Stoichiometric Assembly of the Cellulosome Generates Maximum Synergy for the Degradation of Crystalline Cellulose, as Revealed by In Vitro Reconstitution of the Clostridium thermocellum Cellulosome

The cellulosome is a supramolecular multienzyme complex formed by species-specific interactions between the cohesin modules of scaffoldin proteins and the dockerin modules of a wide variety of polysaccharide-degrading enzymes. Cellulosomal enzymes bound to the scaffoldin protein act synergistically...

Full description

Saved in:
Bibliographic Details
Published inApplied and Environmental Microbiology Vol. 81; no. 14; pp. 4756 - 4766
Main Authors Hirano, Katsuaki, Nihei, Satoshi, Hasegawa, Hiroki, Haruki, Mitsuru, Hirano, Nobutaka
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.07.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The cellulosome is a supramolecular multienzyme complex formed by species-specific interactions between the cohesin modules of scaffoldin proteins and the dockerin modules of a wide variety of polysaccharide-degrading enzymes. Cellulosomal enzymes bound to the scaffoldin protein act synergistically to degrade crystalline cellulose. However, there have been few attempts to reconstitute intact cellulosomes due to the difficulty of heterologously expressing full-length scaffoldin proteins. We describe the synthesis of a full-length scaffoldin protein containing nine cohesin modules, CipA; its deletion derivative containing two cohesin modules, ΔCipA; and three major cellulosomal cellulases, Cel48S, Cel8A, and Cel9K, of the Clostridium thermocellum cellulosome. The proteins were synthesized using a wheat germ cell-free protein synthesis system, and the purified proteins were used to reconstitute cellulosomes. Analysis of the cellulosome assembly using size exclusion chromatography suggested that the dockerin module of the enzymes stoichiometrically bound to the cohesin modules of the scaffoldin protein. The activity profile of the reconstituted cellulosomes indicated that cellulosomes assembled at a CipA/enzyme molar ratio of 1/9 (cohesin/dockerin = 1/1) and showed maximum synergy (4-fold synergy) for the degradation of crystalline substrate and ∼2.4-fold-higher synergy for its degradation than minicellulosomes assembled at a ΔCipA/enzyme molar ratio of 1/2 (cohesin/dockerin = 1/1). These results suggest that the binding of more enzyme molecules on a single scaffoldin protein results in higher synergy for the degradation of crystalline cellulose and that the stoichiometric assembly of the cellulosome, without excess or insufficient enzyme, is crucial for generating maximum synergy for the degradation of crystalline cellulose.
AbstractList The cellulosome is a supramolecular multienzyme complex formed by species-specific interactions between the cohesin modules of scaffoldin proteins and the dockerin modules of a wide variety of polysaccharide-degrading enzymes. Cellulosomal enzymes bound to the scaffoldin protein act synergistically to degrade crystalline cellulose. However, there have been few attempts to reconstitute intact cellulosomes due to the difficulty of heterologously expressing full-length scaffoldin proteins. We describe the synthesis of a full-length scaffoldin protein containing nine cohesin modules, CipA; its deletion derivative containing two cohesin modules, Delta CipA; and three major cellulosomal cellulases, Cel48S, Cel8A, and Cel9K, of the Clostridium thermocellum cellulosome. The proteins were synthesized using a wheat germ cell-free protein synthesis system, and the purified proteins were used to reconstitute cellulosomes. Analysis of the cellulosome assembly using size exclusion chromatography suggested that the dockerin module of the enzymes stoichiometrically bound to the cohesin modules of the scaffoldin protein. The activity profile of the reconstituted cellulosomes indicated that cellulosomes assembled at a CipA/enzyme molar ratio of 1/9 (cohesin/dockerin = 1/1) and showed maximum synergy (4-fold synergy) for the degradation of crystalline substrate and similar to 2.4-fold-higher synergy for its degradation than minicellulosomes assembled at a Delta CipA/enzyme molar ratio of 1/2 (cohesin/dockerin = 1/1). These results suggest that the binding of more enzyme molecules on a single scaffoldin protein results in higher synergy for the degradation of crystalline cellulose and that the stoichiometric assembly of the cellulosome, without excess or insufficient enzyme, is crucial for generating maximum synergy for the degradation of crystalline cellulose.
ABSTRACT The cellulosome is a supramolecular multienzyme complex formed by species-specific interactions between the cohesin modules of scaffoldin proteins and the dockerin modules of a wide variety of polysaccharide-degrading enzymes. Cellulosomal enzymes bound to the scaffoldin protein act synergistically to degrade crystalline cellulose. However, there have been few attempts to reconstitute intact cellulosomes due to the difficulty of heterologously expressing full-length scaffoldin proteins. We describe the synthesis of a full-length scaffoldin protein containing nine cohesin modules, CipA; its deletion derivative containing two cohesin modules, ΔCipA; and three major cellulosomal cellulases, Cel48S, Cel8A, and Cel9K, of the Clostridium thermocellum cellulosome. The proteins were synthesized using a wheat germ cell-free protein synthesis system, and the purified proteins were used to reconstitute cellulosomes. Analysis of the cellulosome assembly using size exclusion chromatography suggested that the dockerin module of the enzymes stoichiometrically bound to the cohesin modules of the scaffoldin protein. The activity profile of the reconstituted cellulosomes indicated that cellulosomes assembled at a CipA/enzyme molar ratio of 1/9 (cohesin/dockerin = 1/1) and showed maximum synergy (4-fold synergy) for the degradation of crystalline substrate and ∼2.4-fold-higher synergy for its degradation than minicellulosomes assembled at a ΔCipA/enzyme molar ratio of 1/2 (cohesin/dockerin = 1/1). These results suggest that the binding of more enzyme molecules on a single scaffoldin protein results in higher synergy for the degradation of crystalline cellulose and that the stoichiometric assembly of the cellulosome, without excess or insufficient enzyme, is crucial for generating maximum synergy for the degradation of crystalline cellulose.
The cellulosome is a supramolecular multienzyme complex formed by species-specific interactions between the cohesin modules of scaffoldin proteins and the dockerin modules of a wide variety of polysaccharide-degrading enzymes. Cellulosomal enzymes bound to the scaffoldin protein act synergistically to degrade crystalline cellulose. However, there have been few attempts to reconstitute intact cellulosomes due to the difficulty of heterologously expressing full-length scaffoldin proteins. We describe the synthesis of a full-length scaffoldin protein containing nine cohesin modules, CipA; its deletion derivative containing two cohesin modules, ΔCipA; and three major cellulosomal cellulases, Cel48S, Cel8A, and Cel9K, of the Clostridium thermocellum cellulosome. The proteins were synthesized using a wheat germ cell-free protein synthesis system, and the purified proteins were used to reconstitute cellulosomes. Analysis of the cellulosome assembly using size exclusion chromatography suggested that the dockerin module of the enzymes stoichiometrically bound to the cohesin modules of the scaffoldin protein. The activity profile of the reconstituted cellulosomes indicated that cellulosomes assembled at a CipA/enzyme molar ratio of 1/9 (cohesin/dockerin = 1/1) and showed maximum synergy (4-fold synergy) for the degradation of crystalline substrate and ∼2.4-fold-higher synergy for its degradation than minicellulosomes assembled at a ΔCipA/enzyme molar ratio of 1/2 (cohesin/dockerin = 1/1). These results suggest that the binding of more enzyme molecules on a single scaffoldin protein results in higher synergy for the degradation of crystalline cellulose and that the stoichiometric assembly of the cellulosome, without excess or insufficient enzyme, is crucial for generating maximum synergy for the degradation of crystalline cellulose.
The cellulosome is a supramolecular multienzyme complex formed by species-specific interactions between the cohesin modules of scaffoldin proteins and the dockerin modules of a wide variety of polysaccharide-degrading enzymes. Cellulosomal enzymes bound to the scaffoldin protein act synergistically to degrade crystalline cellulose. However, there have been few attempts to reconstitute intact cellulosomes due to the difficulty of heterologously expressing full-length scaffoldin proteins. We describe the synthesis of a full-length scaffoldin protein containing nine cohesin modules, CipA; its deletion derivative containing two cohesin modules, ...CipA; and three major cellulosomal cellulases, Cel48S, Cel8A, and Cel9K, of the Clostridium thermocellum cellulosome. The proteins were synthesized using a wheat germ cell-free protein synthesis system, and the purified proteins were used to reconstitute cellulosomes. Analysis of the cellulosome assembly using size exclusion chromatography suggested that the dockerin module of the enzymes stoichiometrically bound to the cohesin modules of the scaffoldin protein. The activity profile of the reconstituted cellulosomes indicated that cellulosomes assembled at a CipA/enzyme molar ratio of 1/9 (cohesin/dockerin = 1/1) and showed maximum synergy (4-fold synergy) for the degradation of crystalline substrate and ~2.4-fold-higher synergy for its degradation than minicellulosomes assembled at a ...CipA/enzyme molar ratio of 1/2 (cohesin/dockerin = 1/1). These results suggest that the binding of more enzyme molecules on a single scaffoldin protein results in higher synergy for the degradation of crystalline cellulose and that the stoichiometric assembly of the cellulosome, without excess or insufficient enzyme, is crucial for generating maximum synergy for the degradation of crystalline cellulose. (ProQuest: ... denotes formulae/symbols omitted.)
The cellulosome is a supramolecular multienzyme complex formed by species-specific interactions between the cohesin modules of scaffoldin proteins and the dockerin modules of a wide variety of polysaccharide-degrading enzymes. Cellulosomal enzymes bound to the scaffoldin protein act synergistically to degrade crystalline cellulose. However, there have been few attempts to reconstitute intact cellulosomes due to the difficulty of heterologously expressing full-length scaffoldin proteins. We describe the synthesis of a full-length scaffoldin protein containing nine cohesin modules, CipA; its deletion derivative containing two cohesin modules, ΔCipA; and three major cellulosomal cellulases, Cel48S, Cel8A, and Cel9K, of the Clostridium thermocellum cellulosome. The proteins were synthesized using a wheat germ cell-free protein synthesis system, and the purified proteins were used to reconstitute cellulosomes. Analysis of the cellulosome assembly using size exclusion chromatography suggested that the dockerin module of the enzymes stoichiometrically bound to the cohesin modules of the scaffoldin protein. The activity profile of the reconstituted cellulosomes indicated that cellulosomes assembled at a CipA/enzyme molar ratio of 1/9 (cohesin/dockerin = 1/1) and showed maximum synergy (4-fold synergy) for the degradation of crystalline substrate and ∼2.4-fold-higher synergy for its degradation than minicellulosomes assembled at a ΔCipA/enzyme molar ratio of 1/2 (cohesin/dockerin = 1/1). These results suggest that the binding of more enzyme molecules on a single scaffoldin protein results in higher synergy for the degradation of crystalline cellulose and that the stoichiometric assembly of the cellulosome, without excess or insufficient enzyme, is crucial for generating maximum synergy for the degradation of crystalline cellulose.
Author Hirano, Katsuaki
Haruki, Mitsuru
Hasegawa, Hiroki
Nihei, Satoshi
Hirano, Nobutaka
Author_xml – sequence: 1
  givenname: Katsuaki
  surname: Hirano
  fullname: Hirano, Katsuaki
  organization: Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama, Fukushima, Japan
– sequence: 2
  givenname: Satoshi
  surname: Nihei
  fullname: Nihei, Satoshi
  organization: Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama, Fukushima, Japan
– sequence: 3
  givenname: Hiroki
  surname: Hasegawa
  fullname: Hasegawa, Hiroki
  organization: Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama, Fukushima, Japan
– sequence: 4
  givenname: Mitsuru
  surname: Haruki
  fullname: Haruki, Mitsuru
  organization: Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama, Fukushima, Japan
– sequence: 5
  givenname: Nobutaka
  surname: Hirano
  fullname: Hirano, Nobutaka
  email: nhirano@chem.ce.nihon-u.ac.jp
  organization: Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama, Fukushima, Japan Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama, Japan nhirano@chem.ce.nihon-u.ac.jp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25956772$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhi1URLeFG2dkiQuHpthOnNgXpNVSSqVWSBS4Wo4z2XWV2K3tVOwP5H_hbD8oXDhZnnnn8TvjOUB7zjtA6DUlx5Qy8X55cnFMSNOwgvJnaEGJFAUvy3oPLQiRsmCsIvvoIMYrQkhFavEC7TMueZ1LFujXZfLWbKwfIQVr8DJGGNthi32P0wbwCoZhGnzMeXwKDoJOEPGF_mnHacSX2xxZb3Hvw079EdZBdzpZ72bAKmxj0sNg3R8QHGEd8Ve4BT1Ah9stPnP4h03B56DxLiabpgfAzkEuytY6m9_L9zB6M6PGp9Zeoue9HiK8uj8P0fdPJ99Wn4vzL6dnq-V5YaqKpwI6aIF0fSk5ZZpJUwnRNayrWhC8lXlSVVOXsq470RDR9HXVUUNka0xHRKtZeYg-3HGvp3aEzoBLQQ_qOthRh63y2qq_M85u1NrfqopzShueAe_uAcHfTBCTGm2c-9EO_BQVbQitZEml-L-0loRRnn83S9_-I73yU3B5ErOKClaLcjZ_dKcywccYoH_0TYmaV0nlVVK7VVJ0tvrmaa-P4ofdKX8D5c3K9w
CODEN AEMIDF
CitedBy_id crossref_primary_10_1111_1462_2920_13047
crossref_primary_10_2323_jgam_2017_08_004
crossref_primary_10_1002_bab_1804
crossref_primary_10_1007_s10570_022_04790_5
crossref_primary_10_1111_1751_7915_13293
crossref_primary_10_1186_s13068_017_0928_4
crossref_primary_10_1007_s12010_018_2864_6
crossref_primary_10_1186_s13068_017_1009_4
crossref_primary_10_1021_acssynbio_9b00407
crossref_primary_10_3389_fbioe_2015_00165
crossref_primary_10_1016_j_enzmictec_2016_10_021
crossref_primary_10_1186_s13068_018_1220_y
crossref_primary_10_1002_biot_201700195
crossref_primary_10_1093_femsle_fnz209
crossref_primary_10_3390_catal11080996
crossref_primary_10_1007_s00253_023_12581_6
crossref_primary_10_1016_j_jbc_2023_104655
crossref_primary_10_1038_srep35709
Cites_doi 10.1016/0014-5793(95)00074-J
10.1111/1574-6968.12149
10.1128/MMBR.69.1.124-154.2005
10.1074/jbc.M110.186031
10.1074/jbc.M112.408757
10.1016/S0022-2836(02)00497-7
10.1074/jbc.M207672200
10.1111/febs.12497
10.1038/nprot.2009.207
10.1074/jbc.M009237200
10.1073/pnas.0611173104
10.1111/j.1574-6968.2006.00583.x
10.1186/1754-6834-6-32
10.1002/prot.21008
10.1074/jbc.M102082200
10.1128/JB.02014-12
10.1074/jbc.M414449200
10.1021/cb5000289
10.1128/JB.00097-08
10.1016/0076-6879(88)60103-0
10.1073/pnas.0606379103
10.1128/JB.181.17.5288-5295.1999
10.1111/1574-6968.12029
10.1128/AEM.07959-11
10.1128/aem.61.5.1980-1986.1995
10.1111/j.1365-2958.1993.tb01576.x
10.1021/ac60147a030
10.1093/nar/gkl553
10.1271/bbb.68.924
10.1111/j.1742-4658.2009.07025.x
10.1128/JB.00882-07
10.1128/aem.51.6.1293-1299.1986
10.1074/jbc.M112.343897
10.1146/annurev.micro.57.030502.091022
10.1371/journal.pone.0005271
10.1128/jb.177.6.1641-1644.1995
10.1128/jb.178.4.1200-1203.1996
ContentType Journal Article
Copyright Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Copyright American Society for Microbiology Jul 2015
Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology
Copyright_xml – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved.
– notice: Copyright American Society for Microbiology Jul 2015
– notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
5PM
DOI 10.1128/AEM.00772-15
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
CrossRef

Virology and AIDS Abstracts
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Biology
Medicine
Pharmacy, Therapeutics, & Pharmacology
DocumentTitleAlternate In vitro Reconstitution of the Cellulosome
EISSN 1098-5336
1098-6596
Editor Liu, S.-J.
Editor_xml – sequence: 1
  givenname: S.-J.
  surname: Liu
  fullname: Liu, S.-J.
EndPage 4766
ExternalDocumentID 3729008321
10_1128_AEM_00772_15
25956772
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.55
.GJ
0R~
23M
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
6J9
85S
AAZTW
ABOGM
ABPPZ
ABTAH
ACBTR
ACGFO
ACIWK
ACNCT
ACPRK
ADBBV
AENEX
AFFNX
AFMIJ
AFRAH
AGCDD
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C1A
CGR
CS3
CUY
CVF
D0L
DIK
E.-
E3Z
EBS
ECM
EIF
EJD
F20
F5P
GX1
HYE
HZ~
H~9
K-O
KQ8
L7B
MVM
NEJ
NPM
O9-
OHT
OK1
P2P
PQQKQ
RHF
RHI
RNS
RPM
RSF
RXW
TAE
TAF
TN5
TR2
TWZ
UCJ
UHB
VH1
W8F
WH7
WHG
WOQ
X6Y
X7M
XFK
XJT
YV5
ZA5
ZCG
ZGI
ZXP
ZY4
~02
~KM
AAYXX
ADUKH
AGVNZ
CITATION
H13
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7X8
FRP
HH5
LSO
W2D
5PM
ID FETCH-LOGICAL-c445t-edebe0df39512a29c488d72d4be85b92244763966d87087f64d1c09bccd08ba23
IEDL.DBID RPM
ISSN 0099-2240
IngestDate Tue Sep 17 21:00:43 EDT 2024
Fri Aug 16 22:21:27 EDT 2024
Sun Jul 21 06:52:52 EDT 2024
Thu Sep 12 23:48:36 EDT 2024
Thu Sep 12 20:10:08 EDT 2024
Thu May 23 23:21:04 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License Copyright © 2015, American Society for Microbiology. All Rights Reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-edebe0df39512a29c488d72d4be85b92244763966d87087f64d1c09bccd08ba23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Hirano K, Nihei S, Hasegawa H, Haruki M, Hirano N. 2015. Stoichiometric assembly of the cellulosome generates maximum synergy for the degradation of crystalline cellulose, as revealed by in vitro reconstitution of the Clostridium thermocellum cellulosome. Appl Environ Microbiol 81:4756–4766. doi:10.1128/AEM.00772-15.
OpenAccessLink https://aem.asm.org/content/aem/81/14/4756.full.pdf
PMID 25956772
PQID 1691826832
PQPubID 42251
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4551175
proquest_miscellaneous_1701493198
proquest_miscellaneous_1690215240
proquest_journals_1691826832
crossref_primary_10_1128_AEM_00772_15
pubmed_primary_25956772
PublicationCentury 2000
PublicationDate 2015-07-01
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Applied and Environmental Microbiology
PublicationTitleAlternate Appl Environ Microbiol
PublicationYear 2015
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References 18408027 - J Bacteriol. 2008 Jun;190(12):4321-7
7875315 - FEBS Lett. 1995 Feb 27;360(2):121-4
15118324 - Biosci Biotechnol Biochem. 2004 Apr;68(4):924-6
8316083 - Mol Microbiol. 1993 Apr;8(2):325-34
10464199 - J Bacteriol. 1999 Sep;181(17):5288-95
7883725 - J Bacteriol. 1995 Mar;177(6):1641-4
17360613 - Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3089-94
24819174 - ACS Chem Biol. 2014 Jul 18;9(7):1470-9
11148206 - J Biol Chem. 2001 Mar 30;276(13):9883-8
16347088 - Appl Environ Microbiol. 1986 Jun;51(6):1293-9
21098021 - J Biol Chem. 2011 Feb 18;286(7):5614-23
23082914 - FEMS Microbiol Lett. 2013 Jan;338(1):46-53
19490109 - FEBS J. 2009 Jun;276(11):3076-86
12096911 - J Mol Biol. 2002 Jul 12;320(3):587-96
22707718 - J Biol Chem. 2012 Aug 3;287(32):26953-61
8576058 - J Bacteriol. 1996 Feb;178(4):1200-3
17227469 - FEMS Microbiol Lett. 2007 Mar;268(2):194-201
11290750 - J Biol Chem. 2001 Jun 15;276(24):21257-61
17138671 - Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):18928-33
12397074 - J Biol Chem. 2002 Dec 20;277(51):49621-30
23341454 - J Biol Chem. 2013 Mar 15;288(11):7978-85
24033928 - FEBS J. 2013 Nov;280(22):5764-79
17644599 - J Bacteriol. 2007 Oct;189(19):6787-95
22522677 - Appl Environ Microbiol. 2012 Jun;78(12):4301-7
15705576 - J Biol Chem. 2005 Apr 22;280(16):16325-34
15755956 - Microbiol Mol Biol Rev. 2005 Mar;69(1):124-54
23560999 - FEMS Microbiol Lett. 2013 Jul;344(1):25-30
16971463 - Nucleic Acids Res. 2006;34(17):4743-51
16708362 - Proteins. 2006 Aug 1;64(2):343-54
7646033 - Appl Environ Microbiol. 1995 May;61(5):1980-6
23204466 - J Bacteriol. 2013 Feb;195(4):733-9
19384422 - PLoS One. 2009;4(4):e5271
23448319 - Biotechnol Biofuels. 2013 Mar 01;6(1):32
15487947 - Annu Rev Microbiol. 2004;58:521-54
20134421 - Nat Protoc. 2010 Feb;5(2):227-38
e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_36_2
  doi: 10.1016/0014-5793(95)00074-J
– ident: e_1_3_2_17_2
  doi: 10.1111/1574-6968.12149
– ident: e_1_3_2_3_2
  doi: 10.1128/MMBR.69.1.124-154.2005
– ident: e_1_3_2_38_2
  doi: 10.1074/jbc.M110.186031
– ident: e_1_3_2_30_2
  doi: 10.1074/jbc.M112.408757
– ident: e_1_3_2_7_2
  doi: 10.1016/S0022-2836(02)00497-7
– ident: e_1_3_2_13_2
  doi: 10.1074/jbc.M207672200
– ident: e_1_3_2_37_2
  doi: 10.1111/febs.12497
– ident: e_1_3_2_19_2
  doi: 10.1038/nprot.2009.207
– ident: e_1_3_2_31_2
  doi: 10.1074/jbc.M009237200
– ident: e_1_3_2_28_2
  doi: 10.1073/pnas.0611173104
– ident: e_1_3_2_34_2
  doi: 10.1111/j.1574-6968.2006.00583.x
– ident: e_1_3_2_11_2
  doi: 10.1186/1754-6834-6-32
– ident: e_1_3_2_16_2
  doi: 10.1002/prot.21008
– ident: e_1_3_2_12_2
  doi: 10.1074/jbc.M102082200
– ident: e_1_3_2_10_2
  doi: 10.1128/JB.02014-12
– ident: e_1_3_2_14_2
  doi: 10.1074/jbc.M414449200
– ident: e_1_3_2_18_2
  doi: 10.1021/cb5000289
– ident: e_1_3_2_9_2
  doi: 10.1128/JB.00097-08
– ident: e_1_3_2_22_2
  doi: 10.1016/0076-6879(88)60103-0
– ident: e_1_3_2_24_2
  doi: 10.1073/pnas.0606379103
– ident: e_1_3_2_8_2
  doi: 10.1128/JB.181.17.5288-5295.1999
– ident: e_1_3_2_33_2
  doi: 10.1111/1574-6968.12029
– ident: e_1_3_2_15_2
  doi: 10.1128/AEM.07959-11
– ident: e_1_3_2_25_2
  doi: 10.1128/aem.61.5.1980-1986.1995
– ident: e_1_3_2_20_2
  doi: 10.1111/j.1365-2958.1993.tb01576.x
– ident: e_1_3_2_23_2
  doi: 10.1021/ac60147a030
– ident: e_1_3_2_21_2
  doi: 10.1093/nar/gkl553
– ident: e_1_3_2_32_2
  doi: 10.1271/bbb.68.924
– ident: e_1_3_2_35_2
  doi: 10.1111/j.1742-4658.2009.07025.x
– ident: e_1_3_2_4_2
  doi: 10.1128/JB.00882-07
– ident: e_1_3_2_26_2
  doi: 10.1128/aem.51.6.1293-1299.1986
– ident: e_1_3_2_29_2
  doi: 10.1074/jbc.M112.343897
– ident: e_1_3_2_2_2
  doi: 10.1146/annurev.micro.57.030502.091022
– ident: e_1_3_2_5_2
  doi: 10.1371/journal.pone.0005271
– ident: e_1_3_2_6_2
  doi: 10.1128/jb.177.6.1641-1644.1995
– ident: e_1_3_2_27_2
  doi: 10.1128/jb.178.4.1200-1203.1996
SSID ssj0004068
ssj0006590
Score 2.3258042
Snippet The cellulosome is a supramolecular multienzyme complex formed by species-specific interactions between the cohesin modules of scaffoldin proteins and the...
ABSTRACT The cellulosome is a supramolecular multienzyme complex formed by species-specific interactions between the cohesin modules of scaffoldin proteins and...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 4756
SubjectTerms Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Cellulases - genetics
Cellulases - metabolism
Cellulose
Cellulose - chemistry
Cellulose - metabolism
Cellulosomes - enzymology
Cellulosomes - genetics
Cellulosomes - metabolism
Chromatography
Clostridium thermocellum
Clostridium thermocellum - enzymology
Clostridium thermocellum - genetics
Clostridium thermocellum - metabolism
Crystallization
Enzymes
Enzymology and Protein Engineering
Gram-positive bacteria
Molecular chemistry
Protein expression
Protein synthesis
Spotlight
Triticum aestivum
Title Stoichiometric Assembly of the Cellulosome Generates Maximum Synergy for the Degradation of Crystalline Cellulose, as Revealed by In Vitro Reconstitution of the Clostridium thermocellum Cellulosome
URI https://www.ncbi.nlm.nih.gov/pubmed/25956772
https://www.proquest.com/docview/1691826832/abstract/
https://search.proquest.com/docview/1690215240
https://search.proquest.com/docview/1701493198
https://pubmed.ncbi.nlm.nih.gov/PMC4551175
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9RADLa6lRBwqGB5pZRqkOBGunlMksmxWloV0CKgFPUWZR5RI22Sah-I_ED-F_YkWXZB4sAxymTiyB77s2J_BniVF7FXcBm7SZpLl-fac6VOjRsrTxYRescipH7n2cf44oq_v46u9yAaemFs0b6S5Uk9r07q8sbWVt5WajLUiU0-zaYcwzyGvckIRkkYDin60AzpxWKgnqR4NVS7B2JyejYjquwkcH2aWIPIH6VJgt2Q9BfO_LNcciv-nD-Agx44stNOwIewZ-ox3OlGSbZjuDt0GC_HcH-LZPAR_LxcNaW6oTZ7YuNn9Ju3kvOWNQVD9MemZj5f0ziDyrCOhBrRJ5vlP8pqXbHL1jYHMsS2dvVbIpfo5jDRBtNFi_CSeL1_b2TesHzJvpjvhEE1ky17V7Nv5WrRMEp2--qEfgMrAT6EoukS30d4tGrodwJebIn2GK7Oz75OL9x-eIOrOI9WrtFoHp4uQoRwQR6kCj2FTgLNpRGRTFEzHF0bJlsaPYZIiphrX3mpVEp7QuZB-AT266Y2z4DhQq6NL7ki9jEthJSG-you0tD3tZc78HrQX3bbcXRkNrcJRIYqz6zKMz9y4GhQbtaf1GVGZEGYYqFjc-Dl5jaeMfrSvDbN2q6x83-59481CSWb6NCEA087e9kIMxiaA8mOJW0WEMf37h00fcv13Zv64X8_-RzuIcaLugrjI9hfLdbmBeKolTyG0YfP4tienl9MxSNW
link.rule.ids 230,315,733,786,790,891,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VIlQ48AgFDAUWCW44sZ3161iFVik0FaIP9WZ5H1YtYrtKbIT5f_wvZtfekBQJCY7WjtdjeXbmG3nmG4C3aRY4GWWBHcYps2kqHJuJWNoBd1jmo3fMxqrfeXYSTM_px0v_cgt80wuji_Y5y4flvBiW-ZWurbwu-MjUiY0-zyYUwzyGvdEtuI3n1QtNkm7aIZ0gMuSTKmKZencvGu0fzBRZdujZrppZg9gf9Qm9zaD0B9K8WTC5FoEOH8CF0b0rPPk6bGo25D9u0Dr-88s9hPs9JiX73fIj2JLlAO50UyrbAeyY5uXlAO6t8Rc-hp-ndZXzK9XBr4j-ifqDXLB5S6qMILAkEzmfN2pSQiFJx2-NwJbM0u950RTktNV9hwRhs5b-oHgruhFPaoPJokXkqijDf28k35N0Sb7IbwreCsJaclSSi7xeVETl0X3hQ7-B1gBvQtVEjs9TULeo1J8KvFhTbRfODw_OJlO7nwthc0r92pYCLc8R2RjRoZd6MUcnJEJPUCYjn8X4ySl6TczjBDqjKMwCKlzuxIxz4UQs9cZPYLusSvkMCApSIV1GuSI2E1HEmKQuD7J47LrCSS14Zwwjue7oPxKdNnlRgraUaFtKXN-CPWM1Se8EloniIcLsDX2mBW9Wy3h81ZumpawaLaNHC1PnLzKhymPRV0YWPO0McaWMsWALwg0TXQko-vDNFTQ8TSPeG9rz_77zNexMz2bHyfHRyacXcBehpN8VMu_Bdr1o5EuEazV7pQ_nLx2SRFU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEB5BEdcDR7gCBRYJ3nB8ZH09VmmjFkhVUYoqXizvYdUitqPERpj_x_9idu0NSZF46GPk8WYsfzv7jTzzDcDbNAucjLLACuOUWTQVjsVELK2AOyzzMTpmY9XvPDsODs_oh3P_fGPUly7a5ywflfNiVOYXurZyUXDb1InZJ7MJxWMejz17ITL7OtzAPevFJlE3LZFOEBkBSnVqmZp3L7L3DmZKMDv0LFfNrUH-jz6F3vbB9A_bvFw0uXEKTe_DN-N_V3zyfdTUbMR_XZJ2vNIDPoB7PTcle53JQ7gmywHc7KZVtgO4bZqYVwO4u6Fj-Ah-n9ZVzi9UJ78S_CfqS3LB5i2pMoIEk0zkfN6oiQmFJJ3ONRJcMkt_5kVTkNNW9x8SpM_ael_pV3SjntQCk2WLDFZJh_9dSL4n6Yp8lj8UzRWEteSoJF_zelkRlU_3BRD9AtoDvAldEzn-n6K8RaW-WOCPDdcew9n04Mvk0OrnQ1icUr-2pEAEOiIbI0v0Ui_mGIxE6AnKZOSzGF87xeiJ-ZzAoBSFWUCFy52YcS6ciKXe-AnslFUpnwFBQyqkyyhXAmciihiT1OVBFo9dVzjpEN4ZcCSLTgYk0emTFyWIp0TjKXH9Iewa5CR9MFglSo8IsziMnUN4s76M21g9aVrKqtE2esQwdf5jE6p8FmNmNISnHRjXzhgUDyHcgunaQMmIb19B8Gk58R5sz69852u4dbI_TT4dHX98AXeQUfpdPfMu7NTLRr5E1lazV3p__gELCUbV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stoichiometric+Assembly+of+the+Cellulosome+Generates+Maximum+Synergy+for+the+Degradation+of+Crystalline+Cellulose%2C+as+Revealed+by+In+Vitro+Reconstitution+of+the+Clostridium+thermocellum+Cellulosome&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Hirano%2C+Katsuaki&rft.au=Nihei%2C+Satoshi&rft.au=Hasegawa%2C+Hiroki&rft.au=Haruki%2C+Mitsuru&rft.date=2015-07-01&rft.pub=American+Society+for+Microbiology&rft.issn=0099-2240&rft.eissn=1098-5336&rft.volume=81&rft.issue=14&rft.spage=4756&rft_id=info:doi/10.1128%2FAEM.00772-15&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3729008321
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon