The AddAB helicase–nuclease catalyses rapid and processive DNA unwinding using a single Superfamily 1A motor domain
The oligomeric state of Superfamily I DNA helicases is the subject of considerable and ongoing debate. While models based on crystal structures imply that a single helicase core domain is sufficient for DNA unwinding activity, biochemical data from several related enzymes suggest that a higher order...
Saved in:
Published in | Nucleic acids research Vol. 39; no. 6; pp. 2271 - 2285 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.03.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The oligomeric state of Superfamily I DNA helicases is the subject of considerable and ongoing debate. While models based on crystal structures imply that a single helicase core domain is sufficient for DNA unwinding activity, biochemical data from several related enzymes suggest that a higher order oligomeric species is required. In this work we characterize the helicase activity of the AddAB helicase-nuclease, which is involved in the repair of double-stranded DNA breaks in Bacillus subtilis. We show that the enzyme is functional as a heterodimer of the AddA and AddB subunits, that it is a rapid and processive DNA helicase, and that it catalyses DNA unwinding using one single-stranded DNA motor of 3' → 5' polarity located in the AddA subunit. The AddB subunit contains a second putative ATP-binding pocket, but this does not contribute to the observed helicase activity and may instead be involved in the recognition of recombination hotspot sequences. |
---|---|
AbstractList | The oligomeric state of Superfamily I DNA helicases is the subject of considerable and ongoing debate. While models based on crystal structures imply that a single helicase core domain is sufficient for DNA unwinding activity, biochemical data from several related enzymes suggest that a higher order oligomeric species is required. In this work we characterize the helicase activity of the AddAB helicase-nuclease, which is involved in the repair of double-stranded DNA breaks in Bacillus subtilis. We show that the enzyme is functional as a heterodimer of the AddA and AddB subunits, that it is a rapid and processive DNA helicase, and that it catalyses DNA unwinding using one single-stranded DNA motor of 3'[rightward arrow]5' polarity located in the AddA subunit. The AddB subunit contains a second putative ATP-binding pocket, but this does not contribute to the observed helicase activity and may instead be involved in the recognition of recombination hotspot sequences. The oligomeric state of Superfamily I DNA helicases is the subject of considerable and ongoing debate. While models based on crystal structures imply that a single helicase core domain is sufficient for DNA unwinding activity, biochemical data from several related enzymes suggest that a higher order oligomeric species is required. In this work we characterize the helicase activity of the AddAB helicase-nuclease, which is involved in the repair of double-stranded DNA breaks in Bacillus subtilis. We show that the enzyme is functional as a heterodimer of the AddA and AddB subunits, that it is a rapid and processive DNA helicase, and that it catalyses DNA unwinding using one single-stranded DNA motor of 3' arrow right 5' polarity located in the AddA subunit. The AddB subunit contains a second putative ATP-binding pocket, but this does not contribute to the observed helicase activity and may instead be involved in the recognition of recombination hotspot sequences. The oligomeric state of Superfamily I DNA helicases is the subject of considerable and ongoing debate. While models based on crystal structures imply that a single helicase core domain is sufficient for DNA unwinding activity, biochemical data from several related enzymes suggest that a higher order oligomeric species is required. In this work we characterize the helicase activity of the AddAB helicase-nuclease, which is involved in the repair of double-stranded DNA breaks in Bacillus subtilis. We show that the enzyme is functional as a heterodimer of the AddA and AddB subunits, that it is a rapid and processive DNA helicase, and that it catalyses DNA unwinding using one single-stranded DNA motor of 3' → 5' polarity located in the AddA subunit. The AddB subunit contains a second putative ATP-binding pocket, but this does not contribute to the observed helicase activity and may instead be involved in the recognition of recombination hotspot sequences.The oligomeric state of Superfamily I DNA helicases is the subject of considerable and ongoing debate. While models based on crystal structures imply that a single helicase core domain is sufficient for DNA unwinding activity, biochemical data from several related enzymes suggest that a higher order oligomeric species is required. In this work we characterize the helicase activity of the AddAB helicase-nuclease, which is involved in the repair of double-stranded DNA breaks in Bacillus subtilis. We show that the enzyme is functional as a heterodimer of the AddA and AddB subunits, that it is a rapid and processive DNA helicase, and that it catalyses DNA unwinding using one single-stranded DNA motor of 3' → 5' polarity located in the AddA subunit. The AddB subunit contains a second putative ATP-binding pocket, but this does not contribute to the observed helicase activity and may instead be involved in the recognition of recombination hotspot sequences. The oligomeric state of Superfamily I DNA helicases is the subject of considerable and ongoing debate. While models based on crystal structures imply that a single helicase core domain is sufficient for DNA unwinding activity, biochemical data from several related enzymes suggest that a higher order oligomeric species is required. In this work we characterize the helicase activity of the AddAB helicase–nuclease, which is involved in the repair of double-stranded DNA breaks in Bacillus subtilis . We show that the enzyme is functional as a heterodimer of the AddA and AddB subunits, that it is a rapid and processive DNA helicase, and that it catalyses DNA unwinding using one single-stranded DNA motor of 3′→5′ polarity located in the AddA subunit. The AddB subunit contains a second putative ATP-binding pocket, but this does not contribute to the observed helicase activity and may instead be involved in the recognition of recombination hotspot sequences. The oligomeric state of Superfamily I DNA helicases is the subject of considerable and ongoing debate. While models based on crystal structures imply that a single helicase core domain is sufficient for DNA unwinding activity, biochemical data from several related enzymes suggest that a higher order oligomeric species is required. In this work we characterize the helicase activity of the AddAB helicase-nuclease, which is involved in the repair of double-stranded DNA breaks in Bacillus subtilis. We show that the enzyme is functional as a heterodimer of the AddA and AddB subunits, that it is a rapid and processive DNA helicase, and that it catalyses DNA unwinding using one single-stranded DNA motor of 3' → 5' polarity located in the AddA subunit. The AddB subunit contains a second putative ATP-binding pocket, but this does not contribute to the observed helicase activity and may instead be involved in the recognition of recombination hotspot sequences. |
Author | Gwynn, Emma J. Yeeles, Joseph T.P. Webb, Martin R. Dillingham, Mark S. |
AuthorAffiliation | 1 DNA-Protein Interactions Unit, School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD and 2 MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK |
AuthorAffiliation_xml | – name: 1 DNA-Protein Interactions Unit, School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD and 2 MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK |
Author_xml | – sequence: 1 givenname: Joseph T.P. surname: Yeeles fullname: Yeeles, Joseph T.P. – sequence: 2 givenname: Emma J. surname: Gwynn fullname: Gwynn, Emma J. – sequence: 3 givenname: Martin R. surname: Webb fullname: Webb, Martin R. – sequence: 4 givenname: Mark S. surname: Dillingham fullname: Dillingham, Mark S. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21071401$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9u1DAQxi1URLeFE3fkG0go1HbsOL4gpeWvVMGBcra8zmTX4NhbOynaW9-hb8iT4FWXChCCi8fS_ObTN5rvCB2EGAChx5S8oETVJ8Gkk9XXS0oZv4cWtG5YxVXDDtCC1ERUlPD2EB3l_IUQyqngD9Aho0RSTugCzRdrwF3fd6d4Dd5Zk-H79U2YrYfyxdZMxm8zZJzMxvXYhB5vUrSQs7sC_OpDh-fwzYXehRWe8-41eFc84E_zBtJgRue3mHZ4jFNMuI-jceEhuj8Yn-HRvh6jz29eX5y9q84_vn1_1p1XlnMxVb1qiYLiX0gFcpBADQVlqDFCwMBkDVaSnjTt0jBV1gdbCyWZkhyWBVjWx-jlre5mXo7QWwhTMl5vkhtN2uponP69E9xar-KVrknDpWyLwNO9QIqXM-RJjy5b8N4EiHPWrVJU1KJh_yeFIqKVjSzks3-SjBAiaiIZKeiTX_3fGf95vwI8vwVsijknGO4QSvQuHbqkQ-_TUWj6B23dZCYXd8s7_9eZHxizwL4 |
CitedBy_id | crossref_primary_10_1016_j_jtbi_2016_06_002 crossref_primary_10_1016_j_ymeth_2021_12_002 crossref_primary_10_1042_BST20120307 crossref_primary_10_1016_j_jbiosc_2012_03_002 crossref_primary_10_1042_BJ20111903 crossref_primary_10_1073_pnas_2112376119 crossref_primary_10_1093_nar_gkv1543 crossref_primary_10_1038_s41586_020_2018_1 crossref_primary_10_1093_nar_gku188 crossref_primary_10_1371_journal_pgen_1006783 crossref_primary_10_1371_journal_pone_0193272 crossref_primary_10_1038_nature13037 crossref_primary_10_1093_nar_gkt194 crossref_primary_10_1128_MMBR_05020_11 crossref_primary_10_1002_bies_201800009 crossref_primary_10_4155_fmc_2020_0310 crossref_primary_10_1128_AEM_05272_11 crossref_primary_10_1016_j_ccr_2016_10_003 crossref_primary_10_1002_smll_201402686 crossref_primary_10_1038_emboj_2012_9 crossref_primary_10_1093_nar_gky1132 crossref_primary_10_1038_nrmicro2917 crossref_primary_10_1099_mgen_0_000362 crossref_primary_10_1073_pnas_2023955118 crossref_primary_10_1073_pnas_1913546116 crossref_primary_10_4161_15384101_2014_950892 crossref_primary_10_1128_JB_00240_21 crossref_primary_10_1016_j_molcel_2011_04_012 crossref_primary_10_1073_pnas_1303035110 crossref_primary_10_1093_nar_gkv1154 crossref_primary_10_1073_pnas_1300390110 crossref_primary_10_1093_nar_gkaa562 |
Cites_doi | 10.1074/jbc.M604412200 10.1128/MMBR.00020-08 10.1038/nature01673 10.1093/emboj/19.14.3799 10.1038/nature01083 10.1146/annurev.biochem.76.052305.115300 10.1128/JB.184.7.1819-1826.2002 10.1093/nar/gkq100 10.1093/nar/gkh641 10.1016/S0021-9258(18)90834-3 10.1093/nar/gkq173 10.1073/pnas.95.2.626 10.1006/jmbi.1999.2873 10.1016/S0969-2126(98)00010-0 10.1006/jmbi.2000.3556 10.1074/jbc.M109.076133 10.1038/384379a0 10.1073/pnas.232401899 10.1101/gad.1805709 10.1128/jb.178.17.5130-5137.1996 10.1006/jmbi.2000.3861 10.1021/bi992105o 10.1021/bi900101h 10.1038/nrm2394 10.1021/bi00433a018 10.1038/35053131 10.1016/0022-2836(91)90926-W 10.1016/S0021-9258(19)50649-4 10.1074/jbc.M808526200 10.1038/nature01674 10.1073/pnas.0502886102 10.1128/JB.00254-09 10.1093/nar/27.6.1421 10.1016/S0021-9258(19)69401-9 10.1074/jbc.M505520200 10.1093/nar/26.11.2686 10.1016/S0022-2836(02)01277-9 10.1074/jbc.270.41.24451 10.1074/jbc.M600882200 10.1021/bi050703z 10.1529/biophysj.108.133512 10.1016/j.dnarep.2009.12.016 10.1016/j.cell.2006.10.049 10.1016/S0092-8674(00)80716-3 10.1093/nar/gkl450 10.1038/nature02988 10.1093/nar/gkm1174 10.1021/bi00193a013 10.1021/bi9822269 10.1046/j.1365-2958.1996.601424.x 10.1021/bi901743k 10.1016/j.cell.2009.03.036 10.1046/j.1365-2958.2002.02785.x 10.1074/jbc.M808030200 10.1074/jbc.M704399200 10.1016/S0959-440X(05)80116-2 10.1074/jbc.270.38.22236 10.1016/j.jmb.2007.05.053 10.1016/S0021-9258(17)44018-X |
ContentType | Journal Article |
Copyright | The Author(s) 2010. Published by Oxford University Press. 2010 |
Copyright_xml | – notice: The Author(s) 2010. Published by Oxford University Press. 2010 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 7TM 8FD FR3 P64 RC3 5PM |
DOI | 10.1093/nar/gkq1124 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | AGRICOLA Genetics Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 2285 |
ExternalDocumentID | PMC3064778 21071401 10_1093_nar_gkq1124 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: MC_U117512742 – fundername: Medical Research Council grantid: U117512742 – fundername: Wellcome Trust grantid: 077368 |
GroupedDBID | --- -DZ -~X .55 .GJ .I3 0R~ 123 18M 1TH 29N 2WC 3O- 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAUQX AAVAP AAWDT AAYJJ AAYXX ABEJV ABGNP ABIME ABNGD ABPIB ABPTD ABQLI ABSMQ ABXVV ABZEO ACFRR ACGFO ACGFS ACIPB ACIWK ACNCT ACPQN ACPRK ACUKT ACUTJ ACVCV ACZBC ADBBV ADHZD AEGXH AEHUL AEKPW AENEX AENZO AFFNX AFPKN AFRAH AFSHK AFYAG AGKRT AGMDO AGQPQ AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL ANFBD AOIJS APJGH AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BAWUL BAYMD BCNDV BEYMZ C1A CAG CIDKT CITATION COF CS3 CXTWN CZ4 D0S DFGAJ DIK DU5 D~K E3Z EBD EBS EJD ELUNK EMOBN F5P FEDTE GROUPED_DOAJ GX1 H13 HH5 HVGLF HYE HZ~ H~9 IH2 KAQDR KQ8 KSI MBTAY MVM NTWIH OAWHX OBC OBS OEB OES OJQWA OVD OVT O~Y P2P PB- PEELM PQQKQ QBD R44 RD5 RNI RNS ROL ROZ RPM RXO RZF RZO SJN SV3 TCN TEORI TN5 TOX TR2 UHB WG7 WOQ X7H X7M XSB XSW YSK ZKX ZXP ~91 ~D7 ~KM CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 7TM 8FD FR3 P64 RC3 5PM |
ID | FETCH-LOGICAL-c445t-d9809e048579e7f7e1a1e9a1aa55ef273ec70d068ba29124ec35972974eb5efb3 |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 13:39:44 EDT 2025 Fri Jul 11 09:28:36 EDT 2025 Fri Jul 11 02:38:19 EDT 2025 Fri Jul 11 03:39:05 EDT 2025 Mon Jul 21 06:04:12 EDT 2025 Tue Jul 01 01:41:01 EDT 2025 Thu Apr 24 23:07:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://creativecommons.org/licenses/by-nc/2.5 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c445t-d9809e048579e7f7e1a1e9a1aa55ef273ec70d068ba29124ec35972974eb5efb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 Present address: Joseph T.P. Yeeles, Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA. |
OpenAccessLink | http://dx.doi.org/10.1093/nar/gkq1124 |
PMID | 21071401 |
PQID | 2000530720 |
PQPubID | 24069 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3064778 proquest_miscellaneous_899153562 proquest_miscellaneous_859058767 proquest_miscellaneous_2000530720 pubmed_primary_21071401 crossref_primary_10_1093_nar_gkq1124 crossref_citationtrail_10_1093_nar_gkq1124 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-03-01 |
PublicationDateYYYYMMDD | 2011-03-01 |
PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2011 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Soultanas ( key 20170510155314_B49) 1999; 290 Yeeles ( key 20170510155314_B26) 2010; 9 Singleton ( key 20170510155314_B5) 2002; 184 Sikora ( key 20170510155314_B24) 2006; 281 Singleton ( key 20170510155314_B55) 2004; 432 Chao ( key 20170510155314_B62) 1991; 221 Roman ( key 20170510155314_B32) 1989; 28 Cromie ( key 20170510155314_B35) 2009; 191 Kim ( key 20170510155314_B4) 1998; 6 Webb ( key 20170510155314_B40) 2003 Ha ( key 20170510155314_B11) 2002; 419 Dillingham ( key 20170510155314_B6) 2000; 39 Slatter ( key 20170510155314_B23) 2009; 48 Haijema ( key 20170510155314_B51) 1996; 178 Chedin ( key 20170510155314_B57) 2000; 298 Soultanas ( key 20170510155314_B9) 2000; 19 Fili ( key 20170510155314_B41) 2010; 38 Unciuleac ( key 20170510155314_B61) 2010; 285 Nanduri ( key 20170510155314_B17) 2002; 99 Gorbalenya ( key 20170510155314_B1) 1993; 3 Subramanya ( key 20170510155314_B3) 1996; 384 Lee ( key 20170510155314_B7) 2006; 127 Matson ( key 20170510155314_B45) 1983; 258 Dillingham ( key 20170510155314_B30) 2005; 280 el Karoui ( key 20170510155314_B59) 1998; 95 Taylor ( key 20170510155314_B33) 1995; 270 Anand ( key 20170510155314_B54) 2004; 32 Haijema ( key 20170510155314_B58) 1996; 21 Brendza ( key 20170510155314_B12) 2005; 102 Singleton ( key 20170510155314_B2) 2007; 76 Niedziela-Majka ( key 20170510155314_B14) 2007; 282 Morris ( key 20170510155314_B44) 1999; 38 Dillingham ( key 20170510155314_B25) 2008; 72 Lohman ( key 20170510155314_B18) 2008; 9 Yeeles ( key 20170510155314_B42) 2009 Sinha ( key 20170510155314_B60) 2009; 23 Yeeles ( key 20170510155314_B36) 2009; 284 Velankar ( key 20170510155314_B8) 1999; 97 Chedin ( key 20170510155314_B34) 2002; 43 Yeeles ( key 20170510155314_B37) 2007; 371 Harding ( key 20170510155314_B43) 1992 Harding ( key 20170510155314_B63) 1994 Arnold ( key 20170510155314_B56) 2000; 300 Arai ( key 20170510155314_B21) 1981; 256 Reuter ( key 20170510155314_B48) 2010; 38 Chedin ( key 20170510155314_B46) 2006; 281 Dillingham ( key 20170510155314_B27) 2003; 423 Matson ( key 20170510155314_B20) 2006; 34 Yang ( key 20170510155314_B15) 2008; 36 Byrd ( key 20170510155314_B13) 2005; 44 Brune ( key 20170510155314_B50) 1994; 33 Roman ( key 20170510155314_B31) 1992; 267 Taylor ( key 20170510155314_B28) 2003; 423 Jongeneel ( key 20170510155314_B53) 1984; 259 Kunzelmann ( key 20170510155314_B47) 2010; 49 Dillingham ( key 20170510155314_B39) 2008; 95 Atkinson ( key 20170510155314_B19) 2009; 284 Maluf ( key 20170510155314_B16) 2003; 325 Raney ( key 20170510155314_B52) 1995; 270 Saikrishnan ( key 20170510155314_B10) 2009; 137 Bird ( key 20170510155314_B38) 1998; 26 Bianco ( key 20170510155314_B29) 2001; 409 Soultanas ( key 20170510155314_B22) 1999; 27 |
References_xml | – volume: 281 start-page: 36110 year: 2006 ident: key 20170510155314_B24 article-title: DNA unwinding by Escherichia coli DNA helicase I (TraI) provides evidence for a processive monomeric molecular motor publication-title: J. Biol. Chem. doi: 10.1074/jbc.M604412200 – volume: 72 start-page: 642 year: 2008 ident: key 20170510155314_B25 article-title: RecBCD enzyme and the repair of double-stranded DNA breaks publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.00020-08 – volume: 423 start-page: 893 year: 2003 ident: key 20170510155314_B27 article-title: RecBCD enzyme is a bipolar DNA helicase publication-title: Nature doi: 10.1038/nature01673 – year: 2009 ident: key 20170510155314_B42 article-title: The initiation of double-stranded DNA break repair by an AddAB-type helicase-nuclease – volume-title: Analytical Ultracentrifugation in Biochemistry and Polymer Science year: 1992 ident: key 20170510155314_B43 – volume: 19 start-page: 3799 year: 2000 ident: key 20170510155314_B9 article-title: Uncoupling DNA translocation and helicase activity in PcrA: direct evidence for an active mechanism publication-title: EMBO J. doi: 10.1093/emboj/19.14.3799 – volume: 419 start-page: 638 year: 2002 ident: key 20170510155314_B11 article-title: Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase publication-title: Nature doi: 10.1038/nature01083 – volume: 76 start-page: 23 year: 2007 ident: key 20170510155314_B2 article-title: Structure and mechanism of helicases and nucleic acid translocases publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.76.052305.115300 – volume: 184 start-page: 1819 year: 2002 ident: key 20170510155314_B5 article-title: Modularity and specialization in superfamily 1 and 2 helicases publication-title: J. Bacteriol. doi: 10.1128/JB.184.7.1819-1826.2002 – volume: 38 start-page: 3721 year: 2010 ident: key 20170510155314_B48 article-title: Single-molecule imaging of Bacteroides fragilis AddAB reveals the highly processive translocation of a single motor helicase publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq100 – volume: 32 start-page: 3190 year: 2004 ident: key 20170510155314_B54 article-title: Structure-specific DNA binding and bipolar helicase activities of PcrA publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh641 – volume: 259 start-page: 12925 year: 1984 ident: key 20170510155314_B53 article-title: Purification and characterization of the bacteriophage T4 dda protein. A DNA helicase that associates with the viral helix-destabilizing protein publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)90834-3 – volume: 38 start-page: 4448 year: 2010 ident: key 20170510155314_B41 article-title: Visualizing helicases unwinding DNA at the single molecule level publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq173 – volume: 95 start-page: 626 year: 1998 ident: key 20170510155314_B59 article-title: Identification of the lactococcal exonuclease/recombinase and its modulation by the putative Chi sequence publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.95.2.626 – start-page: 131 volume-title: Kinetic Analysis: A Practical Approach year: 2003 ident: key 20170510155314_B40 article-title: In – volume: 290 start-page: 137 year: 1999 ident: key 20170510155314_B49 article-title: DNA binding mediates conformational changes and metal ion coordination in the active site of PcrA helicase publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1999.2873 – volume: 6 start-page: 89 year: 1998 ident: key 20170510155314_B4 article-title: Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwinding publication-title: Structure doi: 10.1016/S0969-2126(98)00010-0 – volume: 298 start-page: 7 year: 2000 ident: key 20170510155314_B57 article-title: The Bacillus subtilis AddAB helicase/nuclease is regulated by its cognate Chi sequence in vitro publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2000.3556 – volume: 285 start-page: 2632 year: 2010 ident: key 20170510155314_B61 article-title: Characterization of the mycobacterial AdnAB DNA motor provides insights into the evolution of bacterial motor-nuclease machines publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.076133 – volume: 384 start-page: 379 year: 1996 ident: key 20170510155314_B3 article-title: Crystal structure of a DExx box DNA helicase publication-title: Nature doi: 10.1038/384379a0 – volume: 99 start-page: 14722 year: 2002 ident: key 20170510155314_B17 article-title: Pre-steady-state DNA unwinding by bacteriophage T4 Dda helicase reveals a monomeric molecular motor publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.232401899 – volume: 23 start-page: 1423 year: 2009 ident: key 20170510155314_B60 article-title: AdnAB: a new DSB-resecting motor-nuclease from mycobacteria publication-title: Genes Dev. doi: 10.1101/gad.1805709 – volume: 178 start-page: 5130 year: 1996 ident: key 20170510155314_B51 article-title: Effects of lysine-to-glycine mutations in the ATP-binding consensus sequences in the AddA and AddB subunits on the Bacillus subtilis AddAB enzyme activities publication-title: J. Bacteriol. doi: 10.1128/jb.178.17.5130-5137.1996 – volume: 300 start-page: 469 year: 2000 ident: key 20170510155314_B56 article-title: A novel, 11 nucleotide variant of chi, chi*: one of a class of sequences defining the Escherichia coli recombination hotspot chi publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2000.3861 – volume: 39 start-page: 205 year: 2000 ident: key 20170510155314_B6 article-title: Demonstration of unidirectional single-stranded DNA translocation by PcrA helicase: measurement of step size and translocation speed publication-title: Biochemistry doi: 10.1021/bi992105o – volume: 48 start-page: 6326 year: 2009 ident: key 20170510155314_B23 article-title: PcrA helicase tightly couples ATP hydrolysis to unwinding double-stranded DNA, modulated by the initiator protein for plasmid replication, RepD publication-title: Biochemistry. doi: 10.1021/bi900101h – volume: 9 start-page: 391 year: 2008 ident: key 20170510155314_B18 article-title: Non-hexameric DNA helicases and translocases: mechanisms and regulation publication-title: Nat. Rev. Mol. Cell. Biol. doi: 10.1038/nrm2394 – volume: 28 start-page: 2863 year: 1989 ident: key 20170510155314_B32 article-title: Characterization of the helicase activity of the Escherichia coli RecBCD enzyme using a novel helicase assay publication-title: Biochemistry doi: 10.1021/bi00433a018 – volume: 409 start-page: 374 year: 2001 ident: key 20170510155314_B29 article-title: Processive translocation and DNA unwinding by individual RecBCD enzyme molecules publication-title: Nature doi: 10.1038/35053131 – volume: 221 start-page: 1165 year: 1991 ident: key 20170510155314_B62 article-title: DNA-induced dimerization of the Escherichia coli Rep helicase publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(91)90926-W – volume: 267 start-page: 4207 year: 1992 ident: key 20170510155314_B31 article-title: Processivity of the DNA helicase activity of Escherichia coli recBCD enzyme publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)50649-4 – volume: 284 start-page: 7746 year: 2009 ident: key 20170510155314_B36 article-title: An iron-sulfur cluster is essential for the binding of broken DNA by AddAB-type helicase-nucleases publication-title: J. Biol. Chem. doi: 10.1074/jbc.M808526200 – volume: 423 start-page: 889 year: 2003 ident: key 20170510155314_B28 article-title: RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity publication-title: Nature doi: 10.1038/nature01674 – volume: 102 start-page: 10076 year: 2005 ident: key 20170510155314_B12 article-title: Autoinhibition of Escherichia coli Rep monomer helicase activity by its 2B subdomain publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0502886102 – volume: 191 start-page: 5076 year: 2009 ident: key 20170510155314_B35 article-title: Phylogenetic ubiquity and shuffling of the bacterial RecBCD and AddAB recombination complexes publication-title: J. Bacteriol. doi: 10.1128/JB.00254-09 – volume: 27 start-page: 1421 year: 1999 ident: key 20170510155314_B22 article-title: Plasmid replication initiator protein RepD increases the processivity of PcrA DNA helicase publication-title: Nucleic Acids Res. doi: 10.1093/nar/27.6.1421 – start-page: 75 volume-title: Microscopy, Optical Spectroscopy, and Macroscopic Techniques year: 1994 ident: key 20170510155314_B63 article-title: In – volume: 256 start-page: 5294 year: 1981 ident: key 20170510155314_B21 article-title: Rep protein as a helicase in an active, isolatable replication fork of duplex phi X174 DNA publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)69401-9 – volume: 280 start-page: 37069 year: 2005 ident: key 20170510155314_B30 article-title: Bipolar DNA translocation contributes to highly processive DNA unwinding by RecBCD enzyme publication-title: J. Biol. Chem. doi: 10.1074/jbc.M505520200 – volume: 26 start-page: 2686 year: 1998 ident: key 20170510155314_B38 article-title: Characterisation of Bacillus stearothermophilus PcrA helicase: evidence against an active rolling mechanism publication-title: Nucleic Acids Res. doi: 10.1093/nar/26.11.2686 – volume: 325 start-page: 913 year: 2003 ident: key 20170510155314_B16 article-title: A Dimer of Escherichia coli UvrD is the active form of the helicase in vitro publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(02)01277-9 – volume: 270 start-page: 24451 year: 1995 ident: key 20170510155314_B33 article-title: Monomeric RecBCD enzyme binds and unwinds DNA publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.41.24451 – volume: 281 start-page: 18610 year: 2006 ident: key 20170510155314_B46 article-title: The AddAB helicase/nuclease forms a stable complex with its cognate chi sequence during translocation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M600882200 – volume: 44 start-page: 12990 year: 2005 ident: key 20170510155314_B13 article-title: Increasing the length of the single-stranded overhang enhances unwinding of duplex DNA by bacteriophage T4 Dda helicase publication-title: Biochemistry doi: 10.1021/bi050703z – volume: 95 start-page: 3330 year: 2008 ident: key 20170510155314_B39 article-title: Fluorescent single-stranded DNA binding protein as a probe for sensitive, real-time assays of helicase activity publication-title: Biophys. J. doi: 10.1529/biophysj.108.133512 – volume: 9 start-page: 276 year: 2010 ident: key 20170510155314_B26 article-title: The processing of double-stranded DNA breaks for recombinational repair by helicase-nuclease complexes publication-title: DNA Repair doi: 10.1016/j.dnarep.2009.12.016 – volume: 127 start-page: 1349 year: 2006 ident: key 20170510155314_B7 article-title: UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke publication-title: Cell doi: 10.1016/j.cell.2006.10.049 – volume: 97 start-page: 75 year: 1999 ident: key 20170510155314_B8 article-title: Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism publication-title: Cell doi: 10.1016/S0092-8674(00)80716-3 – volume: 34 start-page: 4089 year: 2006 ident: key 20170510155314_B20 article-title: The UvrD helicase and its modulation by the mismatch repair protein MutL publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl450 – volume: 432 start-page: 187 year: 2004 ident: key 20170510155314_B55 article-title: Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks publication-title: Nature doi: 10.1038/nature02988 – volume: 36 start-page: 1976 year: 2008 ident: key 20170510155314_B15 article-title: Evidence for a functional dimeric form of the PcrA helicase in DNA unwinding publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm1174 – volume: 33 start-page: 8262 year: 1994 ident: key 20170510155314_B50 article-title: Direct, real-time measurement of rapid inorganic phosphate release using a novel fluorescent probe and its application to actomyosin subfragment 1 ATPase publication-title: Biochemistry doi: 10.1021/bi00193a013 – volume: 38 start-page: 5164 year: 1999 ident: key 20170510155314_B44 article-title: DNA helicases displace streptavidin from biotin-labeled oligonucleotides publication-title: Biochemistry doi: 10.1021/bi9822269 – volume: 21 start-page: 989 year: 1996 ident: key 20170510155314_B58 article-title: Replacement of the lysine residue in the consensus ATP-binding sequence of the AddA subunit of AddAB drastically affects chromosomal recombination in transformation and transduction of Bacillus subtilis publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.1996.601424.x – volume: 49 start-page: 843 year: 2010 ident: key 20170510155314_B47 article-title: Mechanism of interaction between single-stranded DNA binding protein and DNA publication-title: Biochemistry doi: 10.1021/bi901743k – volume: 137 start-page: 849 year: 2009 ident: key 20170510155314_B10 article-title: Mechanistic basis of 5′-3′ translocation in SF1B helicases publication-title: Cell doi: 10.1016/j.cell.2009.03.036 – volume: 43 start-page: 823 year: 2002 ident: key 20170510155314_B34 article-title: A novel family of regulated helicases/nucleases from Gram-positive bacteria: insights into the initiation of DNA recombination publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2002.02785.x – volume: 284 start-page: 9612 year: 2009 ident: key 20170510155314_B19 article-title: Stimulation of UvrD helicase by UvrAB publication-title: J. Biol. Chem. doi: 10.1074/jbc.M808030200 – volume: 282 start-page: 27076 year: 2007 ident: key 20170510155314_B14 article-title: Bacillus stearothermophilus PcrA monomer is a single-stranded DNA translocase but not a processive helicase in vitro publication-title: J. Biol. Chem. doi: 10.1074/jbc.M704399200 – volume: 3 start-page: 419 year: 1993 ident: key 20170510155314_B1 article-title: Helicases - amino-acid-sequence comparisons and structure-function-relationships publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/S0959-440X(05)80116-2 – volume: 270 start-page: 22236 year: 1995 ident: key 20170510155314_B52 article-title: Bacteriophage T4 Dda helicase translocates in a unidirectional fashion on single-stranded DNA publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.38.22236 – volume: 371 start-page: 66 year: 2007 ident: key 20170510155314_B37 article-title: A Dual-nuclease mechanism for DNA break processing by AddAB-type helicase-nucleases publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.05.053 – volume: 258 start-page: 14017 year: 1983 ident: key 20170510155314_B45 article-title: The gene 4 protein of bacteriophage T7. Characterization of helicase activity publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)44018-X |
SSID | ssj0014154 |
Score | 2.185204 |
Snippet | The oligomeric state of Superfamily I DNA helicases is the subject of considerable and ongoing debate. While models based on crystal structures imply that a... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2271 |
SubjectTerms | Amino Acid Motifs Bacillus subtilis binding sites Biocatalysis crystal structure Dimerization DNA - metabolism DNA damage DNA helicases DNA Helicases - chemistry DNA Helicases - genetics DNA Helicases - metabolism DNA, Single-Stranded - metabolism Exodeoxyribonucleases - chemistry Exodeoxyribonucleases - genetics Exodeoxyribonucleases - metabolism Mutation Nucleic Acid Enzymes Protein Structure, Tertiary Protein Subunits - metabolism single-stranded DNA |
Title | The AddAB helicase–nuclease catalyses rapid and processive DNA unwinding using a single Superfamily 1A motor domain |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21071401 https://www.proquest.com/docview/2000530720 https://www.proquest.com/docview/859058767 https://www.proquest.com/docview/899153562 https://pubmed.ncbi.nlm.nih.gov/PMC3064778 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeIAXBBuXcpmMNPFAlC5x6jp-DKPVhEbhoZX2FjmxOwo0LW2jqfx6ji9JWjrQ4CWtEsu1fL7G5_odhE56hMssEMqHpxO_C2eyLyjLfRZRGXERB1Lp4uSPw975uPvhkl62WttZS-U66-Q_b6wr-R-pwj2Qq66S_QfJ1pPCDfgO8oUrSBiut5ZxImXyDvQ97XxbKb_Q_MRC56Brv8xmpVbeUiym0hECmKoAkyw0TLyyuJ7aopbSeAyEpz90cmG5UEvn-ggTD6Q5X3pyPhOOpvtrVbMLv6X5XvOp1NGHLceY8cIq10_bRhm8Uedzp073ud5Yxbk_m4kmNFXFhyy5QZPM-H5qqMNdTbeuL3IuW9k4YKuErapOy3CfWn7N6h1sCY0c1nreokMIC31CYrr9ciW2W4s7qKune4eAJcgqdIL64OrbD9Aou81pV0X4h5_SwfjiIh31L0d30F0CVoZugMGCfh2EAt3Gso-5BbvyTpj-FCY_dVPvKjR7VsrvybZb2svoIXrgzA6cWAw9Qi1VHKKjpBDr-WyD32CTCGwiLIfo3lnVBPAIrQBi2EAM70EM1xDDBmIYIIYbiGGAGK4hhg3EsMAWYngLYjhMsIEYthB7jMaD_ujs3Hd9Ovy826VrX_I44Ao2iDKu2ISpUISKi1AIStUE9GOVs0AGvTgThMOOqTwCM5aAJasyGJBFT9BBMS_UM4TjKI4El6HQXRlAteacyjDIJhGPQjhtWBu9rTY7zR2Jve6l8j21yRRRCpJJnWTa6KQevLDcLTcPe11JLYXd1QEzUah5udItWuGMChgJ2gj_YUxMeUBBpWB_GQI2GI3A0GijpxYL9XJIqAsIg7CN2A5K6gGa_X33STH9YljgteuAsfj5LVb_At1v_okv0cF6WapXoEuvs2OD-GPjifoFH1jPsg |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+AddAB+helicase-nuclease+catalyses+rapid+and+processive+DNA+unwinding+using+a+single+Superfamily+1A+motor+domain&rft.jtitle=Nucleic+acids+research&rft.au=Yeeles%2C+Joseph+T.P.&rft.au=Gwynn%2C+Emma+J&rft.au=Webb%2C+Martin+R&rft.au=Dillingham%2C+Mark+S&rft.date=2011-03-01&rft.issn=0305-1048&rft.volume=39&rft.issue=6+p.2271-2285&rft.spage=2271&rft.epage=2285&rft_id=info:doi/10.1093%2Fnar%2Fgkq1124&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |