The AddAB helicase–nuclease catalyses rapid and processive DNA unwinding using a single Superfamily 1A motor domain

The oligomeric state of Superfamily I DNA helicases is the subject of considerable and ongoing debate. While models based on crystal structures imply that a single helicase core domain is sufficient for DNA unwinding activity, biochemical data from several related enzymes suggest that a higher order...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 39; no. 6; pp. 2271 - 2285
Main Authors Yeeles, Joseph T.P., Gwynn, Emma J., Webb, Martin R., Dillingham, Mark S.
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.03.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The oligomeric state of Superfamily I DNA helicases is the subject of considerable and ongoing debate. While models based on crystal structures imply that a single helicase core domain is sufficient for DNA unwinding activity, biochemical data from several related enzymes suggest that a higher order oligomeric species is required. In this work we characterize the helicase activity of the AddAB helicase-nuclease, which is involved in the repair of double-stranded DNA breaks in Bacillus subtilis. We show that the enzyme is functional as a heterodimer of the AddA and AddB subunits, that it is a rapid and processive DNA helicase, and that it catalyses DNA unwinding using one single-stranded DNA motor of 3' → 5' polarity located in the AddA subunit. The AddB subunit contains a second putative ATP-binding pocket, but this does not contribute to the observed helicase activity and may instead be involved in the recognition of recombination hotspot sequences.
AbstractList The oligomeric state of Superfamily I DNA helicases is the subject of considerable and ongoing debate. While models based on crystal structures imply that a single helicase core domain is sufficient for DNA unwinding activity, biochemical data from several related enzymes suggest that a higher order oligomeric species is required. In this work we characterize the helicase activity of the AddAB helicase-nuclease, which is involved in the repair of double-stranded DNA breaks in Bacillus subtilis. We show that the enzyme is functional as a heterodimer of the AddA and AddB subunits, that it is a rapid and processive DNA helicase, and that it catalyses DNA unwinding using one single-stranded DNA motor of 3'[rightward arrow]5' polarity located in the AddA subunit. The AddB subunit contains a second putative ATP-binding pocket, but this does not contribute to the observed helicase activity and may instead be involved in the recognition of recombination hotspot sequences.
The oligomeric state of Superfamily I DNA helicases is the subject of considerable and ongoing debate. While models based on crystal structures imply that a single helicase core domain is sufficient for DNA unwinding activity, biochemical data from several related enzymes suggest that a higher order oligomeric species is required. In this work we characterize the helicase activity of the AddAB helicase-nuclease, which is involved in the repair of double-stranded DNA breaks in Bacillus subtilis. We show that the enzyme is functional as a heterodimer of the AddA and AddB subunits, that it is a rapid and processive DNA helicase, and that it catalyses DNA unwinding using one single-stranded DNA motor of 3' arrow right 5' polarity located in the AddA subunit. The AddB subunit contains a second putative ATP-binding pocket, but this does not contribute to the observed helicase activity and may instead be involved in the recognition of recombination hotspot sequences.
The oligomeric state of Superfamily I DNA helicases is the subject of considerable and ongoing debate. While models based on crystal structures imply that a single helicase core domain is sufficient for DNA unwinding activity, biochemical data from several related enzymes suggest that a higher order oligomeric species is required. In this work we characterize the helicase activity of the AddAB helicase-nuclease, which is involved in the repair of double-stranded DNA breaks in Bacillus subtilis. We show that the enzyme is functional as a heterodimer of the AddA and AddB subunits, that it is a rapid and processive DNA helicase, and that it catalyses DNA unwinding using one single-stranded DNA motor of 3' → 5' polarity located in the AddA subunit. The AddB subunit contains a second putative ATP-binding pocket, but this does not contribute to the observed helicase activity and may instead be involved in the recognition of recombination hotspot sequences.The oligomeric state of Superfamily I DNA helicases is the subject of considerable and ongoing debate. While models based on crystal structures imply that a single helicase core domain is sufficient for DNA unwinding activity, biochemical data from several related enzymes suggest that a higher order oligomeric species is required. In this work we characterize the helicase activity of the AddAB helicase-nuclease, which is involved in the repair of double-stranded DNA breaks in Bacillus subtilis. We show that the enzyme is functional as a heterodimer of the AddA and AddB subunits, that it is a rapid and processive DNA helicase, and that it catalyses DNA unwinding using one single-stranded DNA motor of 3' → 5' polarity located in the AddA subunit. The AddB subunit contains a second putative ATP-binding pocket, but this does not contribute to the observed helicase activity and may instead be involved in the recognition of recombination hotspot sequences.
The oligomeric state of Superfamily I DNA helicases is the subject of considerable and ongoing debate. While models based on crystal structures imply that a single helicase core domain is sufficient for DNA unwinding activity, biochemical data from several related enzymes suggest that a higher order oligomeric species is required. In this work we characterize the helicase activity of the AddAB helicase–nuclease, which is involved in the repair of double-stranded DNA breaks in Bacillus subtilis . We show that the enzyme is functional as a heterodimer of the AddA and AddB subunits, that it is a rapid and processive DNA helicase, and that it catalyses DNA unwinding using one single-stranded DNA motor of 3′→5′ polarity located in the AddA subunit. The AddB subunit contains a second putative ATP-binding pocket, but this does not contribute to the observed helicase activity and may instead be involved in the recognition of recombination hotspot sequences.
The oligomeric state of Superfamily I DNA helicases is the subject of considerable and ongoing debate. While models based on crystal structures imply that a single helicase core domain is sufficient for DNA unwinding activity, biochemical data from several related enzymes suggest that a higher order oligomeric species is required. In this work we characterize the helicase activity of the AddAB helicase-nuclease, which is involved in the repair of double-stranded DNA breaks in Bacillus subtilis. We show that the enzyme is functional as a heterodimer of the AddA and AddB subunits, that it is a rapid and processive DNA helicase, and that it catalyses DNA unwinding using one single-stranded DNA motor of 3' → 5' polarity located in the AddA subunit. The AddB subunit contains a second putative ATP-binding pocket, but this does not contribute to the observed helicase activity and may instead be involved in the recognition of recombination hotspot sequences.
Author Gwynn, Emma J.
Yeeles, Joseph T.P.
Webb, Martin R.
Dillingham, Mark S.
AuthorAffiliation 1 DNA-Protein Interactions Unit, School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD and 2 MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
AuthorAffiliation_xml – name: 1 DNA-Protein Interactions Unit, School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD and 2 MRC National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK
Author_xml – sequence: 1
  givenname: Joseph T.P.
  surname: Yeeles
  fullname: Yeeles, Joseph T.P.
– sequence: 2
  givenname: Emma J.
  surname: Gwynn
  fullname: Gwynn, Emma J.
– sequence: 3
  givenname: Martin R.
  surname: Webb
  fullname: Webb, Martin R.
– sequence: 4
  givenname: Mark S.
  surname: Dillingham
  fullname: Dillingham, Mark S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21071401$$D View this record in MEDLINE/PubMed
BookMark eNqFks9u1DAQxi1URLeFE3fkG0go1HbsOL4gpeWvVMGBcra8zmTX4NhbOynaW9-hb8iT4FWXChCCi8fS_ObTN5rvCB2EGAChx5S8oETVJ8Gkk9XXS0oZv4cWtG5YxVXDDtCC1ERUlPD2EB3l_IUQyqngD9Aho0RSTugCzRdrwF3fd6d4Dd5Zk-H79U2YrYfyxdZMxm8zZJzMxvXYhB5vUrSQs7sC_OpDh-fwzYXehRWe8-41eFc84E_zBtJgRue3mHZ4jFNMuI-jceEhuj8Yn-HRvh6jz29eX5y9q84_vn1_1p1XlnMxVb1qiYLiX0gFcpBADQVlqDFCwMBkDVaSnjTt0jBV1gdbCyWZkhyWBVjWx-jlre5mXo7QWwhTMl5vkhtN2uponP69E9xar-KVrknDpWyLwNO9QIqXM-RJjy5b8N4EiHPWrVJU1KJh_yeFIqKVjSzks3-SjBAiaiIZKeiTX_3fGf95vwI8vwVsijknGO4QSvQuHbqkQ-_TUWj6B23dZCYXd8s7_9eZHxizwL4
CitedBy_id crossref_primary_10_1016_j_jtbi_2016_06_002
crossref_primary_10_1016_j_ymeth_2021_12_002
crossref_primary_10_1042_BST20120307
crossref_primary_10_1016_j_jbiosc_2012_03_002
crossref_primary_10_1042_BJ20111903
crossref_primary_10_1073_pnas_2112376119
crossref_primary_10_1093_nar_gkv1543
crossref_primary_10_1038_s41586_020_2018_1
crossref_primary_10_1093_nar_gku188
crossref_primary_10_1371_journal_pgen_1006783
crossref_primary_10_1371_journal_pone_0193272
crossref_primary_10_1038_nature13037
crossref_primary_10_1093_nar_gkt194
crossref_primary_10_1128_MMBR_05020_11
crossref_primary_10_1002_bies_201800009
crossref_primary_10_4155_fmc_2020_0310
crossref_primary_10_1128_AEM_05272_11
crossref_primary_10_1016_j_ccr_2016_10_003
crossref_primary_10_1002_smll_201402686
crossref_primary_10_1038_emboj_2012_9
crossref_primary_10_1093_nar_gky1132
crossref_primary_10_1038_nrmicro2917
crossref_primary_10_1099_mgen_0_000362
crossref_primary_10_1073_pnas_2023955118
crossref_primary_10_1073_pnas_1913546116
crossref_primary_10_4161_15384101_2014_950892
crossref_primary_10_1128_JB_00240_21
crossref_primary_10_1016_j_molcel_2011_04_012
crossref_primary_10_1073_pnas_1303035110
crossref_primary_10_1093_nar_gkv1154
crossref_primary_10_1073_pnas_1300390110
crossref_primary_10_1093_nar_gkaa562
Cites_doi 10.1074/jbc.M604412200
10.1128/MMBR.00020-08
10.1038/nature01673
10.1093/emboj/19.14.3799
10.1038/nature01083
10.1146/annurev.biochem.76.052305.115300
10.1128/JB.184.7.1819-1826.2002
10.1093/nar/gkq100
10.1093/nar/gkh641
10.1016/S0021-9258(18)90834-3
10.1093/nar/gkq173
10.1073/pnas.95.2.626
10.1006/jmbi.1999.2873
10.1016/S0969-2126(98)00010-0
10.1006/jmbi.2000.3556
10.1074/jbc.M109.076133
10.1038/384379a0
10.1073/pnas.232401899
10.1101/gad.1805709
10.1128/jb.178.17.5130-5137.1996
10.1006/jmbi.2000.3861
10.1021/bi992105o
10.1021/bi900101h
10.1038/nrm2394
10.1021/bi00433a018
10.1038/35053131
10.1016/0022-2836(91)90926-W
10.1016/S0021-9258(19)50649-4
10.1074/jbc.M808526200
10.1038/nature01674
10.1073/pnas.0502886102
10.1128/JB.00254-09
10.1093/nar/27.6.1421
10.1016/S0021-9258(19)69401-9
10.1074/jbc.M505520200
10.1093/nar/26.11.2686
10.1016/S0022-2836(02)01277-9
10.1074/jbc.270.41.24451
10.1074/jbc.M600882200
10.1021/bi050703z
10.1529/biophysj.108.133512
10.1016/j.dnarep.2009.12.016
10.1016/j.cell.2006.10.049
10.1016/S0092-8674(00)80716-3
10.1093/nar/gkl450
10.1038/nature02988
10.1093/nar/gkm1174
10.1021/bi00193a013
10.1021/bi9822269
10.1046/j.1365-2958.1996.601424.x
10.1021/bi901743k
10.1016/j.cell.2009.03.036
10.1046/j.1365-2958.2002.02785.x
10.1074/jbc.M808030200
10.1074/jbc.M704399200
10.1016/S0959-440X(05)80116-2
10.1074/jbc.270.38.22236
10.1016/j.jmb.2007.05.053
10.1016/S0021-9258(17)44018-X
ContentType Journal Article
Copyright The Author(s) 2010. Published by Oxford University Press. 2010
Copyright_xml – notice: The Author(s) 2010. Published by Oxford University Press. 2010
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
7TM
8FD
FR3
P64
RC3
5PM
DOI 10.1093/nar/gkq1124
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList AGRICOLA
Genetics Abstracts
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 2285
ExternalDocumentID PMC3064778
21071401
10_1093_nar_gkq1124
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_U117512742
– fundername: Medical Research Council
  grantid: U117512742
– fundername: Wellcome Trust
  grantid: 077368
GroupedDBID ---
-DZ
-~X
.55
.GJ
.I3
0R~
123
18M
1TH
29N
2WC
3O-
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAUQX
AAVAP
AAWDT
AAYJJ
AAYXX
ABEJV
ABGNP
ABIME
ABNGD
ABPIB
ABPTD
ABQLI
ABSMQ
ABXVV
ABZEO
ACFRR
ACGFO
ACGFS
ACIPB
ACIWK
ACNCT
ACPQN
ACPRK
ACUKT
ACUTJ
ACVCV
ACZBC
ADBBV
ADHZD
AEGXH
AEHUL
AEKPW
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFSHK
AFYAG
AGKRT
AGMDO
AGQPQ
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
ANFBD
AOIJS
APJGH
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BAWUL
BAYMD
BCNDV
BEYMZ
C1A
CAG
CIDKT
CITATION
COF
CS3
CXTWN
CZ4
D0S
DFGAJ
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
ELUNK
EMOBN
F5P
FEDTE
GROUPED_DOAJ
GX1
H13
HH5
HVGLF
HYE
HZ~
H~9
IH2
KAQDR
KQ8
KSI
MBTAY
MVM
NTWIH
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVD
OVT
O~Y
P2P
PB-
PEELM
PQQKQ
QBD
R44
RD5
RNI
RNS
ROL
ROZ
RPM
RXO
RZF
RZO
SJN
SV3
TCN
TEORI
TN5
TOX
TR2
UHB
WG7
WOQ
X7H
X7M
XSB
XSW
YSK
ZKX
ZXP
~91
~D7
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
7TM
8FD
FR3
P64
RC3
5PM
ID FETCH-LOGICAL-c445t-d9809e048579e7f7e1a1e9a1aa55ef273ec70d068ba29124ec35972974eb5efb3
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 13:39:44 EDT 2025
Fri Jul 11 09:28:36 EDT 2025
Fri Jul 11 02:38:19 EDT 2025
Fri Jul 11 03:39:05 EDT 2025
Mon Jul 21 06:04:12 EDT 2025
Tue Jul 01 01:41:01 EDT 2025
Thu Apr 24 23:07:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://creativecommons.org/licenses/by-nc/2.5
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c445t-d9809e048579e7f7e1a1e9a1aa55ef273ec70d068ba29124ec35972974eb5efb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
Present address: Joseph T.P. Yeeles, Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
OpenAccessLink http://dx.doi.org/10.1093/nar/gkq1124
PMID 21071401
PQID 2000530720
PQPubID 24069
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3064778
proquest_miscellaneous_899153562
proquest_miscellaneous_859058767
proquest_miscellaneous_2000530720
pubmed_primary_21071401
crossref_primary_10_1093_nar_gkq1124
crossref_citationtrail_10_1093_nar_gkq1124
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-03-01
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2011
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Soultanas ( key 20170510155314_B49) 1999; 290
Yeeles ( key 20170510155314_B26) 2010; 9
Singleton ( key 20170510155314_B5) 2002; 184
Sikora ( key 20170510155314_B24) 2006; 281
Singleton ( key 20170510155314_B55) 2004; 432
Chao ( key 20170510155314_B62) 1991; 221
Roman ( key 20170510155314_B32) 1989; 28
Cromie ( key 20170510155314_B35) 2009; 191
Kim ( key 20170510155314_B4) 1998; 6
Webb ( key 20170510155314_B40) 2003
Ha ( key 20170510155314_B11) 2002; 419
Dillingham ( key 20170510155314_B6) 2000; 39
Slatter ( key 20170510155314_B23) 2009; 48
Haijema ( key 20170510155314_B51) 1996; 178
Chedin ( key 20170510155314_B57) 2000; 298
Soultanas ( key 20170510155314_B9) 2000; 19
Fili ( key 20170510155314_B41) 2010; 38
Unciuleac ( key 20170510155314_B61) 2010; 285
Nanduri ( key 20170510155314_B17) 2002; 99
Gorbalenya ( key 20170510155314_B1) 1993; 3
Subramanya ( key 20170510155314_B3) 1996; 384
Lee ( key 20170510155314_B7) 2006; 127
Matson ( key 20170510155314_B45) 1983; 258
Dillingham ( key 20170510155314_B30) 2005; 280
el Karoui ( key 20170510155314_B59) 1998; 95
Taylor ( key 20170510155314_B33) 1995; 270
Anand ( key 20170510155314_B54) 2004; 32
Haijema ( key 20170510155314_B58) 1996; 21
Brendza ( key 20170510155314_B12) 2005; 102
Singleton ( key 20170510155314_B2) 2007; 76
Niedziela-Majka ( key 20170510155314_B14) 2007; 282
Morris ( key 20170510155314_B44) 1999; 38
Dillingham ( key 20170510155314_B25) 2008; 72
Lohman ( key 20170510155314_B18) 2008; 9
Yeeles ( key 20170510155314_B42) 2009
Sinha ( key 20170510155314_B60) 2009; 23
Yeeles ( key 20170510155314_B36) 2009; 284
Velankar ( key 20170510155314_B8) 1999; 97
Chedin ( key 20170510155314_B34) 2002; 43
Yeeles ( key 20170510155314_B37) 2007; 371
Harding ( key 20170510155314_B43) 1992
Harding ( key 20170510155314_B63) 1994
Arnold ( key 20170510155314_B56) 2000; 300
Arai ( key 20170510155314_B21) 1981; 256
Reuter ( key 20170510155314_B48) 2010; 38
Chedin ( key 20170510155314_B46) 2006; 281
Dillingham ( key 20170510155314_B27) 2003; 423
Matson ( key 20170510155314_B20) 2006; 34
Yang ( key 20170510155314_B15) 2008; 36
Byrd ( key 20170510155314_B13) 2005; 44
Brune ( key 20170510155314_B50) 1994; 33
Roman ( key 20170510155314_B31) 1992; 267
Taylor ( key 20170510155314_B28) 2003; 423
Jongeneel ( key 20170510155314_B53) 1984; 259
Kunzelmann ( key 20170510155314_B47) 2010; 49
Dillingham ( key 20170510155314_B39) 2008; 95
Atkinson ( key 20170510155314_B19) 2009; 284
Maluf ( key 20170510155314_B16) 2003; 325
Raney ( key 20170510155314_B52) 1995; 270
Saikrishnan ( key 20170510155314_B10) 2009; 137
Bird ( key 20170510155314_B38) 1998; 26
Bianco ( key 20170510155314_B29) 2001; 409
Soultanas ( key 20170510155314_B22) 1999; 27
References_xml – volume: 281
  start-page: 36110
  year: 2006
  ident: key 20170510155314_B24
  article-title: DNA unwinding by Escherichia coli DNA helicase I (TraI) provides evidence for a processive monomeric molecular motor
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M604412200
– volume: 72
  start-page: 642
  year: 2008
  ident: key 20170510155314_B25
  article-title: RecBCD enzyme and the repair of double-stranded DNA breaks
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.00020-08
– volume: 423
  start-page: 893
  year: 2003
  ident: key 20170510155314_B27
  article-title: RecBCD enzyme is a bipolar DNA helicase
  publication-title: Nature
  doi: 10.1038/nature01673
– year: 2009
  ident: key 20170510155314_B42
  article-title: The initiation of double-stranded DNA break repair by an AddAB-type helicase-nuclease
– volume-title: Analytical Ultracentrifugation in Biochemistry and Polymer Science
  year: 1992
  ident: key 20170510155314_B43
– volume: 19
  start-page: 3799
  year: 2000
  ident: key 20170510155314_B9
  article-title: Uncoupling DNA translocation and helicase activity in PcrA: direct evidence for an active mechanism
  publication-title: EMBO J.
  doi: 10.1093/emboj/19.14.3799
– volume: 419
  start-page: 638
  year: 2002
  ident: key 20170510155314_B11
  article-title: Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase
  publication-title: Nature
  doi: 10.1038/nature01083
– volume: 76
  start-page: 23
  year: 2007
  ident: key 20170510155314_B2
  article-title: Structure and mechanism of helicases and nucleic acid translocases
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.76.052305.115300
– volume: 184
  start-page: 1819
  year: 2002
  ident: key 20170510155314_B5
  article-title: Modularity and specialization in superfamily 1 and 2 helicases
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.184.7.1819-1826.2002
– volume: 38
  start-page: 3721
  year: 2010
  ident: key 20170510155314_B48
  article-title: Single-molecule imaging of Bacteroides fragilis AddAB reveals the highly processive translocation of a single motor helicase
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq100
– volume: 32
  start-page: 3190
  year: 2004
  ident: key 20170510155314_B54
  article-title: Structure-specific DNA binding and bipolar helicase activities of PcrA
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh641
– volume: 259
  start-page: 12925
  year: 1984
  ident: key 20170510155314_B53
  article-title: Purification and characterization of the bacteriophage T4 dda protein. A DNA helicase that associates with the viral helix-destabilizing protein
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)90834-3
– volume: 38
  start-page: 4448
  year: 2010
  ident: key 20170510155314_B41
  article-title: Visualizing helicases unwinding DNA at the single molecule level
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq173
– volume: 95
  start-page: 626
  year: 1998
  ident: key 20170510155314_B59
  article-title: Identification of the lactococcal exonuclease/recombinase and its modulation by the putative Chi sequence
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.95.2.626
– start-page: 131
  volume-title: Kinetic Analysis: A Practical Approach
  year: 2003
  ident: key 20170510155314_B40
  article-title: In
– volume: 290
  start-page: 137
  year: 1999
  ident: key 20170510155314_B49
  article-title: DNA binding mediates conformational changes and metal ion coordination in the active site of PcrA helicase
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1999.2873
– volume: 6
  start-page: 89
  year: 1998
  ident: key 20170510155314_B4
  article-title: Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwinding
  publication-title: Structure
  doi: 10.1016/S0969-2126(98)00010-0
– volume: 298
  start-page: 7
  year: 2000
  ident: key 20170510155314_B57
  article-title: The Bacillus subtilis AddAB helicase/nuclease is regulated by its cognate Chi sequence in vitro
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2000.3556
– volume: 285
  start-page: 2632
  year: 2010
  ident: key 20170510155314_B61
  article-title: Characterization of the mycobacterial AdnAB DNA motor provides insights into the evolution of bacterial motor-nuclease machines
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.076133
– volume: 384
  start-page: 379
  year: 1996
  ident: key 20170510155314_B3
  article-title: Crystal structure of a DExx box DNA helicase
  publication-title: Nature
  doi: 10.1038/384379a0
– volume: 99
  start-page: 14722
  year: 2002
  ident: key 20170510155314_B17
  article-title: Pre-steady-state DNA unwinding by bacteriophage T4 Dda helicase reveals a monomeric molecular motor
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.232401899
– volume: 23
  start-page: 1423
  year: 2009
  ident: key 20170510155314_B60
  article-title: AdnAB: a new DSB-resecting motor-nuclease from mycobacteria
  publication-title: Genes Dev.
  doi: 10.1101/gad.1805709
– volume: 178
  start-page: 5130
  year: 1996
  ident: key 20170510155314_B51
  article-title: Effects of lysine-to-glycine mutations in the ATP-binding consensus sequences in the AddA and AddB subunits on the Bacillus subtilis AddAB enzyme activities
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.178.17.5130-5137.1996
– volume: 300
  start-page: 469
  year: 2000
  ident: key 20170510155314_B56
  article-title: A novel, 11 nucleotide variant of chi, chi*: one of a class of sequences defining the Escherichia coli recombination hotspot chi
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2000.3861
– volume: 39
  start-page: 205
  year: 2000
  ident: key 20170510155314_B6
  article-title: Demonstration of unidirectional single-stranded DNA translocation by PcrA helicase: measurement of step size and translocation speed
  publication-title: Biochemistry
  doi: 10.1021/bi992105o
– volume: 48
  start-page: 6326
  year: 2009
  ident: key 20170510155314_B23
  article-title: PcrA helicase tightly couples ATP hydrolysis to unwinding double-stranded DNA, modulated by the initiator protein for plasmid replication, RepD
  publication-title: Biochemistry.
  doi: 10.1021/bi900101h
– volume: 9
  start-page: 391
  year: 2008
  ident: key 20170510155314_B18
  article-title: Non-hexameric DNA helicases and translocases: mechanisms and regulation
  publication-title: Nat. Rev. Mol. Cell. Biol.
  doi: 10.1038/nrm2394
– volume: 28
  start-page: 2863
  year: 1989
  ident: key 20170510155314_B32
  article-title: Characterization of the helicase activity of the Escherichia coli RecBCD enzyme using a novel helicase assay
  publication-title: Biochemistry
  doi: 10.1021/bi00433a018
– volume: 409
  start-page: 374
  year: 2001
  ident: key 20170510155314_B29
  article-title: Processive translocation and DNA unwinding by individual RecBCD enzyme molecules
  publication-title: Nature
  doi: 10.1038/35053131
– volume: 221
  start-page: 1165
  year: 1991
  ident: key 20170510155314_B62
  article-title: DNA-induced dimerization of the Escherichia coli Rep helicase
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(91)90926-W
– volume: 267
  start-page: 4207
  year: 1992
  ident: key 20170510155314_B31
  article-title: Processivity of the DNA helicase activity of Escherichia coli recBCD enzyme
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)50649-4
– volume: 284
  start-page: 7746
  year: 2009
  ident: key 20170510155314_B36
  article-title: An iron-sulfur cluster is essential for the binding of broken DNA by AddAB-type helicase-nucleases
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M808526200
– volume: 423
  start-page: 889
  year: 2003
  ident: key 20170510155314_B28
  article-title: RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity
  publication-title: Nature
  doi: 10.1038/nature01674
– volume: 102
  start-page: 10076
  year: 2005
  ident: key 20170510155314_B12
  article-title: Autoinhibition of Escherichia coli Rep monomer helicase activity by its 2B subdomain
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0502886102
– volume: 191
  start-page: 5076
  year: 2009
  ident: key 20170510155314_B35
  article-title: Phylogenetic ubiquity and shuffling of the bacterial RecBCD and AddAB recombination complexes
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00254-09
– volume: 27
  start-page: 1421
  year: 1999
  ident: key 20170510155314_B22
  article-title: Plasmid replication initiator protein RepD increases the processivity of PcrA DNA helicase
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/27.6.1421
– start-page: 75
  volume-title: Microscopy, Optical Spectroscopy, and Macroscopic Techniques
  year: 1994
  ident: key 20170510155314_B63
  article-title: In
– volume: 256
  start-page: 5294
  year: 1981
  ident: key 20170510155314_B21
  article-title: Rep protein as a helicase in an active, isolatable replication fork of duplex phi X174 DNA
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)69401-9
– volume: 280
  start-page: 37069
  year: 2005
  ident: key 20170510155314_B30
  article-title: Bipolar DNA translocation contributes to highly processive DNA unwinding by RecBCD enzyme
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M505520200
– volume: 26
  start-page: 2686
  year: 1998
  ident: key 20170510155314_B38
  article-title: Characterisation of Bacillus stearothermophilus PcrA helicase: evidence against an active rolling mechanism
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/26.11.2686
– volume: 325
  start-page: 913
  year: 2003
  ident: key 20170510155314_B16
  article-title: A Dimer of Escherichia coli UvrD is the active form of the helicase in vitro
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(02)01277-9
– volume: 270
  start-page: 24451
  year: 1995
  ident: key 20170510155314_B33
  article-title: Monomeric RecBCD enzyme binds and unwinds DNA
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.41.24451
– volume: 281
  start-page: 18610
  year: 2006
  ident: key 20170510155314_B46
  article-title: The AddAB helicase/nuclease forms a stable complex with its cognate chi sequence during translocation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M600882200
– volume: 44
  start-page: 12990
  year: 2005
  ident: key 20170510155314_B13
  article-title: Increasing the length of the single-stranded overhang enhances unwinding of duplex DNA by bacteriophage T4 Dda helicase
  publication-title: Biochemistry
  doi: 10.1021/bi050703z
– volume: 95
  start-page: 3330
  year: 2008
  ident: key 20170510155314_B39
  article-title: Fluorescent single-stranded DNA binding protein as a probe for sensitive, real-time assays of helicase activity
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.108.133512
– volume: 9
  start-page: 276
  year: 2010
  ident: key 20170510155314_B26
  article-title: The processing of double-stranded DNA breaks for recombinational repair by helicase-nuclease complexes
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2009.12.016
– volume: 127
  start-page: 1349
  year: 2006
  ident: key 20170510155314_B7
  article-title: UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke
  publication-title: Cell
  doi: 10.1016/j.cell.2006.10.049
– volume: 97
  start-page: 75
  year: 1999
  ident: key 20170510155314_B8
  article-title: Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80716-3
– volume: 34
  start-page: 4089
  year: 2006
  ident: key 20170510155314_B20
  article-title: The UvrD helicase and its modulation by the mismatch repair protein MutL
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl450
– volume: 432
  start-page: 187
  year: 2004
  ident: key 20170510155314_B55
  article-title: Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks
  publication-title: Nature
  doi: 10.1038/nature02988
– volume: 36
  start-page: 1976
  year: 2008
  ident: key 20170510155314_B15
  article-title: Evidence for a functional dimeric form of the PcrA helicase in DNA unwinding
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm1174
– volume: 33
  start-page: 8262
  year: 1994
  ident: key 20170510155314_B50
  article-title: Direct, real-time measurement of rapid inorganic phosphate release using a novel fluorescent probe and its application to actomyosin subfragment 1 ATPase
  publication-title: Biochemistry
  doi: 10.1021/bi00193a013
– volume: 38
  start-page: 5164
  year: 1999
  ident: key 20170510155314_B44
  article-title: DNA helicases displace streptavidin from biotin-labeled oligonucleotides
  publication-title: Biochemistry
  doi: 10.1021/bi9822269
– volume: 21
  start-page: 989
  year: 1996
  ident: key 20170510155314_B58
  article-title: Replacement of the lysine residue in the consensus ATP-binding sequence of the AddA subunit of AddAB drastically affects chromosomal recombination in transformation and transduction of Bacillus subtilis
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.1996.601424.x
– volume: 49
  start-page: 843
  year: 2010
  ident: key 20170510155314_B47
  article-title: Mechanism of interaction between single-stranded DNA binding protein and DNA
  publication-title: Biochemistry
  doi: 10.1021/bi901743k
– volume: 137
  start-page: 849
  year: 2009
  ident: key 20170510155314_B10
  article-title: Mechanistic basis of 5′-3′ translocation in SF1B helicases
  publication-title: Cell
  doi: 10.1016/j.cell.2009.03.036
– volume: 43
  start-page: 823
  year: 2002
  ident: key 20170510155314_B34
  article-title: A novel family of regulated helicases/nucleases from Gram-positive bacteria: insights into the initiation of DNA recombination
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2002.02785.x
– volume: 284
  start-page: 9612
  year: 2009
  ident: key 20170510155314_B19
  article-title: Stimulation of UvrD helicase by UvrAB
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M808030200
– volume: 282
  start-page: 27076
  year: 2007
  ident: key 20170510155314_B14
  article-title: Bacillus stearothermophilus PcrA monomer is a single-stranded DNA translocase but not a processive helicase in vitro
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M704399200
– volume: 3
  start-page: 419
  year: 1993
  ident: key 20170510155314_B1
  article-title: Helicases - amino-acid-sequence comparisons and structure-function-relationships
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/S0959-440X(05)80116-2
– volume: 270
  start-page: 22236
  year: 1995
  ident: key 20170510155314_B52
  article-title: Bacteriophage T4 Dda helicase translocates in a unidirectional fashion on single-stranded DNA
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.38.22236
– volume: 371
  start-page: 66
  year: 2007
  ident: key 20170510155314_B37
  article-title: A Dual-nuclease mechanism for DNA break processing by AddAB-type helicase-nucleases
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2007.05.053
– volume: 258
  start-page: 14017
  year: 1983
  ident: key 20170510155314_B45
  article-title: The gene 4 protein of bacteriophage T7. Characterization of helicase activity
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)44018-X
SSID ssj0014154
Score 2.185204
Snippet The oligomeric state of Superfamily I DNA helicases is the subject of considerable and ongoing debate. While models based on crystal structures imply that a...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2271
SubjectTerms Amino Acid Motifs
Bacillus subtilis
binding sites
Biocatalysis
crystal structure
Dimerization
DNA - metabolism
DNA damage
DNA helicases
DNA Helicases - chemistry
DNA Helicases - genetics
DNA Helicases - metabolism
DNA, Single-Stranded - metabolism
Exodeoxyribonucleases - chemistry
Exodeoxyribonucleases - genetics
Exodeoxyribonucleases - metabolism
Mutation
Nucleic Acid Enzymes
Protein Structure, Tertiary
Protein Subunits - metabolism
single-stranded DNA
Title The AddAB helicase–nuclease catalyses rapid and processive DNA unwinding using a single Superfamily 1A motor domain
URI https://www.ncbi.nlm.nih.gov/pubmed/21071401
https://www.proquest.com/docview/2000530720
https://www.proquest.com/docview/859058767
https://www.proquest.com/docview/899153562
https://pubmed.ncbi.nlm.nih.gov/PMC3064778
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeIAXBBuXcpmMNPFAlC5x6jp-DKPVhEbhoZX2FjmxOwo0LW2jqfx6ji9JWjrQ4CWtEsu1fL7G5_odhE56hMssEMqHpxO_C2eyLyjLfRZRGXERB1Lp4uSPw975uPvhkl62WttZS-U66-Q_b6wr-R-pwj2Qq66S_QfJ1pPCDfgO8oUrSBiut5ZxImXyDvQ97XxbKb_Q_MRC56Brv8xmpVbeUiym0hECmKoAkyw0TLyyuJ7aopbSeAyEpz90cmG5UEvn-ggTD6Q5X3pyPhOOpvtrVbMLv6X5XvOp1NGHLceY8cIq10_bRhm8Uedzp073ud5Yxbk_m4kmNFXFhyy5QZPM-H5qqMNdTbeuL3IuW9k4YKuErapOy3CfWn7N6h1sCY0c1nreokMIC31CYrr9ciW2W4s7qKune4eAJcgqdIL64OrbD9Aou81pV0X4h5_SwfjiIh31L0d30F0CVoZugMGCfh2EAt3Gso-5BbvyTpj-FCY_dVPvKjR7VsrvybZb2svoIXrgzA6cWAw9Qi1VHKKjpBDr-WyD32CTCGwiLIfo3lnVBPAIrQBi2EAM70EM1xDDBmIYIIYbiGGAGK4hhg3EsMAWYngLYjhMsIEYthB7jMaD_ujs3Hd9Ovy826VrX_I44Ao2iDKu2ISpUISKi1AIStUE9GOVs0AGvTgThMOOqTwCM5aAJasyGJBFT9BBMS_UM4TjKI4El6HQXRlAteacyjDIJhGPQjhtWBu9rTY7zR2Jve6l8j21yRRRCpJJnWTa6KQevLDcLTcPe11JLYXd1QEzUah5udItWuGMChgJ2gj_YUxMeUBBpWB_GQI2GI3A0GijpxYL9XJIqAsIg7CN2A5K6gGa_X33STH9YljgteuAsfj5LVb_At1v_okv0cF6WapXoEuvs2OD-GPjifoFH1jPsg
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+AddAB+helicase-nuclease+catalyses+rapid+and+processive+DNA+unwinding+using+a+single+Superfamily+1A+motor+domain&rft.jtitle=Nucleic+acids+research&rft.au=Yeeles%2C+Joseph+T.P.&rft.au=Gwynn%2C+Emma+J&rft.au=Webb%2C+Martin+R&rft.au=Dillingham%2C+Mark+S&rft.date=2011-03-01&rft.issn=0305-1048&rft.volume=39&rft.issue=6+p.2271-2285&rft.spage=2271&rft.epage=2285&rft_id=info:doi/10.1093%2Fnar%2Fgkq1124&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon