Feature Selection for Accelerometer-Based Posture Analysis in Parkinson's Disease
Posture analysis in quiet standing is a key component of the clinical evaluation of Parkinson's disease (PD), postural instability being one of PD's major symptoms. The aim of this study was to assess the feasibility of using accelerometers to characterize the postural behavior of early mi...
Saved in:
Published in | IEEE transactions on information technology in biomedicine Vol. 15; no. 3; pp. 481 - 490 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.05.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 1089-7771 1558-0032 1558-0032 |
DOI | 10.1109/TITB.2011.2107916 |
Cover
Loading…
Abstract | Posture analysis in quiet standing is a key component of the clinical evaluation of Parkinson's disease (PD), postural instability being one of PD's major symptoms. The aim of this study was to assess the feasibility of using accelerometers to characterize the postural behavior of early mild PD subjects. Twenty PD and 20 control subjects, wearing an accelerometer on the lower back, were tested in five conditions characterized by sensory and attentional perturbation. A total of 175 measures were computed from the signals to quantify tremor, acceleration, and displacement of body sway. Feature selection was implemented to identify the subsets of measures that better characterize the distinctive behavior of PD and control subjects. It was based on different classifiers and on a nested cross validation, to maximize robustness of selection with respect to changes in the training set. Several subsets of three features achieved misclassification rates as low as 5%. Many of them included a tremor-related measure, a postural measure in the frequency domain, and a postural displacement measure. Results suggest that quantitative posture analysis using a single accelerometer and a simple test protocol may provide useful information to characterize early PD subjects. This protocol is potentially usable to monitor the disease's progression. |
---|---|
AbstractList | Posture analysis in quiet standing is a key component of the clinical evaluation of Parkinson's disease (PD), postural instability being one of PD's major symptoms. The aim of this study was to assess the feasibility of using accelerometers to characterize the postural behavior of early mild PD subjects. Twenty PD and 20 control subjects, wearing an accelerometer on the lower back, were tested in five conditions characterized by sensory and attentional perturbation. A total of 175 measures were computed from the signals to quantify tremor, acceleration, and displacement of body sway. Feature selection was implemented to identify the subsets of measures that better characterize the distinctive behavior of PD and control subjects. It was based on different classifiers and on a nested cross validation, to maximize robustness of selection with respect to changes in the training set. Several subsets of three features achieved misclassification rates as low as 5%. Many of them included a tremor-related measure, a postural measure in the frequency domain, and a postural displacement measure. Results suggest that quantitative posture analysis using a single accelerometer and a simple test protocol may provide useful information to characterize early PD subjects. This protocol is potentially usable to monitor the disease's progression. Posture analysis in quiet standing is a key component of the clinical evaluation of Parkinson's disease (PD), postural instability being one of PD's major symptoms. The aim of this study was to assess the feasibility of using accelerometers to characterize the postural behavior of early mild PD subjects. Twenty PD and 20 control subjects, wearing an accelerometer on the lower back, were tested in five conditions characterized by sensory and attentional perturbation. A total of 175 measures were computed from the signals to quantify tremor, acceleration, and displacement of body sway. Feature selection was implemented to identify the subsets of measures that better characterize the distinctive behavior of PD and control subjects. It was based on different classifiers and on a nested cross validation, to maximize robustness of selection with respect to changes in the training set. Several subsets of three features achieved misclassification rates as low as 5%. Many of them included a tremor-related measure, a postural measure in the frequency domain, and a postural displacement measure. Results suggest that quantitative posture analysis using a single accelerometer and a simple test protocol may provide useful information to characterize early PD subjects. This protocol is potentially usable to monitor the disease's progression.Posture analysis in quiet standing is a key component of the clinical evaluation of Parkinson's disease (PD), postural instability being one of PD's major symptoms. The aim of this study was to assess the feasibility of using accelerometers to characterize the postural behavior of early mild PD subjects. Twenty PD and 20 control subjects, wearing an accelerometer on the lower back, were tested in five conditions characterized by sensory and attentional perturbation. A total of 175 measures were computed from the signals to quantify tremor, acceleration, and displacement of body sway. Feature selection was implemented to identify the subsets of measures that better characterize the distinctive behavior of PD and control subjects. It was based on different classifiers and on a nested cross validation, to maximize robustness of selection with respect to changes in the training set. Several subsets of three features achieved misclassification rates as low as 5%. Many of them included a tremor-related measure, a postural measure in the frequency domain, and a postural displacement measure. Results suggest that quantitative posture analysis using a single accelerometer and a simple test protocol may provide useful information to characterize early PD subjects. This protocol is potentially usable to monitor the disease's progression. |
Author | Valzania, F Palmerini, L Rocchi, L Chiari, L Mellone, S |
Author_xml | – sequence: 1 givenname: L surname: Palmerini fullname: Palmerini, L email: luca.palmerini@unibo.it organization: Dept. of Electron., Comput. Sci., & Syst., Univ. of Bologna, Bologna, Italy – sequence: 2 givenname: L surname: Rocchi fullname: Rocchi, L email: l.rocchi@unibo.it organization: Dept. of Electron., Comput. Sci., & Syst., Univ. of Bologna, Bologna, Italy – sequence: 3 givenname: S surname: Mellone fullname: Mellone, S email: sabato.mellone@unibo.it organization: Dept. of Electron., Comput. Sci., & Syst., Univ. of Bologna, Bologna, Italy – sequence: 4 givenname: F surname: Valzania fullname: Valzania, F email: f.valzania@ausl.mo.it organization: Dept. of Neurosci., Univ. of Modena & Reggio Emilia, Modena, Italy – sequence: 5 givenname: L surname: Chiari fullname: Chiari, L email: lorenzo.chiari@unibo.it organization: Dept. of Electron., Comput. Sci., & Syst., Univ. of Bologna, Bologna, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21349795$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctO6zAQhi0E4v4ACAllxyrF40tsL0uBc5CQAFHWketMJEMag50ueHscWlicxWE1F33_zGj-A7Ldhx4JOQE6AaDmYn47v5wwCjBhQJWBaovsg5S6pJSz7ZxTbUqlFOyRg5ReKAUhge-SPQZcGGXkPnm8QTusIhZP2KEbfOiLNsRi6lyuY1jigLG8tAmb4iGkL3La2-4j-VT4vniw8dX3KfTnqbjyCTN4RHZa2yU83sRD8nxzPZ_9Le_u_9zOpnelE0IOZaOkaaQwwqKTlmmoGsVawZXgCwu5oZ3mmi2g4o4zaTLZoJBojWirChg_JOfruW8xvK8wDfXSp3x1Z3sMq1RrJUBrw8XvZCWUzhtG8mxDrhZLbOq36Jc2ftTf_8oArAEXQ0oR2x8EaD16Uo-e1KMn9caTrFH_aJwf7PjqIVrf_Vd5ulZ6RPzZJBUYKRn_BPoWlzo |
CODEN | ITIBFX |
CitedBy_id | crossref_primary_10_1109_TNSRE_2013_2292496 crossref_primary_10_1016_j_compag_2013_05_006 crossref_primary_10_1109_TMC_2014_2331969 crossref_primary_10_1016_j_gaitpost_2014_02_012 crossref_primary_10_1177_0954411913493724 crossref_primary_10_1186_s12984_020_00729_8 crossref_primary_10_3390_brainsci9020034 crossref_primary_10_1109_ACCESS_2022_3156659 crossref_primary_10_1016_j_medengphy_2014_07_021 crossref_primary_10_1016_j_smhl_2017_10_001 crossref_primary_10_1002_mds_25684 crossref_primary_10_3390_s24154983 crossref_primary_10_1007_s13755_020_00104_w crossref_primary_10_1109_COMST_2017_2731979 crossref_primary_10_1109_JBHI_2015_2461555 crossref_primary_10_1109_TITB_2012_2223823 crossref_primary_10_3389_fnagi_2018_00260 crossref_primary_10_1016_j_compbiomed_2024_109566 crossref_primary_10_1016_j_compbiomed_2024_109565 crossref_primary_10_3390_bioengineering11010088 crossref_primary_10_1007_s00221_014_4069_8 crossref_primary_10_1159_000447124 crossref_primary_10_1109_ACCESS_2018_2851382 crossref_primary_10_1016_j_gaitpost_2011_11_026 crossref_primary_10_1016_j_ijmedinf_2012_10_006 crossref_primary_10_1590_1806_9282_65_11_1413 crossref_primary_10_9718_JBER_2014_35_4_81 crossref_primary_10_1109_TASE_2016_2637165 crossref_primary_10_3389_fneur_2018_01044 crossref_primary_10_1007_s11517_015_1324_5 crossref_primary_10_1016_j_future_2018_11_054 crossref_primary_10_1109_TBME_2020_3030077 crossref_primary_10_1155_2016_3891253 crossref_primary_10_1016_j_gaitpost_2021_04_023 crossref_primary_10_3390_s19102227 crossref_primary_10_3390_s20185385 crossref_primary_10_1016_j_jbiomech_2018_09_009 crossref_primary_10_3390_s19204537 crossref_primary_10_1186_s12984_021_00959_4 crossref_primary_10_3390_bioengineering9070283 crossref_primary_10_3390_s24227280 crossref_primary_10_1016_j_apcbee_2013_08_018 crossref_primary_10_1016_j_patrec_2018_04_008 crossref_primary_10_3389_fneur_2023_1243445 crossref_primary_10_1016_j_bbr_2015_08_017 crossref_primary_10_1016_j_irbm_2025_100884 crossref_primary_10_1088_0967_3334_37_10_1813 crossref_primary_10_1016_j_neubiorev_2016_06_036 crossref_primary_10_1109_JSEN_2015_2393883 crossref_primary_10_3390_s19194075 crossref_primary_10_1371_journal_pone_0123705 crossref_primary_10_1038_s41598_018_25523_4 crossref_primary_10_1109_TNSRE_2012_2236577 crossref_primary_10_1016_j_bspc_2016_08_022 crossref_primary_10_1177_0363546518812820 crossref_primary_10_1016_j_heliyon_2018_e01043 crossref_primary_10_2196_26608 crossref_primary_10_1016_j_medengphy_2014_02_012 crossref_primary_10_1109_TITB_2012_2206602 crossref_primary_10_3390_s19153320 crossref_primary_10_1371_journal_pone_0032240 crossref_primary_10_3389_fnins_2017_00555 |
Cites_doi | 10.1016/S0966-6362(04)00025-6 10.1136/jnnp.2009.173740 10.1002/0471722146 10.1016/S0004-3702(97)00043-X 10.1007/3-540-45497-7_29 10.1016/j.medengphy.2009.10.015 10.1007/s00415-002-1309-9 10.1109/TNSRE.2005.847353 10.1016/S0268-0033(96)00040-X 10.1201/b14115 10.1109/10.532130 10.1002/9780470316641 10.1017/CBO9780511801389 10.1093/geronj/49.2.M72 10.1002/mds.21015 10.1016/S0165-0270(97)02254-1 10.1016/0959-4388(94)90137-6 10.1111/j.1468-1331.2009.02641.x 10.1136/jnnp.73.3.267 10.1016/j.gaitpost.2009.08.232 10.1016/S0966-6362(01)00199-0 10.1001/archneur.56.1.33 10.1109/MEMB.2003.1213632 10.1109/TBME.2008.2002103 10.1109/IEMBS.2009.5333129 10.1016/j.neulet.2005.10.020 10.1098/rspa.1998.0193 10.1016/j.gaitpost.2003.07.005 10.1109/TBME.2005.857673 10.1007/s00221-007-1024-y 10.1109/TITB.2009.2033471 10.1016/S0268-0033(02)00107-9 10.1109/IEMBS.2009.5333997 10.1212/WNL.40.10.1529 10.1016/j.expneurol.2004.12.008 10.1016/j.neucli.2008.09.004 10.1002/mds.10418 10.1016/j.gaitpost.2008.09.014 10.1093/ageing/afl077 10.1093/jnci/95.1.14 10.1016/S0021-9290(00)00061-0 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 7TK 8FD FR3 P64 |
DOI | 10.1109/TITB.2011.2107916 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-0032 |
EndPage | 490 |
ExternalDocumentID | 21349795 10_1109_TITB_2011_2107916 5719552 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS AETIX AGQYO AGSQL AHBIQ AI. AIBXA ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7X8 7QO 7TK 8FD FR3 P64 |
ID | FETCH-LOGICAL-c445t-d759d5494aec5a2816d72f43743ba1a288c8382b163c3259494de45ea94f66123 |
IEDL.DBID | RIE |
ISSN | 1089-7771 1558-0032 |
IngestDate | Thu Jul 10 23:32:18 EDT 2025 Fri Jul 11 09:16:41 EDT 2025 Mon Jul 21 05:47:24 EDT 2025 Tue Jul 01 03:30:31 EDT 2025 Thu Apr 24 23:11:09 EDT 2025 Tue Aug 26 17:17:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-d759d5494aec5a2816d72f43743ba1a288c8382b163c3259494de45ea94f66123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21349795 |
PQID | 864785944 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_864785944 crossref_primary_10_1109_TITB_2011_2107916 proquest_miscellaneous_874188934 pubmed_primary_21349795 crossref_citationtrail_10_1109_TITB_2011_2107916 ieee_primary_5719552 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-May 2011-05-00 20110501 |
PublicationDateYYYYMMDD | 2011-05-01 |
PublicationDate_xml | – month: 05 year: 2011 text: 2011-May |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on information technology in biomedicine |
PublicationTitleAbbrev | TITB |
PublicationTitleAlternate | IEEE Trans Inf Technol Biomed |
PublicationYear | 2011 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref11 ref32 ref10 ref2 ref1 ref17 ref16 witten (ref44) 0 ref19 krzanowski (ref39) 1988 ref18 liu (ref33) 2008 ref46 ref24 ref45 ref23 ref26 ref25 ref20 ref42 ref22 ref21 ref43 winter (ref5) 1990; 16 ref28 ref27 ref29 ref8 ref7 ref9 seber (ref38) 1984 ref4 ref3 mitchell (ref41) 1997 ref6 ref40 |
References_xml | – ident: ref7 doi: 10.1016/S0966-6362(04)00025-6 – ident: ref12 doi: 10.1136/jnnp.2009.173740 – year: 1997 ident: ref41 publication-title: Machine Learning – start-page: 146 year: 0 ident: ref44 publication-title: Data Mining Practical Machine Learning Tools and Techniques – ident: ref40 doi: 10.1002/0471722146 – ident: ref37 doi: 10.1016/S0004-3702(97)00043-X – ident: ref30 doi: 10.1007/3-540-45497-7_29 – ident: ref11 doi: 10.1016/j.medengphy.2009.10.015 – ident: ref26 doi: 10.1007/s00415-002-1309-9 – year: 1988 ident: ref39 publication-title: Principles of Multivariate Analysis a User's Perspective – ident: ref15 doi: 10.1109/TNSRE.2005.847353 – ident: ref31 doi: 10.1016/S0268-0033(96)00040-X – ident: ref34 doi: 10.1201/b14115 – ident: ref35 doi: 10.1109/10.532130 – volume: 16 start-page: 31 year: 1990 ident: ref5 article-title: Assessment of balance control in humans publication-title: Med Prog Technol – year: 1984 ident: ref38 publication-title: Multivariate Observations doi: 10.1002/9780470316641 – ident: ref42 doi: 10.1017/CBO9780511801389 – ident: ref46 doi: 10.1093/geronj/49.2.M72 – ident: ref3 doi: 10.1002/mds.21015 – ident: ref23 doi: 10.1016/S0165-0270(97)02254-1 – ident: ref1 doi: 10.1016/0959-4388(94)90137-6 – ident: ref10 doi: 10.1111/j.1468-1331.2009.02641.x – ident: ref18 doi: 10.1136/jnnp.73.3.267 – ident: ref21 doi: 10.1016/j.gaitpost.2009.08.232 – ident: ref14 doi: 10.1016/S0966-6362(01)00199-0 – ident: ref25 doi: 10.1001/archneur.56.1.33 – start-page: 3624 year: 2008 ident: ref33 article-title: Empirical mode decomposition applied to tissue artifact removal from respiratory signal publication-title: Proc 30th Int Conf IEEE Eng Med Biol Soc – ident: ref28 doi: 10.1109/MEMB.2003.1213632 – ident: ref6 doi: 10.1109/TBME.2008.2002103 – ident: ref29 doi: 10.1109/IEMBS.2009.5333129 – ident: ref20 doi: 10.1016/j.neulet.2005.10.020 – ident: ref32 doi: 10.1098/rspa.1998.0193 – ident: ref9 doi: 10.1016/j.gaitpost.2003.07.005 – ident: ref13 doi: 10.1109/TBME.2005.857673 – ident: ref17 doi: 10.1007/s00221-007-1024-y – ident: ref27 doi: 10.1109/TITB.2009.2033471 – ident: ref36 doi: 10.1016/S0268-0033(02)00107-9 – ident: ref24 doi: 10.1109/IEMBS.2009.5333997 – ident: ref45 doi: 10.1212/WNL.40.10.1529 – ident: ref22 doi: 10.1016/j.expneurol.2004.12.008 – ident: ref4 doi: 10.1016/j.neucli.2008.09.004 – ident: ref19 doi: 10.1002/mds.10418 – ident: ref16 doi: 10.1016/j.gaitpost.2008.09.014 – ident: ref2 doi: 10.1093/ageing/afl077 – ident: ref43 doi: 10.1093/jnci/95.1.14 – ident: ref8 doi: 10.1016/S0021-9290(00)00061-0 |
SSID | ssj0014513 |
Score | 2.317085 |
Snippet | Posture analysis in quiet standing is a key component of the clinical evaluation of Parkinson's disease (PD), postural instability being one of PD's major... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 481 |
SubjectTerms | Acceleration Accelerometer Aged Algorithms Artificial Intelligence Diagnostic Techniques and Procedures - instrumentation Discriminant Analysis Disease Progression Displacement measurement feature selection Female Frequency conversion Humans Logistic Models Male Middle Aged Parkinson Disease - classification Parkinson Disease - diagnosis Parkinson Disease - physiopathology Parkinson's disease (PD) posture Posture - physiology Reproducibility of Results Signal Processing, Computer-Assisted Time frequency analysis Time measurement |
Title | Feature Selection for Accelerometer-Based Posture Analysis in Parkinson's Disease |
URI | https://ieeexplore.ieee.org/document/5719552 https://www.ncbi.nlm.nih.gov/pubmed/21349795 https://www.proquest.com/docview/864785944 https://www.proquest.com/docview/874188934 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ug-jB1_pYX-QgCGLXdps0zdEnKqwg7sLeSpqmIEpXdHvx1zuTPlhExVtbpuljps03mZlvAI6iSGSBEtJLVS49jgjX077UXpzjbBsJFWpBtcODh-h2xO_HYjwHp20tjLXWJZ_ZHm26WH42MSUtlaHzjsMK_OHOo-NW1Wq1EQMugjqZXiFilEEdwQx8dTa8G15UZJ3o30jEQ44BOORKUleJmenI9Vf5HWq6KedmFQbNzVaZJi-9cpr2zOc3Hsf_Ps0arNTYk51XxrIOc7bYgOUZRsINWBzUsfYOPBI6LN8te3KtclB_DAEuOzcG94nkADXiXeAkmDHq-EuSDcMJey4YlVO7yrLjD3ZVRYE2YXRzPby89eoGDJ7hXEy9TAqVoQPJtTVC9-MgymQ_5yGijlQHeCA2cRj3U8R0JkQ_CiUzy4XViucR8bpswUIxKewOsL4KYuXneSpsRhYRKx5IP400AhIcM--C3-ghMTU7OTXJeE2cl-KrhLSYkBaTWotdOGlPeauoOf4S7pAGWsH65XeBNcpO8LuiYIku7KT8SGIqwsVH4n-IEPMP4j0U2a7spB2-Ma_dny-7B0vV2jQlTu7DwvS9tAcIbqbpobPqL5VW8CY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9tAEB5FILVwKBBaGp57qISE6mDHu17vEdpGCU2QKoLEzVqv11IFcqokvvTXM7N-CCFA3GxrvH7M2PvNzsw3AN-iSGSBEtJLVS49jgjX077UXpzjbBsJFWpBtcPT62h0y6_uxF0Hvre1MNZal3xm-7TpYvnZ3JS0VIbOOw4r8Ie7LqgYt6rWamMGXAR1Or1CzCiDOoYZ-Op8Np5dVnSd6OFIRESOAzjkSlJfiScTkuuw8jrYdJPOcAumze1WuSb3_XKV9s3_Z0yO732ebfhUo092UZnLDnRs0YXNJ5yEXfgwraPtu_CH8GG5sOzGNctBDTKEuOzCGNwnmgPUiXeJ02DGqOcvSTYcJ-xvwaig2tWWnS7ZzyoO9Bluh79mP0Ze3YLBM5yLlZdJoTJ0Ibm2RuhBHESZHOQ8RNyR6gAPxCYO40GKqM6E6EmhZGa5sFrxPCJmly-wVswL-xXYQAWx8vM8FTYjm4gVD6SfRhohCY6Z98Bv9JCYmp-c2mQ8JM5P8VVCWkxIi0mtxR6ctaf8q8g53hLeJQ20gvXL7wFrlJ3gl0XhEl3YeblMYirDxUfib4gQ9w8iPhTZq-ykHb4xr_2XL3sCH0ez6SSZjK9_H8BGtVJNaZSHsLZalPYIoc4qPXYW_ghClPNu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+selection+for+accelerometer-based+posture+analysis+in+Parkinson%27s+disease&rft.jtitle=IEEE+transactions+on+information+technology+in+biomedicine&rft.au=Palmerini%2C+Luca&rft.au=Rocchi%2C+Laura&rft.au=Mellone%2C+Sabato&rft.au=Valzania%2C+Franco&rft.date=2011-05-01&rft.issn=1558-0032&rft.eissn=1558-0032&rft.volume=15&rft.issue=3&rft.spage=481&rft_id=info:doi/10.1109%2FTITB.2011.2107916&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-7771&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-7771&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-7771&client=summon |