NLTE Analysis of Y i and Y ii in the Atmospheres of FGK Stars

The nonlocal thermodynamical equilibrium (NLTE) line formation of Y i and Y ii is considered in 1D LTE model atmospheres of FGK-type stars. The model atom was constructed with the most up-to-date atomic data, including quantum cross sections and rate coefficients for transitions in inelastic collisi...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 957; no. 1; pp. 10 - 33
Main Authors Alexeeva, Sofya, Wang, Yu, Zhao, Gang, Wang, Feng, Wu, Yong, Wang, Jianguo, Yan, Hongliang, Shi, Jianrong
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.11.2023
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The nonlocal thermodynamical equilibrium (NLTE) line formation of Y i and Y ii is considered in 1D LTE model atmospheres of FGK-type stars. The model atom was constructed with the most up-to-date atomic data, including quantum cross sections and rate coefficients for transitions in inelastic collisions of Y i and Y ii with hydrogen atoms. For seven reference stars, we obtained an agreement between NLTE abundances inferred from the two ionization stages, while the difference in LTE abundance (Y i and Y ii ) can reach up to −0.31 dex. In the atmospheres of FGK-type stars, for both Y i and Y ii lines, the NLTE abundance corrections are positive. In solar metallicity stars, the NLTE abundance corrections for Y ii lines do not exceed 0.12 dex, while in atmospheres of metal-poor stars, they do not exceed 0.21 dex. For Y i lines, the NLTE abundance corrections can reach up to ∼0.5 dex. We determined the yttrium NLTE abundances for a sample of 65 F and G dwarfs and subgiants in the −2.62 ≤ [Fe/H] ≤ +0.24 metallicity range, using high-resolution spectra. For stars with [Fe/H] ≤ −1.5, [Y/Fe] versus [Fe/H] diagram reveals a positive trend with an average value of [Y/Fe] ≃ 0. For metal-poor stars, among Sr, Y, and Zr, the arrangement [Sr/Fe] < [Y/Fe] < [Zr/Fe] remains consistent. The current study is useful for Galactic chemical evolution research. The model atom will be applied for NLTE yttrium abundance determination in very metal-poor stars studied with LAMOST and Subaru.
AbstractList The nonlocal thermodynamical equilibrium (NLTE) line formation of Y i and Y ii is considered in 1D LTE model atmospheres of FGK-type stars. The model atom was constructed with the most up-to-date atomic data, including quantum cross sections and rate coefficients for transitions in inelastic collisions of Y i and Y ii with hydrogen atoms. For seven reference stars, we obtained an agreement between NLTE abundances inferred from the two ionization stages, while the difference in LTE abundance (Y i and Y ii) can reach up to −0.31 dex. In the atmospheres of FGK-type stars, for both Y i and Y ii lines, the NLTE abundance corrections are positive. In solar metallicity stars, the NLTE abundance corrections for Y ii lines do not exceed 0.12 dex, while in atmospheres of metal-poor stars, they do not exceed 0.21 dex. For Y i lines, the NLTE abundance corrections can reach up to ∼0.5 dex. We determined the yttrium NLTE abundances for a sample of 65 F and G dwarfs and subgiants in the −2.62 ≤ [Fe/H] ≤ +0.24 metallicity range, using high-resolution spectra. For stars with [Fe/H] ≤ −1.5, [Y/Fe] versus [Fe/H] diagram reveals a positive trend with an average value of [Y/Fe] ≃ 0. For metal-poor stars, among Sr, Y, and Zr, the arrangement [Sr/Fe] < [Y/Fe] < [Zr/Fe] remains consistent. The current study is useful for Galactic chemical evolution research. The model atom will be applied for NLTE yttrium abundance determination in very metal-poor stars studied with LAMOST and Subaru.
The nonlocal thermodynamical equilibrium (NLTE) line formation of Y i and Y ii is considered in 1D LTE model atmospheres of FGK-type stars. The model atom was constructed with the most up-to-date atomic data, including quantum cross sections and rate coefficients for transitions in inelastic collisions of Y i and Y ii with hydrogen atoms. For seven reference stars, we obtained an agreement between NLTE abundances inferred from the two ionization stages, while the difference in LTE abundance (Y i and Y ii ) can reach up to −0.31 dex. In the atmospheres of FGK-type stars, for both Y i and Y ii lines, the NLTE abundance corrections are positive. In solar metallicity stars, the NLTE abundance corrections for Y ii lines do not exceed 0.12 dex, while in atmospheres of metal-poor stars, they do not exceed 0.21 dex. For Y i lines, the NLTE abundance corrections can reach up to ∼0.5 dex. We determined the yttrium NLTE abundances for a sample of 65 F and G dwarfs and subgiants in the −2.62 ≤ [Fe/H] ≤ +0.24 metallicity range, using high-resolution spectra. For stars with [Fe/H] ≤ −1.5, [Y/Fe] versus [Fe/H] diagram reveals a positive trend with an average value of [Y/Fe] ≃ 0. For metal-poor stars, among Sr, Y, and Zr, the arrangement [Sr/Fe] < [Y/Fe] < [Zr/Fe] remains consistent. The current study is useful for Galactic chemical evolution research. The model atom will be applied for NLTE yttrium abundance determination in very metal-poor stars studied with LAMOST and Subaru.
Author Wu, Yong
Wang, Yu
Yan, Hongliang
Shi, Jianrong
Alexeeva, Sofya
Wang, Jianguo
Zhao, Gang
Wang, Feng
Author_xml – sequence: 1
  givenname: Sofya
  orcidid: 0000-0002-8709-4665
  surname: Alexeeva
  fullname: Alexeeva, Sofya
  organization: National Astronomical Observatories Chinese Academy of Sciences CAS Key Laboratory of Optical Astronomy, , Beijing, 100101, People’s Republic of China
– sequence: 2
  givenname: Yu
  orcidid: 0000-0002-2448-3049
  surname: Wang
  fullname: Wang, Yu
  organization: Beijing Institute of Technology School of Physics, Beijing, 100081, People’s Republic of China
– sequence: 3
  givenname: Gang
  orcidid: 0000-0002-8980-945X
  surname: Zhao
  fullname: Zhao, Gang
  organization: University of Chinese Academy of Sciences School of Astronomy and Space Science, Beijing, 100049, People’s Republic of China
– sequence: 4
  givenname: Feng
  orcidid: 0000-0002-8514-4497
  surname: Wang
  fullname: Wang, Feng
  organization: Beijing Institute of Technology School of Physics, Beijing, 100081, People’s Republic of China
– sequence: 5
  givenname: Yong
  orcidid: 0000-0003-1874-9653
  surname: Wu
  fullname: Wu, Yong
  organization: Peking University HEDPS, Center for Applied Physics and Technology, Beijing, 100084, People’s Republic of China
– sequence: 6
  givenname: Jianguo
  surname: Wang
  fullname: Wang, Jianguo
  organization: Institute of Applied Physics and Computational Mathematics , Beijing, 100088, People’s Republic of China
– sequence: 7
  givenname: Hongliang
  orcidid: 0000-0002-8609-3599
  surname: Yan
  fullname: Yan, Hongliang
  organization: Beijing Normal University Institute for Frontiers in Astronomy and Astrophysics, Beijing, 102206, People’s Republic of China
– sequence: 8
  givenname: Jianrong
  orcidid: 0000-0002-0349-7839
  surname: Shi
  fullname: Shi, Jianrong
  organization: University of Chinese Academy of Sciences School of Astronomy and Space Science, Beijing, 100049, People’s Republic of China
BookMark eNp9kE1PFTEUhhuCiRd077KJLB1op9Npu3BxQwCJN7oQE101Z_ohvblMh7Ys-Pd2GJSEiKuTnjzv25PnAO2PcXQIvaPkmMlOnFDOZNMxLk7AeO7oHlr9Xe2jFSGka3omfrxGBzlv52er1Ap9_LK5OsPrEXb3OWQcPf6JA4bRzjPgMOJy7fC63MQ8XbvkHpDzi8_4W4GU36BXHnbZvX2ch-j7-dnV6adm8_Xi8nS9aUzX8dJ4Kq3warBdD7Rj1CrLnRIDo56YwXAJglMiwSrOFPTMGkMs66EV0FE7OHaILpdeG2GrpxRuIN3rCEE_LGL6pSGVYHZOSypbxoae2IHUz6nyrHZXCT1xXFmoXe-XrinF2zuXi97Gu1QFZN1KobgUgrSV6hfKpJhzcl6bUKCEOJYEYacp0bN2PTvWs2O9aK9B8iz459z_RI6WSIjT0zEwbbWqEJ2Dk_UV-_AP7MXW34bMni8
CitedBy_id crossref_primary_10_1051_0004_6361_202449753
crossref_primary_10_1051_0004_6361_202451536
crossref_primary_10_1093_mnras_stae1615
crossref_primary_10_3847_1538_4357_ad77d8
crossref_primary_10_1051_0004_6361_202349049
crossref_primary_10_1093_mnras_stae2283
crossref_primary_10_3847_2041_8213_ad3bb4
crossref_primary_10_1051_0004_6361_202450981
Cites_doi 10.1088/0370-1328/79/6/304
10.1088/0034-4885/52/8/002
10.1093/mnras/stx1619
10.1051/0004-6361/201116745
10.1088/1742-6596/328/1/012015
10.1088/0031-8949/90/5/054005
10.1051/0004-6361:20021512
10.1051/0004-6361/201731882
10.1051/0004-6361/201935753
10.1134/1.1509814
10.3847/1538-4357/833/2/225
10.1086/160384
10.1086/175368
10.1093/mnras/sty316
10.1051/0004-6361/202039657
10.1051/0004-6361/201833721
10.1051/0004-6361/201118643
10.1007/BF02755940
10.3847/1538-4357/acae72
10.1051/0004-6361/202141069
10.1051/0004-6361/201833218
10.1088/0004-637X/801/1/53
10.1051/0004-6361/202038943
10.1051/0004-6361/201527848
10.1051/0004-6361:20077706
10.1086/319956
10.1103/PhysRevA.36.3187
10.1051/0004-6361/201526695
10.1093/mnras/stw1202
10.1051/0004-6361/201936479
10.1134/1.1450658
10.3847/1538-3881/ab9ab8
10.1103/RevModPhys.93.015002
10.3847/1538-3881/aba592
10.1134/S1990341320030050
10.1051/0004-6361/201731236
10.1088/1674-4527/13/11/003
10.3847/1538-4357/ac6514
10.1088/0953-4075/48/8/085001
10.1023/A:1013126602902
10.1051/0004-6361/201015336
10.1086/380507
10.1086/317319
10.1051/0004-6361/201118751
10.1063/1.1836764
10.1086/383406
10.1051/0004-6361/201322631
10.3847/1538-3881/abf5e0
10.1093/mnras/stv2725
10.1051/0004-6361/202037722
10.1007/BF00658452
10.1086/305437
10.1086/342829
10.1063/5.0022751
10.1088/0004-637X/710/2/1557
10.1051/0004-6361:200809724
10.1088/0953-4075/21/4/009
10.1007/BF01379963
10.1088/0004-637X/787/1/10
10.1093/mnras/staa1710
10.1086/174638
10.1103/RevModPhys.83.157
10.1086/117692
10.1093/mnras/stv1668
10.1051/0004-6361/201526319
10.1038/s41586-019-1676-3
10.1051/0004-6361/202038055
10.1093/mnras/stac1813
10.1051/0004-6361/201526269
10.1051/0004-6361/201424944
10.1051/0004-6361/201424111
10.1086/523084
10.3847/1538-4357/ac8746
10.3847/1538-4357/aae1a8
10.1088/0004-637X/748/1/72
10.1088/0004-637X/808/2/148
10.1364/JOSAB.35.002244
10.1088/0004-6256/147/6/136
10.3847/1538-4357/abae65
10.1051/0004-6361/201116619
10.1007/s11214-021-00825-8
10.3847/0004-637X/816/2/79
10.1134/S1063772919090063
10.3847/1538-4357/aab3cb
10.1051/0004-6361/202038306
10.1051/0004-6361/202140808
10.1051/0004-6361/201936296
10.1051/0004-6361/201322440
10.18434/T4W30F
10.1051/0004-6361/201730750
ContentType Journal Article
Copyright 2023. The Author(s). Published by the American Astronomical Society.
2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. The Author(s). Published by the American Astronomical Society.
– notice: 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOA
DOI 10.3847/1538-4357/acf5e1
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
ExternalDocumentID oai_doaj_org_article_818233b60db044519f351035760e59da
10_3847_1538_4357_acf5e1
apjacf5e1
GrantInformation_xml – fundername: MOST ∣ National Key Research and Development Program of China (NKPs)
  grantid: 2019YFA0405500
  funderid: https://doi.org/10.13039/501100012166
– fundername: MOST ∣ National Natural Science Foundation of China (NSFC)
  grantid: 11988101; 11890694; 12090044; 11833006; 12022304; 11973052
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
TSCCA
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
2WC
ID FETCH-LOGICAL-c445t-f18d7f9bd46a1431d9d5e97b31f0cbc58a75108ad9539a63dcc0d36a27a41dbe3
IEDL.DBID DOA
ISSN 0004-637X
IngestDate Wed Aug 27 01:32:58 EDT 2025
Wed Aug 13 11:25:30 EDT 2025
Tue Jul 01 03:39:41 EDT 2025
Thu Apr 24 22:59:56 EDT 2025
Wed Aug 21 03:33:03 EDT 2024
Tue Oct 24 22:36:14 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-f18d7f9bd46a1431d9d5e97b31f0cbc58a75108ad9539a63dcc0d36a27a41dbe3
Notes Stars and Stellar Physics
AAS48425
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8709-4665
0000-0002-2448-3049
0000-0002-8514-4497
0000-0002-8980-945X
0000-0002-0349-7839
0000-0003-1874-9653
0000-0002-8609-3599
OpenAccessLink https://doaj.org/article/818233b60db044519f351035760e59da
PQID 2879587702
PQPubID 4562441
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_818233b60db044519f351035760e59da
iop_journals_10_3847_1538_4357_acf5e1
proquest_journals_2879587702
crossref_citationtrail_10_3847_1538_4357_acf5e1
crossref_primary_10_3847_1538_4357_acf5e1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2023
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Buder (apjacf5e1bib13) 2019; 624
Liu (apjacf5e1bib54) 2013; 13
Alexeeva (apjacf5e1bib1) 2018; 866
Bisterzo (apjacf5e1bib11) 2014; 787
Gough (apjacf5e1bib28) 1988; 21
Hannaford (apjacf5e1bib34) 1982; 261
Kochukhov (apjacf5e1bib48) 2018
Gallino (apjacf5e1bib27) 1998; 497
Kobayashi (apjacf5e1bib46) 2020; 900
Cretignier (apjacf5e1bib20) 2020; 640
Smirnov (apjacf5e1bib86) 2000; 38
Casali (apjacf5e1bib16) 2020; 639
Sarmento (apjacf5e1bib77) 2020; 636
François (apjacf5e1bib25) 2007; 476
Zhao (apjacf5e1bib101) 2016; 833
Rybicki (apjacf5e1bib76) 1991; 245
Ryabchikova (apjacf5e1bib74) 2015; 90
Baines (apjacf5e1bib3) 2012; 748
Smirnov (apjacf5e1bib89) 2002b; 47
Butler (apjacf5e1bib14) 1985
Hatzes (apjacf5e1bib36) 2000; 544
Montes (apjacf5e1bib62) 2007; 671
Seaton (apjacf5e1bib78) 1962a; 79
Janson (apjacf5e1bib40) 2015; 574
Fernández-Menchero (apjacf5e1bib24) 2020; 496
Mashonkina (apjacf5e1bib59) 2019a; 631
Berger (apjacf5e1bib9) 2022; 936
Coffaro (apjacf5e1bib18) 2020; 636
Zhao (apjacf5e1bib100) 1991; 244
Kappeler (apjacf5e1bib44) 1989; 52
Kappeler (apjacf5e1bib45) 2011; 83
Mashonkina (apjacf5e1bib58) 2017; 605
Pignatari (apjacf5e1bib67) 2010; 710
Nissen (apjacf5e1bib64) 2011; 530
Li (apjacf5e1bib53) 2018; 35
Woosley (apjacf5e1bib99) 1994; 433
Lodders (apjacf5e1bib55) 2021; 217
Li (apjacf5e1bib52) 2022; 931
Baratella (apjacf5e1bib4) 2021; 653
Alexeeva (apjacf5e1bib2) 2015; 453
NIST ASD Team (apjacf5e1bib49) 2022
Palmeri (apjacf5e1bib65) 2017; 471
Barklem (apjacf5e1bib5) 2011; 530
Przybilla (apjacf5e1bib69) 2011; 328
Shibagaki (apjacf5e1bib81) 2016; 816
Cowan (apjacf5e1bib19) 2021; 93
Clementini (apjacf5e1bib17) 1995; 110
Honda (apjacf5e1bib39) 2004; 607
Gray (apjacf5e1bib30) 1995; 441
Travaglio (apjacf5e1bib92) 2004; 601
Wijesundera (apjacf5e1bib98) 1987; 36
Gustafsson (apjacf5e1bib33) 2008; 486
Hansen (apjacf5e1bib35) 2012; 545
Wang (apjacf5e1bib96) 2023
Mayor (apjacf5e1bib61) 2003; 114
Sitnova (apjacf5e1bib84) 2016; 461
Vieira (apjacf5e1bib95) 2023; 944
Heiter (apjacf5e1bib37) 2015; 582
Roederer (apjacf5e1bib72) 2014; 147
Jönsson (apjacf5e1bib43) 2020; 160
Grevesse (apjacf5e1bib32) 2015; 573
Prantzos (apjacf5e1bib68) 2018; 476
Ryabchikova (apjacf5e1bib75) 2016; 456
Bernacca (apjacf5e1bib10) 1970; 239
Steinmetz (apjacf5e1bib90) 2020; 160
Caffau (apjacf5e1bib15) 2021; 651
Pepe (apjacf5e1bib66) 2021; 645
Gozha (apjacf5e1bib29) 2020; 75
Jofré (apjacf5e1bib41) 2014; 564
Smirnov (apjacf5e1bib88) 2002a; 93
Kochukhov (apjacf5e1bib47) 2010
Recio-Blanco (apjacf5e1bib70) 2021; 648
Johnson (apjacf5e1bib42) 2002; 579
Seaton (apjacf5e1bib79) 1962b
Sitnova (apjacf5e1bib83) 2015; 808
Bastian (apjacf5e1bib6) 2018; 857
Mashonkina (apjacf5e1bib60) 2019b; 63
Tsymbal (apjacf5e1bib93) 2019
Bensby (apjacf5e1bib8) 2014; 562
Cristallo (apjacf5e1bib21) 2015; 801
Watson (apjacf5e1bib97) 2019; 574
Böhlke (apjacf5e1bib12) 2005; 34
Tucci Maia (apjacf5e1bib94) 2016; 590
Siqueira-Mello (apjacf5e1bib82) 2015; 584
Holzer (apjacf5e1bib38) 2021; 161
Gray (apjacf5e1bib31) 2001; 121
Kurucz (apjacf5e1bib51) 1984
Nissen (apjacf5e1bib63) 2015; 579
Reggiani (apjacf5e1bib71) 2017; 608
Drawin (apjacf5e1bib23) 1968; 211
Titarenko (apjacf5e1bib91) 2019; 622
da Silva (apjacf5e1bib22) 2012; 542
Mashonkina (apjacf5e1bib56) 2011; 528
Shang (apjacf5e1bib80) 2015; 48
Smirnov (apjacf5e1bib87) 2001; 39
Kuchenev (apjacf5e1bib50) 1984; 40
Gaia Collaboration (apjacf5e1bib26) 2021; 649
Sitnova (apjacf5e1bib85) 2022; 515
Rosmej (apjacf5e1bib73) 2020; Vol. 5
Belyaev (apjacf5e1bib7) 2017; 608
Mashonkina (apjacf5e1bib57) 2003; 397
References_xml – year: 2010
  ident: apjacf5e1bib47
  publication-title: BinMag IDL widget Code v6.2
– volume: 79
  start-page: 1105
  year: 1962a
  ident: apjacf5e1bib78
  publication-title: PPS
  doi: 10.1088/0370-1328/79/6/304
– volume: 52
  start-page: 945
  year: 1989
  ident: apjacf5e1bib44
  publication-title: RPPh
  doi: 10.1088/0034-4885/52/8/002
– volume: 471
  start-page: 532
  year: 2017
  ident: apjacf5e1bib65
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1619
– volume: 530
  start-page: A94
  year: 2011
  ident: apjacf5e1bib5
  publication-title: A&A
  doi: 10.1051/0004-6361/201116745
– volume: 328
  start-page: 012015
  year: 2011
  ident: apjacf5e1bib69
  publication-title: JPhCS
  doi: 10.1088/1742-6596/328/1/012015
– volume: 90
  start-page: 054005
  year: 2015
  ident: apjacf5e1bib74
  publication-title: PhyS
  doi: 10.1088/0031-8949/90/5/054005
– start-page: 247
  year: 2019
  ident: apjacf5e1bib93
– volume: 397
  start-page: 275
  year: 2003
  ident: apjacf5e1bib57
  publication-title: A&A
  doi: 10.1051/0004-6361:20021512
– volume: 608
  start-page: A33
  year: 2017
  ident: apjacf5e1bib7
  publication-title: A&A
  doi: 10.1051/0004-6361/201731882
– volume: 631
  start-page: A43
  year: 2019a
  ident: apjacf5e1bib59
  publication-title: A&A
  doi: 10.1051/0004-6361/201935753
– volume: 93
  start-page: 351
  year: 2002a
  ident: apjacf5e1bib88
  publication-title: OptSp
  doi: 10.1134/1.1509814
– volume: 833
  start-page: 225
  year: 2016
  ident: apjacf5e1bib101
  publication-title: ApJ
  doi: 10.3847/1538-4357/833/2/225
– volume: 261
  start-page: 736
  year: 1982
  ident: apjacf5e1bib34
  publication-title: ApJ
  doi: 10.1086/160384
– volume: 441
  start-page: 436
  year: 1995
  ident: apjacf5e1bib30
  publication-title: ApJ
  doi: 10.1086/175368
– volume: 476
  start-page: 3432
  year: 2018
  ident: apjacf5e1bib68
  publication-title: MNRAS
  doi: 10.1093/mnras/sty316
– volume: 649
  start-page: A1
  year: 2021
  ident: apjacf5e1bib26
  publication-title: A&A
  doi: 10.1051/0004-6361/202039657
– volume: 622
  start-page: A59
  year: 2019
  ident: apjacf5e1bib91
  publication-title: A&A
  doi: 10.1051/0004-6361/201833721
– volume: 545
  start-page: A31
  year: 2012
  ident: apjacf5e1bib35
  publication-title: A&A
  doi: 10.1051/0004-6361/201118643
– volume: 38
  start-page: 163
  year: 2000
  ident: apjacf5e1bib86
  publication-title: High Temp.
  doi: 10.1007/BF02755940
– volume: 944
  start-page: 123
  year: 2023
  ident: apjacf5e1bib95
  publication-title: ApJ
  doi: 10.3847/1538-4357/acae72
– volume: 653
  start-page: A67
  year: 2021
  ident: apjacf5e1bib4
  publication-title: A&A
  doi: 10.1051/0004-6361/202141069
– volume: 624
  start-page: A19
  year: 2019
  ident: apjacf5e1bib13
  publication-title: A&A
  doi: 10.1051/0004-6361/201833218
– volume: 801
  start-page: 53
  year: 2015
  ident: apjacf5e1bib21
  publication-title: ApJ
  doi: 10.1088/0004-637X/801/1/53
– volume: 648
  start-page: A108
  year: 2021
  ident: apjacf5e1bib70
  publication-title: A&A
  doi: 10.1051/0004-6361/202038943
– volume: 590
  start-page: A32
  year: 2016
  ident: apjacf5e1bib94
  publication-title: A&A
  doi: 10.1051/0004-6361/201527848
– volume: 476
  start-page: 935
  year: 2007
  ident: apjacf5e1bib25
  publication-title: A&A
  doi: 10.1051/0004-6361:20077706
– volume: 121
  start-page: 2148
  year: 2001
  ident: apjacf5e1bib31
  publication-title: AJ
  doi: 10.1086/319956
– volume: 36
  start-page: 3187
  year: 1987
  ident: apjacf5e1bib98
  publication-title: PhRvA
  doi: 10.1103/PhysRevA.36.3187
– volume: 584
  start-page: A86
  year: 2015
  ident: apjacf5e1bib82
  publication-title: A&A
  doi: 10.1051/0004-6361/201526695
– volume: 461
  start-page: 1000
  year: 2016
  ident: apjacf5e1bib84
  publication-title: MNRAS
  doi: 10.1093/mnras/stw1202
– volume: 636
  start-page: A49
  year: 2020
  ident: apjacf5e1bib18
  publication-title: A&A
  doi: 10.1051/0004-6361/201936479
– volume: 47
  start-page: 34
  year: 2002b
  ident: apjacf5e1bib89
  publication-title: DokPh
  doi: 10.1134/1.1450658
– volume: 160
  start-page: 83
  year: 2020
  ident: apjacf5e1bib90
  publication-title: AJ
  doi: 10.3847/1538-3881/ab9ab8
– volume: 93
  start-page: 015002
  year: 2021
  ident: apjacf5e1bib19
  publication-title: RvMP
  doi: 10.1103/RevModPhys.93.015002
– volume: 244
  start-page: 425
  year: 1991
  ident: apjacf5e1bib100
  publication-title: A&A
– volume: 160
  start-page: 120
  year: 2020
  ident: apjacf5e1bib43
  publication-title: AJ
  doi: 10.3847/1538-3881/aba592
– volume: 75
  start-page: 311
  year: 2020
  ident: apjacf5e1bib29
  publication-title: AstBu
  doi: 10.1134/S1990341320030050
– volume: 605
  start-page: A53
  year: 2017
  ident: apjacf5e1bib58
  publication-title: A&A
  doi: 10.1051/0004-6361/201731236
– volume: 13
  start-page: 1307
  year: 2013
  ident: apjacf5e1bib54
  publication-title: RAA
  doi: 10.1088/1674-4527/13/11/003
– volume: 931
  start-page: 147
  year: 2022
  ident: apjacf5e1bib52
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac6514
– volume: 48
  start-page: 7085001
  year: 2015
  ident: apjacf5e1bib80
  publication-title: JPhB
  doi: 10.1088/0953-4075/48/8/085001
– volume: 39
  start-page: 815
  year: 2001
  ident: apjacf5e1bib87
  publication-title: High Temp.
  doi: 10.1023/A:1013126602902
– volume: 528
  start-page: A87
  year: 2011
  ident: apjacf5e1bib56
  publication-title: A&A
  doi: 10.1051/0004-6361/201015336
– volume: 601
  start-page: 864
  year: 2004
  ident: apjacf5e1bib92
  publication-title: ApJ
  doi: 10.1086/380507
– volume: 544
  start-page: L145
  year: 2000
  ident: apjacf5e1bib36
  publication-title: ApJL
  doi: 10.1086/317319
– volume: 542
  start-page: A84
  year: 2012
  ident: apjacf5e1bib22
  publication-title: A&A
  doi: 10.1051/0004-6361/201118751
– volume: 34
  start-page: 57
  year: 2005
  ident: apjacf5e1bib12
  publication-title: JPCRD
  doi: 10.1063/1.1836764
– volume: 607
  start-page: 474
  year: 2004
  ident: apjacf5e1bib39
  publication-title: ApJ
  doi: 10.1086/383406
– volume: 245
  start-page: 171
  year: 1991
  ident: apjacf5e1bib76
  publication-title: A&A
– volume: 562
  start-page: A71
  year: 2014
  ident: apjacf5e1bib8
  publication-title: A&A
  doi: 10.1051/0004-6361/201322631
– volume: 161
  start-page: 272
  year: 2021
  ident: apjacf5e1bib38
  publication-title: AJ
  doi: 10.3847/1538-3881/abf5e0
– volume: 456
  start-page: 1221
  year: 2016
  ident: apjacf5e1bib75
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2725
– volume: 640
  start-page: A42
  year: 2020
  ident: apjacf5e1bib20
  publication-title: A&A
  doi: 10.1051/0004-6361/202037722
– volume: 40
  start-page: 368
  year: 1984
  ident: apjacf5e1bib50
  publication-title: JApSp
  doi: 10.1007/BF00658452
– volume: 497
  start-page: 388
  year: 1998
  ident: apjacf5e1bib27
  publication-title: ApJ
  doi: 10.1086/305437
– volume: 579
  start-page: 616
  year: 2002
  ident: apjacf5e1bib42
  publication-title: ApJ
  doi: 10.1086/342829
– volume: Vol. 5
  start-page: 064202
  year: 2020
  ident: apjacf5e1bib73
  doi: 10.1063/5.0022751
– volume: 710
  start-page: 1557
  year: 2010
  ident: apjacf5e1bib67
  publication-title: ApJ
  doi: 10.1088/0004-637X/710/2/1557
– volume: 486
  start-page: 951
  year: 2008
  ident: apjacf5e1bib33
  publication-title: A&A
  doi: 10.1051/0004-6361:200809724
– volume: 21
  start-page: 547
  year: 1988
  ident: apjacf5e1bib28
  publication-title: JPhB
  doi: 10.1088/0953-4075/21/4/009
– volume: 211
  start-page: 404
  year: 1968
  ident: apjacf5e1bib23
  publication-title: ZPhy
  doi: 10.1007/BF01379963
– volume: 787
  start-page: 10
  year: 2014
  ident: apjacf5e1bib11
  publication-title: ApJ
  doi: 10.1088/0004-637X/787/1/10
– volume: 496
  start-page: 2558
  year: 2020
  ident: apjacf5e1bib24
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1710
– volume: 433
  start-page: 229
  year: 1994
  ident: apjacf5e1bib99
  publication-title: ApJ
  doi: 10.1086/174638
– year: 1962b
  ident: apjacf5e1bib79
– volume: 83
  start-page: 157
  year: 2011
  ident: apjacf5e1bib45
  publication-title: RvMP
  doi: 10.1103/RevModPhys.83.157
– volume: 110
  start-page: 2319
  year: 1995
  ident: apjacf5e1bib17
  publication-title: AJ
  doi: 10.1086/117692
– volume: 453
  start-page: 1619
  year: 2015
  ident: apjacf5e1bib2
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1668
– volume: 582
  start-page: A49
  year: 2015
  ident: apjacf5e1bib37
  publication-title: A&A
  doi: 10.1051/0004-6361/201526319
– volume: 574
  start-page: 497
  year: 2019
  ident: apjacf5e1bib97
  publication-title: Natur
  doi: 10.1038/s41586-019-1676-3
– volume: 639
  start-page: A127
  year: 2020
  ident: apjacf5e1bib16
  publication-title: A&A
  doi: 10.1051/0004-6361/202038055
– volume: 515
  start-page: 1510
  year: 2022
  ident: apjacf5e1bib85
  publication-title: MNRAS
  doi: 10.1093/mnras/stac1813
– volume: 239
  start-page: 1
  year: 1970
  ident: apjacf5e1bib10
  publication-title: CoAsi
– volume: 579
  start-page: A52
  year: 2015
  ident: apjacf5e1bib63
  publication-title: A&A
  doi: 10.1051/0004-6361/201526269
– volume: 574
  start-page: A120
  year: 2015
  ident: apjacf5e1bib40
  publication-title: A&A
  doi: 10.1051/0004-6361/201424944
– volume: 573
  start-page: A27
  year: 2015
  ident: apjacf5e1bib32
  publication-title: A&A
  doi: 10.1051/0004-6361/201424111
– volume: 671
  start-page: 1685
  year: 2007
  ident: apjacf5e1bib62
  publication-title: ApJ
  doi: 10.1086/523084
– volume: 114
  start-page: 20
  year: 2003
  ident: apjacf5e1bib61
  publication-title: Msngr
– volume: 936
  start-page: 100
  year: 2022
  ident: apjacf5e1bib9
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac8746
– volume: 866
  start-page: 153
  year: 2018
  ident: apjacf5e1bib1
  publication-title: ApJ
  doi: 10.3847/1538-4357/aae1a8
– volume: 748
  start-page: 72
  year: 2012
  ident: apjacf5e1bib3
  publication-title: ApJ
  doi: 10.1088/0004-637X/748/1/72
– volume: 808
  start-page: 148
  year: 2015
  ident: apjacf5e1bib83
  publication-title: ApJ
  doi: 10.1088/0004-637X/808/2/148
– year: 2018
  ident: apjacf5e1bib48
– volume: 35
  start-page: 2244
  year: 2018
  ident: apjacf5e1bib53
  publication-title: JOSAB
  doi: 10.1364/JOSAB.35.002244
– volume: 147
  start-page: 136
  year: 2014
  ident: apjacf5e1bib72
  publication-title: AJ
  doi: 10.1088/0004-6256/147/6/136
– year: 1984
  ident: apjacf5e1bib51
– volume: 900
  start-page: 179
  year: 2020
  ident: apjacf5e1bib46
  publication-title: ApJ
  doi: 10.3847/1538-4357/abae65
– volume: 530
  start-page: A15
  year: 2011
  ident: apjacf5e1bib64
  publication-title: A&A
  doi: 10.1051/0004-6361/201116619
– year: 1985
  ident: apjacf5e1bib14
– volume: 217
  start-page: 44
  year: 2021
  ident: apjacf5e1bib55
  publication-title: SSRv
  doi: 10.1007/s11214-021-00825-8
– volume: 816
  start-page: 79
  year: 2016
  ident: apjacf5e1bib81
  publication-title: ApJ
  doi: 10.3847/0004-637X/816/2/79
– volume: 63
  start-page: 726
  year: 2019b
  ident: apjacf5e1bib60
  publication-title: ARep
  doi: 10.1134/S1063772919090063
– volume: 857
  start-page: 133
  year: 2018
  ident: apjacf5e1bib6
  publication-title: ApJ
  doi: 10.3847/1538-4357/aab3cb
– volume: 645
  start-page: A96
  year: 2021
  ident: apjacf5e1bib66
  publication-title: A&A
  doi: 10.1051/0004-6361/202038306
– volume: 651
  start-page: A20
  year: 2021
  ident: apjacf5e1bib15
  publication-title: A&A
  doi: 10.1051/0004-6361/202140808
– year: 2023
  ident: apjacf5e1bib96
– volume: 636
  start-page: A85
  year: 2020
  ident: apjacf5e1bib77
  publication-title: A&A
  doi: 10.1051/0004-6361/201936296
– volume: 564
  start-page: A133
  year: 2014
  ident: apjacf5e1bib41
  publication-title: A&A
  doi: 10.1051/0004-6361/201322440
– year: 2022
  ident: apjacf5e1bib49
  doi: 10.18434/T4W30F
– volume: 608
  start-page: A46
  year: 2017
  ident: apjacf5e1bib71
  publication-title: A&A
  doi: 10.1051/0004-6361/201730750
SSID ssj0004299
Score 2.4980063
Snippet The nonlocal thermodynamical equilibrium (NLTE) line formation of Y i and Y ii is considered in 1D LTE model atmospheres of FGK-type stars. The model atom was...
The nonlocal thermodynamical equilibrium (NLTE) line formation of Y i and Y ii is considered in 1D LTE model atmospheres of FGK-type stars. The model atom was...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10
SubjectTerms Abundance
Astrophysics
Atmosphere
Chemical abundances
Chemical evolution
Galactic archaeology
Galactic evolution
Hydrogen atoms
Inelastic collisions
Ionization
Iron
Metallicity
Reference stars
S-process
Stars
Stellar atmospheres
Stellar nucleosynthesis
Strontium
Thermodynamic equilibrium
Yttrium
Zirconium
SummonAdditionalLinks – databaseName: Institute of Physics Open Access Journal Titles
  dbid: O3W
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB9KpeCL1FbpaSt5sIIP6202yWaD-HCWXkvV6kOL51PI18KJ3T261wf_eyebvSulUvq0ITvZLJOZzEzC_Abgrac259bILM9tkXFDQ2ZrFTJhFOMiVKXoc2G-nZenl_xsJmYb8HGdC9Muhq3_AzYTUHBiYdRvhnvpuNdRtPJybFwtAoY-T1hVVjHy-s5-3iZFFmrwfXlWMjlLd5T__cIdm9RD96Olwenv7c-90Zluw7PBWyST9G_PYSM0O7A36eL5dXv1l7wjfTsdT3Q7sPUjtXbh0_nXi2OyghwhbU1-kTkxjY_POZk3BD0_MlletV0EFgg9yfTkC0Hv87p7AZfT44uj02wolZA5zsUyq2nlZa2s56VBD4h65UVQ0jJa5846URmJylcZrwRTpmTeudyz0hTScOptYC9hs2mbsAfE-cC4lYb6quDCUIOGzHjscLicgroRjFfM0m7AEY_lLP5ojCcie3Vkr47s1Ym9I3i_HrFIGBoP0H6O_F_TRfTrvgMlQQ-SoNHJKBizZe5R0CI-Ts0iMCCGTnkQypsRHOLq6UEbuwcmO7hDZxa_tcK3NI5Y-HoE-6v1vyUqYnn2Ssq8ePXIaV7D01ikPmUw7sPm8vomHKArs7RvepH9B7IB6LE
  priority: 102
  providerName: IOP Publishing
Title NLTE Analysis of Y i and Y ii in the Atmospheres of FGK Stars
URI https://iopscience.iop.org/article/10.3847/1538-4357/acf5e1
https://www.proquest.com/docview/2879587702
https://doaj.org/article/818233b60db044519f351035760e59da
Volume 957
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqpEq9oHYpYilb-VAqcYg2juM4PnBYEFvecAABJ8uvSItKsiLbA_-esZ3wEBJcenEsZ5xYn8eesRN_g9AvS3Saa8WTNNVZkiviEl0JlzAlaM5cWbBwFubktNi_zA-v2fWLUF_-n7BIDxyBG4NBySjVRWrhoZ4LpaKeBA7c5NQxYYNrBDavX0z1JyJhlo0fJSlMv-MwrMEx4GNlKubIKyMUuPrBtMya-ZsJOViZ6Ve03LmHeBKb9Q19cvUArU1av2Hd3D3g3zjk435EO0Cfz2NuBW2fHl_s4Z5jBDcVvsEzrGrrrzM8qzG4eniyuGtazyTggsj0zxEGd_O-_Y4up3sXu_tJFxshMYDCIqlIaXkltM0LBS4PscIyJ7impEqNNqxUHGAqlRWMClVQa0xqaaEyrnJitaOraKluareGsLGO5porYsssZ4oosFzKQoGB_mPEDNG4B0uajjjcx6_4K2EB4eGVHl7p4ZUR3iHaeqoxj6QZ78juePyf5DzddSgAJZCdEsiPlGCINqH3ZDf82ndeNnolp-a3UsBd4mvMbTVEG33_PwtlPh57yXmarf-Ptv5AX3zI-niecQMtLe7_uRE4Ngv9M-gwpAdn55Ce0atHdwTwuA
linkProvider Directory of Open Access Journals
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagCMQFQQF1S1t8ACQOYeP4FR84LKVLoWXpoRXLyfIr0qI2WTXLgX_P2M62qkAVp4yccWyNZzxjR_MNQq88sSWzRhZlaauCGRIK26hQcKMo46EWPOXCfJ2JwzP2Zc7nQ53TlAvTLYet_x2QGSg4izDaN4W9dJxsFLy8HBvX8EDGS9_cRfc4FSLWbvhGv18nRlZqiH9ZIaic5_-U__zKDb-U4PvB28AU_tqjk-OZPkaPhogRT_L8nqA7od1EW5M-3mF3F7_xG5zofEXRb6L7J5l6it7Pjk8P8Bp2BHcN_oEX2LQ-Phd40WKI_vBkddH1EVwgJJbppyMMEehl_wydTQ9O9w-LoVxC4Rjjq6IhtZeNsp4JA1EQ8crzoKSlpCmddbw2EgywNl5xqoyg3rnSU2EqaRjxNtDnaKPt2rCFsPOBMisN8XXFuCEGnJnx0OBgSTlxIzReC0u7AUs8lrQ413CmiOLVUbw6ildn8Y7Q26sey4yjcQvvhyj_K76IgJ0aQBv0oA0aAo2KUitKD8oWMXIaGsEB4fhUBq68GaHXsHp6sMj-lsF2b_CZ5U-t4C2JPUCzRmhnvf7XTFUs0V5LWVbb_znMS_Tg5ONUH3-eHb1AD2PN-pzQuIM2Vpe_wi5ENiu7l7T3DyhS7KA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NLTE+Analysis+of+Y+i+and+Y+ii+in+the+Atmospheres+of+FGK+Stars&rft.jtitle=The+Astrophysical+journal&rft.au=Alexeeva%2C+Sofya&rft.au=Wang%2C+Yu&rft.au=Zhao%2C+Gang&rft.au=Wang%2C+Feng&rft.date=2023-11-01&rft.pub=IOP+Publishing&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=957&rft.issue=1&rft.spage=10&rft_id=info:doi/10.3847%2F1538-4357%2Facf5e1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon