Feature Selection for Accelerometer-Based Posture Analysis in Parkinson's Disease

Posture analysis in quiet standing is a key component of the clinical evaluation of Parkinson's disease (PD), postural instability being one of PD's major symptoms. The aim of this study was to assess the feasibility of using accelerometers to characterize the postural behavior of early mi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information technology in biomedicine Vol. 15; no. 3; pp. 481 - 490
Main Authors Palmerini, L, Rocchi, L, Mellone, S, Valzania, F, Chiari, L
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2011
Subjects
Online AccessGet full text
ISSN1089-7771
1558-0032
1558-0032
DOI10.1109/TITB.2011.2107916

Cover

Loading…
Abstract Posture analysis in quiet standing is a key component of the clinical evaluation of Parkinson's disease (PD), postural instability being one of PD's major symptoms. The aim of this study was to assess the feasibility of using accelerometers to characterize the postural behavior of early mild PD subjects. Twenty PD and 20 control subjects, wearing an accelerometer on the lower back, were tested in five conditions characterized by sensory and attentional perturbation. A total of 175 measures were computed from the signals to quantify tremor, acceleration, and displacement of body sway. Feature selection was implemented to identify the subsets of measures that better characterize the distinctive behavior of PD and control subjects. It was based on different classifiers and on a nested cross validation, to maximize robustness of selection with respect to changes in the training set. Several subsets of three features achieved misclassification rates as low as 5%. Many of them included a tremor-related measure, a postural measure in the frequency domain, and a postural displacement measure. Results suggest that quantitative posture analysis using a single accelerometer and a simple test protocol may provide useful information to characterize early PD subjects. This protocol is potentially usable to monitor the disease's progression.
AbstractList Posture analysis in quiet standing is a key component of the clinical evaluation of Parkinson's disease (PD), postural instability being one of PD's major symptoms. The aim of this study was to assess the feasibility of using accelerometers to characterize the postural behavior of early mild PD subjects. Twenty PD and 20 control subjects, wearing an accelerometer on the lower back, were tested in five conditions characterized by sensory and attentional perturbation. A total of 175 measures were computed from the signals to quantify tremor, acceleration, and displacement of body sway. Feature selection was implemented to identify the subsets of measures that better characterize the distinctive behavior of PD and control subjects. It was based on different classifiers and on a nested cross validation, to maximize robustness of selection with respect to changes in the training set. Several subsets of three features achieved misclassification rates as low as 5%. Many of them included a tremor-related measure, a postural measure in the frequency domain, and a postural displacement measure. Results suggest that quantitative posture analysis using a single accelerometer and a simple test protocol may provide useful information to characterize early PD subjects. This protocol is potentially usable to monitor the disease's progression.
Posture analysis in quiet standing is a key component of the clinical evaluation of Parkinson's disease (PD), postural instability being one of PD's major symptoms. The aim of this study was to assess the feasibility of using accelerometers to characterize the postural behavior of early mild PD subjects. Twenty PD and 20 control subjects, wearing an accelerometer on the lower back, were tested in five conditions characterized by sensory and attentional perturbation. A total of 175 measures were computed from the signals to quantify tremor, acceleration, and displacement of body sway. Feature selection was implemented to identify the subsets of measures that better characterize the distinctive behavior of PD and control subjects. It was based on different classifiers and on a nested cross validation, to maximize robustness of selection with respect to changes in the training set. Several subsets of three features achieved misclassification rates as low as 5%. Many of them included a tremor-related measure, a postural measure in the frequency domain, and a postural displacement measure. Results suggest that quantitative posture analysis using a single accelerometer and a simple test protocol may provide useful information to characterize early PD subjects. This protocol is potentially usable to monitor the disease's progression.Posture analysis in quiet standing is a key component of the clinical evaluation of Parkinson's disease (PD), postural instability being one of PD's major symptoms. The aim of this study was to assess the feasibility of using accelerometers to characterize the postural behavior of early mild PD subjects. Twenty PD and 20 control subjects, wearing an accelerometer on the lower back, were tested in five conditions characterized by sensory and attentional perturbation. A total of 175 measures were computed from the signals to quantify tremor, acceleration, and displacement of body sway. Feature selection was implemented to identify the subsets of measures that better characterize the distinctive behavior of PD and control subjects. It was based on different classifiers and on a nested cross validation, to maximize robustness of selection with respect to changes in the training set. Several subsets of three features achieved misclassification rates as low as 5%. Many of them included a tremor-related measure, a postural measure in the frequency domain, and a postural displacement measure. Results suggest that quantitative posture analysis using a single accelerometer and a simple test protocol may provide useful information to characterize early PD subjects. This protocol is potentially usable to monitor the disease's progression.
Author Valzania, F
Palmerini, L
Rocchi, L
Chiari, L
Mellone, S
Author_xml – sequence: 1
  givenname: L
  surname: Palmerini
  fullname: Palmerini, L
  email: luca.palmerini@unibo.it
  organization: Dept. of Electron., Comput. Sci., & Syst., Univ. of Bologna, Bologna, Italy
– sequence: 2
  givenname: L
  surname: Rocchi
  fullname: Rocchi, L
  email: l.rocchi@unibo.it
  organization: Dept. of Electron., Comput. Sci., & Syst., Univ. of Bologna, Bologna, Italy
– sequence: 3
  givenname: S
  surname: Mellone
  fullname: Mellone, S
  email: sabato.mellone@unibo.it
  organization: Dept. of Electron., Comput. Sci., & Syst., Univ. of Bologna, Bologna, Italy
– sequence: 4
  givenname: F
  surname: Valzania
  fullname: Valzania, F
  email: f.valzania@ausl.mo.it
  organization: Dept. of Neurosci., Univ. of Modena & Reggio Emilia, Modena, Italy
– sequence: 5
  givenname: L
  surname: Chiari
  fullname: Chiari, L
  email: lorenzo.chiari@unibo.it
  organization: Dept. of Electron., Comput. Sci., & Syst., Univ. of Bologna, Bologna, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21349795$$D View this record in MEDLINE/PubMed
BookMark eNqFkctO6zAQhi0E4v4ACAllxyrF40tsL0uBc5CQAFHWketMJEMag50ueHscWlicxWE1F33_zGj-A7Ldhx4JOQE6AaDmYn47v5wwCjBhQJWBaovsg5S6pJSz7ZxTbUqlFOyRg5ReKAUhge-SPQZcGGXkPnm8QTusIhZP2KEbfOiLNsRi6lyuY1jigLG8tAmb4iGkL3La2-4j-VT4vniw8dX3KfTnqbjyCTN4RHZa2yU83sRD8nxzPZ_9Le_u_9zOpnelE0IOZaOkaaQwwqKTlmmoGsVawZXgCwu5oZ3mmi2g4o4zaTLZoJBojWirChg_JOfruW8xvK8wDfXSp3x1Z3sMq1RrJUBrw8XvZCWUzhtG8mxDrhZLbOq36Jc2ftTf_8oArAEXQ0oR2x8EaD16Uo-e1KMn9caTrFH_aJwf7PjqIVrf_Vd5ulZ6RPzZJBUYKRn_BPoWlzo
CODEN ITIBFX
CitedBy_id crossref_primary_10_1109_TNSRE_2013_2292496
crossref_primary_10_1016_j_compag_2013_05_006
crossref_primary_10_1109_TMC_2014_2331969
crossref_primary_10_1016_j_gaitpost_2014_02_012
crossref_primary_10_1177_0954411913493724
crossref_primary_10_1186_s12984_020_00729_8
crossref_primary_10_3390_brainsci9020034
crossref_primary_10_1109_ACCESS_2022_3156659
crossref_primary_10_1016_j_medengphy_2014_07_021
crossref_primary_10_1016_j_smhl_2017_10_001
crossref_primary_10_1002_mds_25684
crossref_primary_10_3390_s24154983
crossref_primary_10_1007_s13755_020_00104_w
crossref_primary_10_1109_COMST_2017_2731979
crossref_primary_10_1109_JBHI_2015_2461555
crossref_primary_10_1109_TITB_2012_2223823
crossref_primary_10_3389_fnagi_2018_00260
crossref_primary_10_1016_j_compbiomed_2024_109566
crossref_primary_10_1016_j_compbiomed_2024_109565
crossref_primary_10_3390_bioengineering11010088
crossref_primary_10_1007_s00221_014_4069_8
crossref_primary_10_1159_000447124
crossref_primary_10_1109_ACCESS_2018_2851382
crossref_primary_10_1016_j_gaitpost_2011_11_026
crossref_primary_10_1016_j_ijmedinf_2012_10_006
crossref_primary_10_1590_1806_9282_65_11_1413
crossref_primary_10_9718_JBER_2014_35_4_81
crossref_primary_10_1109_TASE_2016_2637165
crossref_primary_10_3389_fneur_2018_01044
crossref_primary_10_1007_s11517_015_1324_5
crossref_primary_10_1016_j_future_2018_11_054
crossref_primary_10_1109_TBME_2020_3030077
crossref_primary_10_1155_2016_3891253
crossref_primary_10_1016_j_gaitpost_2021_04_023
crossref_primary_10_3390_s19102227
crossref_primary_10_3390_s20185385
crossref_primary_10_1016_j_jbiomech_2018_09_009
crossref_primary_10_3390_s19204537
crossref_primary_10_1186_s12984_021_00959_4
crossref_primary_10_3390_bioengineering9070283
crossref_primary_10_3390_s24227280
crossref_primary_10_1016_j_apcbee_2013_08_018
crossref_primary_10_1016_j_patrec_2018_04_008
crossref_primary_10_3389_fneur_2023_1243445
crossref_primary_10_1016_j_bbr_2015_08_017
crossref_primary_10_1016_j_irbm_2025_100884
crossref_primary_10_1088_0967_3334_37_10_1813
crossref_primary_10_1016_j_neubiorev_2016_06_036
crossref_primary_10_1109_JSEN_2015_2393883
crossref_primary_10_3390_s19194075
crossref_primary_10_1371_journal_pone_0123705
crossref_primary_10_1038_s41598_018_25523_4
crossref_primary_10_1109_TNSRE_2012_2236577
crossref_primary_10_1016_j_bspc_2016_08_022
crossref_primary_10_1177_0363546518812820
crossref_primary_10_1016_j_heliyon_2018_e01043
crossref_primary_10_2196_26608
crossref_primary_10_1016_j_medengphy_2014_02_012
crossref_primary_10_1109_TITB_2012_2206602
crossref_primary_10_3390_s19153320
crossref_primary_10_1371_journal_pone_0032240
crossref_primary_10_3389_fnins_2017_00555
Cites_doi 10.1016/S0966-6362(04)00025-6
10.1136/jnnp.2009.173740
10.1002/0471722146
10.1016/S0004-3702(97)00043-X
10.1007/3-540-45497-7_29
10.1016/j.medengphy.2009.10.015
10.1007/s00415-002-1309-9
10.1109/TNSRE.2005.847353
10.1016/S0268-0033(96)00040-X
10.1201/b14115
10.1109/10.532130
10.1002/9780470316641
10.1017/CBO9780511801389
10.1093/geronj/49.2.M72
10.1002/mds.21015
10.1016/S0165-0270(97)02254-1
10.1016/0959-4388(94)90137-6
10.1111/j.1468-1331.2009.02641.x
10.1136/jnnp.73.3.267
10.1016/j.gaitpost.2009.08.232
10.1016/S0966-6362(01)00199-0
10.1001/archneur.56.1.33
10.1109/MEMB.2003.1213632
10.1109/TBME.2008.2002103
10.1109/IEMBS.2009.5333129
10.1016/j.neulet.2005.10.020
10.1098/rspa.1998.0193
10.1016/j.gaitpost.2003.07.005
10.1109/TBME.2005.857673
10.1007/s00221-007-1024-y
10.1109/TITB.2009.2033471
10.1016/S0268-0033(02)00107-9
10.1109/IEMBS.2009.5333997
10.1212/WNL.40.10.1529
10.1016/j.expneurol.2004.12.008
10.1016/j.neucli.2008.09.004
10.1002/mds.10418
10.1016/j.gaitpost.2008.09.014
10.1093/ageing/afl077
10.1093/jnci/95.1.14
10.1016/S0021-9290(00)00061-0
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TK
8FD
FR3
P64
DOI 10.1109/TITB.2011.2107916
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
Engineering Research Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-0032
EndPage 490
ExternalDocumentID 21349795
10_1109_TITB_2011_2107916
5719552
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TK
8FD
FR3
P64
ID FETCH-LOGICAL-c445t-d759d5494aec5a2816d72f43743ba1a288c8382b163c3259494de45ea94f66123
IEDL.DBID RIE
ISSN 1089-7771
1558-0032
IngestDate Thu Jul 10 23:32:18 EDT 2025
Fri Jul 11 09:16:41 EDT 2025
Mon Jul 21 05:47:24 EDT 2025
Tue Jul 01 03:30:31 EDT 2025
Thu Apr 24 23:11:09 EDT 2025
Tue Aug 26 17:17:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-d759d5494aec5a2816d72f43743ba1a288c8382b163c3259494de45ea94f66123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21349795
PQID 864785944
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_864785944
crossref_primary_10_1109_TITB_2011_2107916
proquest_miscellaneous_874188934
pubmed_primary_21349795
crossref_citationtrail_10_1109_TITB_2011_2107916
ieee_primary_5719552
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-May
2011-05-00
20110501
PublicationDateYYYYMMDD 2011-05-01
PublicationDate_xml – month: 05
  year: 2011
  text: 2011-May
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on information technology in biomedicine
PublicationTitleAbbrev TITB
PublicationTitleAlternate IEEE Trans Inf Technol Biomed
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref11
ref32
ref10
ref2
ref1
ref17
ref16
witten (ref44) 0
ref19
krzanowski (ref39) 1988
ref18
liu (ref33) 2008
ref46
ref24
ref45
ref23
ref26
ref25
ref20
ref42
ref22
ref21
ref43
winter (ref5) 1990; 16
ref28
ref27
ref29
ref8
ref7
ref9
seber (ref38) 1984
ref4
ref3
mitchell (ref41) 1997
ref6
ref40
References_xml – ident: ref7
  doi: 10.1016/S0966-6362(04)00025-6
– ident: ref12
  doi: 10.1136/jnnp.2009.173740
– year: 1997
  ident: ref41
  publication-title: Machine Learning
– start-page: 146
  year: 0
  ident: ref44
  publication-title: Data Mining Practical Machine Learning Tools and Techniques
– ident: ref40
  doi: 10.1002/0471722146
– ident: ref37
  doi: 10.1016/S0004-3702(97)00043-X
– ident: ref30
  doi: 10.1007/3-540-45497-7_29
– ident: ref11
  doi: 10.1016/j.medengphy.2009.10.015
– ident: ref26
  doi: 10.1007/s00415-002-1309-9
– year: 1988
  ident: ref39
  publication-title: Principles of Multivariate Analysis a User's Perspective
– ident: ref15
  doi: 10.1109/TNSRE.2005.847353
– ident: ref31
  doi: 10.1016/S0268-0033(96)00040-X
– ident: ref34
  doi: 10.1201/b14115
– ident: ref35
  doi: 10.1109/10.532130
– volume: 16
  start-page: 31
  year: 1990
  ident: ref5
  article-title: Assessment of balance control in humans
  publication-title: Med Prog Technol
– year: 1984
  ident: ref38
  publication-title: Multivariate Observations
  doi: 10.1002/9780470316641
– ident: ref42
  doi: 10.1017/CBO9780511801389
– ident: ref46
  doi: 10.1093/geronj/49.2.M72
– ident: ref3
  doi: 10.1002/mds.21015
– ident: ref23
  doi: 10.1016/S0165-0270(97)02254-1
– ident: ref1
  doi: 10.1016/0959-4388(94)90137-6
– ident: ref10
  doi: 10.1111/j.1468-1331.2009.02641.x
– ident: ref18
  doi: 10.1136/jnnp.73.3.267
– ident: ref21
  doi: 10.1016/j.gaitpost.2009.08.232
– ident: ref14
  doi: 10.1016/S0966-6362(01)00199-0
– ident: ref25
  doi: 10.1001/archneur.56.1.33
– start-page: 3624
  year: 2008
  ident: ref33
  article-title: Empirical mode decomposition applied to tissue artifact removal from respiratory signal
  publication-title: Proc 30th Int Conf IEEE Eng Med Biol Soc
– ident: ref28
  doi: 10.1109/MEMB.2003.1213632
– ident: ref6
  doi: 10.1109/TBME.2008.2002103
– ident: ref29
  doi: 10.1109/IEMBS.2009.5333129
– ident: ref20
  doi: 10.1016/j.neulet.2005.10.020
– ident: ref32
  doi: 10.1098/rspa.1998.0193
– ident: ref9
  doi: 10.1016/j.gaitpost.2003.07.005
– ident: ref13
  doi: 10.1109/TBME.2005.857673
– ident: ref17
  doi: 10.1007/s00221-007-1024-y
– ident: ref27
  doi: 10.1109/TITB.2009.2033471
– ident: ref36
  doi: 10.1016/S0268-0033(02)00107-9
– ident: ref24
  doi: 10.1109/IEMBS.2009.5333997
– ident: ref45
  doi: 10.1212/WNL.40.10.1529
– ident: ref22
  doi: 10.1016/j.expneurol.2004.12.008
– ident: ref4
  doi: 10.1016/j.neucli.2008.09.004
– ident: ref19
  doi: 10.1002/mds.10418
– ident: ref16
  doi: 10.1016/j.gaitpost.2008.09.014
– ident: ref2
  doi: 10.1093/ageing/afl077
– ident: ref43
  doi: 10.1093/jnci/95.1.14
– ident: ref8
  doi: 10.1016/S0021-9290(00)00061-0
SSID ssj0014513
Score 2.317085
Snippet Posture analysis in quiet standing is a key component of the clinical evaluation of Parkinson's disease (PD), postural instability being one of PD's major...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 481
SubjectTerms Acceleration
Accelerometer
Aged
Algorithms
Artificial Intelligence
Diagnostic Techniques and Procedures - instrumentation
Discriminant Analysis
Disease Progression
Displacement measurement
feature selection
Female
Frequency conversion
Humans
Logistic Models
Male
Middle Aged
Parkinson Disease - classification
Parkinson Disease - diagnosis
Parkinson Disease - physiopathology
Parkinson's disease (PD)
posture
Posture - physiology
Reproducibility of Results
Signal Processing, Computer-Assisted
Time frequency analysis
Time measurement
Title Feature Selection for Accelerometer-Based Posture Analysis in Parkinson's Disease
URI https://ieeexplore.ieee.org/document/5719552
https://www.ncbi.nlm.nih.gov/pubmed/21349795
https://www.proquest.com/docview/864785944
https://www.proquest.com/docview/874188934
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ug-jB1_pYX-QgCGLXdps0zdEnKqwg7sLeSpqmIEpXdHvx1zuTPlhExVtbpuljps03mZlvAI6iSGSBEtJLVS49jgjX077UXpzjbBsJFWpBtcODh-h2xO_HYjwHp20tjLXWJZ_ZHm26WH42MSUtlaHzjsMK_OHOo-NW1Wq1EQMugjqZXiFilEEdwQx8dTa8G15UZJ3o30jEQ44BOORKUleJmenI9Vf5HWq6KedmFQbNzVaZJi-9cpr2zOc3Hsf_Ps0arNTYk51XxrIOc7bYgOUZRsINWBzUsfYOPBI6LN8te3KtclB_DAEuOzcG94nkADXiXeAkmDHq-EuSDcMJey4YlVO7yrLjD3ZVRYE2YXRzPby89eoGDJ7hXEy9TAqVoQPJtTVC9-MgymQ_5yGijlQHeCA2cRj3U8R0JkQ_CiUzy4XViucR8bpswUIxKewOsL4KYuXneSpsRhYRKx5IP400AhIcM--C3-ghMTU7OTXJeE2cl-KrhLSYkBaTWotdOGlPeauoOf4S7pAGWsH65XeBNcpO8LuiYIku7KT8SGIqwsVH4n-IEPMP4j0U2a7spB2-Ma_dny-7B0vV2jQlTu7DwvS9tAcIbqbpobPqL5VW8CY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5FILVwKBBaGp57qISE6mDHu17vEdpGCU2QKoLEzVqv11IFcqokvvTXM7N-CCFA3GxrvH7M2PvNzsw3AN-iSGSBEtJLVS49jgjX077UXpzjbBsJFWpBtcPT62h0y6_uxF0Hvre1MNZal3xm-7TpYvnZ3JS0VIbOOw4r8Ie7LqgYt6rWamMGXAR1Or1CzCiDOoYZ-Op8Np5dVnSd6OFIRESOAzjkSlJfiScTkuuw8jrYdJPOcAumze1WuSb3_XKV9s3_Z0yO732ebfhUo092UZnLDnRs0YXNJ5yEXfgwraPtu_CH8GG5sOzGNctBDTKEuOzCGNwnmgPUiXeJ02DGqOcvSTYcJ-xvwaig2tWWnS7ZzyoO9Bluh79mP0Ze3YLBM5yLlZdJoTJ0Ibm2RuhBHESZHOQ8RNyR6gAPxCYO40GKqM6E6EmhZGa5sFrxPCJmly-wVswL-xXYQAWx8vM8FTYjm4gVD6SfRhohCY6Z98Bv9JCYmp-c2mQ8JM5P8VVCWkxIi0mtxR6ctaf8q8g53hLeJQ20gvXL7wFrlJ3gl0XhEl3YeblMYirDxUfib4gQ9w8iPhTZq-ykHb4xr_2XL3sCH0ez6SSZjK9_H8BGtVJNaZSHsLZalPYIoc4qPXYW_ghClPNu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+selection+for+accelerometer-based+posture+analysis+in+Parkinson%27s+disease&rft.jtitle=IEEE+transactions+on+information+technology+in+biomedicine&rft.au=Palmerini%2C+Luca&rft.au=Rocchi%2C+Laura&rft.au=Mellone%2C+Sabato&rft.au=Valzania%2C+Franco&rft.date=2011-05-01&rft.issn=1558-0032&rft.eissn=1558-0032&rft.volume=15&rft.issue=3&rft.spage=481&rft_id=info:doi/10.1109%2FTITB.2011.2107916&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-7771&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-7771&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-7771&client=summon