Evolution of Cataclysmic Variables with Binary-driven Mass Loss during Nova Eruptions

The discrepancies between observations and theoretical predictions of cataclysmic variables (CVs) suggest that there exists unknown angular-momentum-loss mechanism(s) besides magnetic braking and gravitational radiation. Mass loss due to nova eruptions belongs to the most likely candidates. While st...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 977; no. 1; pp. 34 - 48
Main Authors Tang, Wen-Shi, Li, Xiang-Dong, Cui, Zhe
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.12.2024
IOP Publishing
Subjects
Online AccessGet full text
ISSN0004-637X
1538-4357
DOI10.3847/1538-4357/ad8880

Cover

Loading…
Abstract The discrepancies between observations and theoretical predictions of cataclysmic variables (CVs) suggest that there exists unknown angular-momentum-loss mechanism(s) besides magnetic braking and gravitational radiation. Mass loss due to nova eruptions belongs to the most likely candidates. While standard theory assumes that mass is lost in the form of radiation-driven, optically thick wind (fast wind), recent numerical simulations indicate that most of the mass loss is initiated and shaped by binary interaction. We explore the effect of this binary-driven mass loss (BDML) on the CV evolutions assuming a major fraction of the lost mass leaves the system from the outer Lagrangian point. Different from the traditional continuous wind picture, we consider the mass loss process to be instantaneous because the duration of nova eruptions is much shorter than the binary evolutionary timescale. Our detailed binary evolution calculations reveal the following results. (1) BDML seems able to provide extra angular momentum loss below the period gap. The mass transfer rates at a given orbital period occupy a large range, in agreement with the observed secular mass transfer rate distribution in CVs. (2) The enhanced mass transfer rates do not lead to a runaway mass transfer process and allow the white dwarfs to grow mass ≲0.1 M ☉ . (3) BDML can cause both positive and negative variations in the orbital period induced by nova eruptions, in line with observations, and can potentially explain the properties of some peculiar supersoft X-ray sources likely CAL 87, 1E 0035.4−7230, and RX J0537.7−7034.
AbstractList The discrepancies between observations and theoretical predictions of cataclysmic variables (CVs) suggest that there exists unknown angular-momentum-loss mechanism(s) besides magnetic braking and gravitational radiation. Mass loss due to nova eruptions belongs to the most likely candidates. While standard theory assumes that mass is lost in the form of radiation-driven, optically thick wind (fast wind), recent numerical simulations indicate that most of the mass loss is initiated and shaped by binary interaction. We explore the effect of this binary-driven mass loss (BDML) on the CV evolutions assuming a major fraction of the lost mass leaves the system from the outer Lagrangian point. Different from the traditional continuous wind picture, we consider the mass loss process to be instantaneous because the duration of nova eruptions is much shorter than the binary evolutionary timescale. Our detailed binary evolution calculations reveal the following results. (1) BDML seems able to provide extra angular momentum loss below the period gap. The mass transfer rates at a given orbital period occupy a large range, in agreement with the observed secular mass transfer rate distribution in CVs. (2) The enhanced mass transfer rates do not lead to a runaway mass transfer process and allow the white dwarfs to grow mass ≲0.1 M _☉ . (3) BDML can cause both positive and negative variations in the orbital period induced by nova eruptions, in line with observations, and can potentially explain the properties of some peculiar supersoft X-ray sources likely CAL 87, 1E 0035.4−7230, and RX J0537.7−7034.
The discrepancies between observations and theoretical predictions of cataclysmic variables (CVs) suggest that there exists unknown angular-momentum-loss mechanism(s) besides magnetic braking and gravitational radiation. Mass loss due to nova eruptions belongs to the most likely candidates. While standard theory assumes that mass is lost in the form of radiation-driven, optically thick wind (fast wind), recent numerical simulations indicate that most of the mass loss is initiated and shaped by binary interaction. We explore the effect of this binary-driven mass loss (BDML) on the CV evolutions assuming a major fraction of the lost mass leaves the system from the outer Lagrangian point. Different from the traditional continuous wind picture, we consider the mass loss process to be instantaneous because the duration of nova eruptions is much shorter than the binary evolutionary timescale. Our detailed binary evolution calculations reveal the following results. (1) BDML seems able to provide extra angular momentum loss below the period gap. The mass transfer rates at a given orbital period occupy a large range, in agreement with the observed secular mass transfer rate distribution in CVs. (2) The enhanced mass transfer rates do not lead to a runaway mass transfer process and allow the white dwarfs to grow mass ≲0.1 M ☉ . (3) BDML can cause both positive and negative variations in the orbital period induced by nova eruptions, in line with observations, and can potentially explain the properties of some peculiar supersoft X-ray sources likely CAL 87, 1E 0035.4−7230, and RX J0537.7−7034.
The discrepancies between observations and theoretical predictions of cataclysmic variables (CVs) suggest that there exists unknown angular-momentum-loss mechanism(s) besides magnetic braking and gravitational radiation. Mass loss due to nova eruptions belongs to the most likely candidates. While standard theory assumes that mass is lost in the form of radiation-driven, optically thick wind (fast wind), recent numerical simulations indicate that most of the mass loss is initiated and shaped by binary interaction. We explore the effect of this binary-driven mass loss (BDML) on the CV evolutions assuming a major fraction of the lost mass leaves the system from the outer Lagrangian point. Different from the traditional continuous wind picture, we consider the mass loss process to be instantaneous because the duration of nova eruptions is much shorter than the binary evolutionary timescale. Our detailed binary evolution calculations reveal the following results. (1) BDML seems able to provide extra angular momentum loss below the period gap. The mass transfer rates at a given orbital period occupy a large range, in agreement with the observed secular mass transfer rate distribution in CVs. (2) The enhanced mass transfer rates do not lead to a runaway mass transfer process and allow the white dwarfs to grow mass ≲0.1 M☉. (3) BDML can cause both positive and negative variations in the orbital period induced by nova eruptions, in line with observations, and can potentially explain the properties of some peculiar supersoft X-ray sources likely CAL 87, 1E 0035.4−7230, and RX J0537.7−7034.
Author Cui, Zhe
Tang, Wen-Shi
Li, Xiang-Dong
Author_xml – sequence: 1
  givenname: Wen-Shi
  orcidid: 0000-0002-6588-9264
  surname: Tang
  fullname: Tang, Wen-Shi
  organization: Xiamen University Department of Astronomy, Xiamen 361005, People's Republic of China
– sequence: 2
  givenname: Xiang-Dong
  orcidid: 0000-0002-0584-8145
  surname: Li
  fullname: Li, Xiang-Dong
  organization: Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University) , Ministry of Education, Nanjing 210023, People's Republic of China
– sequence: 3
  givenname: Zhe
  orcidid: 0000-0001-8311-0608
  surname: Cui
  fullname: Cui, Zhe
  organization: Dezhou University College of Physics and Electronic Information, Dezhou 253023, People's Republic of China
BookMark eNp9UcFu1DAQtVCR2C7cOVqCI2mdjGNPjrBaoNICl4K4WY7tFK_SONjJov49ToOKhICLRx699-bNm3NyNoTBEfK8ZBeAXF6WNWDBoZaX2iIie0Q2D60zsmGM8UKA_PqEnKd0XL5V02zI5_0p9PPkw0BDR3d60qa_S7fe0C86et32LtEffvpG3_hBx7vCRn9yA_2gU6KHkB87Rz_c0I_hpOk-zuMilZ6Sx53uk3v2q27J9dv99e59cfj07mr3-lAYzuupcNjK1pUWpEQmG0QJUIuKdVVtUTqGRvCm4pXtwDhE3ULdYsOZBNuWzsGWXK2yNuijGqO_zRZV0F7dN0K8UTpO3vROsUojK1HIBgTH1qHoRA2iLqVF04DMWi9WrTGG77NLkzqGOQ7ZvYISOFRSMMgotqJMzMtH1z1MLZla7qCW0NUSulrvkCniD4rxk15imqL2_f-IL1eiD-NvM3o8qkZmuAKuxpzMlrz6C-yfqj8B7qWm1A
CitedBy_id crossref_primary_10_1088_1538_3873_adb78f
Cites_doi 10.1038/nature13773
10.1146/annurev.astro.35.1.69
10.3847/1538-4357/abc3bb
10.1051/0004-6361:20030330
10.1093/mnras/stad2018
10.3847/1538-4357/833/1/83
10.1088/0067-0049/192/1/3
10.1051/0004-6361/202348807
10.1086/379535
10.1111/j.1365-2966.2009.15857.x
10.1126/science.1132305
10.1046/j.1365-8711.2000.03426.x
10.1086/151310
10.1088/1674-4527/ac4e01
10.1017/CBO9780511536168
10.1093/mnras/staa1162
10.1051/0004-6361/201833010
10.48550/arXiv.astro-ph/9904012
10.3847/1538-4357/aaf19f
10.1088/0004-637X/716/1/114
10.1086/319776
10.1086/160960
10.1038/s41550-020-1062-y
10.1088/2041-8205/754/2/L26
10.1086/518997
10.1093/mnras/stac3313
10.1093/mnrasl/slw236
10.1093/mnras/stad2223
10.1093/mnras/stz3413
10.1093/mnras/stz976
10.1086/159682
10.1093/mnras/stx2678
10.1088/0004-637X/809/1/80
10.1088/0004-637X/777/2/136
10.1088/2041-8205/778/2/L32
10.1088/0067-0049/220/1/15
10.1088/2514-3433/ac595f
10.1086/425249
10.1051/0004-6361/202038070
10.1088/0004-637X/792/1/20
10.1093/mnras/287.3.699
10.1086/312817
10.1088/0004-637X/745/2/165
10.1111/j.1365-2966.2009.15126.x
10.1111/j.1365-2966.2006.11096.x
10.48550/arXiv.astro-ph/9912283
10.1093/mnras/sty3489
10.1093/mnrasl/slv144
10.1093/mnras/sty1421
10.1086/161569
10.1093/mnras/staa764
10.1086/164762
10.3847/1538-4357/ac9136
10.1046/j.1365-8711.1999.02926.x
10.48550/arXiv.astro-ph/9703016
10.1086/304820
10.1086/168381
10.1051/0004-6361:20077971
10.1051/0004-6361/201630099
10.1088/0067-0049/194/2/28
10.1086/379647
10.1051/0004-6361/201116626
10.1086/424513
10.1088/0004-637X/815/1/17
10.1088/0067-0049/208/1/4
10.1088/0004-637X/693/1/1007
10.1146/annurev-astro-112420-114502
10.1093/mnras/stz3424
10.1086/324074
10.1046/j.1365-8711.2001.03960.x
10.1016/j.asr.2019.08.044
10.1093/mnras/stac1137
10.1017/CBO9780511586491
10.1093/mnras/stab3449
10.3847/1538-4365/ab2241
10.1046/j.1365-8711.1998.01529.x
10.1088/0004-637X/746/1/43
10.3847/0004-637X/817/1/69
10.1086/518465
10.1093/mnras/262.3.545
10.1086/175041
10.1088/0004-637X/796/1/37
10.1046/j.1365-8711.2002.05038.x
10.3847/2041-8213/ab571c
10.1016/j.asr.2020.04.007
10.1086/175129
ContentType Journal Article
Copyright 2024. The Author(s). Published by the American Astronomical Society.
2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. The Author(s). Published by the American Astronomical Society.
– notice: 2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOA
DOI 10.3847/1538-4357/ad8880
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
CrossRef
Aerospace Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
ExternalDocumentID oai_doaj_org_article_02a80186793648be86f6536517d8c937
10_3847_1538_4357_ad8880
apjad8880
GrantInformation_xml – fundername: MOST ∣ National Key Research and Development Program of China (NKPs)
  sequence: 0
  grantid: 2021YFA0718500
  funderid: https://doi.org/10.13039/501100012166
– fundername: MOST ∣ National Natural Science Foundation of China (NSFC)
  sequence: 0
  grantid: 12041301 and 12121003
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
TSCCA
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ID FETCH-LOGICAL-c445t-e8b7be1d3778079887335620f25d87e08c649242df3ce88ab35b894073db1ee3
IEDL.DBID DOA
ISSN 0004-637X
IngestDate Wed Aug 27 01:21:11 EDT 2025
Wed Aug 13 06:42:11 EDT 2025
Tue Jul 01 03:40:07 EDT 2025
Thu Apr 24 23:09:04 EDT 2025
Thu Dec 05 13:12:05 EST 2024
Thu Dec 05 13:09:21 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-e8b7be1d3778079887335620f25d87e08c649242df3ce88ab35b894073db1ee3
Notes AAS49946
High-Energy Phenomena and Fundamental Physics
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0584-8145
0000-0001-8311-0608
0000-0002-6588-9264
OpenAccessLink https://doaj.org/article/02a80186793648be86f6536517d8c937
PQID 3134327603
PQPubID 4562441
PageCount 15
ParticipantIDs crossref_primary_10_3847_1538_4357_ad8880
iop_journals_10_3847_1538_4357_ad8880
crossref_citationtrail_10_3847_1538_4357_ad8880
doaj_primary_oai_doaj_org_article_02a80186793648be86f6536517d8c937
proquest_journals_3134327603
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2024
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – sequence: 0
  name: The American Astronomical Society
– name: IOP Publishing
References Barrett (apjad8880bib5) 2020; 66
Chaty (apjad8880bib9) 2022
Shen (apjad8880bib72) 2022; 938
Wolf (apjad8880bib88) 2013; 777
Ribeiro (apjad8880bib58) 2014; 792
Ma (apjad8880bib41) 2013; 778
Townsley (apjad8880bib78) 2003; 596
McAllister (apjad8880bib43) 2019; 486
Schenker (apjad8880bib64) 1998; 297
Chomiuk (apjad8880bib11) 2021; 59
Soberman (apjad8880bib75) 1997; 327
Shara (apjad8880bib71) 1986; 311
Nelemans (apjad8880bib45) 2016; 817
Pala (apjad8880bib49) 2022; 510
Goliasch (apjad8880bib18) 2015; 809
Kato (apjad8880bib29) 1994; 437
Ritter (apjad8880bib60) 2003; 404
Greiner (apjad8880bib19) 2000; 355
Knigge (apjad8880bib31) 2006; 373
Liu (apjad8880bib40) 2019; 870
Wu (apjad8880bib89) 2017; 604
Chomiuk (apjad8880bib10) 2014; 514
Oliveira (apjad8880bib48) 2007; 472
Van (apjad8880bib82) 2019; 886
Liu (apjad8880bib39) 2019; 622
Scherbak (apjad8880bib65) 2023; 518
Paxton (apjad8880bib51) 2011; 192
van den Heuvel (apjad8880bib81) 1992; 262
Aydi (apjad8880bib4) 2018; 474
Paxton (apjad8880bib54) 2019; 243
Schaefer (apjad8880bib62) 2020; 492
Kahabka (apjad8880bib26) 1999; 346
Zorotovic (apjad8880bib92) 2022; 513
Kramer (apjad8880bib36) 2006; 314
Matt (apjad8880bib42) 2012; 754
Hurley (apjad8880bib24) 2002; 329
Reiners (apjad8880bib57) 2012; 746
Zorotovic (apjad8880bib93) 2017; 466
Kalomeni (apjad8880bib28) 2016; 833
Crampton (apjad8880bib13) 1997; 489
Rutledge (apjad8880bib61) 2000; 538
Sion (apjad8880bib73) 1995; 438
Schreiber (apjad8880bib67) 2016; 455
van Teeseling (apjad8880bib84) 1998; 338
Xu (apjad8880bib90) 2010; 716
Schaefer (apjad8880bib63) 2023; 525
Gänsicke (apjad8880bib17) 2009; 397
Townsley (apjad8880bib80) 2009; 693
Paxton (apjad8880bib52) 2013; 208
Zorotovic (apjad8880bib95) 2011; 536
Kolb (apjad8880bib34) 1999; 309
de Kool (apjad8880bib15) 1993; 267
Pala (apjad8880bib50) 2020; 494
Zorotovic (apjad8880bib94) 2020; 66
Ritter (apjad8880bib59) 1988; 202
Wang (apjad8880bib85) 2010; 401
Shao (apjad8880bib69) 2012; 745
Nomoto (apjad8880bib47) 2007; 663
Paxton (apjad8880bib53) 2015; 220
Rappaport (apjad8880bib56) 1983; 275
Townsley (apjad8880bib79) 2004; 600
Knigge (apjad8880bib32) 2011; 447
Starrfield (apjad8880bib76) 2004; 612
Kato (apjad8880bib30) 2004; 613
Alcock (apjad8880bib2) 1997; 287
Belloni (apjad8880bib7) 2018; 478
Kahabka (apjad8880bib27) 1997; 35
Warner (apjad8880bib86) 1995; 28
Howell (apjad8880bib22) 2001; 550
Misra (apjad8880bib44) 2020; 642
de Kool (apjad8880bib14) 1992; 261
Politano (apjad8880bib55) 2007; 665
Ablimit (apjad8880bib1) 2015; 815
Belloni (apjad8880bib6) 2020; 491
Van (apjad8880bib83) 2019; 483
Bode (apjad8880bib8) 2008
Stephenson (apjad8880bib77) 1976; 17
Aydi (apjad8880bib3) 2020; 905
Weisberg (apjad8880bib87) 2005
Hoffmann (apjad8880bib21) 2020; 494
Eggleton (apjad8880bib16) 1983; 268
Schwarz (apjad8880bib68) 2001; 320
Skumanich (apjad8880bib74) 1972; 171
Nomoto (apjad8880bib46) 1982; 253
Kroupa (apjad8880bib37) 1993; 262
Schreiber (apjad8880bib66) 2024; 682
Cowley (apjad8880bib12) 1990; 350
Landau (apjad8880bib38) 1959
Knigge (apjad8880bib33) 2011; 194
Kolb (apjad8880bib35) 2001; 563
Yu (apjad8880bib91) 2022; 22
Hurley (apjad8880bib23) 2000; 315
Inight (apjad8880bib25) 2023; 524
Hillman (apjad8880bib20) 2020; 4
Shao (apjad8880bib70) 2014; 796
References_xml – volume: 514
  start-page: 339
  year: 2014
  ident: apjad8880bib10
  publication-title: Natur
  doi: 10.1038/nature13773
– volume: 35
  start-page: 69
  year: 1997
  ident: apjad8880bib27
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.35.1.69
– volume: 905
  start-page: 62
  year: 2020
  ident: apjad8880bib3
  publication-title: ApJ
  doi: 10.3847/1538-4357/abc3bb
– volume: 404
  start-page: 301
  year: 2003
  ident: apjad8880bib60
  publication-title: A&A
  doi: 10.1051/0004-6361:20030330
– volume: 524
  start-page: 4867
  year: 2023
  ident: apjad8880bib25
  publication-title: MNRAS
  doi: 10.1093/mnras/stad2018
– volume: 17
  start-page: 121
  year: 1976
  ident: apjad8880bib77
  publication-title: QJRAS
– year: 1959
  ident: apjad8880bib38
– volume: 833
  start-page: 83
  year: 2016
  ident: apjad8880bib28
  publication-title: ApJ
  doi: 10.3847/1538-4357/833/1/83
– volume: 192
  start-page: 3
  year: 2011
  ident: apjad8880bib51
  publication-title: ApJS
  doi: 10.1088/0067-0049/192/1/3
– volume: 267
  start-page: 397
  year: 1993
  ident: apjad8880bib15
  publication-title: A&A
– volume: 682
  start-page: L7
  year: 2024
  ident: apjad8880bib66
  publication-title: A&A
  doi: 10.1051/0004-6361/202348807
– volume: 596
  start-page: L227
  year: 2003
  ident: apjad8880bib78
  publication-title: ApJL
  doi: 10.1086/379535
– volume: 401
  start-page: 2729
  year: 2010
  ident: apjad8880bib85
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15857.x
– volume: 314
  start-page: 97
  year: 2006
  ident: apjad8880bib36
  publication-title: Sci
  doi: 10.1126/science.1132305
– volume: 315
  start-page: 543
  year: 2000
  ident: apjad8880bib23
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2000.03426.x
– volume: 171
  start-page: 565
  year: 1972
  ident: apjad8880bib74
  publication-title: ApJ
  doi: 10.1086/151310
– volume: 22
  start-page: 045003
  year: 2022
  ident: apjad8880bib91
  publication-title: RAA
  doi: 10.1088/1674-4527/ac4e01
– year: 2008
  ident: apjad8880bib8
  doi: 10.1017/CBO9780511536168
– volume: 494
  start-page: 5775
  year: 2020
  ident: apjad8880bib21
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1162
– volume: 202
  start-page: 93
  year: 1988
  ident: apjad8880bib59
  publication-title: A&A
– volume: 622
  start-page: A35
  year: 2019
  ident: apjad8880bib39
  publication-title: A&A
  doi: 10.1051/0004-6361/201833010
– volume: 346
  start-page: 453
  year: 1999
  ident: apjad8880bib26
  publication-title: A&A
  doi: 10.48550/arXiv.astro-ph/9904012
– volume: 870
  start-page: 22
  year: 2019
  ident: apjad8880bib40
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaf19f
– volume: 716
  start-page: 114
  year: 2010
  ident: apjad8880bib90
  publication-title: ApJ
  doi: 10.1088/0004-637X/716/1/114
– volume: 550
  start-page: 897
  year: 2001
  ident: apjad8880bib22
  publication-title: ApJ
  doi: 10.1086/319776
– volume: 268
  start-page: 368
  year: 1983
  ident: apjad8880bib16
  publication-title: ApJ
  doi: 10.1086/160960
– volume: 4
  start-page: 886
  year: 2020
  ident: apjad8880bib20
  publication-title: NatAs
  doi: 10.1038/s41550-020-1062-y
– volume: 754
  start-page: L26
  year: 2012
  ident: apjad8880bib42
  publication-title: ApJL
  doi: 10.1088/2041-8205/754/2/L26
– volume: 261
  start-page: 188
  year: 1992
  ident: apjad8880bib14
  publication-title: A&A
– volume: 665
  start-page: 663
  year: 2007
  ident: apjad8880bib55
  publication-title: ApJ
  doi: 10.1086/518997
– volume: 518
  start-page: 3966
  year: 2023
  ident: apjad8880bib65
  publication-title: MNRAS
  doi: 10.1093/mnras/stac3313
– volume: 466
  start-page: L63
  year: 2017
  ident: apjad8880bib93
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slw236
– volume: 525
  start-page: 785
  year: 2023
  ident: apjad8880bib63
  publication-title: MNRAS
  doi: 10.1093/mnras/stad2223
– volume: 491
  start-page: 5717
  year: 2020
  ident: apjad8880bib6
  publication-title: MNRAS
  doi: 10.1093/mnras/stz3413
– volume: 486
  start-page: 5535
  year: 2019
  ident: apjad8880bib43
  publication-title: MNRAS
  doi: 10.1093/mnras/stz976
– volume: 253
  start-page: 798
  year: 1982
  ident: apjad8880bib46
  publication-title: ApJ
  doi: 10.1086/159682
– volume: 474
  start-page: 2679
  year: 2018
  ident: apjad8880bib4
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2678
– volume: 809
  start-page: 80
  year: 2015
  ident: apjad8880bib18
  publication-title: ApJ
  doi: 10.1088/0004-637X/809/1/80
– volume: 777
  start-page: 136
  year: 2013
  ident: apjad8880bib88
  publication-title: ApJ
  doi: 10.1088/0004-637X/777/2/136
– volume: 778
  start-page: L32
  year: 2013
  ident: apjad8880bib41
  publication-title: ApJL
  doi: 10.1088/2041-8205/778/2/L32
– volume: 220
  start-page: 15
  year: 2015
  ident: apjad8880bib53
  publication-title: ApJS
  doi: 10.1088/0067-0049/220/1/15
– year: 2022
  ident: apjad8880bib9
  doi: 10.1088/2514-3433/ac595f
– volume: 613
  start-page: L129
  year: 2004
  ident: apjad8880bib30
  publication-title: ApJL
  doi: 10.1086/425249
– volume: 642
  start-page: A174
  year: 2020
  ident: apjad8880bib44
  publication-title: A&A
  doi: 10.1051/0004-6361/202038070
– volume: 792
  start-page: 20
  year: 2014
  ident: apjad8880bib58
  publication-title: ApJ
  doi: 10.1088/0004-637X/792/1/20
– volume: 287
  start-page: 699
  year: 1997
  ident: apjad8880bib2
  publication-title: MNRAS
  doi: 10.1093/mnras/287.3.699
– volume: 538
  start-page: L141
  year: 2000
  ident: apjad8880bib61
  publication-title: ApJL
  doi: 10.1086/312817
– volume: 745
  start-page: 165
  year: 2012
  ident: apjad8880bib69
  publication-title: ApJ
  doi: 10.1088/0004-637X/745/2/165
– volume: 397
  start-page: 2170
  year: 2009
  ident: apjad8880bib17
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15126.x
– volume: 373
  start-page: 484
  year: 2006
  ident: apjad8880bib31
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.11096.x
– volume: 355
  start-page: 1041
  year: 2000
  ident: apjad8880bib19
  publication-title: A&A
  doi: 10.48550/arXiv.astro-ph/9912283
– volume: 262
  start-page: 97
  year: 1992
  ident: apjad8880bib81
  publication-title: A&A
– volume: 483
  start-page: 5595
  year: 2019
  ident: apjad8880bib83
  publication-title: MNRAS
  doi: 10.1093/mnras/sty3489
– volume: 455
  start-page: L16
  year: 2016
  ident: apjad8880bib67
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slv144
– volume: 478
  start-page: 5626
  year: 2018
  ident: apjad8880bib7
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1421
– volume: 275
  start-page: 713
  year: 1983
  ident: apjad8880bib56
  publication-title: ApJ
  doi: 10.1086/161569
– volume: 494
  start-page: 3799
  year: 2020
  ident: apjad8880bib50
  publication-title: MNRAS
  doi: 10.1093/mnras/staa764
– volume: 311
  start-page: 163
  year: 1986
  ident: apjad8880bib71
  publication-title: ApJ
  doi: 10.1086/164762
– volume: 938
  start-page: 31
  year: 2022
  ident: apjad8880bib72
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac9136
– volume: 309
  start-page: 1034
  year: 1999
  ident: apjad8880bib34
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1999.02926.x
– volume: 327
  start-page: 620
  year: 1997
  ident: apjad8880bib75
  publication-title: A&A
  doi: 10.48550/arXiv.astro-ph/9703016
– volume: 489
  start-page: 903
  year: 1997
  ident: apjad8880bib13
  publication-title: ApJ
  doi: 10.1086/304820
– volume: 350
  start-page: 288
  year: 1990
  ident: apjad8880bib12
  publication-title: ApJ
  doi: 10.1086/168381
– volume: 472
  start-page: L21
  year: 2007
  ident: apjad8880bib48
  publication-title: A&A
  doi: 10.1051/0004-6361:20077971
– volume: 604
  start-page: A31
  year: 2017
  ident: apjad8880bib89
  publication-title: A&A
  doi: 10.1051/0004-6361/201630099
– volume: 447
  start-page: 3
  year: 2011
  ident: apjad8880bib32
– volume: 194
  start-page: 28
  year: 2011
  ident: apjad8880bib33
  publication-title: ApJS
  doi: 10.1088/0067-0049/194/2/28
– volume: 600
  start-page: 390
  year: 2004
  ident: apjad8880bib79
  publication-title: ApJ
  doi: 10.1086/379647
– volume: 536
  start-page: A42
  year: 2011
  ident: apjad8880bib95
  publication-title: A&A
  doi: 10.1051/0004-6361/201116626
– volume: 612
  start-page: L53
  year: 2004
  ident: apjad8880bib76
  publication-title: ApJL
  doi: 10.1086/424513
– volume: 815
  start-page: 17
  year: 2015
  ident: apjad8880bib1
  publication-title: ApJ
  doi: 10.1088/0004-637X/815/1/17
– volume: 208
  start-page: 4
  year: 2013
  ident: apjad8880bib52
  publication-title: ApJS
  doi: 10.1088/0067-0049/208/1/4
– volume: 693
  start-page: 1007
  year: 2009
  ident: apjad8880bib80
  publication-title: ApJ
  doi: 10.1088/0004-637X/693/1/1007
– volume: 59
  start-page: 391
  year: 2021
  ident: apjad8880bib11
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-112420-114502
– volume: 492
  start-page: 3343
  year: 2020
  ident: apjad8880bib62
  publication-title: MNRAS
  doi: 10.1093/mnras/stz3424
– volume: 563
  start-page: 958
  year: 2001
  ident: apjad8880bib35
  publication-title: ApJ
  doi: 10.1086/324074
– volume: 320
  start-page: 103
  year: 2001
  ident: apjad8880bib68
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2001.03960.x
– volume: 66
  start-page: 1080
  year: 2020
  ident: apjad8880bib94
  publication-title: AdSpR
  doi: 10.1016/j.asr.2019.08.044
– volume: 513
  start-page: 3587
  year: 2022
  ident: apjad8880bib92
  publication-title: MNRAS
  doi: 10.1093/mnras/stac1137
– volume: 28
  year: 1995
  ident: apjad8880bib86
  doi: 10.1017/CBO9780511586491
– volume: 510
  start-page: 6110
  year: 2022
  ident: apjad8880bib49
  publication-title: MNRAS
  doi: 10.1093/mnras/stab3449
– volume: 243
  start-page: 10
  year: 2019
  ident: apjad8880bib54
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab2241
– volume: 297
  start-page: 633
  year: 1998
  ident: apjad8880bib64
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1998.01529.x
– volume: 746
  start-page: 43
  year: 2012
  ident: apjad8880bib57
  publication-title: ApJ
  doi: 10.1088/0004-637X/746/1/43
– volume: 817
  start-page: 69
  year: 2016
  ident: apjad8880bib45
  publication-title: ApJ
  doi: 10.3847/0004-637X/817/1/69
– volume: 663
  start-page: 1269
  year: 2007
  ident: apjad8880bib47
  publication-title: ApJ
  doi: 10.1086/518465
– volume: 338
  start-page: 957
  year: 1998
  ident: apjad8880bib84
  publication-title: A&A
– volume: 262
  start-page: 545
  year: 1993
  ident: apjad8880bib37
  publication-title: MNRAS
  doi: 10.1093/mnras/262.3.545
– start-page: 25
  year: 2005
  ident: apjad8880bib87
– volume: 437
  start-page: 802
  year: 1994
  ident: apjad8880bib29
  publication-title: ApJ
  doi: 10.1086/175041
– volume: 796
  start-page: 37
  year: 2014
  ident: apjad8880bib70
  publication-title: ApJ
  doi: 10.1088/0004-637X/796/1/37
– volume: 329
  start-page: 897
  year: 2002
  ident: apjad8880bib24
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2002.05038.x
– volume: 886
  start-page: L31
  year: 2019
  ident: apjad8880bib82
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab571c
– volume: 66
  start-page: 1226
  year: 2020
  ident: apjad8880bib5
  publication-title: AdSpR
  doi: 10.1016/j.asr.2020.04.007
– volume: 438
  start-page: 876
  year: 1995
  ident: apjad8880bib73
  publication-title: ApJ
  doi: 10.1086/175129
SSID ssj0004299
Score 2.476546
Snippet The discrepancies between observations and theoretical predictions of cataclysmic variables (CVs) suggest that there exists unknown angular-momentum-loss...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 34
SubjectTerms Angular momentum
Cataclysmic variable stars
Cataclysmic variables
Dwarf novae
Evolution
Lagrangian equilibrium points
Mass transfer
Numerical simulations
Orbits
Radiation
White dwarf stars
Wind
Wind effects
X ray sources
SummonAdditionalLinks – databaseName: Institute of Physics Open Access Journal Titles
  dbid: O3W
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dSxwxEA-iFPpS1FY8v8iDLfRhvd2dbJLFJ5UTKdX2wY97C_mEFr09bk_B_97JZj2RFvFlCcvsJsxOZn6_bGZCyH7t0C-CrbNKuzJjAS_a8DyTBQ-FrUNuu2M6zy_42RX7Ma7GS-RwkQvTTHvXf4DNVCg4qTDOb0BfOuzmKEZ5MdQO-Rvy9RWQXMb9fL_g5iUpsqx77MsyDmKc_lH-9w2vYlJXuh8jDXb_j3_ugs7pKvnUo0V6lMa2Rpb8ZJ1sHrVx_bq5e6TfaNdOyxPtOvnwO7U-k6vRQ29UtAn0RM-1vX1s7_5Yeo3sOOZLtTSuwdLjLiE3c7Po9ug5Ymn6EwdJU_4ivWgeNB3N7tPely_k8nR0eXKW9UcoZJaxap55aYTxhQMhZB5LkwkARDx5KCsnhc-l5QwZWOkCWC-lNlAZWSPJA2cK72GDLE-aid8kFJmNE0h3AisM80LUgck8FmfWUqIZuAEZPutQ2b68eDzl4lYhzYhaV1HrKmpdJa0PyPfFE9NUWuMN2eP4WRZysSh2dwMNRPUGovJSY7yNFQSBM2m85IFXwKtCOGkRhg3IV_yoqp-k7Rud7b6S09O_CmGyKhQwNXVhQHaezeJFCIqYoit4Dlvv7GabfCwRIaW9MTtkeT6797uIcOZmr7PkJ40n8Fw
  priority: 102
  providerName: IOP Publishing
Title Evolution of Cataclysmic Variables with Binary-driven Mass Loss during Nova Eruptions
URI https://iopscience.iop.org/article/10.3847/1538-4357/ad8880
https://www.proquest.com/docview/3134327603
https://doaj.org/article/02a80186793648be86f6536517d8c937
Volume 977
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSyQxEA4iCF7EdV0c15Ecdhc8NJPupJP0cZQRFV8HXb2FPEHR6WF6FPz3Vjo9PhD04iWEppoOlUpVfenUF4T-VA78IrVVVmpXZCxAow0nmcx5yG0ViG2v6Tw55QeX7Oi6vH5z1Vc8E5bogZPiBqTQ4EQjLRzlTBoveeAl5WUunLQQW6P3hZg3B1PzikjwsumnJAX3O2iXNSQGYqAdQD7yLgi1XP0QWm7qyQeH3EaZ_VW00qWHeJiG9QMt-PEa2hg2ccO6vn_C_3DbT_sRzRpaOk-9n-hy9NhZEa4D3tMzbe-emvsbi_8DHI4FUg2Om654t63Azdw0-jl8AskzPoZB4lSwiE_rR41H04d02GUdXeyPLvYOsu7OhMwyVs4yL40wPndUCEkiF5mgFFIcEorSSeGJtJwB5CpcoNZLqQ0tjawA1VFncu_pL7Q4rsd-A2GAMk4AvgksN8wLUQUmSWRj1lLCvLseGsx1qGzHJx6vtbhTgCui1lXUuopaV0nrPbTz8sYkcWl8Irsbp-VFLrJgtw_ANlRnG-or2-ihvzCpqluVzScf67-T05NbBXmxyhVlauJCD23NzeJViOaxJldwQje_Y6y_0XIB-VI6KbOFFmfTB9-HfGdmtlvThvbw7BzaM3r1DDLS-Ps
linkProvider Directory of Open Access Journals
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dTxQxEG8Uo_GFCGo4AemDmviwXnfb3XYfAe-CCicPoPfW9DPRwO3l9iDhv3f6AYRICC-bZjO720x_nflNtzNF6ENrwS5S0xa1slXBPFyUbkghysaXpvXExGM6jybNwSn7Pq2n-ZzTmAvTzbPp_wLNVCg4qTDMbwq2dBjnKHh5PlQW4jcynFv_FD2rKThTAPRP-vs2MbJqM_9lRUP5NP2nvPctd_xSLN8P3ga68J-Njo5n_AqtZsaId1P_1tATN1tHG7t9WMPuzq_wJxzbaYmiX0fPj1PrNTodXWZg4c7jfbVU5uyqP_9j8C-IkEPOVI_DOizei0m5hV0E04ePgE_jQ-gkTjmMeNJdKjxaXKT9L2_QyXh0sn9Q5GMUCsNYvSyc0Fy70lLOBQnlyTilwHqIr2oruCPCNAyisMp6apwQStNaixYCPWp16Rx9i1Zm3cxtIAzRjeUQ8nhWauY4bz0TJBRoVkIAFOwADa91KE0uMR5OujiTEGoErcugdRm0LpPWB-jzzRPzVF7jAdm9MCw3cqEwdrwBIJEZJJJUCnxuqCJIGya0E41vAjJKboUBKjZAH2FQZZ6o_QMf274jp-Z_JVBlWUrKJABugLauYXErRMuQpssbQt898jM76MXx17E8_Db5sYleVkCY0laZLbSyXFy4bSA8S_0-gvofj9X0VA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+Cataclysmic+Variables+with+Binary-driven+Mass+Loss+during+Nova+Eruptions&rft.jtitle=The+Astrophysical+journal&rft.au=Tang%2C+Wen-Shi&rft.au=Li%2C+Xiang-Dong&rft.au=Cui%2C+Zhe&rft.date=2024-12-01&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=977&rft.issue=1&rft.spage=34&rft_id=info:doi/10.3847%2F1538-4357%2Fad8880&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_ad8880
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon