Creep and Recovery Behaviour of Polyolefin-Rubber Nanocomposites Developed for Additive Manufacturing

Nanocomposite application in automotive engineering materials is subject to continual stress fields together with recovery periods, under extremes of temperature variations. The aim is to prepare and characterize polyolefin-rubber nanocomposites developed for additive manufacturing in terms of their...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 8; no. 12; p. 437
Main Authors Daver, Fugen, Kajtaz, Mladenko, Brandt, Milan, Shanks, Robert
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 15.12.2016
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanocomposite application in automotive engineering materials is subject to continual stress fields together with recovery periods, under extremes of temperature variations. The aim is to prepare and characterize polyolefin-rubber nanocomposites developed for additive manufacturing in terms of their time-dependent deformation behaviour as revealed in creep-recovery experiments. The composites consisted of linear low density polyethylene and functionalized rubber particles. Maleic anhydride compatibilizer grafted to polyethylene was used to enhance adhesion between the polyethylene and rubber; and multi-walled carbon nanotubes were introduced to impart electrical conductivity. Various compositions of nanocomposites were tested under constant stress in creep and recovery. A four-element mechanistic Burger model was employed to model the creep phase of the composites, while a Weibull distribution function was employed to model the recovery phase of the composites. Finite element analysis using Abaqus enabled numerical modelling of the creep phase of the composites. Both analytical and numerical solutions were found to be consistent with the experimental results. Creep and recovery were dependent on: (i) composite composition; (ii) compatibilizers content; (iii) carbon nanotubes that formed a percolation network.
AbstractList Nanocomposite application in automotive engineering materials is subject to continual stress fields together with recovery periods, under extremes of temperature variations. The aim is to prepare and characterize polyolefin-rubber nanocomposites developed for additive manufacturing in terms of their time-dependent deformation behaviour as revealed in creep-recovery experiments. The composites consisted of linear low density polyethylene and functionalized rubber particles. Maleic anhydride compatibilizer grafted to polyethylene was used to enhance adhesion between the polyethylene and rubber; and multi-walled carbon nanotubes were introduced to impart electrical conductivity. Various compositions of nanocomposites were tested under constant stress in creep and recovery. A four-element mechanistic Burger model was employed to model the creep phase of the composites, while a Weibull distribution function was employed to model the recovery phase of the composites. Finite element analysis using Abaqus enabled numerical modelling of the creep phase of the composites. Both analytical and numerical solutions were found to be consistent with the experimental results. Creep and recovery were dependent on: (i) composite composition; (ii) compatibilizers content; (iii) carbon nanotubes that formed a percolation network.
Nanocomposite application in automotive engineering materials is subject to continual stress fields together with recovery periods, under extremes of temperature variations. The aim is to prepare and characterize polyolefin-rubber nanocomposites developed for additive manufacturing in terms of their time-dependent deformation behaviour as revealed in creep-recovery experiments. The composites consisted of linear low density polyethylene and functionalized rubber particles. Maleic anhydride compatibilizer grafted to polyethylene was used to enhance adhesion between the polyethylene and rubber; and multi-walled carbon nanotubes were introduced to impart electrical conductivity. Various compositions of nanocomposites were tested under constant stress in creep and recovery. A four-element mechanistic Burger model was employed to model the creep phase of the composites, while a Weibull distribution function was employed to model the recovery phase of the composites. Finite element analysis using Abaqus enabled numerical modelling of the creep phase of the composites. Both analytical and numerical solutions were found to be consistent with the experimental results. Creep and recovery were dependent on: (i) composite composition; (ii) compatibilizers content; (iii) carbon nanotubes that formed a percolation network.Nanocomposite application in automotive engineering materials is subject to continual stress fields together with recovery periods, under extremes of temperature variations. The aim is to prepare and characterize polyolefin-rubber nanocomposites developed for additive manufacturing in terms of their time-dependent deformation behaviour as revealed in creep-recovery experiments. The composites consisted of linear low density polyethylene and functionalized rubber particles. Maleic anhydride compatibilizer grafted to polyethylene was used to enhance adhesion between the polyethylene and rubber; and multi-walled carbon nanotubes were introduced to impart electrical conductivity. Various compositions of nanocomposites were tested under constant stress in creep and recovery. A four-element mechanistic Burger model was employed to model the creep phase of the composites, while a Weibull distribution function was employed to model the recovery phase of the composites. Finite element analysis using Abaqus enabled numerical modelling of the creep phase of the composites. Both analytical and numerical solutions were found to be consistent with the experimental results. Creep and recovery were dependent on: (i) composite composition; (ii) compatibilizers content; (iii) carbon nanotubes that formed a percolation network.
Author Daver, Fugen
Shanks, Robert
Kajtaz, Mladenko
Brandt, Milan
AuthorAffiliation 1 School of Engineering, RMIT University, P.O. Box 71, Bundoora, Victoria 3083, Australia; mladenko.kajtaz@rmit.edu.au (M.K.); milan.brandt@rmit.edu.au (M.B.)
2 School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia; robert.shanks@rmit.edu.au
AuthorAffiliation_xml – name: 1 School of Engineering, RMIT University, P.O. Box 71, Bundoora, Victoria 3083, Australia; mladenko.kajtaz@rmit.edu.au (M.K.); milan.brandt@rmit.edu.au (M.B.)
– name: 2 School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia; robert.shanks@rmit.edu.au
Author_xml – sequence: 1
  givenname: Fugen
  orcidid: 0000-0003-0826-4919
  surname: Daver
  fullname: Daver, Fugen
– sequence: 2
  givenname: Mladenko
  orcidid: 0000-0002-1199-0957
  surname: Kajtaz
  fullname: Kajtaz, Mladenko
– sequence: 3
  givenname: Milan
  surname: Brandt
  fullname: Brandt, Milan
– sequence: 4
  givenname: Robert
  surname: Shanks
  fullname: Shanks, Robert
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30974712$$D View this record in MEDLINE/PubMed
BookMark eNqFkttrFTEQxhep2Fr75rMEfPHB1dw22bwI9XiFeqHo85LLpE3Zk6zJ7sL5701pLccimJcJ5DfffJmZx81BTBGa5inBrxhT-PWUxt22JxRzJh80RxRL1nIm8MHe_bA5KeUK18M7IYh81BwyrCSXhB41sMkAE9LRoXOwaYW8Q2_hUq8hLRklj77XCmkEH2J7vhgDGX3VMdm0nVIJMxT0DlYY0wQO-ZTRqXNhDiugLzouXtt5ySFePGkeej0WOLmNx83PD-9_bD61Z98-ft6cnrWW825uPfEeOgGOMO5UJ6RznvRGCQnGKOKg09QZJgxh0oIzXlFvdG-VFb4zvWbHzZsb3WkxW3AW4pz1OEw5bHXeDUmH4e-XGC6Hi7QOgjPKlKwCL24Fcvq1QJmHbSgWxlFHSEsZKMVKYCok_y9K-h5jwmWvKvr8HnpVuxtrJyrV9XUalJBKPds3f-f6z7Aq8PIGsDmVksHfIQQP1-sw7K9Dxek93IZZzyFdfz2M_076Dc5xu8k
CitedBy_id crossref_primary_10_1007_s11665_024_10170_w
crossref_primary_10_1021_acsapm_9b00095
crossref_primary_10_1007_s11043_021_09524_x
crossref_primary_10_1002_anie_202417713
crossref_primary_10_1002_app_55542
crossref_primary_10_1016_j_colsurfa_2023_132288
crossref_primary_10_1088_1742_6596_2361_1_012009
crossref_primary_10_1002_app_49957
crossref_primary_10_3390_pharmaceutics15071810
crossref_primary_10_1080_14680629_2021_1908407
crossref_primary_10_1177_1528083720961416
crossref_primary_10_3390_polym12081785
crossref_primary_10_1016_j_ijsolstr_2024_113122
crossref_primary_10_3390_ma13214973
crossref_primary_10_1007_s12221_021_3207_8
crossref_primary_10_1016_j_mechmat_2020_103461
crossref_primary_10_1002_vnl_21875
crossref_primary_10_3390_jcs1010003
crossref_primary_10_1177_09544062211017164
crossref_primary_10_1002_bab_1755
crossref_primary_10_1016_j_prostr_2022_02_028
crossref_primary_10_1002_app_54463
crossref_primary_10_1016_j_polymdegradstab_2022_109904
crossref_primary_10_1002_ange_202417713
crossref_primary_10_3390_polym10080917
crossref_primary_10_3390_coatings13111849
crossref_primary_10_3390_nano14131116
crossref_primary_10_1016_j_asr_2020_07_039
crossref_primary_10_1016_j_matchemphys_2021_124939
crossref_primary_10_3390_polym11060988
crossref_primary_10_3390_ijms24043963
crossref_primary_10_3390_polym17010071
crossref_primary_10_1007_s11043_021_09513_0
crossref_primary_10_1007_s11665_023_08278_6
crossref_primary_10_18034_apjee_v9i2_753
crossref_primary_10_1039_D4LP00348A
Cites_doi 10.1002/app.34518
10.1016/S0308-0161(01)00080-1
10.1016/j.ijmachtools.2006.01.026
10.1016/j.polymer.2013.05.013
10.1016/j.compositesa.2009.03.011
10.1163/156855408783810894
10.1016/j.compositesb.2015.05.046
10.1016/j.compscitech.2013.11.028
10.1016/j.compositesa.2015.10.002
10.1007/s10853-005-2020-x
10.1016/j.ijplas.2011.02.004
10.1016/j.compositesa.2012.03.015
10.1016/j.compositesa.2014.11.031
ContentType Journal Article
Copyright Copyright MDPI AG 2016
2016 by the authors. 2016
Copyright_xml – notice: Copyright MDPI AG 2016
– notice: 2016 by the authors. 2016
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOI 10.3390/polym8120437
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Proquest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Materials Science Collection
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database
MEDLINE - Academic
Materials Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2073-4360
EndPage 437
ExternalDocumentID PMC6432397
4301310201
30974712
10_3390_polym8120437
Genre Journal Article
GroupedDBID 53G
5VS
8FE
8FG
A8Z
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACGFO
ACIWK
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
ESX
F5P
GX1
HCIFZ
HH5
HYE
I-F
IPNFZ
KB.
KC.
KQ8
ML~
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RIG
RNS
RPM
TR2
TUS
GROUPED_DOAJ
NPM
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c445t-f1ffe56ed134d9567ddf18b967ebb91de5a2db36b137cedbf92fba8c9c6f5b8a3
IEDL.DBID BENPR
ISSN 2073-4360
IngestDate Thu Aug 21 18:18:24 EDT 2025
Fri Jul 11 16:10:32 EDT 2025
Thu Jul 10 18:05:30 EDT 2025
Fri Jul 25 11:59:46 EDT 2025
Wed Feb 19 02:34:58 EST 2025
Tue Jul 01 02:54:45 EDT 2025
Thu Apr 24 23:11:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords nanocomposite
creep and recovery
modelling
polymer-matrix composite
polyethylene
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-f1ffe56ed134d9567ddf18b967ebb91de5a2db36b137cedbf92fba8c9c6f5b8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0826-4919
0000-0002-1199-0957
OpenAccessLink https://www.proquest.com/docview/1858309211?pq-origsite=%requestingapplication%
PMID 30974712
PQID 1858309211
PQPubID 2032345
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6432397
proquest_miscellaneous_2209602674
proquest_miscellaneous_1880014789
proquest_journals_1858309211
pubmed_primary_30974712
crossref_primary_10_3390_polym8120437
crossref_citationtrail_10_3390_polym8120437
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20161215
PublicationDateYYYYMMDD 2016-12-15
PublicationDate_xml – month: 12
  year: 2016
  text: 20161215
  day: 15
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Polymers
PublicationTitleAlternate Polymers (Basel)
PublicationYear 2016
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Starkova (ref_3) 2012; 43
Daver (ref_13) 2016; 80
ref_14
Lin (ref_18) 2006; 46
ref_21
Spoljaric (ref_8) 2009; 40
Georgiopoulos (ref_20) 2015; 80
Tang (ref_2) 2014; 91
Wong (ref_9) 2008; 15
Kim (ref_17) 2001; 78
ref_19
ref_16
ref_15
Jia (ref_4) 2011; 27
Wang (ref_12) 2014; 69
Spoljaric (ref_1) 2012; 123
Fancey (ref_10) 2005; 40
ref_5
ref_7
Dai (ref_11) 2013; 54
ref_6
References_xml – ident: ref_7
– volume: 123
  start-page: 585
  year: 2012
  ident: ref_1
  article-title: Novel elastomer-dumbbell functionalized POSS composites: Thermomechanical and morphological properties
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.34518
– ident: ref_6
– volume: 78
  start-page: 661
  year: 2001
  ident: ref_17
  article-title: Contour integral calculations for generalised creep laws within ABAQUS
  publication-title: Int. J. Press. Vessel. Pip.
  doi: 10.1016/S0308-0161(01)00080-1
– volume: 46
  start-page: 1266
  year: 2006
  ident: ref_18
  article-title: An integrated process for modelling of precipitation hardening and springback in creep age-forming
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2006.01.026
– volume: 54
  start-page: 3723
  year: 2013
  ident: ref_11
  article-title: Creep-resistant behaviour of MWCNT-polycarbonate melt spun nanocomposite fibers at elevated temperature
  publication-title: Polymer
  doi: 10.1016/j.polymer.2013.05.013
– volume: 40
  start-page: 791
  year: 2009
  ident: ref_8
  article-title: Polypropylene-microcrystalline cellulose composites with enhanced compatibility and properties
  publication-title: Compos. A Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2009.03.011
– ident: ref_5
– volume: 15
  start-page: 131
  year: 2008
  ident: ref_9
  article-title: Creep behaviour of biopolymers and modified flax fibre composites
  publication-title: Compos. Interfaces
  doi: 10.1163/156855408783810894
– volume: 80
  start-page: 134
  year: 2015
  ident: ref_20
  article-title: Short-term creep behaviour of a biodegradable polymer reinforced with wood-fibers
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2015.05.046
– volume: 91
  start-page: 63
  year: 2014
  ident: ref_2
  article-title: Creep and recovery of polystyrene composites filled with graphene additives
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2013.11.028
– volume: 80
  start-page: 13
  year: 2016
  ident: ref_13
  article-title: Conductive polyolefin-rubber nanocomposites with carbon nanotubes
  publication-title: Compos. A Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2015.10.002
– ident: ref_16
– ident: ref_15
– volume: 40
  start-page: 4827
  year: 2005
  ident: ref_10
  article-title: A mechanical model for creep, recovery and stress relaxation in polymeric materials
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-005-2020-x
– ident: ref_14
– volume: 27
  start-page: 1239
  year: 2011
  ident: ref_4
  article-title: Creep and recovery of polypropylene/carbon nanotube composites
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2011.02.004
– ident: ref_19
– volume: 43
  start-page: 1212
  year: 2012
  ident: ref_3
  article-title: Creep and recovery of epoxy/MWCNT nanocomposites
  publication-title: Compos. A Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2012.03.015
– ident: ref_21
– volume: 69
  start-page: 288
  year: 2014
  ident: ref_12
  article-title: Temperature dependence of creep and recovery behaviours of polymer composites filled with chemically reduced graphene oxide
  publication-title: Compos. A Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2014.11.031
SSID ssj0000456617
Score 2.2677233
Snippet Nanocomposite application in automotive engineering materials is subject to continual stress fields together with recovery periods, under extremes of...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 437
SubjectTerms Additive manufacturing
Additives
Automotive engineering
Behavior
Compatibilizers
Composition
Computer simulation
Creep (materials)
Distribution functions
Electrical resistivity
Finite element method
Low density polyethylenes
Maleic anhydride
Mathematical analysis
Mathematical models
Multi wall carbon nanotubes
Nanocomposites
Percolation
Polyethylene
Polyethylenes
Polymer matrix composites
Polyolefin rubber
Recovery
Rubber
Stress distribution
Time dependence
Weibull distribution
Title Creep and Recovery Behaviour of Polyolefin-Rubber Nanocomposites Developed for Additive Manufacturing
URI https://www.ncbi.nlm.nih.gov/pubmed/30974712
https://www.proquest.com/docview/1858309211
https://www.proquest.com/docview/1880014789
https://www.proquest.com/docview/2209602674
https://pubmed.ncbi.nlm.nih.gov/PMC6432397
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_W9GF7Gfuet65osD0N09iSZflpdKFpGbSUskLejD5OrJDaWRI_9L_fyVG8ZqN7NDqMuJPufj_pdAfwqXDO5zgu08JynQqRm1RJ4VOkUOWF4ZUT4e3w-YU8uxbfZ8UsHritYlrl1if2jtq1NpyRH1FcUXxcEV_5uviVhq5R4XY1ttDYg31ywUqNYP_bycXl1XDKEgALxehNxjsnfn-0aOd3txTVQk2f3Vj0D8D8O0_yXuCZPoOnETGy442Jn8MjbF7A48m2UdtLwMkSccF041ggk7Q271gse9gtWevZJU2mnaO_adKrzhhcMvKpbUgmDxlbuGIxcwgdIwjLjp3rE4rYuW668PChf8n4Cq6nJz8mZ2nsnpBaIYp16jPvsZDoMi4csaCSrJIpU8kSjakyh4XOneHSZLy06Iyvcm-0spWVvjBK89cwatoG3wITXkutx5nTlhOhsqY0nGtXcW4s2kwm8GWrx9rG0uKhw8W8JooRtF7f13oCnwfpxaakxgNyB1uT1HFjreo_yyCBj8MwKTzcc-gG2y7IqMD8SlU9LJPngbvlshQJvNlYeZgM_T9Q9TyBcsf-g0Aoyb070tz87EtzE77LCeG9-__U38MTwl19_6OsOIDRetnhB8I2a3MIe2p6ehiXMX2dzrLfyw8CqQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDI5KOZQL4t2BAkGiJzTqTpJ5HRCqFpYt7VYItVJvQx6OqLTMLPsQ2j_Fb8SeF11QufUcK7JsJ_6c-MHY69g5L2CQhrGVOlRKmDBLlA8BXZVXRuZOUe3w5DQZn6tPF_HFFvvV1cJQWmV3J9YXtassvZEfoF_J5CDHeOXd7EdIU6Pod7UbodGYxTGsf2LItnh79B71uy_E6MPZcBy2UwVCq1S8DH3kPcQJuEgqh9FBitxGmcmTFIzJIwexFs7IxEQyteCMz4U3OrO5TXxsMi1x31vstpLoyakyffSxf9MheISIoMmvx_XBwayarr-jD6UOQpue7x84-3dW5hU3N7rH7rb4lB82BnWfbUH5gO0Mu7FwDxkM5wAzrkvHKXTFk7DmbZPF1ZxXnn9GZqop-Msy_LIyBuYcb_CKUtcpPwwWvM1TAscRMPND5-r0JT7R5YrKLOq6yUfs_Eak-phtl1UJu4wrrxOtB5HTVmL4Zk1qpNQul9JYsFESsDedHAvbNjKneRrTAgMaknpxVeoB2--pZ00Dj2vo9jqVFO0xXhR_jC5gr_plFDj9qugSqhXRZBRnpll-PY0QFCmKJFUBe9JouWcG96eHARGwdEP_PQE1AN9cKS-_1Y3AEU0KtMKn_2f9JdsZn01OipOj0-Nn7A4ivnryUhTvse3lfAXPEVUtzYvalDn7etNn5zcEID-q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAIuiDeBAkaiJ7RK1va-DgiVtFFLaRRVVOpt8WMsKqW7aR5C-Wv8OsbZBw2o3Hr2yBrN2J7vs8czAO8jax3HfhJERqhASq6DNJYuQApVTmqRWen_Dp-M4sMz-eU8Ot-CX81fGJ9W2ZyJ64PalsbfkfcorqSinxFf6bk6LWK8P_w0vQp8Byn_0tq006iWyDGufhJ9m3882idf73I-PPg2OAzqDgOBkTJaBC50DqMYbSikJaaQkOZhqrM4Qa2z0GKkuNUi1qFIDFrtMu60Sk1mYhfpVAma9w5sJ54VdWD788FofNre8HiwRPigyrYXIuv3puVkdUkR1dcT2oyD_4Dbv3M0rwW94UN4UKNVtlctr0ewhcVjuDdomsQ9ARzMEKdMFZZ5Ikv7YsXqkovLGSsdG5My5QTdRRGcLrXGGaPzvPSJ7D5bDOeszlpCywg-sz1r18lM7EQVS__pYv2L8imc3Ypdn0GnKAt8AUw6FSvVD60ygsic0YkWQtlMCG3QhHEXPjR2zE1d1tx315jkRG-81fPrVu_Cbis9rcp53CC307gkrzf1PP-zBLvwrh0mg_s3FlVgufQyqWedSZrdLMO55408TmQXnldebpWh-f01Ae9CsuH_VsCXA98cKS5-rMuCE7bkhC5f_l_1t3CX9k3-9Wh0_AruE_xbt2EKox3oLGZLfE0Qa6Hf1GuZwffb3j6_AYWsRTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Creep+and+Recovery+Behaviour+of+Polyolefin-Rubber+Nanocomposites+Developed+for+Additive+Manufacturing&rft.jtitle=Polymers&rft.au=Daver%2C+Fugen&rft.au=Kajtaz%2C+Mladenko&rft.au=Brandt%2C+Milan&rft.au=Shanks%2C+Robert+A&rft.date=2016-12-15&rft.eissn=2073-4360&rft.volume=8&rft.issue=12&rft_id=info:doi/10.3390%2Fpolym8120437&rft_id=info%3Apmid%2F30974712&rft.externalDocID=30974712
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon