escherichia coli, overexpression of ATP-forming phosphoenolpyruvate carboxykinase (PEPCK) from Bacillus subtilis 168 in an ldhA, pflB, and ppc deletion strain resulted in a significant increase in cell mass and succinic acid production. However, BA204 displays a low yield of glucose fermentation and sequential glucose–xylose utilization under regulation by the phosphotransferase system (PTS). To improve the capability of glucose fermentation and simultaneously consume sugar mixture for succinic acid production, a pflB, ldhA, ppc, and ptsG deletion strain overexpressing ATP-forming PEPCK, named E. coli BA305, was constructed. As a result, after 120h fed-batch fermentation of sugarcane bagasse hydrolysate, the dry cell weight and succinic acid concentration in BA305 were 4.58gL−1 and 39.3gL−1, respectively. To enhance succinic acid formation during xylose fermentation in Escherichia coli, overexpression of ATP-forming phosphoenolpyruvate carboxykinase (PEPCK) from Bacillus subtilis 168 in an ldhA, pflB, and ppc deletion strain resulted in a significant increase in cell mass and succinic acid production. However, BA204 displays a low yield of glucose fermentation and sequential glucose-xylose utilization under regulation by the phosphotransferase system (PTS). To improve the capability of glucose fermentation and simultaneously consume sugar mixture for succinic acid production, a pflB, ldhA, ppc, and ptsG deletion strain overexpressing ATP-forming PEPCK, named E. coli BA305, was constructed. As a result, after 120 h fed-batch fermentation of sugarcane bagasse hydrolysate, the dry cell weight and succinic acid concentration in BA305 were 4.58 g L(-1) and 39.3 g L(-1), respectively. •We constructed a recombinant Escherichia coli strain named BA305.•BA305 improved utilization of glucose and xylose anaerobically.•BA305 consumed sugar mixture simultaneously during anaerobic fermentations.•Fed-batch fermentation of sugarcane bagasse hydrolysate was achieved in BA305.•39.3 g L−1 succinic acid was generated by BA305 in the hydrolysate fermentation. To enhance succinic acid formation during xylose fermentation in Escherichia coli, overexpression of ATP-forming phosphoenolpyruvate carboxykinase (PEPCK) from Bacillus subtilis 168 in an ldhA, pflB, and ppc deletion strain resulted in a significant increase in cell mass and succinic acid production. However, BA204 displays a low yield of glucose fermentation and sequential glucose–xylose utilization under regulation by the phosphotransferase system (PTS). To improve the capability of glucose fermentation and simultaneously consume sugar mixture for succinic acid production, a pflB, ldhA, ppc, and ptsG deletion strain overexpressing ATP-forming PEPCK, named E. coli BA305, was constructed. As a result, after 120h fed-batch fermentation of sugarcane bagasse hydrolysate, the dry cell weight and succinic acid concentration in BA305 were 4.58gL−1 and 39.3gL−1, respectively. |
Author | Wei, Ping Wu, Mingke Liang, Liya Li, Feng Jiang, Min Liu, Rongming Chen, Kequan Ma, Jiangfeng Ouyang, Pingkai |
Author_xml | – sequence: 1 givenname: Rongming surname: Liu fullname: Liu, Rongming – sequence: 2 givenname: Liya surname: Liang fullname: Liang, Liya – sequence: 3 givenname: Feng surname: Li fullname: Li, Feng – sequence: 4 givenname: Mingke surname: Wu fullname: Wu, Mingke – sequence: 5 givenname: Kequan surname: Chen fullname: Chen, Kequan – sequence: 6 givenname: Jiangfeng surname: Ma fullname: Ma, Jiangfeng – sequence: 7 givenname: Min surname: Jiang fullname: Jiang, Min email: bioengine@njut.edu.cn – sequence: 8 givenname: Ping surname: Wei fullname: Wei, Ping – sequence: 9 givenname: Pingkai surname: Ouyang fullname: Ouyang, Pingkai |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27960021$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24096277$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1uEzEUhUeoiKaFV6i8QWKTYHt-PCOxAFWhRarEBtaW586d5EYeu9gzqOEpeGQ8TSIkNmFlS_7OsY7OucounHeYZTeCrwQX1fvdqiUfRoTtSnKRr3iz4qV8kS1ErfKlbFR1kS14U_FlXcriMruKccc5z4WSr7JLWaQnqdQi-73uewJCN7I4AZAjYAaoY4_BdxOM5B3rgx-YpY3zgNZO1scEpe8HEyNr9yzSMNnROPRTZNNIln6ZZ6Hv2cZO4CMy4zr2tLfzlRxDtyGHGLBj6whbDARbMgy8pdfZy97YiG-O53X2_fP62-398uHr3ZfbTw9LKIpyXPaNqTpE0fGcQ65SGF6oTvVNpQqp8r5qSgM9iKbNawDBsc5RllwWqm5NiW1-nb07-KagPyaMox4ozvkOObQoRbIq87w4jxYNLwWX6n_QopZzLTN6c0SndsBOPwYaTNjrUzcJeHsETARj-2AcUPzLqWTDpUjchwMHwccYsNdA43MBYzBkteB6noze6dNk9DwZzRudJpPk1T_y0w9nhR8PQkw1_SQMOs5DAuwoIIy683TO4g-0fOFT |
CitedBy_id | crossref_primary_10_1016_j_mcat_2024_114711 crossref_primary_10_1016_j_biortech_2022_127196 crossref_primary_10_1007_s00253_017_8580_2 crossref_primary_10_1016_j_biortech_2023_130045 crossref_primary_10_1021_ie502178j crossref_primary_10_4236_abb_2016_73014 crossref_primary_10_1093_bbb_zbaa109 crossref_primary_10_1007_s10295_015_1720_8 crossref_primary_10_1007_s10068_018_0505_z crossref_primary_10_1016_j_biteb_2021_100808 crossref_primary_10_1002_bbb_1972 crossref_primary_10_1016_j_btre_2020_e00511 crossref_primary_10_1080_07388551_2024_2433998 crossref_primary_10_1016_j_biortech_2014_01_053 crossref_primary_10_1590_0104_6632_20140314s00002997 crossref_primary_10_1002_biot_201800426 crossref_primary_10_1016_j_biombioe_2021_106092 crossref_primary_10_1016_j_biortech_2014_07_081 crossref_primary_10_1038_s41467_019_14024_1 crossref_primary_10_1186_s13068_017_0920_z crossref_primary_10_1016_j_biortech_2014_09_045 crossref_primary_10_1007_s11274_020_02979_z crossref_primary_10_1186_s13068_018_1094_z crossref_primary_10_1007_s12649_016_9665_3 crossref_primary_10_1016_j_biortech_2017_05_209 crossref_primary_10_1016_j_biortech_2014_06_092 crossref_primary_10_1007_s12010_020_03320_y crossref_primary_10_15625_2525_2518_17116 crossref_primary_10_1016_j_biortech_2020_123386 crossref_primary_10_1016_j_biotechadv_2019_06_001 crossref_primary_10_1021_acssynbio_8b00109 crossref_primary_10_1186_s13068_016_0597_8 crossref_primary_10_31083_j_fbe1503017 crossref_primary_10_1021_acssynbio_6b00052 crossref_primary_10_1080_07388551_2025_2472636 crossref_primary_10_1016_j_biortech_2018_10_007 crossref_primary_10_1016_j_nbt_2024_06_003 crossref_primary_10_1016_j_ymben_2018_02_007 crossref_primary_10_3390_su13063513 crossref_primary_10_1371_journal_pone_0157775 crossref_primary_10_1007_s00253_017_8127_6 crossref_primary_10_1016_j_biortech_2017_04_052 crossref_primary_10_1016_j_biortech_2019_03_057 crossref_primary_10_1016_j_biortech_2015_02_081 crossref_primary_10_3390_catal10070743 crossref_primary_10_1016_j_cej_2022_139320 crossref_primary_10_1016_j_biortech_2015_06_108 crossref_primary_10_1039_D1SE00927C crossref_primary_10_1016_j_biotechadv_2017_09_007 crossref_primary_10_1016_j_tifs_2017_10_016 crossref_primary_10_1007_s13399_023_03888_5 crossref_primary_10_1007_s00253_017_8210_z crossref_primary_10_1007_s11274_024_03885_4 crossref_primary_10_1016_j_procbio_2016_10_001 crossref_primary_10_1007_s00449_018_1977_1 crossref_primary_10_1016_j_bej_2015_12_016 crossref_primary_10_1021_acs_jafc_9b05529 crossref_primary_10_1016_j_jece_2024_111971 crossref_primary_10_1021_cr500719h crossref_primary_10_1007_s13399_022_02570_6 crossref_primary_10_1016_j_biortech_2017_05_141 |
Cites_doi | 10.1016/j.biortech.2005.02.049 10.1016/j.biortech.2008.11.043 10.1007/BF02920135 10.1016/j.biortech.2012.10.019 10.1016/j.enzmictec.2012.07.011 10.1016/0141-0229(85)90111-5 10.1128/JB.186.22.7593-7600.2004 10.1128/AEM.70.2.1238-1241.2004 10.1128/AEM.68.4.1715-1727.2002 10.1007/s10295-011-1017-5 10.1023/A:1021907116361 10.1073/pnas.120163297 10.1128/JB.143.1.396-402.1980 10.1128/AEM.01546-07 10.1021/bp010121i 10.1128/AEM.02190-09 10.1007/s002530100628 10.1128/AEM.63.6.2273-2280.1997 10.1007/s10295-010-0874-7 10.1016/j.ymben.2009.07.002 10.1016/j.biombioe.2006.08.004 10.1128/AEM.67.1.148-154.2001 10.1021/bp060301y 10.1016/j.polymdegradstab.2004.02.008 10.1007/s00449-009-0393-y 10.1007/s00253-012-3896-4 10.1016/j.biortech.2013.06.031 10.1007/s002530051431 10.1016/j.biortech.2009.12.064 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd 2015 INIST-CNRS Copyright © 2013 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2015 INIST-CNRS – notice: Copyright © 2013 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 7SU 7TB 8FD C1K FR3 KR7 |
DOI | 10.1016/j.biortech.2013.09.052 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Environmental Engineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 91 |
ExternalDocumentID | 24096277 27960021 10_1016_j_biortech_2013_09_052 S0960852413014831 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 7SU 7TB 8FD C1K FR3 KR7 |
ID | FETCH-LOGICAL-c445t-f9a6dee1d030c37627047d7f9674273f695acfc19b38cc10e83e2502478ba5eb3 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Tue Aug 05 10:46:32 EDT 2025 Thu Jul 10 18:03:53 EDT 2025 Fri Jul 11 01:51:25 EDT 2025 Mon Jul 21 06:04:28 EDT 2025 Wed Apr 02 07:21:50 EDT 2025 Thu Apr 24 22:54:28 EDT 2025 Tue Jul 01 02:06:18 EDT 2025 Fri Feb 23 02:34:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Succinic acid Simultaneous utilization ATP Lignocellulosic hydrolysate Escherichia coli Xylose Hydrolysate Bacteria Lignocellulosics Biomass Glucose Enterobacteriaceae |
Language | English |
License | CC BY 4.0 Copyright © 2013 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-f9a6dee1d030c37627047d7f9674273f695acfc19b38cc10e83e2502478ba5eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24096277 |
PQID | 1448209604 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1516745334 proquest_miscellaneous_1490510274 proquest_miscellaneous_1448209604 pubmed_primary_24096277 pascalfrancis_primary_27960021 crossref_citationtrail_10_1016_j_biortech_2013_09_052 crossref_primary_10_1016_j_biortech_2013_09_052 elsevier_sciencedirect_doi_10_1016_j_biortech_2013_09_052 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-Dec |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-Dec |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Fan, Zhang, Zhang, Hou, Ren (b0040) 2006; 97 Borges, Pereira (b0015) 2011; 38 Guo, Tang, Zhang, Du, Liang, Jiang, Ouyang (b0050) 2012; 39 Hasona, Kim, Healy, Ingram, Shanmugam (b0055) 2004; 186 Wu, Li, Zhou, Ye (b0145) 2007; 73 Orencio-Trejo, Utrilla, Fernández-Sandoval, Huerta-Beristain, Gosset, Martinez (b0120) 2010; 121 Zheng, Dong, Sun, Ni, Fang (b0160) 2009; 100 Andersson, Hodge, Berglund, Rova (b0005) 2007; 23 Nichols, Dien, Bothast (b0115) 2001; 56 Vemuri, Eiteman, Altman (b0135) 2002; 68 Jiang, Xu, Xi, Zhang, Dai, Wan, Chen, Wei (b0070) 2013; 135 Lee, Lee, Hong, Chang, Park (b0090) 2003; 25 Jeffries (b0060) 1983; 27 Liang, Liu, Wang, Gou, Ma, Chen, Jiang, Wei, Ouyang (b0100) 2012; 51 Zeikus, Jain, Elankovan (b0150) 1999; 51 Breuil, Saddler (b0020) 1985; 7 Andersson, Petrova, Berglund, Rova (b0010) 2009; 33 Donnelly, Millard, Clark, Chen, Rathke (b0035) 1998; 70–72 Gonzalez, Tao, Shanmugam, York, Ingram (b0045) 2002; 18 Datsenko, Wanner (b0030) 2000; 97 Kim, Laivenieks, Vieille, Zeikus (b0075) 2004; 70 Laivenieks, Vieille, Zeikus (b0080) 1997; 63 Lam, Daruwalla, Henderson, Jones-Mortimer (b0085) 1980; 143 Li, Yang, Wang, Li, Wu, Zhang, Xing, Su (b0110) 2010; 101 Zhang, Fan, Xing, Pan, Zhang, Lay (b0155) 2007; 31 Liang, Liu, Li, Wu, Chen, Ma, Jiang, Wei, Ouyang (b0095) 2013; 143 Sun, Sun, Zhao, Sun (b0130) 2004; 84 Chatterjee, Millard, Champion, Clark, Donnelly (b0025) 2001; 67 Liu, Liang, Chen, Ma, Jiang, Wei, Ouyang (b0105) 2012; 94 Jiang, Liu, Ma, Chen, Yu, Yue, Xu, Wei (b0065) 2010; 76 Singh, Lynch, Gill (b0125) 2009; 11 Werpy, T., Petersen, G., 2004. Top value added chemicals from biomass. U.S. Department of Energy, Washington, DC. Jeffries (10.1016/j.biortech.2013.09.052_b0060) 1983; 27 Singh (10.1016/j.biortech.2013.09.052_b0125) 2009; 11 Zhang (10.1016/j.biortech.2013.09.052_b0155) 2007; 31 Zheng (10.1016/j.biortech.2013.09.052_b0160) 2009; 100 Borges (10.1016/j.biortech.2013.09.052_b0015) 2011; 38 Andersson (10.1016/j.biortech.2013.09.052_b0010) 2009; 33 Hasona (10.1016/j.biortech.2013.09.052_b0055) 2004; 186 Lee (10.1016/j.biortech.2013.09.052_b0090) 2003; 25 Orencio-Trejo (10.1016/j.biortech.2013.09.052_b0120) 2010; 121 Nichols (10.1016/j.biortech.2013.09.052_b0115) 2001; 56 Liang (10.1016/j.biortech.2013.09.052_b0095) 2013; 143 Kim (10.1016/j.biortech.2013.09.052_b0075) 2004; 70 Liang (10.1016/j.biortech.2013.09.052_b0100) 2012; 51 Sun (10.1016/j.biortech.2013.09.052_b0130) 2004; 84 Fan (10.1016/j.biortech.2013.09.052_b0040) 2006; 97 Lam (10.1016/j.biortech.2013.09.052_b0085) 1980; 143 Gonzalez (10.1016/j.biortech.2013.09.052_b0045) 2002; 18 Andersson (10.1016/j.biortech.2013.09.052_b0005) 2007; 23 Chatterjee (10.1016/j.biortech.2013.09.052_b0025) 2001; 67 Vemuri (10.1016/j.biortech.2013.09.052_b0135) 2002; 68 Breuil (10.1016/j.biortech.2013.09.052_b0020) 1985; 7 Wu (10.1016/j.biortech.2013.09.052_b0145) 2007; 73 Guo (10.1016/j.biortech.2013.09.052_b0050) 2012; 39 Laivenieks (10.1016/j.biortech.2013.09.052_b0080) 1997; 63 Jiang (10.1016/j.biortech.2013.09.052_b0065) 2010; 76 10.1016/j.biortech.2013.09.052_b0140 Jiang (10.1016/j.biortech.2013.09.052_b0070) 2013; 135 Datsenko (10.1016/j.biortech.2013.09.052_b0030) 2000; 97 Donnelly (10.1016/j.biortech.2013.09.052_b0035) 1998; 70–72 Li (10.1016/j.biortech.2013.09.052_b0110) 2010; 101 Liu (10.1016/j.biortech.2013.09.052_b0105) 2012; 94 Zeikus (10.1016/j.biortech.2013.09.052_b0150) 1999; 51 |
References_xml | – volume: 94 start-page: 959 year: 2012 end-page: 968 ident: b0105 article-title: Fermentation of xylose to succinate by enhancement of ATP supply in metabolically engineered publication-title: Appl. Microbiol. Biotechnol. – volume: 97 start-page: 6640 year: 2000 end-page: 6645 ident: b0030 article-title: One-step inactivation of chromosomal genes in publication-title: Proc. Natl. Acad. Sci. USA – volume: 51 start-page: 286 year: 2012 end-page: 293 ident: b0100 article-title: Regulation of NAD(H) pool and NADH/NAD publication-title: Enzyme Microb. Technol. – volume: 23 start-page: 381 year: 2007 end-page: 388 ident: b0005 article-title: Effect of different carbon sources on the production of succinic acid using metabolically engineered publication-title: Biotechnol. Prog. – volume: 70–72 start-page: 187 year: 1998 end-page: 198 ident: b0035 article-title: A novel fermentation pathway in an publication-title: Appl. Biochem. Biotechnol. – volume: 63 start-page: 2273 year: 1997 end-page: 2280 ident: b0080 article-title: Cloning, sequencing and overexpression of the publication-title: Appl. Environ. Microbiol. – volume: 100 start-page: 2425 year: 2009 end-page: 2429 ident: b0160 article-title: Fermentative production of succinic acid from straw hydrolysate by publication-title: Bioresour. Technol. – reference: Werpy, T., Petersen, G., 2004. Top value added chemicals from biomass. U.S. Department of Energy, Washington, DC. – volume: 27 start-page: 1 year: 1983 end-page: 32 ident: b0060 article-title: Utilization of xylose by bacteria, yeasts, and fungi publication-title: Adv. Biochem. Eng./Biotechnol. – volume: 73 start-page: 7837 year: 2007 end-page: 7843 ident: b0145 article-title: Improved succinic acid production in the anaerobic culture of an publication-title: Appl. Environ. Microbiol. – volume: 33 start-page: 711 year: 2009 end-page: 718 ident: b0010 article-title: Maintaining high anaerobic succinic acid productivity by product removal publication-title: Bioprocess Biosyst. Eng. – volume: 135 start-page: 469 year: 2013 end-page: 474 ident: b0070 article-title: Succinic acid production from cellobiose by publication-title: Bioresour. Technol. – volume: 11 start-page: 347 year: 2009 end-page: 354 ident: b0125 article-title: Genes restoring redox balance in fermentation-deficient publication-title: Metab. Eng. – volume: 186 start-page: 7593 year: 2004 end-page: 7600 ident: b0055 article-title: Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of publication-title: J. Bacteriol. – volume: 51 start-page: 545 year: 1999 end-page: 552 ident: b0150 article-title: Biotechnology of succinic acid production and markets for derived industrial products publication-title: Appl. Microbiol. Biotechnol. – volume: 7 start-page: 327 year: 1985 end-page: 332 ident: b0020 article-title: Comparison of the 3,5-dinitrosalicylic acid and Nelson-Somogyi methods of assaying for reducing sugars and determining cellulase activity publication-title: Enzyme Microb. Technol. – volume: 143 start-page: 405 year: 2013 end-page: 412 ident: b0095 article-title: Repetitive succinic acid production from lignocellulose hydrolysates by enhancement of ATP supply in metabolically engineered publication-title: Bioresour. Technol. – volume: 76 start-page: 1298 year: 2010 end-page: 1300 ident: b0065 article-title: Effect of growth phase feeding strategies on succinate production by metabolically engineered publication-title: Appl. Environ. Microbiol. – volume: 84 start-page: 331 year: 2004 end-page: 339 ident: b0130 article-title: Isolation and characterization of cellulose from sugarcane bagasse publication-title: Polym. Degrad. Stab. – volume: 68 start-page: 1715 year: 2002 end-page: 1727 ident: b0135 article-title: Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of publication-title: Appl. Environ. Microbiol. – volume: 39 start-page: 401 year: 2012 end-page: 407 ident: b0050 article-title: mutant with high inhibitor tolerance obtained by low-energy ion implantation publication-title: J. Ind. Microbiol. Biotechnol. – volume: 101 start-page: 3292 year: 2010 end-page: 3294 ident: b0110 article-title: Efficient conversion of crop stalk wastes into succinic acid production by publication-title: Bioresour. Technol. – volume: 67 start-page: 148 year: 2001 end-page: 154 ident: b0025 article-title: Mutation of the publication-title: Appl. Environ. Microbiol. – volume: 97 start-page: 500 year: 2006 end-page: 505 ident: b0040 article-title: Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost publication-title: Bioresour. Technol. – volume: 143 start-page: 396 year: 1980 end-page: 402 ident: b0085 article-title: Proton-linked d-xylose transport in publication-title: J. Bacteriol. – volume: 18 start-page: 6 year: 2002 end-page: 20 ident: b0045 article-title: Global gene expression differences associated with changes in glycolytic flux and growth rate in publication-title: Biotechnol. Prog. – volume: 70 start-page: 1238 year: 2004 end-page: 1241 ident: b0075 article-title: Effect of overexpression of publication-title: Appl. Environ. Microbiol. – volume: 56 start-page: 120 year: 2001 end-page: 125 ident: b0115 article-title: Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol publication-title: Appl. Microbiol. Biotechnol. – volume: 38 start-page: 1001 year: 2011 end-page: 1011 ident: b0015 article-title: Succinic acid production from sugarcane bagasse hemicellulose hydrolysate by publication-title: J. Ind. Microbiol. Biotechnol. – volume: 31 start-page: 250 year: 2007 end-page: 254 ident: b0155 article-title: Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures publication-title: Biomass Bioenergy – volume: 25 start-page: 111 year: 2003 end-page: 114 ident: b0090 article-title: Biological conversion of wood hydrolysate to succinic acid by publication-title: Biotechnol. Lett. – volume: 121 start-page: 71 year: 2010 end-page: 107 ident: b0120 article-title: Engineering the publication-title: Adv. Biochem. Eng./Biotechnol. – volume: 97 start-page: 500 year: 2006 ident: 10.1016/j.biortech.2013.09.052_b0040 article-title: Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2005.02.049 – volume: 100 start-page: 2425 year: 2009 ident: 10.1016/j.biortech.2013.09.052_b0160 article-title: Fermentative production of succinic acid from straw hydrolysate by Actinobacillus succinogenes publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2008.11.043 – volume: 70–72 start-page: 187 year: 1998 ident: 10.1016/j.biortech.2013.09.052_b0035 article-title: A novel fermentation pathway in an Escherichia coli mutant producing succinic acid, acetic acid, and ethanol publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/BF02920135 – volume: 135 start-page: 469 year: 2013 ident: 10.1016/j.biortech.2013.09.052_b0070 article-title: Succinic acid production from cellobiose by Actinobacillus succinogenes publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.10.019 – volume: 51 start-page: 286 year: 2012 ident: 10.1016/j.biortech.2013.09.052_b0100 article-title: Regulation of NAD(H) pool and NADH/NAD+ ratio by overexpression of nicotinic acid phosphoribosyltransferase for succinic acid production in Escherichia coli NZN111 publication-title: Enzyme Microb. Technol. doi: 10.1016/j.enzmictec.2012.07.011 – volume: 7 start-page: 327 year: 1985 ident: 10.1016/j.biortech.2013.09.052_b0020 article-title: Comparison of the 3,5-dinitrosalicylic acid and Nelson-Somogyi methods of assaying for reducing sugars and determining cellulase activity publication-title: Enzyme Microb. Technol. doi: 10.1016/0141-0229(85)90111-5 – volume: 186 start-page: 7593 year: 2004 ident: 10.1016/j.biortech.2013.09.052_b0055 article-title: Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose publication-title: J. Bacteriol. doi: 10.1128/JB.186.22.7593-7600.2004 – volume: 70 start-page: 1238 year: 2004 ident: 10.1016/j.biortech.2013.09.052_b0075 article-title: Effect of overexpression of Actinobacillus succinogenes phosphoenolpyruvate carboxykinase on succinate production in Escherichia coli publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.70.2.1238-1241.2004 – volume: 68 start-page: 1715 year: 2002 ident: 10.1016/j.biortech.2013.09.052_b0135 article-title: Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.68.4.1715-1727.2002 – volume: 39 start-page: 401 year: 2012 ident: 10.1016/j.biortech.2013.09.052_b0050 article-title: Clostridium beijerinckii mutant with high inhibitor tolerance obtained by low-energy ion implantation publication-title: J. Ind. Microbiol. Biotechnol. doi: 10.1007/s10295-011-1017-5 – volume: 25 start-page: 111 year: 2003 ident: 10.1016/j.biortech.2013.09.052_b0090 article-title: Biological conversion of wood hydrolysate to succinic acid by Anaerobiospirillum succiniciproducens publication-title: Biotechnol. Lett. doi: 10.1023/A:1021907116361 – volume: 97 start-page: 6640 year: 2000 ident: 10.1016/j.biortech.2013.09.052_b0030 article-title: One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.120163297 – volume: 143 start-page: 396 year: 1980 ident: 10.1016/j.biortech.2013.09.052_b0085 article-title: Proton-linked d-xylose transport in Escherichia coli publication-title: J. Bacteriol. doi: 10.1128/JB.143.1.396-402.1980 – volume: 73 start-page: 7837 year: 2007 ident: 10.1016/j.biortech.2013.09.052_b0145 article-title: Improved succinic acid production in the anaerobic culture of an Escherichia coli pflB ldhA double mutant as a result of enhanced anaplerotic activities in the preceding aerobic culture publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01546-07 – volume: 18 start-page: 6 year: 2002 ident: 10.1016/j.biortech.2013.09.052_b0045 article-title: Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose publication-title: Biotechnol. Prog. doi: 10.1021/bp010121i – volume: 27 start-page: 1 year: 1983 ident: 10.1016/j.biortech.2013.09.052_b0060 article-title: Utilization of xylose by bacteria, yeasts, and fungi publication-title: Adv. Biochem. Eng./Biotechnol. – volume: 76 start-page: 1298 year: 2010 ident: 10.1016/j.biortech.2013.09.052_b0065 article-title: Effect of growth phase feeding strategies on succinate production by metabolically engineered Escherichia coli publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02190-09 – volume: 56 start-page: 120 year: 2001 ident: 10.1016/j.biortech.2013.09.052_b0115 article-title: Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s002530100628 – ident: 10.1016/j.biortech.2013.09.052_b0140 – volume: 63 start-page: 2273 year: 1997 ident: 10.1016/j.biortech.2013.09.052_b0080 article-title: Cloning, sequencing and overexpression of the Anaerobiospirillum succiniciproducens phosphoenolpyruvate carboxykinase (pckA) gene publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.63.6.2273-2280.1997 – volume: 38 start-page: 1001 year: 2011 ident: 10.1016/j.biortech.2013.09.052_b0015 article-title: Succinic acid production from sugarcane bagasse hemicellulose hydrolysate by Actinobacillus succinogenes publication-title: J. Ind. Microbiol. Biotechnol. doi: 10.1007/s10295-010-0874-7 – volume: 11 start-page: 347 year: 2009 ident: 10.1016/j.biortech.2013.09.052_b0125 article-title: Genes restoring redox balance in fermentation-deficient E. coli NZN111 publication-title: Metab. Eng. doi: 10.1016/j.ymben.2009.07.002 – volume: 31 start-page: 250 year: 2007 ident: 10.1016/j.biortech.2013.09.052_b0155 article-title: Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2006.08.004 – volume: 67 start-page: 148 year: 2001 ident: 10.1016/j.biortech.2013.09.052_b0025 article-title: Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.67.1.148-154.2001 – volume: 23 start-page: 381 year: 2007 ident: 10.1016/j.biortech.2013.09.052_b0005 article-title: Effect of different carbon sources on the production of succinic acid using metabolically engineered Escherichia coli publication-title: Biotechnol. Prog. doi: 10.1021/bp060301y – volume: 84 start-page: 331 year: 2004 ident: 10.1016/j.biortech.2013.09.052_b0130 article-title: Isolation and characterization of cellulose from sugarcane bagasse publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2004.02.008 – volume: 121 start-page: 71 year: 2010 ident: 10.1016/j.biortech.2013.09.052_b0120 article-title: Engineering the Escherichia coli fermentative metabolism publication-title: Adv. Biochem. Eng./Biotechnol. – volume: 33 start-page: 711 year: 2009 ident: 10.1016/j.biortech.2013.09.052_b0010 article-title: Maintaining high anaerobic succinic acid productivity by product removal publication-title: Bioprocess Biosyst. Eng. doi: 10.1007/s00449-009-0393-y – volume: 94 start-page: 959 year: 2012 ident: 10.1016/j.biortech.2013.09.052_b0105 article-title: Fermentation of xylose to succinate by enhancement of ATP supply in metabolically engineered Escherichia coli publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-012-3896-4 – volume: 143 start-page: 405 year: 2013 ident: 10.1016/j.biortech.2013.09.052_b0095 article-title: Repetitive succinic acid production from lignocellulose hydrolysates by enhancement of ATP supply in metabolically engineered Escherichia coli publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.06.031 – volume: 51 start-page: 545 year: 1999 ident: 10.1016/j.biortech.2013.09.052_b0150 article-title: Biotechnology of succinic acid production and markets for derived industrial products publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s002530051431 – volume: 101 start-page: 3292 year: 2010 ident: 10.1016/j.biortech.2013.09.052_b0110 article-title: Efficient conversion of crop stalk wastes into succinic acid production by Actinobacillus succinogenes publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.12.064 |
SSID | ssj0003172 |
Score | 2.375489 |
Snippet | •We constructed a recombinant Escherichia coli strain named BA305.•BA305 improved utilization of glucose and xylose anaerobically.•BA305 consumed sugar mixture... To enhance succinic acid formation during xylose fermentation in Escherichia coli, overexpression of ATP-forming phosphoenolpyruvate carboxykinase (PEPCK) from... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 84 |
SubjectTerms | Adenosine Triphosphate Adenosine Triphosphate - metabolism Anaerobiosis ATP Bacillus subtilis Batch Cell Culture Techniques Biological and medical sciences Biomass Bioreactors Cellulose Cellulose - metabolism chemistry Deletion enzymology Escherichia coli Escherichia coli - enzymology Escherichia coli - metabolism Fermentation Fundamental and applied biological sciences. Psychology Genetic Engineering Glucose Glucose - metabolism Hydrolysis Lignin Lignin - metabolism Lignocellulosic hydrolysate metabolism Phosphoenolpyruvate Carboxylase Phosphoenolpyruvate Carboxylase - metabolism Phosphoenolpyruvate Sugar Phosphotransferase System Phosphoenolpyruvate Sugar Phosphotransferase System - metabolism Saccharum Saccharum - chemistry Simultaneous utilization Strain Succinic acid Succinic Acid - metabolism sugarcane bagasse Utilization Xylose Xylose - metabolism |
Title | Efficient succinic acid production from lignocellulosic biomass by simultaneous utilization of glucose and xylose in engineered Escherichia coli |
URI | https://dx.doi.org/10.1016/j.biortech.2013.09.052 https://www.ncbi.nlm.nih.gov/pubmed/24096277 https://www.proquest.com/docview/1448209604 https://www.proquest.com/docview/1490510274 https://www.proquest.com/docview/1516745334 |
Volume | 149 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtswECWC9NAWRdGmm5PUYIFeFWshRfFoGA7cFs2lDZAbQVFUwECQjMgGmku_oZ-cGYrKckhy6E22SZjWG88iznsk5KvMDNN1gYyeVERMWh2VUtsoY7kRkse58fTonyf56pR9P-NnO2QxcmGwrTL4_sGne28d3pmFuzlbOzf7hcl3wf2-EOT0nkvNmEArP_p72-YB8dHvJMDgCEffYQlfHJUOO1r9pkSSeb1Tnj4UoF6tdQ-3rR7Ou3g4IfWB6fgNeR0ySjofFv2W7Nh2j7ycn18GVQ27R54vxmPd4JM7CoTvyL-ll5CAyEP7rTHIkqTauIquByVYQI0iA4U27rzt8Cn_tukAWIq0fci7aXlFe4ddibq13banYMdNoHbSrqahI57qtqJ_rhq8dC21YQm2ossercZhxzUFm3Tvyenx8vdiFYVDGiLDGN9EtdR5ZW1Sgbcw4K1SETNRiVrmUHSLrM4l16Y2iSyzwpgktkVmIe1KmShKzaGU_0B22661nwiNuRXcmtwyKJOKWMi6rCwTTFaxwcsJ4SMyygQFczxIo1Fjq9qFGhFViKiKpQJEJ2R2M289aHg8OUOOwKt71qgg0Dw5d3rPUm6-MhUSN0GTCfkymo4C7BG6ASIowxgkZCiX89gYVFTDhwmPjOHILUGS9YR8HGzzdhVQ0ANIYv8_fuIBeYGvhq6eQ7K7udzaz5Cbbcqp__NNybP5tx-rk2t5Ojzr |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigIISiULo9iJDimm4cdxwcOVdlqSx8XWqk3kzhOlSrKrppdlb3wG_gv_EFmEqePQ9sD6i3axIk334w9k5n5BuCzigxPi4QqekLpcWVTL1Op9SIeG6mEH5u2PPrgMB4f8-8n4mQJ_va1MJRW6db-bk1vV2v3y9C9zeG0LIc_yPhORBsXQps-Clxm5Z5dXKDf1nzd_YYgfwnDndHR9thzrQU8w7mYeYVK49zaIEcZN6hjofS5zGWhYnQVZVTESqSmMIHKosSYwLdJZNFYCLlMslSgA4r3fQSPOS4X1DZh8_dVXgluyG3oAmfn0fSulSWfbWYlpdC2UZAgaglWRXjbjvhsmjaIU9E12LjdAm53wp0X8NyZsGyre0svYcnWq_B06_Tc0XjYVVjZ7vvI4ZlrlIev4M-o5azArY41c2OoLJOlpszZtKOeRTFhVPLCqvK0nlBYYV5NUJIY8QSgoc-yBWtKSoNMazuZNwwVp3K1pGxSMJeCz9I6Z78WFR2WNbNuCjZno4bEtKQUb4ZKUL6G4weBbg2W60lt14H5wkphTWw5-mWJL1WR5ZZLrnLf0OEARI-MNo4ynTp3VLrPjTvTPaKaENW-0ojoAIaX46Ydaci9I1QPvL4h_hp3tnvHbtyQlMtHhlJR1DUYwKdedDRiT9B1EKHfx9ECJH6eu64hCjf6enHHNYKKWaiqewBvOtm8mgX3qcGTfPsff_EjrIyPDvb1_u7h3jt4Qme6lKL3sDw7n9sPaBjOso1WERn8fGjN_wcrYXgH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+succinic+acid+production+from+lignocellulosic+biomass+by+simultaneous+utilization+of+glucose+and+xylose+in+engineered+Escherichia+coli&rft.jtitle=Bioresource+technology&rft.au=RONGMING+LIU&rft.au=LIYA+LIANG&rft.au=FENG+LI&rft.au=MINGKE+WU&rft.date=2013-12-01&rft.pub=Elsevier&rft.issn=0960-8524&rft.volume=149&rft.spage=84&rft.epage=91&rft_id=info:doi/10.1016%2Fj.biortech.2013.09.052&rft.externalDBID=n%2Fa&rft.externalDocID=27960021 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |