Creep and Recovery Behaviour of Polyolefin-Rubber Nanocomposites Developed for Additive Manufacturing
Nanocomposite application in automotive engineering materials is subject to continual stress fields together with recovery periods, under extremes of temperature variations. The aim is to prepare and characterize polyolefin-rubber nanocomposites developed for additive manufacturing in terms of their...
Saved in:
Published in | Polymers Vol. 8; no. 12; p. 437 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
15.12.2016
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanocomposite application in automotive engineering materials is subject to continual stress fields together with recovery periods, under extremes of temperature variations. The aim is to prepare and characterize polyolefin-rubber nanocomposites developed for additive manufacturing in terms of their time-dependent deformation behaviour as revealed in creep-recovery experiments. The composites consisted of linear low density polyethylene and functionalized rubber particles. Maleic anhydride compatibilizer grafted to polyethylene was used to enhance adhesion between the polyethylene and rubber; and multi-walled carbon nanotubes were introduced to impart electrical conductivity. Various compositions of nanocomposites were tested under constant stress in creep and recovery. A four-element mechanistic Burger model was employed to model the creep phase of the composites, while a Weibull distribution function was employed to model the recovery phase of the composites. Finite element analysis using Abaqus enabled numerical modelling of the creep phase of the composites. Both analytical and numerical solutions were found to be consistent with the experimental results. Creep and recovery were dependent on: (i) composite composition; (ii) compatibilizers content; (iii) carbon nanotubes that formed a percolation network. |
---|---|
AbstractList | Nanocomposite application in automotive engineering materials is subject to continual stress fields together with recovery periods, under extremes of temperature variations. The aim is to prepare and characterize polyolefin-rubber nanocomposites developed for additive manufacturing in terms of their time-dependent deformation behaviour as revealed in creep-recovery experiments. The composites consisted of linear low density polyethylene and functionalized rubber particles. Maleic anhydride compatibilizer grafted to polyethylene was used to enhance adhesion between the polyethylene and rubber; and multi-walled carbon nanotubes were introduced to impart electrical conductivity. Various compositions of nanocomposites were tested under constant stress in creep and recovery. A four-element mechanistic Burger model was employed to model the creep phase of the composites, while a Weibull distribution function was employed to model the recovery phase of the composites. Finite element analysis using Abaqus enabled numerical modelling of the creep phase of the composites. Both analytical and numerical solutions were found to be consistent with the experimental results. Creep and recovery were dependent on: (i) composite composition; (ii) compatibilizers content; (iii) carbon nanotubes that formed a percolation network. Nanocomposite application in automotive engineering materials is subject to continual stress fields together with recovery periods, under extremes of temperature variations. The aim is to prepare and characterize polyolefin-rubber nanocomposites developed for additive manufacturing in terms of their time-dependent deformation behaviour as revealed in creep-recovery experiments. The composites consisted of linear low density polyethylene and functionalized rubber particles. Maleic anhydride compatibilizer grafted to polyethylene was used to enhance adhesion between the polyethylene and rubber; and multi-walled carbon nanotubes were introduced to impart electrical conductivity. Various compositions of nanocomposites were tested under constant stress in creep and recovery. A four-element mechanistic Burger model was employed to model the creep phase of the composites, while a Weibull distribution function was employed to model the recovery phase of the composites. Finite element analysis using Abaqus enabled numerical modelling of the creep phase of the composites. Both analytical and numerical solutions were found to be consistent with the experimental results. Creep and recovery were dependent on: (i) composite composition; (ii) compatibilizers content; (iii) carbon nanotubes that formed a percolation network.Nanocomposite application in automotive engineering materials is subject to continual stress fields together with recovery periods, under extremes of temperature variations. The aim is to prepare and characterize polyolefin-rubber nanocomposites developed for additive manufacturing in terms of their time-dependent deformation behaviour as revealed in creep-recovery experiments. The composites consisted of linear low density polyethylene and functionalized rubber particles. Maleic anhydride compatibilizer grafted to polyethylene was used to enhance adhesion between the polyethylene and rubber; and multi-walled carbon nanotubes were introduced to impart electrical conductivity. Various compositions of nanocomposites were tested under constant stress in creep and recovery. A four-element mechanistic Burger model was employed to model the creep phase of the composites, while a Weibull distribution function was employed to model the recovery phase of the composites. Finite element analysis using Abaqus enabled numerical modelling of the creep phase of the composites. Both analytical and numerical solutions were found to be consistent with the experimental results. Creep and recovery were dependent on: (i) composite composition; (ii) compatibilizers content; (iii) carbon nanotubes that formed a percolation network. |
Author | Daver, Fugen Shanks, Robert Kajtaz, Mladenko Brandt, Milan |
AuthorAffiliation | 1 School of Engineering, RMIT University, P.O. Box 71, Bundoora, Victoria 3083, Australia; mladenko.kajtaz@rmit.edu.au (M.K.); milan.brandt@rmit.edu.au (M.B.) 2 School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia; robert.shanks@rmit.edu.au |
AuthorAffiliation_xml | – name: 1 School of Engineering, RMIT University, P.O. Box 71, Bundoora, Victoria 3083, Australia; mladenko.kajtaz@rmit.edu.au (M.K.); milan.brandt@rmit.edu.au (M.B.) – name: 2 School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia; robert.shanks@rmit.edu.au |
Author_xml | – sequence: 1 givenname: Fugen orcidid: 0000-0003-0826-4919 surname: Daver fullname: Daver, Fugen – sequence: 2 givenname: Mladenko orcidid: 0000-0002-1199-0957 surname: Kajtaz fullname: Kajtaz, Mladenko – sequence: 3 givenname: Milan surname: Brandt fullname: Brandt, Milan – sequence: 4 givenname: Robert surname: Shanks fullname: Shanks, Robert |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30974712$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkttrFTEQxhep2Fr75rMEfPHB1dw22bwI9XiFeqHo85LLpE3Zk6zJ7sL5701pLccimJcJ5DfffJmZx81BTBGa5inBrxhT-PWUxt22JxRzJh80RxRL1nIm8MHe_bA5KeUK18M7IYh81BwyrCSXhB41sMkAE9LRoXOwaYW8Q2_hUq8hLRklj77XCmkEH2J7vhgDGX3VMdm0nVIJMxT0DlYY0wQO-ZTRqXNhDiugLzouXtt5ySFePGkeej0WOLmNx83PD-9_bD61Z98-ft6cnrWW825uPfEeOgGOMO5UJ6RznvRGCQnGKOKg09QZJgxh0oIzXlFvdG-VFb4zvWbHzZsb3WkxW3AW4pz1OEw5bHXeDUmH4e-XGC6Hi7QOgjPKlKwCL24Fcvq1QJmHbSgWxlFHSEsZKMVKYCok_y9K-h5jwmWvKvr8HnpVuxtrJyrV9XUalJBKPds3f-f6z7Aq8PIGsDmVksHfIQQP1-sw7K9Dxek93IZZzyFdfz2M_076Dc5xu8k |
CitedBy_id | crossref_primary_10_1007_s11665_024_10170_w crossref_primary_10_1021_acsapm_9b00095 crossref_primary_10_1007_s11043_021_09524_x crossref_primary_10_1002_anie_202417713 crossref_primary_10_1002_app_55542 crossref_primary_10_1016_j_colsurfa_2023_132288 crossref_primary_10_1088_1742_6596_2361_1_012009 crossref_primary_10_1002_app_49957 crossref_primary_10_3390_pharmaceutics15071810 crossref_primary_10_1080_14680629_2021_1908407 crossref_primary_10_1177_1528083720961416 crossref_primary_10_3390_polym12081785 crossref_primary_10_1016_j_ijsolstr_2024_113122 crossref_primary_10_3390_ma13214973 crossref_primary_10_1007_s12221_021_3207_8 crossref_primary_10_1016_j_mechmat_2020_103461 crossref_primary_10_1002_vnl_21875 crossref_primary_10_3390_jcs1010003 crossref_primary_10_1177_09544062211017164 crossref_primary_10_1002_bab_1755 crossref_primary_10_1016_j_prostr_2022_02_028 crossref_primary_10_1002_app_54463 crossref_primary_10_1016_j_polymdegradstab_2022_109904 crossref_primary_10_1002_ange_202417713 crossref_primary_10_3390_polym10080917 crossref_primary_10_3390_coatings13111849 crossref_primary_10_3390_nano14131116 crossref_primary_10_1016_j_asr_2020_07_039 crossref_primary_10_1016_j_matchemphys_2021_124939 crossref_primary_10_3390_polym11060988 crossref_primary_10_3390_ijms24043963 crossref_primary_10_3390_polym17010071 crossref_primary_10_1007_s11043_021_09513_0 crossref_primary_10_1007_s11665_023_08278_6 crossref_primary_10_18034_apjee_v9i2_753 crossref_primary_10_1039_D4LP00348A |
Cites_doi | 10.1002/app.34518 10.1016/S0308-0161(01)00080-1 10.1016/j.ijmachtools.2006.01.026 10.1016/j.polymer.2013.05.013 10.1016/j.compositesa.2009.03.011 10.1163/156855408783810894 10.1016/j.compositesb.2015.05.046 10.1016/j.compscitech.2013.11.028 10.1016/j.compositesa.2015.10.002 10.1007/s10853-005-2020-x 10.1016/j.ijplas.2011.02.004 10.1016/j.compositesa.2012.03.015 10.1016/j.compositesa.2014.11.031 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2016 2016 by the authors. 2016 |
Copyright_xml | – notice: Copyright MDPI AG 2016 – notice: 2016 by the authors. 2016 |
DBID | AAYXX CITATION NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM |
DOI | 10.3390/polym8120437 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Proquest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Materials Science Collection Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2073-4360 |
EndPage | 437 |
ExternalDocumentID | PMC6432397 4301310201 30974712 10_3390_polym8120437 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 8FE 8FG A8Z AADQD AAFWJ AAYXX ABDBF ABJCF ACGFO ACIWK ACUHS ADBBV ADMLS AENEX AFKRA AFZYC AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I ESX F5P GX1 HCIFZ HH5 HYE I-F IPNFZ KB. KC. KQ8 ML~ MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RIG RNS RPM TR2 TUS GROUPED_DOAJ NPM 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM |
ID | FETCH-LOGICAL-c445t-f1ffe56ed134d9567ddf18b967ebb91de5a2db36b137cedbf92fba8c9c6f5b8a3 |
IEDL.DBID | BENPR |
ISSN | 2073-4360 |
IngestDate | Thu Aug 21 18:18:24 EDT 2025 Fri Jul 11 16:10:32 EDT 2025 Thu Jul 10 18:05:30 EDT 2025 Fri Jul 25 11:59:46 EDT 2025 Wed Feb 19 02:34:58 EST 2025 Tue Jul 01 02:54:45 EDT 2025 Thu Apr 24 23:11:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | nanocomposite creep and recovery modelling polymer-matrix composite polyethylene |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-f1ffe56ed134d9567ddf18b967ebb91de5a2db36b137cedbf92fba8c9c6f5b8a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0826-4919 0000-0002-1199-0957 |
OpenAccessLink | https://www.proquest.com/docview/1858309211?pq-origsite=%requestingapplication% |
PMID | 30974712 |
PQID | 1858309211 |
PQPubID | 2032345 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6432397 proquest_miscellaneous_2209602674 proquest_miscellaneous_1880014789 proquest_journals_1858309211 pubmed_primary_30974712 crossref_primary_10_3390_polym8120437 crossref_citationtrail_10_3390_polym8120437 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20161215 |
PublicationDateYYYYMMDD | 2016-12-15 |
PublicationDate_xml | – month: 12 year: 2016 text: 20161215 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Polymers |
PublicationTitleAlternate | Polymers (Basel) |
PublicationYear | 2016 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Starkova (ref_3) 2012; 43 Daver (ref_13) 2016; 80 ref_14 Lin (ref_18) 2006; 46 ref_21 Spoljaric (ref_8) 2009; 40 Georgiopoulos (ref_20) 2015; 80 Tang (ref_2) 2014; 91 Wong (ref_9) 2008; 15 Kim (ref_17) 2001; 78 ref_19 ref_16 ref_15 Jia (ref_4) 2011; 27 Wang (ref_12) 2014; 69 Spoljaric (ref_1) 2012; 123 Fancey (ref_10) 2005; 40 ref_5 ref_7 Dai (ref_11) 2013; 54 ref_6 |
References_xml | – ident: ref_7 – volume: 123 start-page: 585 year: 2012 ident: ref_1 article-title: Novel elastomer-dumbbell functionalized POSS composites: Thermomechanical and morphological properties publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.34518 – ident: ref_6 – volume: 78 start-page: 661 year: 2001 ident: ref_17 article-title: Contour integral calculations for generalised creep laws within ABAQUS publication-title: Int. J. Press. Vessel. Pip. doi: 10.1016/S0308-0161(01)00080-1 – volume: 46 start-page: 1266 year: 2006 ident: ref_18 article-title: An integrated process for modelling of precipitation hardening and springback in creep age-forming publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2006.01.026 – volume: 54 start-page: 3723 year: 2013 ident: ref_11 article-title: Creep-resistant behaviour of MWCNT-polycarbonate melt spun nanocomposite fibers at elevated temperature publication-title: Polymer doi: 10.1016/j.polymer.2013.05.013 – volume: 40 start-page: 791 year: 2009 ident: ref_8 article-title: Polypropylene-microcrystalline cellulose composites with enhanced compatibility and properties publication-title: Compos. A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2009.03.011 – ident: ref_5 – volume: 15 start-page: 131 year: 2008 ident: ref_9 article-title: Creep behaviour of biopolymers and modified flax fibre composites publication-title: Compos. Interfaces doi: 10.1163/156855408783810894 – volume: 80 start-page: 134 year: 2015 ident: ref_20 article-title: Short-term creep behaviour of a biodegradable polymer reinforced with wood-fibers publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2015.05.046 – volume: 91 start-page: 63 year: 2014 ident: ref_2 article-title: Creep and recovery of polystyrene composites filled with graphene additives publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2013.11.028 – volume: 80 start-page: 13 year: 2016 ident: ref_13 article-title: Conductive polyolefin-rubber nanocomposites with carbon nanotubes publication-title: Compos. A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2015.10.002 – ident: ref_16 – ident: ref_15 – volume: 40 start-page: 4827 year: 2005 ident: ref_10 article-title: A mechanical model for creep, recovery and stress relaxation in polymeric materials publication-title: J. Mater. Sci. doi: 10.1007/s10853-005-2020-x – ident: ref_14 – volume: 27 start-page: 1239 year: 2011 ident: ref_4 article-title: Creep and recovery of polypropylene/carbon nanotube composites publication-title: Int. J. Plast. doi: 10.1016/j.ijplas.2011.02.004 – ident: ref_19 – volume: 43 start-page: 1212 year: 2012 ident: ref_3 article-title: Creep and recovery of epoxy/MWCNT nanocomposites publication-title: Compos. A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2012.03.015 – ident: ref_21 – volume: 69 start-page: 288 year: 2014 ident: ref_12 article-title: Temperature dependence of creep and recovery behaviours of polymer composites filled with chemically reduced graphene oxide publication-title: Compos. A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2014.11.031 |
SSID | ssj0000456617 |
Score | 2.2677233 |
Snippet | Nanocomposite application in automotive engineering materials is subject to continual stress fields together with recovery periods, under extremes of... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 437 |
SubjectTerms | Additive manufacturing Additives Automotive engineering Behavior Compatibilizers Composition Computer simulation Creep (materials) Distribution functions Electrical resistivity Finite element method Low density polyethylenes Maleic anhydride Mathematical analysis Mathematical models Multi wall carbon nanotubes Nanocomposites Percolation Polyethylene Polyethylenes Polymer matrix composites Polyolefin rubber Recovery Rubber Stress distribution Time dependence Weibull distribution |
Title | Creep and Recovery Behaviour of Polyolefin-Rubber Nanocomposites Developed for Additive Manufacturing |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30974712 https://www.proquest.com/docview/1858309211 https://www.proquest.com/docview/1880014789 https://www.proquest.com/docview/2209602674 https://pubmed.ncbi.nlm.nih.gov/PMC6432397 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_W9GF7Gfuet65osD0N09iSZflpdKFpGbSUskLejD5OrJDaWRI_9L_fyVG8ZqN7NDqMuJPufj_pdAfwqXDO5zgu08JynQqRm1RJ4VOkUOWF4ZUT4e3w-YU8uxbfZ8UsHritYlrl1if2jtq1NpyRH1FcUXxcEV_5uviVhq5R4XY1ttDYg31ywUqNYP_bycXl1XDKEgALxehNxjsnfn-0aOd3txTVQk2f3Vj0D8D8O0_yXuCZPoOnETGy442Jn8MjbF7A48m2UdtLwMkSccF041ggk7Q271gse9gtWevZJU2mnaO_adKrzhhcMvKpbUgmDxlbuGIxcwgdIwjLjp3rE4rYuW668PChf8n4Cq6nJz8mZ2nsnpBaIYp16jPvsZDoMi4csaCSrJIpU8kSjakyh4XOneHSZLy06Iyvcm-0spWVvjBK89cwatoG3wITXkutx5nTlhOhsqY0nGtXcW4s2kwm8GWrx9rG0uKhw8W8JooRtF7f13oCnwfpxaakxgNyB1uT1HFjreo_yyCBj8MwKTzcc-gG2y7IqMD8SlU9LJPngbvlshQJvNlYeZgM_T9Q9TyBcsf-g0Aoyb070tz87EtzE77LCeG9-__U38MTwl19_6OsOIDRetnhB8I2a3MIe2p6ehiXMX2dzrLfyw8CqQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDI5KOZQL4t2BAkGiJzTqTpJ5HRCqFpYt7VYItVJvQx6OqLTMLPsQ2j_Fb8SeF11QufUcK7JsJ_6c-MHY69g5L2CQhrGVOlRKmDBLlA8BXZVXRuZOUe3w5DQZn6tPF_HFFvvV1cJQWmV3J9YXtassvZEfoF_J5CDHeOXd7EdIU6Pod7UbodGYxTGsf2LItnh79B71uy_E6MPZcBy2UwVCq1S8DH3kPcQJuEgqh9FBitxGmcmTFIzJIwexFs7IxEQyteCMz4U3OrO5TXxsMi1x31vstpLoyakyffSxf9MheISIoMmvx_XBwayarr-jD6UOQpue7x84-3dW5hU3N7rH7rb4lB82BnWfbUH5gO0Mu7FwDxkM5wAzrkvHKXTFk7DmbZPF1ZxXnn9GZqop-Msy_LIyBuYcb_CKUtcpPwwWvM1TAscRMPND5-r0JT7R5YrKLOq6yUfs_Eak-phtl1UJu4wrrxOtB5HTVmL4Zk1qpNQul9JYsFESsDedHAvbNjKneRrTAgMaknpxVeoB2--pZ00Dj2vo9jqVFO0xXhR_jC5gr_plFDj9qugSqhXRZBRnpll-PY0QFCmKJFUBe9JouWcG96eHARGwdEP_PQE1AN9cKS-_1Y3AEU0KtMKn_2f9JdsZn01OipOj0-Nn7A4ivnryUhTvse3lfAXPEVUtzYvalDn7etNn5zcEID-q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAIuiDeBAkaiJ7RK1va-DgiVtFFLaRRVVOpt8WMsKqW7aR5C-Wv8OsbZBw2o3Hr2yBrN2J7vs8czAO8jax3HfhJERqhASq6DNJYuQApVTmqRWen_Dp-M4sMz-eU8Ot-CX81fGJ9W2ZyJ64PalsbfkfcorqSinxFf6bk6LWK8P_w0vQp8Byn_0tq006iWyDGufhJ9m3882idf73I-PPg2OAzqDgOBkTJaBC50DqMYbSikJaaQkOZhqrM4Qa2z0GKkuNUi1qFIDFrtMu60Sk1mYhfpVAma9w5sJ54VdWD788FofNre8HiwRPigyrYXIuv3puVkdUkR1dcT2oyD_4Dbv3M0rwW94UN4UKNVtlctr0ewhcVjuDdomsQ9ARzMEKdMFZZ5Ikv7YsXqkovLGSsdG5My5QTdRRGcLrXGGaPzvPSJ7D5bDOeszlpCywg-sz1r18lM7EQVS__pYv2L8imc3Ypdn0GnKAt8AUw6FSvVD60ygsic0YkWQtlMCG3QhHEXPjR2zE1d1tx315jkRG-81fPrVu_Cbis9rcp53CC307gkrzf1PP-zBLvwrh0mg_s3FlVgufQyqWedSZrdLMO55408TmQXnldebpWh-f01Ae9CsuH_VsCXA98cKS5-rMuCE7bkhC5f_l_1t3CX9k3-9Wh0_AruE_xbt2EKox3oLGZLfE0Qa6Hf1GuZwffb3j6_AYWsRTw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Creep+and+Recovery+Behaviour+of+Polyolefin-Rubber+Nanocomposites+Developed+for+Additive+Manufacturing&rft.jtitle=Polymers&rft.au=Daver%2C+Fugen&rft.au=Kajtaz%2C+Mladenko&rft.au=Brandt%2C+Milan&rft.au=Shanks%2C+Robert+A&rft.date=2016-12-15&rft.eissn=2073-4360&rft.volume=8&rft.issue=12&rft_id=info:doi/10.3390%2Fpolym8120437&rft_id=info%3Apmid%2F30974712&rft.externalDocID=30974712 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon |