NLTE Analysis of Y i and Y ii in the Atmospheres of FGK Stars
The nonlocal thermodynamical equilibrium (NLTE) line formation of Y i and Y ii is considered in 1D LTE model atmospheres of FGK-type stars. The model atom was constructed with the most up-to-date atomic data, including quantum cross sections and rate coefficients for transitions in inelastic collisi...
Saved in:
Published in | The Astrophysical journal Vol. 957; no. 1; pp. 10 - 33 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
01.11.2023
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The nonlocal thermodynamical equilibrium (NLTE) line formation of Y
i
and Y
ii
is considered in 1D LTE model atmospheres of FGK-type stars. The model atom was constructed with the most up-to-date atomic data, including quantum cross sections and rate coefficients for transitions in inelastic collisions of Y
i
and Y
ii
with hydrogen atoms. For seven reference stars, we obtained an agreement between NLTE abundances inferred from the two ionization stages, while the difference in LTE abundance (Y
i
and Y
ii
) can reach up to −0.31 dex. In the atmospheres of FGK-type stars, for both Y
i
and Y
ii
lines, the NLTE abundance corrections are positive. In solar metallicity stars, the NLTE abundance corrections for Y
ii
lines do not exceed 0.12 dex, while in atmospheres of metal-poor stars, they do not exceed 0.21 dex. For Y
i
lines, the NLTE abundance corrections can reach up to ∼0.5 dex. We determined the yttrium NLTE abundances for a sample of 65 F and G dwarfs and subgiants in the −2.62 ≤ [Fe/H] ≤ +0.24 metallicity range, using high-resolution spectra. For stars with [Fe/H] ≤ −1.5, [Y/Fe] versus [Fe/H] diagram reveals a positive trend with an average value of [Y/Fe] ≃ 0. For metal-poor stars, among Sr, Y, and Zr, the arrangement [Sr/Fe] < [Y/Fe] < [Zr/Fe] remains consistent. The current study is useful for Galactic chemical evolution research. The model atom will be applied for NLTE yttrium abundance determination in very metal-poor stars studied with LAMOST and Subaru. |
---|---|
AbstractList | The nonlocal thermodynamical equilibrium (NLTE) line formation of Y i and Y ii is considered in 1D LTE model atmospheres of FGK-type stars. The model atom was constructed with the most up-to-date atomic data, including quantum cross sections and rate coefficients for transitions in inelastic collisions of Y i and Y ii with hydrogen atoms. For seven reference stars, we obtained an agreement between NLTE abundances inferred from the two ionization stages, while the difference in LTE abundance (Y i and Y ii) can reach up to −0.31 dex. In the atmospheres of FGK-type stars, for both Y i and Y ii lines, the NLTE abundance corrections are positive. In solar metallicity stars, the NLTE abundance corrections for Y ii lines do not exceed 0.12 dex, while in atmospheres of metal-poor stars, they do not exceed 0.21 dex. For Y i lines, the NLTE abundance corrections can reach up to ∼0.5 dex. We determined the yttrium NLTE abundances for a sample of 65 F and G dwarfs and subgiants in the −2.62 ≤ [Fe/H] ≤ +0.24 metallicity range, using high-resolution spectra. For stars with [Fe/H] ≤ −1.5, [Y/Fe] versus [Fe/H] diagram reveals a positive trend with an average value of [Y/Fe] ≃ 0. For metal-poor stars, among Sr, Y, and Zr, the arrangement [Sr/Fe] < [Y/Fe] < [Zr/Fe] remains consistent. The current study is useful for Galactic chemical evolution research. The model atom will be applied for NLTE yttrium abundance determination in very metal-poor stars studied with LAMOST and Subaru. The nonlocal thermodynamical equilibrium (NLTE) line formation of Y i and Y ii is considered in 1D LTE model atmospheres of FGK-type stars. The model atom was constructed with the most up-to-date atomic data, including quantum cross sections and rate coefficients for transitions in inelastic collisions of Y i and Y ii with hydrogen atoms. For seven reference stars, we obtained an agreement between NLTE abundances inferred from the two ionization stages, while the difference in LTE abundance (Y i and Y ii ) can reach up to −0.31 dex. In the atmospheres of FGK-type stars, for both Y i and Y ii lines, the NLTE abundance corrections are positive. In solar metallicity stars, the NLTE abundance corrections for Y ii lines do not exceed 0.12 dex, while in atmospheres of metal-poor stars, they do not exceed 0.21 dex. For Y i lines, the NLTE abundance corrections can reach up to ∼0.5 dex. We determined the yttrium NLTE abundances for a sample of 65 F and G dwarfs and subgiants in the −2.62 ≤ [Fe/H] ≤ +0.24 metallicity range, using high-resolution spectra. For stars with [Fe/H] ≤ −1.5, [Y/Fe] versus [Fe/H] diagram reveals a positive trend with an average value of [Y/Fe] ≃ 0. For metal-poor stars, among Sr, Y, and Zr, the arrangement [Sr/Fe] < [Y/Fe] < [Zr/Fe] remains consistent. The current study is useful for Galactic chemical evolution research. The model atom will be applied for NLTE yttrium abundance determination in very metal-poor stars studied with LAMOST and Subaru. |
Author | Wu, Yong Wang, Yu Yan, Hongliang Shi, Jianrong Alexeeva, Sofya Wang, Jianguo Zhao, Gang Wang, Feng |
Author_xml | – sequence: 1 givenname: Sofya orcidid: 0000-0002-8709-4665 surname: Alexeeva fullname: Alexeeva, Sofya organization: National Astronomical Observatories Chinese Academy of Sciences CAS Key Laboratory of Optical Astronomy, , Beijing, 100101, People’s Republic of China – sequence: 2 givenname: Yu orcidid: 0000-0002-2448-3049 surname: Wang fullname: Wang, Yu organization: Beijing Institute of Technology School of Physics, Beijing, 100081, People’s Republic of China – sequence: 3 givenname: Gang orcidid: 0000-0002-8980-945X surname: Zhao fullname: Zhao, Gang organization: University of Chinese Academy of Sciences School of Astronomy and Space Science, Beijing, 100049, People’s Republic of China – sequence: 4 givenname: Feng orcidid: 0000-0002-8514-4497 surname: Wang fullname: Wang, Feng organization: Beijing Institute of Technology School of Physics, Beijing, 100081, People’s Republic of China – sequence: 5 givenname: Yong orcidid: 0000-0003-1874-9653 surname: Wu fullname: Wu, Yong organization: Peking University HEDPS, Center for Applied Physics and Technology, Beijing, 100084, People’s Republic of China – sequence: 6 givenname: Jianguo surname: Wang fullname: Wang, Jianguo organization: Institute of Applied Physics and Computational Mathematics , Beijing, 100088, People’s Republic of China – sequence: 7 givenname: Hongliang orcidid: 0000-0002-8609-3599 surname: Yan fullname: Yan, Hongliang organization: Beijing Normal University Institute for Frontiers in Astronomy and Astrophysics, Beijing, 102206, People’s Republic of China – sequence: 8 givenname: Jianrong orcidid: 0000-0002-0349-7839 surname: Shi fullname: Shi, Jianrong organization: University of Chinese Academy of Sciences School of Astronomy and Space Science, Beijing, 100049, People’s Republic of China |
BookMark | eNp9kE1PFTEUhhuCiRd077KJLB1op9Npu3BxQwCJN7oQE101Z_ohvblMh7Ys-Pd2GJSEiKuTnjzv25PnAO2PcXQIvaPkmMlOnFDOZNMxLk7AeO7oHlr9Xe2jFSGka3omfrxGBzlv52er1Ap9_LK5OsPrEXb3OWQcPf6JA4bRzjPgMOJy7fC63MQ8XbvkHpDzi8_4W4GU36BXHnbZvX2ch-j7-dnV6adm8_Xi8nS9aUzX8dJ4Kq3warBdD7Rj1CrLnRIDo56YwXAJglMiwSrOFPTMGkMs66EV0FE7OHaILpdeG2GrpxRuIN3rCEE_LGL6pSGVYHZOSypbxoae2IHUz6nyrHZXCT1xXFmoXe-XrinF2zuXi97Gu1QFZN1KobgUgrSV6hfKpJhzcl6bUKCEOJYEYacp0bN2PTvWs2O9aK9B8iz459z_RI6WSIjT0zEwbbWqEJ2Dk_UV-_AP7MXW34bMni8 |
CitedBy_id | crossref_primary_10_1051_0004_6361_202449753 crossref_primary_10_1051_0004_6361_202451536 crossref_primary_10_1093_mnras_stae1615 crossref_primary_10_3847_1538_4357_ad77d8 crossref_primary_10_1051_0004_6361_202349049 crossref_primary_10_1093_mnras_stae2283 crossref_primary_10_3847_2041_8213_ad3bb4 crossref_primary_10_1051_0004_6361_202450981 |
Cites_doi | 10.1088/0370-1328/79/6/304 10.1088/0034-4885/52/8/002 10.1093/mnras/stx1619 10.1051/0004-6361/201116745 10.1088/1742-6596/328/1/012015 10.1088/0031-8949/90/5/054005 10.1051/0004-6361:20021512 10.1051/0004-6361/201731882 10.1051/0004-6361/201935753 10.1134/1.1509814 10.3847/1538-4357/833/2/225 10.1086/160384 10.1086/175368 10.1093/mnras/sty316 10.1051/0004-6361/202039657 10.1051/0004-6361/201833721 10.1051/0004-6361/201118643 10.1007/BF02755940 10.3847/1538-4357/acae72 10.1051/0004-6361/202141069 10.1051/0004-6361/201833218 10.1088/0004-637X/801/1/53 10.1051/0004-6361/202038943 10.1051/0004-6361/201527848 10.1051/0004-6361:20077706 10.1086/319956 10.1103/PhysRevA.36.3187 10.1051/0004-6361/201526695 10.1093/mnras/stw1202 10.1051/0004-6361/201936479 10.1134/1.1450658 10.3847/1538-3881/ab9ab8 10.1103/RevModPhys.93.015002 10.3847/1538-3881/aba592 10.1134/S1990341320030050 10.1051/0004-6361/201731236 10.1088/1674-4527/13/11/003 10.3847/1538-4357/ac6514 10.1088/0953-4075/48/8/085001 10.1023/A:1013126602902 10.1051/0004-6361/201015336 10.1086/380507 10.1086/317319 10.1051/0004-6361/201118751 10.1063/1.1836764 10.1086/383406 10.1051/0004-6361/201322631 10.3847/1538-3881/abf5e0 10.1093/mnras/stv2725 10.1051/0004-6361/202037722 10.1007/BF00658452 10.1086/305437 10.1086/342829 10.1063/5.0022751 10.1088/0004-637X/710/2/1557 10.1051/0004-6361:200809724 10.1088/0953-4075/21/4/009 10.1007/BF01379963 10.1088/0004-637X/787/1/10 10.1093/mnras/staa1710 10.1086/174638 10.1103/RevModPhys.83.157 10.1086/117692 10.1093/mnras/stv1668 10.1051/0004-6361/201526319 10.1038/s41586-019-1676-3 10.1051/0004-6361/202038055 10.1093/mnras/stac1813 10.1051/0004-6361/201526269 10.1051/0004-6361/201424944 10.1051/0004-6361/201424111 10.1086/523084 10.3847/1538-4357/ac8746 10.3847/1538-4357/aae1a8 10.1088/0004-637X/748/1/72 10.1088/0004-637X/808/2/148 10.1364/JOSAB.35.002244 10.1088/0004-6256/147/6/136 10.3847/1538-4357/abae65 10.1051/0004-6361/201116619 10.1007/s11214-021-00825-8 10.3847/0004-637X/816/2/79 10.1134/S1063772919090063 10.3847/1538-4357/aab3cb 10.1051/0004-6361/202038306 10.1051/0004-6361/202140808 10.1051/0004-6361/201936296 10.1051/0004-6361/201322440 10.18434/T4W30F 10.1051/0004-6361/201730750 |
ContentType | Journal Article |
Copyright | 2023. The Author(s). Published by the American Astronomical Society. 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. The Author(s). Published by the American Astronomical Society. – notice: 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 7TG 8FD H8D KL. L7M DOA |
DOI | 10.3847/1538-4357/acf5e1 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1538-4357 |
ExternalDocumentID | oai_doaj_org_article_818233b60db044519f351035760e59da 10_3847_1538_4357_acf5e1 apjacf5e1 |
GrantInformation_xml | – fundername: MOST ∣ National Key Research and Development Program of China (NKPs) grantid: 2019YFA0405500 funderid: https://doi.org/10.13039/501100012166 – fundername: MOST ∣ National Natural Science Foundation of China (NSFC) grantid: 11988101; 11890694; 12090044; 11833006; 12022304; 11973052 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 TSCCA WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M 2WC |
ID | FETCH-LOGICAL-c445t-f18d7f9bd46a1431d9d5e97b31f0cbc58a75108ad9539a63dcc0d36a27a41dbe3 |
IEDL.DBID | DOA |
ISSN | 0004-637X |
IngestDate | Wed Aug 27 01:32:58 EDT 2025 Wed Aug 13 11:25:30 EDT 2025 Tue Jul 01 03:39:41 EDT 2025 Thu Apr 24 22:59:56 EDT 2025 Wed Aug 21 03:33:03 EDT 2024 Tue Oct 24 22:36:14 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-f18d7f9bd46a1431d9d5e97b31f0cbc58a75108ad9539a63dcc0d36a27a41dbe3 |
Notes | Stars and Stellar Physics AAS48425 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8709-4665 0000-0002-2448-3049 0000-0002-8514-4497 0000-0002-8980-945X 0000-0002-0349-7839 0000-0003-1874-9653 0000-0002-8609-3599 |
OpenAccessLink | https://doaj.org/article/818233b60db044519f351035760e59da |
PQID | 2879587702 |
PQPubID | 4562441 |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_818233b60db044519f351035760e59da iop_journals_10_3847_1538_4357_acf5e1 proquest_journals_2879587702 crossref_citationtrail_10_3847_1538_4357_acf5e1 crossref_primary_10_3847_1538_4357_acf5e1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2023 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Buder (apjacf5e1bib13) 2019; 624 Liu (apjacf5e1bib54) 2013; 13 Alexeeva (apjacf5e1bib1) 2018; 866 Bisterzo (apjacf5e1bib11) 2014; 787 Gough (apjacf5e1bib28) 1988; 21 Hannaford (apjacf5e1bib34) 1982; 261 Kochukhov (apjacf5e1bib48) 2018 Gallino (apjacf5e1bib27) 1998; 497 Kobayashi (apjacf5e1bib46) 2020; 900 Cretignier (apjacf5e1bib20) 2020; 640 Smirnov (apjacf5e1bib86) 2000; 38 Casali (apjacf5e1bib16) 2020; 639 Sarmento (apjacf5e1bib77) 2020; 636 François (apjacf5e1bib25) 2007; 476 Zhao (apjacf5e1bib101) 2016; 833 Rybicki (apjacf5e1bib76) 1991; 245 Ryabchikova (apjacf5e1bib74) 2015; 90 Baines (apjacf5e1bib3) 2012; 748 Smirnov (apjacf5e1bib89) 2002b; 47 Butler (apjacf5e1bib14) 1985 Hatzes (apjacf5e1bib36) 2000; 544 Montes (apjacf5e1bib62) 2007; 671 Seaton (apjacf5e1bib78) 1962a; 79 Janson (apjacf5e1bib40) 2015; 574 Fernández-Menchero (apjacf5e1bib24) 2020; 496 Mashonkina (apjacf5e1bib59) 2019a; 631 Berger (apjacf5e1bib9) 2022; 936 Coffaro (apjacf5e1bib18) 2020; 636 Zhao (apjacf5e1bib100) 1991; 244 Kappeler (apjacf5e1bib44) 1989; 52 Kappeler (apjacf5e1bib45) 2011; 83 Mashonkina (apjacf5e1bib58) 2017; 605 Pignatari (apjacf5e1bib67) 2010; 710 Nissen (apjacf5e1bib64) 2011; 530 Li (apjacf5e1bib53) 2018; 35 Woosley (apjacf5e1bib99) 1994; 433 Lodders (apjacf5e1bib55) 2021; 217 Li (apjacf5e1bib52) 2022; 931 Baratella (apjacf5e1bib4) 2021; 653 Alexeeva (apjacf5e1bib2) 2015; 453 NIST ASD Team (apjacf5e1bib49) 2022 Palmeri (apjacf5e1bib65) 2017; 471 Barklem (apjacf5e1bib5) 2011; 530 Przybilla (apjacf5e1bib69) 2011; 328 Shibagaki (apjacf5e1bib81) 2016; 816 Cowan (apjacf5e1bib19) 2021; 93 Clementini (apjacf5e1bib17) 1995; 110 Honda (apjacf5e1bib39) 2004; 607 Gray (apjacf5e1bib30) 1995; 441 Travaglio (apjacf5e1bib92) 2004; 601 Wijesundera (apjacf5e1bib98) 1987; 36 Gustafsson (apjacf5e1bib33) 2008; 486 Hansen (apjacf5e1bib35) 2012; 545 Wang (apjacf5e1bib96) 2023 Mayor (apjacf5e1bib61) 2003; 114 Sitnova (apjacf5e1bib84) 2016; 461 Vieira (apjacf5e1bib95) 2023; 944 Heiter (apjacf5e1bib37) 2015; 582 Roederer (apjacf5e1bib72) 2014; 147 Jönsson (apjacf5e1bib43) 2020; 160 Grevesse (apjacf5e1bib32) 2015; 573 Prantzos (apjacf5e1bib68) 2018; 476 Ryabchikova (apjacf5e1bib75) 2016; 456 Bernacca (apjacf5e1bib10) 1970; 239 Steinmetz (apjacf5e1bib90) 2020; 160 Caffau (apjacf5e1bib15) 2021; 651 Pepe (apjacf5e1bib66) 2021; 645 Gozha (apjacf5e1bib29) 2020; 75 Jofré (apjacf5e1bib41) 2014; 564 Smirnov (apjacf5e1bib88) 2002a; 93 Kochukhov (apjacf5e1bib47) 2010 Recio-Blanco (apjacf5e1bib70) 2021; 648 Johnson (apjacf5e1bib42) 2002; 579 Seaton (apjacf5e1bib79) 1962b Sitnova (apjacf5e1bib83) 2015; 808 Bastian (apjacf5e1bib6) 2018; 857 Mashonkina (apjacf5e1bib60) 2019b; 63 Tsymbal (apjacf5e1bib93) 2019 Bensby (apjacf5e1bib8) 2014; 562 Cristallo (apjacf5e1bib21) 2015; 801 Watson (apjacf5e1bib97) 2019; 574 Böhlke (apjacf5e1bib12) 2005; 34 Tucci Maia (apjacf5e1bib94) 2016; 590 Siqueira-Mello (apjacf5e1bib82) 2015; 584 Holzer (apjacf5e1bib38) 2021; 161 Gray (apjacf5e1bib31) 2001; 121 Kurucz (apjacf5e1bib51) 1984 Nissen (apjacf5e1bib63) 2015; 579 Reggiani (apjacf5e1bib71) 2017; 608 Drawin (apjacf5e1bib23) 1968; 211 Titarenko (apjacf5e1bib91) 2019; 622 da Silva (apjacf5e1bib22) 2012; 542 Mashonkina (apjacf5e1bib56) 2011; 528 Shang (apjacf5e1bib80) 2015; 48 Smirnov (apjacf5e1bib87) 2001; 39 Kuchenev (apjacf5e1bib50) 1984; 40 Gaia Collaboration (apjacf5e1bib26) 2021; 649 Sitnova (apjacf5e1bib85) 2022; 515 Rosmej (apjacf5e1bib73) 2020; Vol. 5 Belyaev (apjacf5e1bib7) 2017; 608 Mashonkina (apjacf5e1bib57) 2003; 397 |
References_xml | – year: 2010 ident: apjacf5e1bib47 publication-title: BinMag IDL widget Code v6.2 – volume: 79 start-page: 1105 year: 1962a ident: apjacf5e1bib78 publication-title: PPS doi: 10.1088/0370-1328/79/6/304 – volume: 52 start-page: 945 year: 1989 ident: apjacf5e1bib44 publication-title: RPPh doi: 10.1088/0034-4885/52/8/002 – volume: 471 start-page: 532 year: 2017 ident: apjacf5e1bib65 publication-title: MNRAS doi: 10.1093/mnras/stx1619 – volume: 530 start-page: A94 year: 2011 ident: apjacf5e1bib5 publication-title: A&A doi: 10.1051/0004-6361/201116745 – volume: 328 start-page: 012015 year: 2011 ident: apjacf5e1bib69 publication-title: JPhCS doi: 10.1088/1742-6596/328/1/012015 – volume: 90 start-page: 054005 year: 2015 ident: apjacf5e1bib74 publication-title: PhyS doi: 10.1088/0031-8949/90/5/054005 – start-page: 247 year: 2019 ident: apjacf5e1bib93 – volume: 397 start-page: 275 year: 2003 ident: apjacf5e1bib57 publication-title: A&A doi: 10.1051/0004-6361:20021512 – volume: 608 start-page: A33 year: 2017 ident: apjacf5e1bib7 publication-title: A&A doi: 10.1051/0004-6361/201731882 – volume: 631 start-page: A43 year: 2019a ident: apjacf5e1bib59 publication-title: A&A doi: 10.1051/0004-6361/201935753 – volume: 93 start-page: 351 year: 2002a ident: apjacf5e1bib88 publication-title: OptSp doi: 10.1134/1.1509814 – volume: 833 start-page: 225 year: 2016 ident: apjacf5e1bib101 publication-title: ApJ doi: 10.3847/1538-4357/833/2/225 – volume: 261 start-page: 736 year: 1982 ident: apjacf5e1bib34 publication-title: ApJ doi: 10.1086/160384 – volume: 441 start-page: 436 year: 1995 ident: apjacf5e1bib30 publication-title: ApJ doi: 10.1086/175368 – volume: 476 start-page: 3432 year: 2018 ident: apjacf5e1bib68 publication-title: MNRAS doi: 10.1093/mnras/sty316 – volume: 649 start-page: A1 year: 2021 ident: apjacf5e1bib26 publication-title: A&A doi: 10.1051/0004-6361/202039657 – volume: 622 start-page: A59 year: 2019 ident: apjacf5e1bib91 publication-title: A&A doi: 10.1051/0004-6361/201833721 – volume: 545 start-page: A31 year: 2012 ident: apjacf5e1bib35 publication-title: A&A doi: 10.1051/0004-6361/201118643 – volume: 38 start-page: 163 year: 2000 ident: apjacf5e1bib86 publication-title: High Temp. doi: 10.1007/BF02755940 – volume: 944 start-page: 123 year: 2023 ident: apjacf5e1bib95 publication-title: ApJ doi: 10.3847/1538-4357/acae72 – volume: 653 start-page: A67 year: 2021 ident: apjacf5e1bib4 publication-title: A&A doi: 10.1051/0004-6361/202141069 – volume: 624 start-page: A19 year: 2019 ident: apjacf5e1bib13 publication-title: A&A doi: 10.1051/0004-6361/201833218 – volume: 801 start-page: 53 year: 2015 ident: apjacf5e1bib21 publication-title: ApJ doi: 10.1088/0004-637X/801/1/53 – volume: 648 start-page: A108 year: 2021 ident: apjacf5e1bib70 publication-title: A&A doi: 10.1051/0004-6361/202038943 – volume: 590 start-page: A32 year: 2016 ident: apjacf5e1bib94 publication-title: A&A doi: 10.1051/0004-6361/201527848 – volume: 476 start-page: 935 year: 2007 ident: apjacf5e1bib25 publication-title: A&A doi: 10.1051/0004-6361:20077706 – volume: 121 start-page: 2148 year: 2001 ident: apjacf5e1bib31 publication-title: AJ doi: 10.1086/319956 – volume: 36 start-page: 3187 year: 1987 ident: apjacf5e1bib98 publication-title: PhRvA doi: 10.1103/PhysRevA.36.3187 – volume: 584 start-page: A86 year: 2015 ident: apjacf5e1bib82 publication-title: A&A doi: 10.1051/0004-6361/201526695 – volume: 461 start-page: 1000 year: 2016 ident: apjacf5e1bib84 publication-title: MNRAS doi: 10.1093/mnras/stw1202 – volume: 636 start-page: A49 year: 2020 ident: apjacf5e1bib18 publication-title: A&A doi: 10.1051/0004-6361/201936479 – volume: 47 start-page: 34 year: 2002b ident: apjacf5e1bib89 publication-title: DokPh doi: 10.1134/1.1450658 – volume: 160 start-page: 83 year: 2020 ident: apjacf5e1bib90 publication-title: AJ doi: 10.3847/1538-3881/ab9ab8 – volume: 93 start-page: 015002 year: 2021 ident: apjacf5e1bib19 publication-title: RvMP doi: 10.1103/RevModPhys.93.015002 – volume: 244 start-page: 425 year: 1991 ident: apjacf5e1bib100 publication-title: A&A – volume: 160 start-page: 120 year: 2020 ident: apjacf5e1bib43 publication-title: AJ doi: 10.3847/1538-3881/aba592 – volume: 75 start-page: 311 year: 2020 ident: apjacf5e1bib29 publication-title: AstBu doi: 10.1134/S1990341320030050 – volume: 605 start-page: A53 year: 2017 ident: apjacf5e1bib58 publication-title: A&A doi: 10.1051/0004-6361/201731236 – volume: 13 start-page: 1307 year: 2013 ident: apjacf5e1bib54 publication-title: RAA doi: 10.1088/1674-4527/13/11/003 – volume: 931 start-page: 147 year: 2022 ident: apjacf5e1bib52 publication-title: ApJ doi: 10.3847/1538-4357/ac6514 – volume: 48 start-page: 7085001 year: 2015 ident: apjacf5e1bib80 publication-title: JPhB doi: 10.1088/0953-4075/48/8/085001 – volume: 39 start-page: 815 year: 2001 ident: apjacf5e1bib87 publication-title: High Temp. doi: 10.1023/A:1013126602902 – volume: 528 start-page: A87 year: 2011 ident: apjacf5e1bib56 publication-title: A&A doi: 10.1051/0004-6361/201015336 – volume: 601 start-page: 864 year: 2004 ident: apjacf5e1bib92 publication-title: ApJ doi: 10.1086/380507 – volume: 544 start-page: L145 year: 2000 ident: apjacf5e1bib36 publication-title: ApJL doi: 10.1086/317319 – volume: 542 start-page: A84 year: 2012 ident: apjacf5e1bib22 publication-title: A&A doi: 10.1051/0004-6361/201118751 – volume: 34 start-page: 57 year: 2005 ident: apjacf5e1bib12 publication-title: JPCRD doi: 10.1063/1.1836764 – volume: 607 start-page: 474 year: 2004 ident: apjacf5e1bib39 publication-title: ApJ doi: 10.1086/383406 – volume: 245 start-page: 171 year: 1991 ident: apjacf5e1bib76 publication-title: A&A – volume: 562 start-page: A71 year: 2014 ident: apjacf5e1bib8 publication-title: A&A doi: 10.1051/0004-6361/201322631 – volume: 161 start-page: 272 year: 2021 ident: apjacf5e1bib38 publication-title: AJ doi: 10.3847/1538-3881/abf5e0 – volume: 456 start-page: 1221 year: 2016 ident: apjacf5e1bib75 publication-title: MNRAS doi: 10.1093/mnras/stv2725 – volume: 640 start-page: A42 year: 2020 ident: apjacf5e1bib20 publication-title: A&A doi: 10.1051/0004-6361/202037722 – volume: 40 start-page: 368 year: 1984 ident: apjacf5e1bib50 publication-title: JApSp doi: 10.1007/BF00658452 – volume: 497 start-page: 388 year: 1998 ident: apjacf5e1bib27 publication-title: ApJ doi: 10.1086/305437 – volume: 579 start-page: 616 year: 2002 ident: apjacf5e1bib42 publication-title: ApJ doi: 10.1086/342829 – volume: Vol. 5 start-page: 064202 year: 2020 ident: apjacf5e1bib73 doi: 10.1063/5.0022751 – volume: 710 start-page: 1557 year: 2010 ident: apjacf5e1bib67 publication-title: ApJ doi: 10.1088/0004-637X/710/2/1557 – volume: 486 start-page: 951 year: 2008 ident: apjacf5e1bib33 publication-title: A&A doi: 10.1051/0004-6361:200809724 – volume: 21 start-page: 547 year: 1988 ident: apjacf5e1bib28 publication-title: JPhB doi: 10.1088/0953-4075/21/4/009 – volume: 211 start-page: 404 year: 1968 ident: apjacf5e1bib23 publication-title: ZPhy doi: 10.1007/BF01379963 – volume: 787 start-page: 10 year: 2014 ident: apjacf5e1bib11 publication-title: ApJ doi: 10.1088/0004-637X/787/1/10 – volume: 496 start-page: 2558 year: 2020 ident: apjacf5e1bib24 publication-title: MNRAS doi: 10.1093/mnras/staa1710 – volume: 433 start-page: 229 year: 1994 ident: apjacf5e1bib99 publication-title: ApJ doi: 10.1086/174638 – year: 1962b ident: apjacf5e1bib79 – volume: 83 start-page: 157 year: 2011 ident: apjacf5e1bib45 publication-title: RvMP doi: 10.1103/RevModPhys.83.157 – volume: 110 start-page: 2319 year: 1995 ident: apjacf5e1bib17 publication-title: AJ doi: 10.1086/117692 – volume: 453 start-page: 1619 year: 2015 ident: apjacf5e1bib2 publication-title: MNRAS doi: 10.1093/mnras/stv1668 – volume: 582 start-page: A49 year: 2015 ident: apjacf5e1bib37 publication-title: A&A doi: 10.1051/0004-6361/201526319 – volume: 574 start-page: 497 year: 2019 ident: apjacf5e1bib97 publication-title: Natur doi: 10.1038/s41586-019-1676-3 – volume: 639 start-page: A127 year: 2020 ident: apjacf5e1bib16 publication-title: A&A doi: 10.1051/0004-6361/202038055 – volume: 515 start-page: 1510 year: 2022 ident: apjacf5e1bib85 publication-title: MNRAS doi: 10.1093/mnras/stac1813 – volume: 239 start-page: 1 year: 1970 ident: apjacf5e1bib10 publication-title: CoAsi – volume: 579 start-page: A52 year: 2015 ident: apjacf5e1bib63 publication-title: A&A doi: 10.1051/0004-6361/201526269 – volume: 574 start-page: A120 year: 2015 ident: apjacf5e1bib40 publication-title: A&A doi: 10.1051/0004-6361/201424944 – volume: 573 start-page: A27 year: 2015 ident: apjacf5e1bib32 publication-title: A&A doi: 10.1051/0004-6361/201424111 – volume: 671 start-page: 1685 year: 2007 ident: apjacf5e1bib62 publication-title: ApJ doi: 10.1086/523084 – volume: 114 start-page: 20 year: 2003 ident: apjacf5e1bib61 publication-title: Msngr – volume: 936 start-page: 100 year: 2022 ident: apjacf5e1bib9 publication-title: ApJ doi: 10.3847/1538-4357/ac8746 – volume: 866 start-page: 153 year: 2018 ident: apjacf5e1bib1 publication-title: ApJ doi: 10.3847/1538-4357/aae1a8 – volume: 748 start-page: 72 year: 2012 ident: apjacf5e1bib3 publication-title: ApJ doi: 10.1088/0004-637X/748/1/72 – volume: 808 start-page: 148 year: 2015 ident: apjacf5e1bib83 publication-title: ApJ doi: 10.1088/0004-637X/808/2/148 – year: 2018 ident: apjacf5e1bib48 – volume: 35 start-page: 2244 year: 2018 ident: apjacf5e1bib53 publication-title: JOSAB doi: 10.1364/JOSAB.35.002244 – volume: 147 start-page: 136 year: 2014 ident: apjacf5e1bib72 publication-title: AJ doi: 10.1088/0004-6256/147/6/136 – year: 1984 ident: apjacf5e1bib51 – volume: 900 start-page: 179 year: 2020 ident: apjacf5e1bib46 publication-title: ApJ doi: 10.3847/1538-4357/abae65 – volume: 530 start-page: A15 year: 2011 ident: apjacf5e1bib64 publication-title: A&A doi: 10.1051/0004-6361/201116619 – year: 1985 ident: apjacf5e1bib14 – volume: 217 start-page: 44 year: 2021 ident: apjacf5e1bib55 publication-title: SSRv doi: 10.1007/s11214-021-00825-8 – volume: 816 start-page: 79 year: 2016 ident: apjacf5e1bib81 publication-title: ApJ doi: 10.3847/0004-637X/816/2/79 – volume: 63 start-page: 726 year: 2019b ident: apjacf5e1bib60 publication-title: ARep doi: 10.1134/S1063772919090063 – volume: 857 start-page: 133 year: 2018 ident: apjacf5e1bib6 publication-title: ApJ doi: 10.3847/1538-4357/aab3cb – volume: 645 start-page: A96 year: 2021 ident: apjacf5e1bib66 publication-title: A&A doi: 10.1051/0004-6361/202038306 – volume: 651 start-page: A20 year: 2021 ident: apjacf5e1bib15 publication-title: A&A doi: 10.1051/0004-6361/202140808 – year: 2023 ident: apjacf5e1bib96 – volume: 636 start-page: A85 year: 2020 ident: apjacf5e1bib77 publication-title: A&A doi: 10.1051/0004-6361/201936296 – volume: 564 start-page: A133 year: 2014 ident: apjacf5e1bib41 publication-title: A&A doi: 10.1051/0004-6361/201322440 – year: 2022 ident: apjacf5e1bib49 doi: 10.18434/T4W30F – volume: 608 start-page: A46 year: 2017 ident: apjacf5e1bib71 publication-title: A&A doi: 10.1051/0004-6361/201730750 |
SSID | ssj0004299 |
Score | 2.4980063 |
Snippet | The nonlocal thermodynamical equilibrium (NLTE) line formation of Y
i
and Y
ii
is considered in 1D LTE model atmospheres of FGK-type stars. The model atom was... The nonlocal thermodynamical equilibrium (NLTE) line formation of Y i and Y ii is considered in 1D LTE model atmospheres of FGK-type stars. The model atom was... |
SourceID | doaj proquest crossref iop |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 10 |
SubjectTerms | Abundance Astrophysics Atmosphere Chemical abundances Chemical evolution Galactic archaeology Galactic evolution Hydrogen atoms Inelastic collisions Ionization Iron Metallicity Reference stars S-process Stars Stellar atmospheres Stellar nucleosynthesis Strontium Thermodynamic equilibrium Yttrium Zirconium |
SummonAdditionalLinks | – databaseName: Institute of Physics Open Access Journal Titles dbid: O3W link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB9KpeCL1FbpaSt5sIIP6202yWaD-HCWXkvV6kOL51PI18KJ3T261wf_eyebvSulUvq0ITvZLJOZzEzC_Abgrac259bILM9tkXFDQ2ZrFTJhFOMiVKXoc2G-nZenl_xsJmYb8HGdC9Muhq3_AzYTUHBiYdRvhnvpuNdRtPJybFwtAoY-T1hVVjHy-s5-3iZFFmrwfXlWMjlLd5T__cIdm9RD96Olwenv7c-90Zluw7PBWyST9G_PYSM0O7A36eL5dXv1l7wjfTsdT3Q7sPUjtXbh0_nXi2OyghwhbU1-kTkxjY_POZk3BD0_MlletV0EFgg9yfTkC0Hv87p7AZfT44uj02wolZA5zsUyq2nlZa2s56VBD4h65UVQ0jJa5846URmJylcZrwRTpmTeudyz0hTScOptYC9hs2mbsAfE-cC4lYb6quDCUIOGzHjscLicgroRjFfM0m7AEY_lLP5ojCcie3Vkr47s1Ym9I3i_HrFIGBoP0H6O_F_TRfTrvgMlQQ-SoNHJKBizZe5R0CI-Ts0iMCCGTnkQypsRHOLq6UEbuwcmO7hDZxa_tcK3NI5Y-HoE-6v1vyUqYnn2Ssq8ePXIaV7D01ikPmUw7sPm8vomHKArs7RvepH9B7IB6LE priority: 102 providerName: IOP Publishing |
Title | NLTE Analysis of Y i and Y ii in the Atmospheres of FGK Stars |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/acf5e1 https://www.proquest.com/docview/2879587702 https://doaj.org/article/818233b60db044519f351035760e59da |
Volume | 957 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqpEq9oHYpYilb-VAqcYg2juM4PnBYEFvecAABJ8uvSItKsiLbA_-esZ3wEBJcenEsZ5xYn8eesRN_g9AvS3Saa8WTNNVZkiviEl0JlzAlaM5cWbBwFubktNi_zA-v2fWLUF_-n7BIDxyBG4NBySjVRWrhoZ4LpaKeBA7c5NQxYYNrBDavX0z1JyJhlo0fJSlMv-MwrMEx4GNlKubIKyMUuPrBtMya-ZsJOViZ6Ve03LmHeBKb9Q19cvUArU1av2Hd3D3g3zjk435EO0Cfz2NuBW2fHl_s4Z5jBDcVvsEzrGrrrzM8qzG4eniyuGtazyTggsj0zxEGd_O-_Y4up3sXu_tJFxshMYDCIqlIaXkltM0LBS4PscIyJ7impEqNNqxUHGAqlRWMClVQa0xqaaEyrnJitaOraKluareGsLGO5porYsssZ4oosFzKQoGB_mPEDNG4B0uajjjcx6_4K2EB4eGVHl7p4ZUR3iHaeqoxj6QZ78juePyf5DzddSgAJZCdEsiPlGCINqH3ZDf82ndeNnolp-a3UsBd4mvMbTVEG33_PwtlPh57yXmarf-Ptv5AX3zI-niecQMtLe7_uRE4Ngv9M-gwpAdn55Ce0atHdwTwuA |
linkProvider | Directory of Open Access Journals |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagCMQFQQF1S1t8ACQOYeP4FR84LKVLoWXpoRXLyfIr0qI2WTXLgX_P2M62qkAVp4yccWyNZzxjR_MNQq88sSWzRhZlaauCGRIK26hQcKMo46EWPOXCfJ2JwzP2Zc7nQ53TlAvTLYet_x2QGSg4izDaN4W9dJxsFLy8HBvX8EDGS9_cRfc4FSLWbvhGv18nRlZqiH9ZIaic5_-U__zKDb-U4PvB28AU_tqjk-OZPkaPhogRT_L8nqA7od1EW5M-3mF3F7_xG5zofEXRb6L7J5l6it7Pjk8P8Bp2BHcN_oEX2LQ-Phd40WKI_vBkddH1EVwgJJbppyMMEehl_wydTQ9O9w-LoVxC4Rjjq6IhtZeNsp4JA1EQ8crzoKSlpCmddbw2EgywNl5xqoyg3rnSU2EqaRjxNtDnaKPt2rCFsPOBMisN8XXFuCEGnJnx0OBgSTlxIzReC0u7AUs8lrQ413CmiOLVUbw6ildn8Y7Q26sey4yjcQvvhyj_K76IgJ0aQBv0oA0aAo2KUitKD8oWMXIaGsEB4fhUBq68GaHXsHp6sMj-lsF2b_CZ5U-t4C2JPUCzRmhnvf7XTFUs0V5LWVbb_znMS_Tg5ONUH3-eHb1AD2PN-pzQuIM2Vpe_wi5ENiu7l7T3DyhS7KA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NLTE+Analysis+of+Y+i+and+Y+ii+in+the+Atmospheres+of+FGK+Stars&rft.jtitle=The+Astrophysical+journal&rft.au=Alexeeva%2C+Sofya&rft.au=Wang%2C+Yu&rft.au=Zhao%2C+Gang&rft.au=Wang%2C+Feng&rft.date=2023-11-01&rft.pub=IOP+Publishing&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=957&rft.issue=1&rft.spage=10&rft_id=info:doi/10.3847%2F1538-4357%2Facf5e1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |