Evolution of Cataclysmic Variables with Binary-driven Mass Loss during Nova Eruptions
The discrepancies between observations and theoretical predictions of cataclysmic variables (CVs) suggest that there exists unknown angular-momentum-loss mechanism(s) besides magnetic braking and gravitational radiation. Mass loss due to nova eruptions belongs to the most likely candidates. While st...
Saved in:
Published in | The Astrophysical journal Vol. 977; no. 1; pp. 34 - 48 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
01.12.2024
IOP Publishing |
Subjects | |
Online Access | Get full text |
ISSN | 0004-637X 1538-4357 |
DOI | 10.3847/1538-4357/ad8880 |
Cover
Loading…
Abstract | The discrepancies between observations and theoretical predictions of cataclysmic variables (CVs) suggest that there exists unknown angular-momentum-loss mechanism(s) besides magnetic braking and gravitational radiation. Mass loss due to nova eruptions belongs to the most likely candidates. While standard theory assumes that mass is lost in the form of radiation-driven, optically thick wind (fast wind), recent numerical simulations indicate that most of the mass loss is initiated and shaped by binary interaction. We explore the effect of this binary-driven mass loss (BDML) on the CV evolutions assuming a major fraction of the lost mass leaves the system from the outer Lagrangian point. Different from the traditional continuous wind picture, we consider the mass loss process to be instantaneous because the duration of nova eruptions is much shorter than the binary evolutionary timescale. Our detailed binary evolution calculations reveal the following results. (1) BDML seems able to provide extra angular momentum loss below the period gap. The mass transfer rates at a given orbital period occupy a large range, in agreement with the observed secular mass transfer rate distribution in CVs. (2) The enhanced mass transfer rates do not lead to a runaway mass transfer process and allow the white dwarfs to grow mass ≲0.1
M
☉
. (3) BDML can cause both positive and negative variations in the orbital period induced by nova eruptions, in line with observations, and can potentially explain the properties of some peculiar supersoft X-ray sources likely CAL 87, 1E 0035.4−7230, and RX J0537.7−7034. |
---|---|
AbstractList | The discrepancies between observations and theoretical predictions of cataclysmic variables (CVs) suggest that there exists unknown angular-momentum-loss mechanism(s) besides magnetic braking and gravitational radiation. Mass loss due to nova eruptions belongs to the most likely candidates. While standard theory assumes that mass is lost in the form of radiation-driven, optically thick wind (fast wind), recent numerical simulations indicate that most of the mass loss is initiated and shaped by binary interaction. We explore the effect of this binary-driven mass loss (BDML) on the CV evolutions assuming a major fraction of the lost mass leaves the system from the outer Lagrangian point. Different from the traditional continuous wind picture, we consider the mass loss process to be instantaneous because the duration of nova eruptions is much shorter than the binary evolutionary timescale. Our detailed binary evolution calculations reveal the following results. (1) BDML seems able to provide extra angular momentum loss below the period gap. The mass transfer rates at a given orbital period occupy a large range, in agreement with the observed secular mass transfer rate distribution in CVs. (2) The enhanced mass transfer rates do not lead to a runaway mass transfer process and allow the white dwarfs to grow mass ≲0.1 M _☉ . (3) BDML can cause both positive and negative variations in the orbital period induced by nova eruptions, in line with observations, and can potentially explain the properties of some peculiar supersoft X-ray sources likely CAL 87, 1E 0035.4−7230, and RX J0537.7−7034. The discrepancies between observations and theoretical predictions of cataclysmic variables (CVs) suggest that there exists unknown angular-momentum-loss mechanism(s) besides magnetic braking and gravitational radiation. Mass loss due to nova eruptions belongs to the most likely candidates. While standard theory assumes that mass is lost in the form of radiation-driven, optically thick wind (fast wind), recent numerical simulations indicate that most of the mass loss is initiated and shaped by binary interaction. We explore the effect of this binary-driven mass loss (BDML) on the CV evolutions assuming a major fraction of the lost mass leaves the system from the outer Lagrangian point. Different from the traditional continuous wind picture, we consider the mass loss process to be instantaneous because the duration of nova eruptions is much shorter than the binary evolutionary timescale. Our detailed binary evolution calculations reveal the following results. (1) BDML seems able to provide extra angular momentum loss below the period gap. The mass transfer rates at a given orbital period occupy a large range, in agreement with the observed secular mass transfer rate distribution in CVs. (2) The enhanced mass transfer rates do not lead to a runaway mass transfer process and allow the white dwarfs to grow mass ≲0.1 M ☉ . (3) BDML can cause both positive and negative variations in the orbital period induced by nova eruptions, in line with observations, and can potentially explain the properties of some peculiar supersoft X-ray sources likely CAL 87, 1E 0035.4−7230, and RX J0537.7−7034. The discrepancies between observations and theoretical predictions of cataclysmic variables (CVs) suggest that there exists unknown angular-momentum-loss mechanism(s) besides magnetic braking and gravitational radiation. Mass loss due to nova eruptions belongs to the most likely candidates. While standard theory assumes that mass is lost in the form of radiation-driven, optically thick wind (fast wind), recent numerical simulations indicate that most of the mass loss is initiated and shaped by binary interaction. We explore the effect of this binary-driven mass loss (BDML) on the CV evolutions assuming a major fraction of the lost mass leaves the system from the outer Lagrangian point. Different from the traditional continuous wind picture, we consider the mass loss process to be instantaneous because the duration of nova eruptions is much shorter than the binary evolutionary timescale. Our detailed binary evolution calculations reveal the following results. (1) BDML seems able to provide extra angular momentum loss below the period gap. The mass transfer rates at a given orbital period occupy a large range, in agreement with the observed secular mass transfer rate distribution in CVs. (2) The enhanced mass transfer rates do not lead to a runaway mass transfer process and allow the white dwarfs to grow mass ≲0.1 M☉. (3) BDML can cause both positive and negative variations in the orbital period induced by nova eruptions, in line with observations, and can potentially explain the properties of some peculiar supersoft X-ray sources likely CAL 87, 1E 0035.4−7230, and RX J0537.7−7034. |
Author | Cui, Zhe Tang, Wen-Shi Li, Xiang-Dong |
Author_xml | – sequence: 1 givenname: Wen-Shi orcidid: 0000-0002-6588-9264 surname: Tang fullname: Tang, Wen-Shi organization: Xiamen University Department of Astronomy, Xiamen 361005, People's Republic of China – sequence: 2 givenname: Xiang-Dong orcidid: 0000-0002-0584-8145 surname: Li fullname: Li, Xiang-Dong organization: Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University) , Ministry of Education, Nanjing 210023, People's Republic of China – sequence: 3 givenname: Zhe orcidid: 0000-0001-8311-0608 surname: Cui fullname: Cui, Zhe organization: Dezhou University College of Physics and Electronic Information, Dezhou 253023, People's Republic of China |
BookMark | eNp9UcFu1DAQtVCR2C7cOVqCI2mdjGNPjrBaoNICl4K4WY7tFK_SONjJov49ToOKhICLRx699-bNm3NyNoTBEfK8ZBeAXF6WNWDBoZaX2iIie0Q2D60zsmGM8UKA_PqEnKd0XL5V02zI5_0p9PPkw0BDR3d60qa_S7fe0C86et32LtEffvpG3_hBx7vCRn9yA_2gU6KHkB87Rz_c0I_hpOk-zuMilZ6Sx53uk3v2q27J9dv99e59cfj07mr3-lAYzuupcNjK1pUWpEQmG0QJUIuKdVVtUTqGRvCm4pXtwDhE3ULdYsOZBNuWzsGWXK2yNuijGqO_zRZV0F7dN0K8UTpO3vROsUojK1HIBgTH1qHoRA2iLqVF04DMWi9WrTGG77NLkzqGOQ7ZvYISOFRSMMgotqJMzMtH1z1MLZla7qCW0NUSulrvkCniD4rxk15imqL2_f-IL1eiD-NvM3o8qkZmuAKuxpzMlrz6C-yfqj8B7qWm1A |
CitedBy_id | crossref_primary_10_1088_1538_3873_adb78f |
Cites_doi | 10.1038/nature13773 10.1146/annurev.astro.35.1.69 10.3847/1538-4357/abc3bb 10.1051/0004-6361:20030330 10.1093/mnras/stad2018 10.3847/1538-4357/833/1/83 10.1088/0067-0049/192/1/3 10.1051/0004-6361/202348807 10.1086/379535 10.1111/j.1365-2966.2009.15857.x 10.1126/science.1132305 10.1046/j.1365-8711.2000.03426.x 10.1086/151310 10.1088/1674-4527/ac4e01 10.1017/CBO9780511536168 10.1093/mnras/staa1162 10.1051/0004-6361/201833010 10.48550/arXiv.astro-ph/9904012 10.3847/1538-4357/aaf19f 10.1088/0004-637X/716/1/114 10.1086/319776 10.1086/160960 10.1038/s41550-020-1062-y 10.1088/2041-8205/754/2/L26 10.1086/518997 10.1093/mnras/stac3313 10.1093/mnrasl/slw236 10.1093/mnras/stad2223 10.1093/mnras/stz3413 10.1093/mnras/stz976 10.1086/159682 10.1093/mnras/stx2678 10.1088/0004-637X/809/1/80 10.1088/0004-637X/777/2/136 10.1088/2041-8205/778/2/L32 10.1088/0067-0049/220/1/15 10.1088/2514-3433/ac595f 10.1086/425249 10.1051/0004-6361/202038070 10.1088/0004-637X/792/1/20 10.1093/mnras/287.3.699 10.1086/312817 10.1088/0004-637X/745/2/165 10.1111/j.1365-2966.2009.15126.x 10.1111/j.1365-2966.2006.11096.x 10.48550/arXiv.astro-ph/9912283 10.1093/mnras/sty3489 10.1093/mnrasl/slv144 10.1093/mnras/sty1421 10.1086/161569 10.1093/mnras/staa764 10.1086/164762 10.3847/1538-4357/ac9136 10.1046/j.1365-8711.1999.02926.x 10.48550/arXiv.astro-ph/9703016 10.1086/304820 10.1086/168381 10.1051/0004-6361:20077971 10.1051/0004-6361/201630099 10.1088/0067-0049/194/2/28 10.1086/379647 10.1051/0004-6361/201116626 10.1086/424513 10.1088/0004-637X/815/1/17 10.1088/0067-0049/208/1/4 10.1088/0004-637X/693/1/1007 10.1146/annurev-astro-112420-114502 10.1093/mnras/stz3424 10.1086/324074 10.1046/j.1365-8711.2001.03960.x 10.1016/j.asr.2019.08.044 10.1093/mnras/stac1137 10.1017/CBO9780511586491 10.1093/mnras/stab3449 10.3847/1538-4365/ab2241 10.1046/j.1365-8711.1998.01529.x 10.1088/0004-637X/746/1/43 10.3847/0004-637X/817/1/69 10.1086/518465 10.1093/mnras/262.3.545 10.1086/175041 10.1088/0004-637X/796/1/37 10.1046/j.1365-8711.2002.05038.x 10.3847/2041-8213/ab571c 10.1016/j.asr.2020.04.007 10.1086/175129 |
ContentType | Journal Article |
Copyright | 2024. The Author(s). Published by the American Astronomical Society. 2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024. The Author(s). Published by the American Astronomical Society. – notice: 2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 7TG 8FD H8D KL. L7M DOA |
DOI | 10.3847/1538-4357/ad8880 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1538-4357 |
ExternalDocumentID | oai_doaj_org_article_02a80186793648be86f6536517d8c937 10_3847_1538_4357_ad8880 apjad8880 |
GrantInformation_xml | – fundername: MOST ∣ National Key Research and Development Program of China (NKPs) sequence: 0 grantid: 2021YFA0718500 funderid: https://doi.org/10.13039/501100012166 – fundername: MOST ∣ National Natural Science Foundation of China (NSFC) sequence: 0 grantid: 12041301 and 12121003 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 TSCCA WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M |
ID | FETCH-LOGICAL-c445t-e8b7be1d3778079887335620f25d87e08c649242df3ce88ab35b894073db1ee3 |
IEDL.DBID | DOA |
ISSN | 0004-637X |
IngestDate | Wed Aug 27 01:21:11 EDT 2025 Wed Aug 13 06:42:11 EDT 2025 Tue Jul 01 03:40:07 EDT 2025 Thu Apr 24 23:09:04 EDT 2025 Thu Dec 05 13:12:05 EST 2024 Thu Dec 05 13:09:21 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-e8b7be1d3778079887335620f25d87e08c649242df3ce88ab35b894073db1ee3 |
Notes | AAS49946 High-Energy Phenomena and Fundamental Physics ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0584-8145 0000-0001-8311-0608 0000-0002-6588-9264 |
OpenAccessLink | https://doaj.org/article/02a80186793648be86f6536517d8c937 |
PQID | 3134327603 |
PQPubID | 4562441 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_3847_1538_4357_ad8880 iop_journals_10_3847_1538_4357_ad8880 crossref_citationtrail_10_3847_1538_4357_ad8880 doaj_primary_oai_doaj_org_article_02a80186793648be86f6536517d8c937 proquest_journals_3134327603 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2024 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – sequence: 0 name: The American Astronomical Society – name: IOP Publishing |
References | Barrett (apjad8880bib5) 2020; 66 Chaty (apjad8880bib9) 2022 Shen (apjad8880bib72) 2022; 938 Wolf (apjad8880bib88) 2013; 777 Ribeiro (apjad8880bib58) 2014; 792 Ma (apjad8880bib41) 2013; 778 Townsley (apjad8880bib78) 2003; 596 McAllister (apjad8880bib43) 2019; 486 Schenker (apjad8880bib64) 1998; 297 Chomiuk (apjad8880bib11) 2021; 59 Soberman (apjad8880bib75) 1997; 327 Shara (apjad8880bib71) 1986; 311 Nelemans (apjad8880bib45) 2016; 817 Pala (apjad8880bib49) 2022; 510 Goliasch (apjad8880bib18) 2015; 809 Kato (apjad8880bib29) 1994; 437 Ritter (apjad8880bib60) 2003; 404 Greiner (apjad8880bib19) 2000; 355 Knigge (apjad8880bib31) 2006; 373 Liu (apjad8880bib40) 2019; 870 Wu (apjad8880bib89) 2017; 604 Chomiuk (apjad8880bib10) 2014; 514 Oliveira (apjad8880bib48) 2007; 472 Van (apjad8880bib82) 2019; 886 Liu (apjad8880bib39) 2019; 622 Scherbak (apjad8880bib65) 2023; 518 Paxton (apjad8880bib51) 2011; 192 van den Heuvel (apjad8880bib81) 1992; 262 Aydi (apjad8880bib4) 2018; 474 Paxton (apjad8880bib54) 2019; 243 Schaefer (apjad8880bib62) 2020; 492 Kahabka (apjad8880bib26) 1999; 346 Zorotovic (apjad8880bib92) 2022; 513 Kramer (apjad8880bib36) 2006; 314 Matt (apjad8880bib42) 2012; 754 Hurley (apjad8880bib24) 2002; 329 Reiners (apjad8880bib57) 2012; 746 Zorotovic (apjad8880bib93) 2017; 466 Kalomeni (apjad8880bib28) 2016; 833 Crampton (apjad8880bib13) 1997; 489 Rutledge (apjad8880bib61) 2000; 538 Sion (apjad8880bib73) 1995; 438 Schreiber (apjad8880bib67) 2016; 455 van Teeseling (apjad8880bib84) 1998; 338 Xu (apjad8880bib90) 2010; 716 Schaefer (apjad8880bib63) 2023; 525 Gänsicke (apjad8880bib17) 2009; 397 Townsley (apjad8880bib80) 2009; 693 Paxton (apjad8880bib52) 2013; 208 Zorotovic (apjad8880bib95) 2011; 536 Kolb (apjad8880bib34) 1999; 309 de Kool (apjad8880bib15) 1993; 267 Pala (apjad8880bib50) 2020; 494 Zorotovic (apjad8880bib94) 2020; 66 Ritter (apjad8880bib59) 1988; 202 Wang (apjad8880bib85) 2010; 401 Shao (apjad8880bib69) 2012; 745 Nomoto (apjad8880bib47) 2007; 663 Paxton (apjad8880bib53) 2015; 220 Rappaport (apjad8880bib56) 1983; 275 Townsley (apjad8880bib79) 2004; 600 Knigge (apjad8880bib32) 2011; 447 Starrfield (apjad8880bib76) 2004; 612 Kato (apjad8880bib30) 2004; 613 Alcock (apjad8880bib2) 1997; 287 Belloni (apjad8880bib7) 2018; 478 Kahabka (apjad8880bib27) 1997; 35 Warner (apjad8880bib86) 1995; 28 Howell (apjad8880bib22) 2001; 550 Misra (apjad8880bib44) 2020; 642 de Kool (apjad8880bib14) 1992; 261 Politano (apjad8880bib55) 2007; 665 Ablimit (apjad8880bib1) 2015; 815 Belloni (apjad8880bib6) 2020; 491 Van (apjad8880bib83) 2019; 483 Bode (apjad8880bib8) 2008 Stephenson (apjad8880bib77) 1976; 17 Aydi (apjad8880bib3) 2020; 905 Weisberg (apjad8880bib87) 2005 Hoffmann (apjad8880bib21) 2020; 494 Eggleton (apjad8880bib16) 1983; 268 Schwarz (apjad8880bib68) 2001; 320 Skumanich (apjad8880bib74) 1972; 171 Nomoto (apjad8880bib46) 1982; 253 Kroupa (apjad8880bib37) 1993; 262 Schreiber (apjad8880bib66) 2024; 682 Cowley (apjad8880bib12) 1990; 350 Landau (apjad8880bib38) 1959 Knigge (apjad8880bib33) 2011; 194 Kolb (apjad8880bib35) 2001; 563 Yu (apjad8880bib91) 2022; 22 Hurley (apjad8880bib23) 2000; 315 Inight (apjad8880bib25) 2023; 524 Hillman (apjad8880bib20) 2020; 4 Shao (apjad8880bib70) 2014; 796 |
References_xml | – volume: 514 start-page: 339 year: 2014 ident: apjad8880bib10 publication-title: Natur doi: 10.1038/nature13773 – volume: 35 start-page: 69 year: 1997 ident: apjad8880bib27 publication-title: ARA&A doi: 10.1146/annurev.astro.35.1.69 – volume: 905 start-page: 62 year: 2020 ident: apjad8880bib3 publication-title: ApJ doi: 10.3847/1538-4357/abc3bb – volume: 404 start-page: 301 year: 2003 ident: apjad8880bib60 publication-title: A&A doi: 10.1051/0004-6361:20030330 – volume: 524 start-page: 4867 year: 2023 ident: apjad8880bib25 publication-title: MNRAS doi: 10.1093/mnras/stad2018 – volume: 17 start-page: 121 year: 1976 ident: apjad8880bib77 publication-title: QJRAS – year: 1959 ident: apjad8880bib38 – volume: 833 start-page: 83 year: 2016 ident: apjad8880bib28 publication-title: ApJ doi: 10.3847/1538-4357/833/1/83 – volume: 192 start-page: 3 year: 2011 ident: apjad8880bib51 publication-title: ApJS doi: 10.1088/0067-0049/192/1/3 – volume: 267 start-page: 397 year: 1993 ident: apjad8880bib15 publication-title: A&A – volume: 682 start-page: L7 year: 2024 ident: apjad8880bib66 publication-title: A&A doi: 10.1051/0004-6361/202348807 – volume: 596 start-page: L227 year: 2003 ident: apjad8880bib78 publication-title: ApJL doi: 10.1086/379535 – volume: 401 start-page: 2729 year: 2010 ident: apjad8880bib85 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.15857.x – volume: 314 start-page: 97 year: 2006 ident: apjad8880bib36 publication-title: Sci doi: 10.1126/science.1132305 – volume: 315 start-page: 543 year: 2000 ident: apjad8880bib23 publication-title: MNRAS doi: 10.1046/j.1365-8711.2000.03426.x – volume: 171 start-page: 565 year: 1972 ident: apjad8880bib74 publication-title: ApJ doi: 10.1086/151310 – volume: 22 start-page: 045003 year: 2022 ident: apjad8880bib91 publication-title: RAA doi: 10.1088/1674-4527/ac4e01 – year: 2008 ident: apjad8880bib8 doi: 10.1017/CBO9780511536168 – volume: 494 start-page: 5775 year: 2020 ident: apjad8880bib21 publication-title: MNRAS doi: 10.1093/mnras/staa1162 – volume: 202 start-page: 93 year: 1988 ident: apjad8880bib59 publication-title: A&A – volume: 622 start-page: A35 year: 2019 ident: apjad8880bib39 publication-title: A&A doi: 10.1051/0004-6361/201833010 – volume: 346 start-page: 453 year: 1999 ident: apjad8880bib26 publication-title: A&A doi: 10.48550/arXiv.astro-ph/9904012 – volume: 870 start-page: 22 year: 2019 ident: apjad8880bib40 publication-title: ApJ doi: 10.3847/1538-4357/aaf19f – volume: 716 start-page: 114 year: 2010 ident: apjad8880bib90 publication-title: ApJ doi: 10.1088/0004-637X/716/1/114 – volume: 550 start-page: 897 year: 2001 ident: apjad8880bib22 publication-title: ApJ doi: 10.1086/319776 – volume: 268 start-page: 368 year: 1983 ident: apjad8880bib16 publication-title: ApJ doi: 10.1086/160960 – volume: 4 start-page: 886 year: 2020 ident: apjad8880bib20 publication-title: NatAs doi: 10.1038/s41550-020-1062-y – volume: 754 start-page: L26 year: 2012 ident: apjad8880bib42 publication-title: ApJL doi: 10.1088/2041-8205/754/2/L26 – volume: 261 start-page: 188 year: 1992 ident: apjad8880bib14 publication-title: A&A – volume: 665 start-page: 663 year: 2007 ident: apjad8880bib55 publication-title: ApJ doi: 10.1086/518997 – volume: 518 start-page: 3966 year: 2023 ident: apjad8880bib65 publication-title: MNRAS doi: 10.1093/mnras/stac3313 – volume: 466 start-page: L63 year: 2017 ident: apjad8880bib93 publication-title: MNRAS doi: 10.1093/mnrasl/slw236 – volume: 525 start-page: 785 year: 2023 ident: apjad8880bib63 publication-title: MNRAS doi: 10.1093/mnras/stad2223 – volume: 491 start-page: 5717 year: 2020 ident: apjad8880bib6 publication-title: MNRAS doi: 10.1093/mnras/stz3413 – volume: 486 start-page: 5535 year: 2019 ident: apjad8880bib43 publication-title: MNRAS doi: 10.1093/mnras/stz976 – volume: 253 start-page: 798 year: 1982 ident: apjad8880bib46 publication-title: ApJ doi: 10.1086/159682 – volume: 474 start-page: 2679 year: 2018 ident: apjad8880bib4 publication-title: MNRAS doi: 10.1093/mnras/stx2678 – volume: 809 start-page: 80 year: 2015 ident: apjad8880bib18 publication-title: ApJ doi: 10.1088/0004-637X/809/1/80 – volume: 777 start-page: 136 year: 2013 ident: apjad8880bib88 publication-title: ApJ doi: 10.1088/0004-637X/777/2/136 – volume: 778 start-page: L32 year: 2013 ident: apjad8880bib41 publication-title: ApJL doi: 10.1088/2041-8205/778/2/L32 – volume: 220 start-page: 15 year: 2015 ident: apjad8880bib53 publication-title: ApJS doi: 10.1088/0067-0049/220/1/15 – year: 2022 ident: apjad8880bib9 doi: 10.1088/2514-3433/ac595f – volume: 613 start-page: L129 year: 2004 ident: apjad8880bib30 publication-title: ApJL doi: 10.1086/425249 – volume: 642 start-page: A174 year: 2020 ident: apjad8880bib44 publication-title: A&A doi: 10.1051/0004-6361/202038070 – volume: 792 start-page: 20 year: 2014 ident: apjad8880bib58 publication-title: ApJ doi: 10.1088/0004-637X/792/1/20 – volume: 287 start-page: 699 year: 1997 ident: apjad8880bib2 publication-title: MNRAS doi: 10.1093/mnras/287.3.699 – volume: 538 start-page: L141 year: 2000 ident: apjad8880bib61 publication-title: ApJL doi: 10.1086/312817 – volume: 745 start-page: 165 year: 2012 ident: apjad8880bib69 publication-title: ApJ doi: 10.1088/0004-637X/745/2/165 – volume: 397 start-page: 2170 year: 2009 ident: apjad8880bib17 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.15126.x – volume: 373 start-page: 484 year: 2006 ident: apjad8880bib31 publication-title: MNRAS doi: 10.1111/j.1365-2966.2006.11096.x – volume: 355 start-page: 1041 year: 2000 ident: apjad8880bib19 publication-title: A&A doi: 10.48550/arXiv.astro-ph/9912283 – volume: 262 start-page: 97 year: 1992 ident: apjad8880bib81 publication-title: A&A – volume: 483 start-page: 5595 year: 2019 ident: apjad8880bib83 publication-title: MNRAS doi: 10.1093/mnras/sty3489 – volume: 455 start-page: L16 year: 2016 ident: apjad8880bib67 publication-title: MNRAS doi: 10.1093/mnrasl/slv144 – volume: 478 start-page: 5626 year: 2018 ident: apjad8880bib7 publication-title: MNRAS doi: 10.1093/mnras/sty1421 – volume: 275 start-page: 713 year: 1983 ident: apjad8880bib56 publication-title: ApJ doi: 10.1086/161569 – volume: 494 start-page: 3799 year: 2020 ident: apjad8880bib50 publication-title: MNRAS doi: 10.1093/mnras/staa764 – volume: 311 start-page: 163 year: 1986 ident: apjad8880bib71 publication-title: ApJ doi: 10.1086/164762 – volume: 938 start-page: 31 year: 2022 ident: apjad8880bib72 publication-title: ApJ doi: 10.3847/1538-4357/ac9136 – volume: 309 start-page: 1034 year: 1999 ident: apjad8880bib34 publication-title: MNRAS doi: 10.1046/j.1365-8711.1999.02926.x – volume: 327 start-page: 620 year: 1997 ident: apjad8880bib75 publication-title: A&A doi: 10.48550/arXiv.astro-ph/9703016 – volume: 489 start-page: 903 year: 1997 ident: apjad8880bib13 publication-title: ApJ doi: 10.1086/304820 – volume: 350 start-page: 288 year: 1990 ident: apjad8880bib12 publication-title: ApJ doi: 10.1086/168381 – volume: 472 start-page: L21 year: 2007 ident: apjad8880bib48 publication-title: A&A doi: 10.1051/0004-6361:20077971 – volume: 604 start-page: A31 year: 2017 ident: apjad8880bib89 publication-title: A&A doi: 10.1051/0004-6361/201630099 – volume: 447 start-page: 3 year: 2011 ident: apjad8880bib32 – volume: 194 start-page: 28 year: 2011 ident: apjad8880bib33 publication-title: ApJS doi: 10.1088/0067-0049/194/2/28 – volume: 600 start-page: 390 year: 2004 ident: apjad8880bib79 publication-title: ApJ doi: 10.1086/379647 – volume: 536 start-page: A42 year: 2011 ident: apjad8880bib95 publication-title: A&A doi: 10.1051/0004-6361/201116626 – volume: 612 start-page: L53 year: 2004 ident: apjad8880bib76 publication-title: ApJL doi: 10.1086/424513 – volume: 815 start-page: 17 year: 2015 ident: apjad8880bib1 publication-title: ApJ doi: 10.1088/0004-637X/815/1/17 – volume: 208 start-page: 4 year: 2013 ident: apjad8880bib52 publication-title: ApJS doi: 10.1088/0067-0049/208/1/4 – volume: 693 start-page: 1007 year: 2009 ident: apjad8880bib80 publication-title: ApJ doi: 10.1088/0004-637X/693/1/1007 – volume: 59 start-page: 391 year: 2021 ident: apjad8880bib11 publication-title: ARA&A doi: 10.1146/annurev-astro-112420-114502 – volume: 492 start-page: 3343 year: 2020 ident: apjad8880bib62 publication-title: MNRAS doi: 10.1093/mnras/stz3424 – volume: 563 start-page: 958 year: 2001 ident: apjad8880bib35 publication-title: ApJ doi: 10.1086/324074 – volume: 320 start-page: 103 year: 2001 ident: apjad8880bib68 publication-title: MNRAS doi: 10.1046/j.1365-8711.2001.03960.x – volume: 66 start-page: 1080 year: 2020 ident: apjad8880bib94 publication-title: AdSpR doi: 10.1016/j.asr.2019.08.044 – volume: 513 start-page: 3587 year: 2022 ident: apjad8880bib92 publication-title: MNRAS doi: 10.1093/mnras/stac1137 – volume: 28 year: 1995 ident: apjad8880bib86 doi: 10.1017/CBO9780511586491 – volume: 510 start-page: 6110 year: 2022 ident: apjad8880bib49 publication-title: MNRAS doi: 10.1093/mnras/stab3449 – volume: 243 start-page: 10 year: 2019 ident: apjad8880bib54 publication-title: ApJS doi: 10.3847/1538-4365/ab2241 – volume: 297 start-page: 633 year: 1998 ident: apjad8880bib64 publication-title: MNRAS doi: 10.1046/j.1365-8711.1998.01529.x – volume: 746 start-page: 43 year: 2012 ident: apjad8880bib57 publication-title: ApJ doi: 10.1088/0004-637X/746/1/43 – volume: 817 start-page: 69 year: 2016 ident: apjad8880bib45 publication-title: ApJ doi: 10.3847/0004-637X/817/1/69 – volume: 663 start-page: 1269 year: 2007 ident: apjad8880bib47 publication-title: ApJ doi: 10.1086/518465 – volume: 338 start-page: 957 year: 1998 ident: apjad8880bib84 publication-title: A&A – volume: 262 start-page: 545 year: 1993 ident: apjad8880bib37 publication-title: MNRAS doi: 10.1093/mnras/262.3.545 – start-page: 25 year: 2005 ident: apjad8880bib87 – volume: 437 start-page: 802 year: 1994 ident: apjad8880bib29 publication-title: ApJ doi: 10.1086/175041 – volume: 796 start-page: 37 year: 2014 ident: apjad8880bib70 publication-title: ApJ doi: 10.1088/0004-637X/796/1/37 – volume: 329 start-page: 897 year: 2002 ident: apjad8880bib24 publication-title: MNRAS doi: 10.1046/j.1365-8711.2002.05038.x – volume: 886 start-page: L31 year: 2019 ident: apjad8880bib82 publication-title: ApJL doi: 10.3847/2041-8213/ab571c – volume: 66 start-page: 1226 year: 2020 ident: apjad8880bib5 publication-title: AdSpR doi: 10.1016/j.asr.2020.04.007 – volume: 438 start-page: 876 year: 1995 ident: apjad8880bib73 publication-title: ApJ doi: 10.1086/175129 |
SSID | ssj0004299 |
Score | 2.476546 |
Snippet | The discrepancies between observations and theoretical predictions of cataclysmic variables (CVs) suggest that there exists unknown angular-momentum-loss... |
SourceID | doaj proquest crossref iop |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 34 |
SubjectTerms | Angular momentum Cataclysmic variable stars Cataclysmic variables Dwarf novae Evolution Lagrangian equilibrium points Mass transfer Numerical simulations Orbits Radiation White dwarf stars Wind Wind effects X ray sources |
SummonAdditionalLinks | – databaseName: Institute of Physics Open Access Journal Titles dbid: O3W link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dSxwxEA-iFPpS1FY8v8iDLfRhvd2dbJLFJ5UTKdX2wY97C_mEFr09bk_B_97JZj2RFvFlCcvsJsxOZn6_bGZCyH7t0C-CrbNKuzJjAS_a8DyTBQ-FrUNuu2M6zy_42RX7Ma7GS-RwkQvTTHvXf4DNVCg4qTDOb0BfOuzmKEZ5MdQO-Rvy9RWQXMb9fL_g5iUpsqx77MsyDmKc_lH-9w2vYlJXuh8jDXb_j3_ugs7pKvnUo0V6lMa2Rpb8ZJ1sHrVx_bq5e6TfaNdOyxPtOvnwO7U-k6vRQ29UtAn0RM-1vX1s7_5Yeo3sOOZLtTSuwdLjLiE3c7Po9ug5Ymn6EwdJU_4ivWgeNB3N7tPely_k8nR0eXKW9UcoZJaxap55aYTxhQMhZB5LkwkARDx5KCsnhc-l5QwZWOkCWC-lNlAZWSPJA2cK72GDLE-aid8kFJmNE0h3AisM80LUgck8FmfWUqIZuAEZPutQ2b68eDzl4lYhzYhaV1HrKmpdJa0PyPfFE9NUWuMN2eP4WRZysSh2dwMNRPUGovJSY7yNFQSBM2m85IFXwKtCOGkRhg3IV_yoqp-k7Rud7b6S09O_CmGyKhQwNXVhQHaezeJFCIqYoit4Dlvv7GabfCwRIaW9MTtkeT6797uIcOZmr7PkJ40n8Fw priority: 102 providerName: IOP Publishing |
Title | Evolution of Cataclysmic Variables with Binary-driven Mass Loss during Nova Eruptions |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/ad8880 https://www.proquest.com/docview/3134327603 https://doaj.org/article/02a80186793648be86f6536517d8c937 |
Volume | 977 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSyQxEA4iCF7EdV0c15Ecdhc8NJPupJP0cZQRFV8HXb2FPEHR6WF6FPz3Vjo9PhD04iWEppoOlUpVfenUF4T-VA78IrVVVmpXZCxAow0nmcx5yG0ViG2v6Tw55QeX7Oi6vH5z1Vc8E5bogZPiBqTQ4EQjLRzlTBoveeAl5WUunLQQW6P3hZg3B1PzikjwsumnJAX3O2iXNSQGYqAdQD7yLgi1XP0QWm7qyQeH3EaZ_VW00qWHeJiG9QMt-PEa2hg2ccO6vn_C_3DbT_sRzRpaOk-9n-hy9NhZEa4D3tMzbe-emvsbi_8DHI4FUg2Om654t63Azdw0-jl8AskzPoZB4lSwiE_rR41H04d02GUdXeyPLvYOsu7OhMwyVs4yL40wPndUCEkiF5mgFFIcEorSSeGJtJwB5CpcoNZLqQ0tjawA1VFncu_pL7Q4rsd-A2GAMk4AvgksN8wLUQUmSWRj1lLCvLseGsx1qGzHJx6vtbhTgCui1lXUuopaV0nrPbTz8sYkcWl8Irsbp-VFLrJgtw_ANlRnG-or2-ihvzCpqluVzScf67-T05NbBXmxyhVlauJCD23NzeJViOaxJldwQje_Y6y_0XIB-VI6KbOFFmfTB9-HfGdmtlvThvbw7BzaM3r1DDLS-Ps |
linkProvider | Directory of Open Access Journals |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dTxQxEG8Uo_GFCGo4AemDmviwXnfb3XYfAe-CCicPoPfW9DPRwO3l9iDhv3f6AYRICC-bZjO720x_nflNtzNF6ENrwS5S0xa1slXBPFyUbkghysaXpvXExGM6jybNwSn7Pq2n-ZzTmAvTzbPp_wLNVCg4qTDMbwq2dBjnKHh5PlQW4jcynFv_FD2rKThTAPRP-vs2MbJqM_9lRUP5NP2nvPctd_xSLN8P3ga68J-Njo5n_AqtZsaId1P_1tATN1tHG7t9WMPuzq_wJxzbaYmiX0fPj1PrNTodXWZg4c7jfbVU5uyqP_9j8C-IkEPOVI_DOizei0m5hV0E04ePgE_jQ-gkTjmMeNJdKjxaXKT9L2_QyXh0sn9Q5GMUCsNYvSyc0Fy70lLOBQnlyTilwHqIr2oruCPCNAyisMp6apwQStNaixYCPWp16Rx9i1Zm3cxtIAzRjeUQ8nhWauY4bz0TJBRoVkIAFOwADa91KE0uMR5OujiTEGoErcugdRm0LpPWB-jzzRPzVF7jAdm9MCw3cqEwdrwBIJEZJJJUCnxuqCJIGya0E41vAjJKboUBKjZAH2FQZZ6o_QMf274jp-Z_JVBlWUrKJABugLauYXErRMuQpssbQt898jM76MXx17E8_Db5sYleVkCY0laZLbSyXFy4bSA8S_0-gvofj9X0VA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+Cataclysmic+Variables+with+Binary-driven+Mass+Loss+during+Nova+Eruptions&rft.jtitle=The+Astrophysical+journal&rft.au=Tang%2C+Wen-Shi&rft.au=Li%2C+Xiang-Dong&rft.au=Cui%2C+Zhe&rft.date=2024-12-01&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=977&rft.issue=1&rft.spage=34&rft_id=info:doi/10.3847%2F1538-4357%2Fad8880&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_ad8880 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |