Efficient succinic acid production from lignocellulosic biomass by simultaneous utilization of glucose and xylose in engineered Escherichia coli

•We constructed a recombinant Escherichia coli strain named BA305.•BA305 improved utilization of glucose and xylose anaerobically.•BA305 consumed sugar mixture simultaneously during anaerobic fermentations.•Fed-batch fermentation of sugarcane bagasse hydrolysate was achieved in BA305.•39.3 g L−1 suc...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 149; pp. 84 - 91
Main Authors Liu, Rongming, Liang, Liya, Li, Feng, Wu, Mingke, Chen, Kequan, Ma, Jiangfeng, Jiang, Min, Wei, Ping, Ouyang, Pingkai
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.12.2013
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We constructed a recombinant Escherichia coli strain named BA305.•BA305 improved utilization of glucose and xylose anaerobically.•BA305 consumed sugar mixture simultaneously during anaerobic fermentations.•Fed-batch fermentation of sugarcane bagasse hydrolysate was achieved in BA305.•39.3 g L−1 succinic acid was generated by BA305 in the hydrolysate fermentation. To enhance succinic acid formation during xylose fermentation in Escherichia coli, overexpression of ATP-forming phosphoenolpyruvate carboxykinase (PEPCK) from Bacillus subtilis 168 in an ldhA, pflB, and ppc deletion strain resulted in a significant increase in cell mass and succinic acid production. However, BA204 displays a low yield of glucose fermentation and sequential glucose–xylose utilization under regulation by the phosphotransferase system (PTS). To improve the capability of glucose fermentation and simultaneously consume sugar mixture for succinic acid production, a pflB, ldhA, ppc, and ptsG deletion strain overexpressing ATP-forming PEPCK, named E. coli BA305, was constructed. As a result, after 120h fed-batch fermentation of sugarcane bagasse hydrolysate, the dry cell weight and succinic acid concentration in BA305 were 4.58gL−1 and 39.3gL−1, respectively.
AbstractList To enhance succinic acid formation during xylose fermentation in Escherichia coli, overexpression of ATP-forming phosphoenolpyruvate carboxykinase (PEPCK) from Bacillus subtilis 168 in an ldhA, pflB, and ppc deletion strain resulted in a significant increase in cell mass and succinic acid production. However, BA204 displays a low yield of glucose fermentation and sequential glucose-xylose utilization under regulation by the phosphotransferase system (PTS). To improve the capability of glucose fermentation and simultaneously consume sugar mixture for succinic acid production, a pflB, ldhA, ppc, and ptsG deletion strain overexpressing ATP-forming PEPCK, named E. coli BA305, was constructed. As a result, after 120 h fed-batch fermentation of sugarcane bagasse hydrolysate, the dry cell weight and succinic acid concentration in BA305 were 4.58 g L(-1) and 39.3 g L(-1), respectively.To enhance succinic acid formation during xylose fermentation in Escherichia coli, overexpression of ATP-forming phosphoenolpyruvate carboxykinase (PEPCK) from Bacillus subtilis 168 in an ldhA, pflB, and ppc deletion strain resulted in a significant increase in cell mass and succinic acid production. However, BA204 displays a low yield of glucose fermentation and sequential glucose-xylose utilization under regulation by the phosphotransferase system (PTS). To improve the capability of glucose fermentation and simultaneously consume sugar mixture for succinic acid production, a pflB, ldhA, ppc, and ptsG deletion strain overexpressing ATP-forming PEPCK, named E. coli BA305, was constructed. As a result, after 120 h fed-batch fermentation of sugarcane bagasse hydrolysate, the dry cell weight and succinic acid concentration in BA305 were 4.58 g L(-1) and 39.3 g L(-1), respectively.
To enhance succinic acid formation during xylose fermentation in Escherichia coli, overexpression of ATP-forming phosphoenolpyruvate carboxykinase (PEPCK) from Bacillus subtilis 168 in an ldhA, pflB, and ppc deletion strain resulted in a significant increase in cell mass and succinic acid production. However, BA204 displays a low yield of glucose fermentation and sequential glucose–xylose utilization under regulation by the phosphotransferase system (PTS). To improve the capability of glucose fermentation and simultaneously consume sugar mixture for succinic acid production, a pflB, ldhA, ppc, and ptsG deletion strain overexpressing ATP-forming PEPCK, named E. coli BA305, was constructed. As a result, after 120h fed-batch fermentation of sugarcane bagasse hydrolysate, the dry cell weight and succinic acid concentration in BA305 were 4.58gL−1 and 39.3gL−1, respectively.
To enhance succinic acid formation during xylose fermentation in Escherichia coli, overexpression of ATP-forming phosphoenolpyruvate carboxykinase (PEPCK) from Bacillus subtilis 168 in an ldhA, pflB, and ppc deletion strain resulted in a significant increase in cell mass and succinic acid production. However, BA204 displays a low yield of glucose fermentation and sequential glucose-xylose utilization under regulation by the phosphotransferase system (PTS). To improve the capability of glucose fermentation and simultaneously consume sugar mixture for succinic acid production, a pflB, ldhA, ppc, and ptsG deletion strain overexpressing ATP-forming PEPCK, named E. coli BA305, was constructed. As a result, after 120 h fed-batch fermentation of sugarcane bagasse hydrolysate, the dry cell weight and succinic acid concentration in BA305 were 4.58 g L(-1) and 39.3 g L(-1), respectively.
•We constructed a recombinant Escherichia coli strain named BA305.•BA305 improved utilization of glucose and xylose anaerobically.•BA305 consumed sugar mixture simultaneously during anaerobic fermentations.•Fed-batch fermentation of sugarcane bagasse hydrolysate was achieved in BA305.•39.3 g L−1 succinic acid was generated by BA305 in the hydrolysate fermentation. To enhance succinic acid formation during xylose fermentation in Escherichia coli, overexpression of ATP-forming phosphoenolpyruvate carboxykinase (PEPCK) from Bacillus subtilis 168 in an ldhA, pflB, and ppc deletion strain resulted in a significant increase in cell mass and succinic acid production. However, BA204 displays a low yield of glucose fermentation and sequential glucose–xylose utilization under regulation by the phosphotransferase system (PTS). To improve the capability of glucose fermentation and simultaneously consume sugar mixture for succinic acid production, a pflB, ldhA, ppc, and ptsG deletion strain overexpressing ATP-forming PEPCK, named E. coli BA305, was constructed. As a result, after 120h fed-batch fermentation of sugarcane bagasse hydrolysate, the dry cell weight and succinic acid concentration in BA305 were 4.58gL−1 and 39.3gL−1, respectively.
Author Wei, Ping
Wu, Mingke
Liang, Liya
Li, Feng
Jiang, Min
Liu, Rongming
Chen, Kequan
Ma, Jiangfeng
Ouyang, Pingkai
Author_xml – sequence: 1
  givenname: Rongming
  surname: Liu
  fullname: Liu, Rongming
– sequence: 2
  givenname: Liya
  surname: Liang
  fullname: Liang, Liya
– sequence: 3
  givenname: Feng
  surname: Li
  fullname: Li, Feng
– sequence: 4
  givenname: Mingke
  surname: Wu
  fullname: Wu, Mingke
– sequence: 5
  givenname: Kequan
  surname: Chen
  fullname: Chen, Kequan
– sequence: 6
  givenname: Jiangfeng
  surname: Ma
  fullname: Ma, Jiangfeng
– sequence: 7
  givenname: Min
  surname: Jiang
  fullname: Jiang, Min
  email: bioengine@njut.edu.cn
– sequence: 8
  givenname: Ping
  surname: Wei
  fullname: Wei, Ping
– sequence: 9
  givenname: Pingkai
  surname: Ouyang
  fullname: Ouyang, Pingkai
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27960021$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24096277$$D View this record in MEDLINE/PubMed
BookMark eNqNks1uEzEUhUeoiKaFV6i8QWKTYHt-PCOxAFWhRarEBtaW586d5EYeu9gzqOEpeGQ8TSIkNmFlS_7OsY7OucounHeYZTeCrwQX1fvdqiUfRoTtSnKRr3iz4qV8kS1ErfKlbFR1kS14U_FlXcriMruKccc5z4WSr7JLWaQnqdQi-73uewJCN7I4AZAjYAaoY4_BdxOM5B3rgx-YpY3zgNZO1scEpe8HEyNr9yzSMNnROPRTZNNIln6ZZ6Hv2cZO4CMy4zr2tLfzlRxDtyGHGLBj6whbDARbMgy8pdfZy97YiG-O53X2_fP62-398uHr3ZfbTw9LKIpyXPaNqTpE0fGcQ65SGF6oTvVNpQqp8r5qSgM9iKbNawDBsc5RllwWqm5NiW1-nb07-KagPyaMox4ozvkOObQoRbIq87w4jxYNLwWX6n_QopZzLTN6c0SndsBOPwYaTNjrUzcJeHsETARj-2AcUPzLqWTDpUjchwMHwccYsNdA43MBYzBkteB6noze6dNk9DwZzRudJpPk1T_y0w9nhR8PQkw1_SQMOs5DAuwoIIy683TO4g-0fOFT
CitedBy_id crossref_primary_10_1016_j_mcat_2024_114711
crossref_primary_10_1016_j_biortech_2022_127196
crossref_primary_10_1007_s00253_017_8580_2
crossref_primary_10_1016_j_biortech_2023_130045
crossref_primary_10_1021_ie502178j
crossref_primary_10_4236_abb_2016_73014
crossref_primary_10_1093_bbb_zbaa109
crossref_primary_10_1007_s10295_015_1720_8
crossref_primary_10_1007_s10068_018_0505_z
crossref_primary_10_1016_j_biteb_2021_100808
crossref_primary_10_1002_bbb_1972
crossref_primary_10_1016_j_btre_2020_e00511
crossref_primary_10_1080_07388551_2024_2433998
crossref_primary_10_1016_j_biortech_2014_01_053
crossref_primary_10_1590_0104_6632_20140314s00002997
crossref_primary_10_1002_biot_201800426
crossref_primary_10_1016_j_biombioe_2021_106092
crossref_primary_10_1016_j_biortech_2014_07_081
crossref_primary_10_1038_s41467_019_14024_1
crossref_primary_10_1186_s13068_017_0920_z
crossref_primary_10_1016_j_biortech_2014_09_045
crossref_primary_10_1007_s11274_020_02979_z
crossref_primary_10_1186_s13068_018_1094_z
crossref_primary_10_1007_s12649_016_9665_3
crossref_primary_10_1016_j_biortech_2017_05_209
crossref_primary_10_1016_j_biortech_2014_06_092
crossref_primary_10_1007_s12010_020_03320_y
crossref_primary_10_15625_2525_2518_17116
crossref_primary_10_1016_j_biortech_2020_123386
crossref_primary_10_1016_j_biotechadv_2019_06_001
crossref_primary_10_1021_acssynbio_8b00109
crossref_primary_10_1186_s13068_016_0597_8
crossref_primary_10_31083_j_fbe1503017
crossref_primary_10_1021_acssynbio_6b00052
crossref_primary_10_1080_07388551_2025_2472636
crossref_primary_10_1016_j_biortech_2018_10_007
crossref_primary_10_1016_j_nbt_2024_06_003
crossref_primary_10_1016_j_ymben_2018_02_007
crossref_primary_10_3390_su13063513
crossref_primary_10_1371_journal_pone_0157775
crossref_primary_10_1007_s00253_017_8127_6
crossref_primary_10_1016_j_biortech_2017_04_052
crossref_primary_10_1016_j_biortech_2019_03_057
crossref_primary_10_1016_j_biortech_2015_02_081
crossref_primary_10_3390_catal10070743
crossref_primary_10_1016_j_cej_2022_139320
crossref_primary_10_1016_j_biortech_2015_06_108
crossref_primary_10_1039_D1SE00927C
crossref_primary_10_1016_j_biotechadv_2017_09_007
crossref_primary_10_1016_j_tifs_2017_10_016
crossref_primary_10_1007_s13399_023_03888_5
crossref_primary_10_1007_s00253_017_8210_z
crossref_primary_10_1007_s11274_024_03885_4
crossref_primary_10_1016_j_procbio_2016_10_001
crossref_primary_10_1007_s00449_018_1977_1
crossref_primary_10_1016_j_bej_2015_12_016
crossref_primary_10_1021_acs_jafc_9b05529
crossref_primary_10_1016_j_jece_2024_111971
crossref_primary_10_1021_cr500719h
crossref_primary_10_1007_s13399_022_02570_6
crossref_primary_10_1016_j_biortech_2017_05_141
Cites_doi 10.1016/j.biortech.2005.02.049
10.1016/j.biortech.2008.11.043
10.1007/BF02920135
10.1016/j.biortech.2012.10.019
10.1016/j.enzmictec.2012.07.011
10.1016/0141-0229(85)90111-5
10.1128/JB.186.22.7593-7600.2004
10.1128/AEM.70.2.1238-1241.2004
10.1128/AEM.68.4.1715-1727.2002
10.1007/s10295-011-1017-5
10.1023/A:1021907116361
10.1073/pnas.120163297
10.1128/JB.143.1.396-402.1980
10.1128/AEM.01546-07
10.1021/bp010121i
10.1128/AEM.02190-09
10.1007/s002530100628
10.1128/AEM.63.6.2273-2280.1997
10.1007/s10295-010-0874-7
10.1016/j.ymben.2009.07.002
10.1016/j.biombioe.2006.08.004
10.1128/AEM.67.1.148-154.2001
10.1021/bp060301y
10.1016/j.polymdegradstab.2004.02.008
10.1007/s00449-009-0393-y
10.1007/s00253-012-3896-4
10.1016/j.biortech.2013.06.031
10.1007/s002530051431
10.1016/j.biortech.2009.12.064
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2015 INIST-CNRS
Copyright © 2013 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2015 INIST-CNRS
– notice: Copyright © 2013 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
7SU
7TB
8FD
C1K
FR3
KR7
DOI 10.1016/j.biortech.2013.09.052
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList MEDLINE - Academic
AGRICOLA
MEDLINE
Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 91
ExternalDocumentID 24096277
27960021
10_1016_j_biortech_2013_09_052
S0960852413014831
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
7SU
7TB
8FD
C1K
FR3
KR7
ID FETCH-LOGICAL-c445t-f9a6dee1d030c37627047d7f9674273f695acfc19b38cc10e83e2502478ba5eb3
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Tue Aug 05 10:46:32 EDT 2025
Thu Jul 10 18:03:53 EDT 2025
Fri Jul 11 01:51:25 EDT 2025
Mon Jul 21 06:04:28 EDT 2025
Wed Apr 02 07:21:50 EDT 2025
Thu Apr 24 22:54:28 EDT 2025
Tue Jul 01 02:06:18 EDT 2025
Fri Feb 23 02:34:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Succinic acid
Simultaneous utilization
ATP
Lignocellulosic hydrolysate
Escherichia coli
Xylose
Hydrolysate
Bacteria
Lignocellulosics
Biomass
Glucose
Enterobacteriaceae
Language English
License CC BY 4.0
Copyright © 2013 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-f9a6dee1d030c37627047d7f9674273f695acfc19b38cc10e83e2502478ba5eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24096277
PQID 1448209604
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1516745334
proquest_miscellaneous_1490510274
proquest_miscellaneous_1448209604
pubmed_primary_24096277
pascalfrancis_primary_27960021
crossref_citationtrail_10_1016_j_biortech_2013_09_052
crossref_primary_10_1016_j_biortech_2013_09_052
elsevier_sciencedirect_doi_10_1016_j_biortech_2013_09_052
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-Dec
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-Dec
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Fan, Zhang, Zhang, Hou, Ren (b0040) 2006; 97
Borges, Pereira (b0015) 2011; 38
Guo, Tang, Zhang, Du, Liang, Jiang, Ouyang (b0050) 2012; 39
Hasona, Kim, Healy, Ingram, Shanmugam (b0055) 2004; 186
Wu, Li, Zhou, Ye (b0145) 2007; 73
Orencio-Trejo, Utrilla, Fernández-Sandoval, Huerta-Beristain, Gosset, Martinez (b0120) 2010; 121
Zheng, Dong, Sun, Ni, Fang (b0160) 2009; 100
Andersson, Hodge, Berglund, Rova (b0005) 2007; 23
Nichols, Dien, Bothast (b0115) 2001; 56
Vemuri, Eiteman, Altman (b0135) 2002; 68
Jiang, Xu, Xi, Zhang, Dai, Wan, Chen, Wei (b0070) 2013; 135
Lee, Lee, Hong, Chang, Park (b0090) 2003; 25
Jeffries (b0060) 1983; 27
Liang, Liu, Wang, Gou, Ma, Chen, Jiang, Wei, Ouyang (b0100) 2012; 51
Zeikus, Jain, Elankovan (b0150) 1999; 51
Breuil, Saddler (b0020) 1985; 7
Andersson, Petrova, Berglund, Rova (b0010) 2009; 33
Donnelly, Millard, Clark, Chen, Rathke (b0035) 1998; 70–72
Gonzalez, Tao, Shanmugam, York, Ingram (b0045) 2002; 18
Datsenko, Wanner (b0030) 2000; 97
Kim, Laivenieks, Vieille, Zeikus (b0075) 2004; 70
Laivenieks, Vieille, Zeikus (b0080) 1997; 63
Lam, Daruwalla, Henderson, Jones-Mortimer (b0085) 1980; 143
Li, Yang, Wang, Li, Wu, Zhang, Xing, Su (b0110) 2010; 101
Zhang, Fan, Xing, Pan, Zhang, Lay (b0155) 2007; 31
Liang, Liu, Li, Wu, Chen, Ma, Jiang, Wei, Ouyang (b0095) 2013; 143
Sun, Sun, Zhao, Sun (b0130) 2004; 84
Chatterjee, Millard, Champion, Clark, Donnelly (b0025) 2001; 67
Liu, Liang, Chen, Ma, Jiang, Wei, Ouyang (b0105) 2012; 94
Jiang, Liu, Ma, Chen, Yu, Yue, Xu, Wei (b0065) 2010; 76
Singh, Lynch, Gill (b0125) 2009; 11
Werpy, T., Petersen, G., 2004. Top value added chemicals from biomass. U.S. Department of Energy, Washington, DC.
Jeffries (10.1016/j.biortech.2013.09.052_b0060) 1983; 27
Singh (10.1016/j.biortech.2013.09.052_b0125) 2009; 11
Zhang (10.1016/j.biortech.2013.09.052_b0155) 2007; 31
Zheng (10.1016/j.biortech.2013.09.052_b0160) 2009; 100
Borges (10.1016/j.biortech.2013.09.052_b0015) 2011; 38
Andersson (10.1016/j.biortech.2013.09.052_b0010) 2009; 33
Hasona (10.1016/j.biortech.2013.09.052_b0055) 2004; 186
Lee (10.1016/j.biortech.2013.09.052_b0090) 2003; 25
Orencio-Trejo (10.1016/j.biortech.2013.09.052_b0120) 2010; 121
Nichols (10.1016/j.biortech.2013.09.052_b0115) 2001; 56
Liang (10.1016/j.biortech.2013.09.052_b0095) 2013; 143
Kim (10.1016/j.biortech.2013.09.052_b0075) 2004; 70
Liang (10.1016/j.biortech.2013.09.052_b0100) 2012; 51
Sun (10.1016/j.biortech.2013.09.052_b0130) 2004; 84
Fan (10.1016/j.biortech.2013.09.052_b0040) 2006; 97
Lam (10.1016/j.biortech.2013.09.052_b0085) 1980; 143
Gonzalez (10.1016/j.biortech.2013.09.052_b0045) 2002; 18
Andersson (10.1016/j.biortech.2013.09.052_b0005) 2007; 23
Chatterjee (10.1016/j.biortech.2013.09.052_b0025) 2001; 67
Vemuri (10.1016/j.biortech.2013.09.052_b0135) 2002; 68
Breuil (10.1016/j.biortech.2013.09.052_b0020) 1985; 7
Wu (10.1016/j.biortech.2013.09.052_b0145) 2007; 73
Guo (10.1016/j.biortech.2013.09.052_b0050) 2012; 39
Laivenieks (10.1016/j.biortech.2013.09.052_b0080) 1997; 63
Jiang (10.1016/j.biortech.2013.09.052_b0065) 2010; 76
10.1016/j.biortech.2013.09.052_b0140
Jiang (10.1016/j.biortech.2013.09.052_b0070) 2013; 135
Datsenko (10.1016/j.biortech.2013.09.052_b0030) 2000; 97
Donnelly (10.1016/j.biortech.2013.09.052_b0035) 1998; 70–72
Li (10.1016/j.biortech.2013.09.052_b0110) 2010; 101
Liu (10.1016/j.biortech.2013.09.052_b0105) 2012; 94
Zeikus (10.1016/j.biortech.2013.09.052_b0150) 1999; 51
References_xml – volume: 94
  start-page: 959
  year: 2012
  end-page: 968
  ident: b0105
  article-title: Fermentation of xylose to succinate by enhancement of ATP supply in metabolically engineered
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 97
  start-page: 6640
  year: 2000
  end-page: 6645
  ident: b0030
  article-title: One-step inactivation of chromosomal genes in
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 51
  start-page: 286
  year: 2012
  end-page: 293
  ident: b0100
  article-title: Regulation of NAD(H) pool and NADH/NAD
  publication-title: Enzyme Microb. Technol.
– volume: 23
  start-page: 381
  year: 2007
  end-page: 388
  ident: b0005
  article-title: Effect of different carbon sources on the production of succinic acid using metabolically engineered
  publication-title: Biotechnol. Prog.
– volume: 70–72
  start-page: 187
  year: 1998
  end-page: 198
  ident: b0035
  article-title: A novel fermentation pathway in an
  publication-title: Appl. Biochem. Biotechnol.
– volume: 63
  start-page: 2273
  year: 1997
  end-page: 2280
  ident: b0080
  article-title: Cloning, sequencing and overexpression of the
  publication-title: Appl. Environ. Microbiol.
– volume: 100
  start-page: 2425
  year: 2009
  end-page: 2429
  ident: b0160
  article-title: Fermentative production of succinic acid from straw hydrolysate by
  publication-title: Bioresour. Technol.
– reference: Werpy, T., Petersen, G., 2004. Top value added chemicals from biomass. U.S. Department of Energy, Washington, DC.
– volume: 27
  start-page: 1
  year: 1983
  end-page: 32
  ident: b0060
  article-title: Utilization of xylose by bacteria, yeasts, and fungi
  publication-title: Adv. Biochem. Eng./Biotechnol.
– volume: 73
  start-page: 7837
  year: 2007
  end-page: 7843
  ident: b0145
  article-title: Improved succinic acid production in the anaerobic culture of an
  publication-title: Appl. Environ. Microbiol.
– volume: 33
  start-page: 711
  year: 2009
  end-page: 718
  ident: b0010
  article-title: Maintaining high anaerobic succinic acid productivity by product removal
  publication-title: Bioprocess Biosyst. Eng.
– volume: 135
  start-page: 469
  year: 2013
  end-page: 474
  ident: b0070
  article-title: Succinic acid production from cellobiose by
  publication-title: Bioresour. Technol.
– volume: 11
  start-page: 347
  year: 2009
  end-page: 354
  ident: b0125
  article-title: Genes restoring redox balance in fermentation-deficient
  publication-title: Metab. Eng.
– volume: 186
  start-page: 7593
  year: 2004
  end-page: 7600
  ident: b0055
  article-title: Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of
  publication-title: J. Bacteriol.
– volume: 51
  start-page: 545
  year: 1999
  end-page: 552
  ident: b0150
  article-title: Biotechnology of succinic acid production and markets for derived industrial products
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 7
  start-page: 327
  year: 1985
  end-page: 332
  ident: b0020
  article-title: Comparison of the 3,5-dinitrosalicylic acid and Nelson-Somogyi methods of assaying for reducing sugars and determining cellulase activity
  publication-title: Enzyme Microb. Technol.
– volume: 143
  start-page: 405
  year: 2013
  end-page: 412
  ident: b0095
  article-title: Repetitive succinic acid production from lignocellulose hydrolysates by enhancement of ATP supply in metabolically engineered
  publication-title: Bioresour. Technol.
– volume: 76
  start-page: 1298
  year: 2010
  end-page: 1300
  ident: b0065
  article-title: Effect of growth phase feeding strategies on succinate production by metabolically engineered
  publication-title: Appl. Environ. Microbiol.
– volume: 84
  start-page: 331
  year: 2004
  end-page: 339
  ident: b0130
  article-title: Isolation and characterization of cellulose from sugarcane bagasse
  publication-title: Polym. Degrad. Stab.
– volume: 68
  start-page: 1715
  year: 2002
  end-page: 1727
  ident: b0135
  article-title: Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of
  publication-title: Appl. Environ. Microbiol.
– volume: 39
  start-page: 401
  year: 2012
  end-page: 407
  ident: b0050
  article-title: mutant with high inhibitor tolerance obtained by low-energy ion implantation
  publication-title: J. Ind. Microbiol. Biotechnol.
– volume: 101
  start-page: 3292
  year: 2010
  end-page: 3294
  ident: b0110
  article-title: Efficient conversion of crop stalk wastes into succinic acid production by
  publication-title: Bioresour. Technol.
– volume: 67
  start-page: 148
  year: 2001
  end-page: 154
  ident: b0025
  article-title: Mutation of the
  publication-title: Appl. Environ. Microbiol.
– volume: 97
  start-page: 500
  year: 2006
  end-page: 505
  ident: b0040
  article-title: Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost
  publication-title: Bioresour. Technol.
– volume: 143
  start-page: 396
  year: 1980
  end-page: 402
  ident: b0085
  article-title: Proton-linked d-xylose transport in
  publication-title: J. Bacteriol.
– volume: 18
  start-page: 6
  year: 2002
  end-page: 20
  ident: b0045
  article-title: Global gene expression differences associated with changes in glycolytic flux and growth rate in
  publication-title: Biotechnol. Prog.
– volume: 70
  start-page: 1238
  year: 2004
  end-page: 1241
  ident: b0075
  article-title: Effect of overexpression of
  publication-title: Appl. Environ. Microbiol.
– volume: 56
  start-page: 120
  year: 2001
  end-page: 125
  ident: b0115
  article-title: Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 38
  start-page: 1001
  year: 2011
  end-page: 1011
  ident: b0015
  article-title: Succinic acid production from sugarcane bagasse hemicellulose hydrolysate by
  publication-title: J. Ind. Microbiol. Biotechnol.
– volume: 31
  start-page: 250
  year: 2007
  end-page: 254
  ident: b0155
  article-title: Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures
  publication-title: Biomass Bioenergy
– volume: 25
  start-page: 111
  year: 2003
  end-page: 114
  ident: b0090
  article-title: Biological conversion of wood hydrolysate to succinic acid by
  publication-title: Biotechnol. Lett.
– volume: 121
  start-page: 71
  year: 2010
  end-page: 107
  ident: b0120
  article-title: Engineering the
  publication-title: Adv. Biochem. Eng./Biotechnol.
– volume: 97
  start-page: 500
  year: 2006
  ident: 10.1016/j.biortech.2013.09.052_b0040
  article-title: Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2005.02.049
– volume: 100
  start-page: 2425
  year: 2009
  ident: 10.1016/j.biortech.2013.09.052_b0160
  article-title: Fermentative production of succinic acid from straw hydrolysate by Actinobacillus succinogenes
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2008.11.043
– volume: 70–72
  start-page: 187
  year: 1998
  ident: 10.1016/j.biortech.2013.09.052_b0035
  article-title: A novel fermentation pathway in an Escherichia coli mutant producing succinic acid, acetic acid, and ethanol
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/BF02920135
– volume: 135
  start-page: 469
  year: 2013
  ident: 10.1016/j.biortech.2013.09.052_b0070
  article-title: Succinic acid production from cellobiose by Actinobacillus succinogenes
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.10.019
– volume: 51
  start-page: 286
  year: 2012
  ident: 10.1016/j.biortech.2013.09.052_b0100
  article-title: Regulation of NAD(H) pool and NADH/NAD+ ratio by overexpression of nicotinic acid phosphoribosyltransferase for succinic acid production in Escherichia coli NZN111
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/j.enzmictec.2012.07.011
– volume: 7
  start-page: 327
  year: 1985
  ident: 10.1016/j.biortech.2013.09.052_b0020
  article-title: Comparison of the 3,5-dinitrosalicylic acid and Nelson-Somogyi methods of assaying for reducing sugars and determining cellulase activity
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/0141-0229(85)90111-5
– volume: 186
  start-page: 7593
  year: 2004
  ident: 10.1016/j.biortech.2013.09.052_b0055
  article-title: Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.186.22.7593-7600.2004
– volume: 70
  start-page: 1238
  year: 2004
  ident: 10.1016/j.biortech.2013.09.052_b0075
  article-title: Effect of overexpression of Actinobacillus succinogenes phosphoenolpyruvate carboxykinase on succinate production in Escherichia coli
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.70.2.1238-1241.2004
– volume: 68
  start-page: 1715
  year: 2002
  ident: 10.1016/j.biortech.2013.09.052_b0135
  article-title: Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.68.4.1715-1727.2002
– volume: 39
  start-page: 401
  year: 2012
  ident: 10.1016/j.biortech.2013.09.052_b0050
  article-title: Clostridium beijerinckii mutant with high inhibitor tolerance obtained by low-energy ion implantation
  publication-title: J. Ind. Microbiol. Biotechnol.
  doi: 10.1007/s10295-011-1017-5
– volume: 25
  start-page: 111
  year: 2003
  ident: 10.1016/j.biortech.2013.09.052_b0090
  article-title: Biological conversion of wood hydrolysate to succinic acid by Anaerobiospirillum succiniciproducens
  publication-title: Biotechnol. Lett.
  doi: 10.1023/A:1021907116361
– volume: 97
  start-page: 6640
  year: 2000
  ident: 10.1016/j.biortech.2013.09.052_b0030
  article-title: One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.120163297
– volume: 143
  start-page: 396
  year: 1980
  ident: 10.1016/j.biortech.2013.09.052_b0085
  article-title: Proton-linked d-xylose transport in Escherichia coli
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.143.1.396-402.1980
– volume: 73
  start-page: 7837
  year: 2007
  ident: 10.1016/j.biortech.2013.09.052_b0145
  article-title: Improved succinic acid production in the anaerobic culture of an Escherichia coli pflB ldhA double mutant as a result of enhanced anaplerotic activities in the preceding aerobic culture
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01546-07
– volume: 18
  start-page: 6
  year: 2002
  ident: 10.1016/j.biortech.2013.09.052_b0045
  article-title: Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose
  publication-title: Biotechnol. Prog.
  doi: 10.1021/bp010121i
– volume: 27
  start-page: 1
  year: 1983
  ident: 10.1016/j.biortech.2013.09.052_b0060
  article-title: Utilization of xylose by bacteria, yeasts, and fungi
  publication-title: Adv. Biochem. Eng./Biotechnol.
– volume: 76
  start-page: 1298
  year: 2010
  ident: 10.1016/j.biortech.2013.09.052_b0065
  article-title: Effect of growth phase feeding strategies on succinate production by metabolically engineered Escherichia coli
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02190-09
– volume: 56
  start-page: 120
  year: 2001
  ident: 10.1016/j.biortech.2013.09.052_b0115
  article-title: Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s002530100628
– ident: 10.1016/j.biortech.2013.09.052_b0140
– volume: 63
  start-page: 2273
  year: 1997
  ident: 10.1016/j.biortech.2013.09.052_b0080
  article-title: Cloning, sequencing and overexpression of the Anaerobiospirillum succiniciproducens phosphoenolpyruvate carboxykinase (pckA) gene
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.63.6.2273-2280.1997
– volume: 38
  start-page: 1001
  year: 2011
  ident: 10.1016/j.biortech.2013.09.052_b0015
  article-title: Succinic acid production from sugarcane bagasse hemicellulose hydrolysate by Actinobacillus succinogenes
  publication-title: J. Ind. Microbiol. Biotechnol.
  doi: 10.1007/s10295-010-0874-7
– volume: 11
  start-page: 347
  year: 2009
  ident: 10.1016/j.biortech.2013.09.052_b0125
  article-title: Genes restoring redox balance in fermentation-deficient E. coli NZN111
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2009.07.002
– volume: 31
  start-page: 250
  year: 2007
  ident: 10.1016/j.biortech.2013.09.052_b0155
  article-title: Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2006.08.004
– volume: 67
  start-page: 148
  year: 2001
  ident: 10.1016/j.biortech.2013.09.052_b0025
  article-title: Mutation of the ptsG gene results in increased production of succinate in fermentation of glucose by Escherichia coli
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.67.1.148-154.2001
– volume: 23
  start-page: 381
  year: 2007
  ident: 10.1016/j.biortech.2013.09.052_b0005
  article-title: Effect of different carbon sources on the production of succinic acid using metabolically engineered Escherichia coli
  publication-title: Biotechnol. Prog.
  doi: 10.1021/bp060301y
– volume: 84
  start-page: 331
  year: 2004
  ident: 10.1016/j.biortech.2013.09.052_b0130
  article-title: Isolation and characterization of cellulose from sugarcane bagasse
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2004.02.008
– volume: 121
  start-page: 71
  year: 2010
  ident: 10.1016/j.biortech.2013.09.052_b0120
  article-title: Engineering the Escherichia coli fermentative metabolism
  publication-title: Adv. Biochem. Eng./Biotechnol.
– volume: 33
  start-page: 711
  year: 2009
  ident: 10.1016/j.biortech.2013.09.052_b0010
  article-title: Maintaining high anaerobic succinic acid productivity by product removal
  publication-title: Bioprocess Biosyst. Eng.
  doi: 10.1007/s00449-009-0393-y
– volume: 94
  start-page: 959
  year: 2012
  ident: 10.1016/j.biortech.2013.09.052_b0105
  article-title: Fermentation of xylose to succinate by enhancement of ATP supply in metabolically engineered Escherichia coli
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-012-3896-4
– volume: 143
  start-page: 405
  year: 2013
  ident: 10.1016/j.biortech.2013.09.052_b0095
  article-title: Repetitive succinic acid production from lignocellulose hydrolysates by enhancement of ATP supply in metabolically engineered Escherichia coli
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.06.031
– volume: 51
  start-page: 545
  year: 1999
  ident: 10.1016/j.biortech.2013.09.052_b0150
  article-title: Biotechnology of succinic acid production and markets for derived industrial products
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s002530051431
– volume: 101
  start-page: 3292
  year: 2010
  ident: 10.1016/j.biortech.2013.09.052_b0110
  article-title: Efficient conversion of crop stalk wastes into succinic acid production by Actinobacillus succinogenes
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.12.064
SSID ssj0003172
Score 2.375489
Snippet •We constructed a recombinant Escherichia coli strain named BA305.•BA305 improved utilization of glucose and xylose anaerobically.•BA305 consumed sugar mixture...
To enhance succinic acid formation during xylose fermentation in Escherichia coli, overexpression of ATP-forming phosphoenolpyruvate carboxykinase (PEPCK) from...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 84
SubjectTerms Adenosine Triphosphate
Adenosine Triphosphate - metabolism
Anaerobiosis
ATP
Bacillus subtilis
Batch Cell Culture Techniques
Biological and medical sciences
Biomass
Bioreactors
Cellulose
Cellulose - metabolism
chemistry
Deletion
enzymology
Escherichia coli
Escherichia coli - enzymology
Escherichia coli - metabolism
Fermentation
Fundamental and applied biological sciences. Psychology
Genetic Engineering
Glucose
Glucose - metabolism
Hydrolysis
Lignin
Lignin - metabolism
Lignocellulosic hydrolysate
metabolism
Phosphoenolpyruvate Carboxylase
Phosphoenolpyruvate Carboxylase - metabolism
Phosphoenolpyruvate Sugar Phosphotransferase System
Phosphoenolpyruvate Sugar Phosphotransferase System - metabolism
Saccharum
Saccharum - chemistry
Simultaneous utilization
Strain
Succinic acid
Succinic Acid - metabolism
sugarcane bagasse
Utilization
Xylose
Xylose - metabolism
Title Efficient succinic acid production from lignocellulosic biomass by simultaneous utilization of glucose and xylose in engineered Escherichia coli
URI https://dx.doi.org/10.1016/j.biortech.2013.09.052
https://www.ncbi.nlm.nih.gov/pubmed/24096277
https://www.proquest.com/docview/1448209604
https://www.proquest.com/docview/1490510274
https://www.proquest.com/docview/1516745334
Volume 149
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtswECWC9NAWRdGmm5PUYIFeFWshRfFoGA7cFs2lDZAbQVFUwECQjMgGmku_oZ-cGYrKckhy6E22SZjWG88iznsk5KvMDNN1gYyeVERMWh2VUtsoY7kRkse58fTonyf56pR9P-NnO2QxcmGwrTL4_sGne28d3pmFuzlbOzf7hcl3wf2-EOT0nkvNmEArP_p72-YB8dHvJMDgCEffYQlfHJUOO1r9pkSSeb1Tnj4UoF6tdQ-3rR7Ou3g4IfWB6fgNeR0ySjofFv2W7Nh2j7ycn18GVQ27R54vxmPd4JM7CoTvyL-ll5CAyEP7rTHIkqTauIquByVYQI0iA4U27rzt8Cn_tukAWIq0fci7aXlFe4ddibq13banYMdNoHbSrqahI57qtqJ_rhq8dC21YQm2ossercZhxzUFm3Tvyenx8vdiFYVDGiLDGN9EtdR5ZW1Sgbcw4K1SETNRiVrmUHSLrM4l16Y2iSyzwpgktkVmIe1KmShKzaGU_0B22661nwiNuRXcmtwyKJOKWMi6rCwTTFaxwcsJ4SMyygQFczxIo1Fjq9qFGhFViKiKpQJEJ2R2M289aHg8OUOOwKt71qgg0Dw5d3rPUm6-MhUSN0GTCfkymo4C7BG6ASIowxgkZCiX89gYVFTDhwmPjOHILUGS9YR8HGzzdhVQ0ANIYv8_fuIBeYGvhq6eQ7K7udzaz5Cbbcqp__NNybP5tx-rk2t5Ojzr
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigIISiULo9iJDimm4cdxwcOVdlqSx8XWqk3kzhOlSrKrppdlb3wG_gv_EFmEqePQ9sD6i3axIk334w9k5n5BuCzigxPi4QqekLpcWVTL1Op9SIeG6mEH5u2PPrgMB4f8-8n4mQJ_va1MJRW6db-bk1vV2v3y9C9zeG0LIc_yPhORBsXQps-Clxm5Z5dXKDf1nzd_YYgfwnDndHR9thzrQU8w7mYeYVK49zaIEcZN6hjofS5zGWhYnQVZVTESqSmMIHKosSYwLdJZNFYCLlMslSgA4r3fQSPOS4X1DZh8_dVXgluyG3oAmfn0fSulSWfbWYlpdC2UZAgaglWRXjbjvhsmjaIU9E12LjdAm53wp0X8NyZsGyre0svYcnWq_B06_Tc0XjYVVjZ7vvI4ZlrlIev4M-o5azArY41c2OoLJOlpszZtKOeRTFhVPLCqvK0nlBYYV5NUJIY8QSgoc-yBWtKSoNMazuZNwwVp3K1pGxSMJeCz9I6Z78WFR2WNbNuCjZno4bEtKQUb4ZKUL6G4weBbg2W60lt14H5wkphTWw5-mWJL1WR5ZZLrnLf0OEARI-MNo4ynTp3VLrPjTvTPaKaENW-0ojoAIaX46Ydaci9I1QPvL4h_hp3tnvHbtyQlMtHhlJR1DUYwKdedDRiT9B1EKHfx9ECJH6eu64hCjf6enHHNYKKWaiqewBvOtm8mgX3qcGTfPsff_EjrIyPDvb1_u7h3jt4Qme6lKL3sDw7n9sPaBjOso1WERn8fGjN_wcrYXgH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+succinic+acid+production+from+lignocellulosic+biomass+by+simultaneous+utilization+of+glucose+and+xylose+in+engineered+Escherichia+coli&rft.jtitle=Bioresource+technology&rft.au=RONGMING+LIU&rft.au=LIYA+LIANG&rft.au=FENG+LI&rft.au=MINGKE+WU&rft.date=2013-12-01&rft.pub=Elsevier&rft.issn=0960-8524&rft.volume=149&rft.spage=84&rft.epage=91&rft_id=info:doi/10.1016%2Fj.biortech.2013.09.052&rft.externalDBID=n%2Fa&rft.externalDocID=27960021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon