3D printing of biomimetic multi-layered GelMA/nHA scaffold for osteochondral defect repair
Currently, osteochondral defects frequently cause limited motion and impaired function of the joint, leading to serious healthcare problems, and it is still very challenging to realize the simultaneous regeneration of subchondral bone with cartilage. In the current study, we designed a tri-layered s...
Saved in:
Published in | Materials & design Vol. 171; no. C; p. 107708 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United Kingdom
Elsevier Ltd
05.06.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Currently, osteochondral defects frequently cause limited motion and impaired function of the joint, leading to serious healthcare problems, and it is still very challenging to realize the simultaneous regeneration of subchondral bone with cartilage. In the current study, we designed a tri-layered scaffold and fabricated it using the extrusion-based multi-nozzle 3D printing technology. The bioinks used for 3D printing included a 15% methacrylated gelatin (GelMA) hydrogel for cartilage on top layer, a combination of 20% GelMA and 3% nanohydroxyapatite (nHA) (20/3% GelMA/nHA) hydrogel for interfacial layer, and a 30/3% GelMA/nHA hydrogel for subchondral bone at bottom layer. The water absorption capacity, biodegradation, and mechanical properties of hydrogels and scaffolds were characterized, and in vitro assay with bone marrow mesenchymal stem cells (BMSCs) was performed to indicate the biocompatibility of scaffolds. Based on the results of in vivo repair of rabbit osteochondral defect, the neo-tissues in defects integrated better with the surrounding tissues, the joint surface of the defects was smoother, and more cartilage-specific extracellular matrix and collagen type II were observed using the tri-layered scaffolds. This study not only provides a potential manufacturing method for multi-layered scaffolds, but also is helpful for understanding the regeneration mechanism of cartilage-subchondral bone.
[Display omitted]
•A functionally graded osteochondral scaffold was manufactured using GelMA/nHA hydrogels by extrusion-based 3D printing•The scaffold manufacturing process was simple and efficient without additional postprocess•The scaffolds have appropriate swelling ratio, biodegradation rate, mechanical properties, and excellent biocompatibility•The tri-layered GelMA/nHA scaffolds showed promising in vivo results of rabbit osteochondral defect repair |
---|---|
AbstractList | Currently, osteochondral defects frequently cause limited motion and impaired function of the joint, leading to serious healthcare problems, and it is still very challenging to realize the simultaneous regeneration of subchondral bone with cartilage. In the current study, we designed a tri-layered scaffold and fabricated it using the extrusion-based multi-nozzle 3D printing technology. The bioinks used for 3D printing included a 15% methacrylated gelatin (GelMA) hydrogel for cartilage on top layer, a combination of 20% GelMA and 3% nanohydroxyapatite (nHA) (20/3% GelMA/nHA) hydrogel for interfacial layer, and a 30/3% GelMA/nHA hydrogel for subchondral bone at bottom layer. The water absorption capacity, biodegradation, and mechanical properties of hydrogels and scaffolds were characterized, and in vitro assay with bone marrow mesenchymal stem cells (BMSCs) was performed to indicate the biocompatibility of scaffolds. Based on the results of in vivo repair of rabbit osteochondral defect, the neo-tissues in defects integrated better with the surrounding tissues, the joint surface of the defects was smoother, and more cartilage-specific extracellular matrix and collagen type II were observed using the tri-layered scaffolds. This study not only provides a potential manufacturing method for multi-layered scaffolds, but also is helpful for understanding the regeneration mechanism of cartilage-subchondral bone.
[Display omitted]
•A functionally graded osteochondral scaffold was manufactured using GelMA/nHA hydrogels by extrusion-based 3D printing•The scaffold manufacturing process was simple and efficient without additional postprocess•The scaffolds have appropriate swelling ratio, biodegradation rate, mechanical properties, and excellent biocompatibility•The tri-layered GelMA/nHA scaffolds showed promising in vivo results of rabbit osteochondral defect repair Currently, osteochondral defects frequently cause limited motion and impaired function of the joint, leading to serious healthcare problems, and it is still very challenging to realize the simultaneous regeneration of subchondral bone with cartilage. In the current study, we designed a tri-layered scaffold and fabricated it using the extrusion-based multi-nozzle 3D printing technology. The bioinks used for 3D printing included a 15% methacrylated gelatin (GelMA) hydrogel for cartilage on top layer, a combination of 20% GelMA and 3% nanohydroxyapatite (nHA) (20/3% GelMA/nHA) hydrogel for interfacial layer, and a 30/3% GelMA/nHA hydrogel for subchondral bone at bottom layer. The water absorption capacity, biodegradation, and mechanical properties of hydrogels and scaffolds were characterized, and in vitro assay with bone marrow mesenchymal stem cells (BMSCs) was performed to indicate the biocompatibility of scaffolds. Based on the results of in vivo repair of rabbit osteochondral defect, the neo-tissues in defects integrated better with the surrounding tissues, the joint surface of the defects was smoother, and more cartilage-specific extracellular matrix and collagen type II were observed using the tri-layered scaffolds. This study not only provides a potential manufacturing method for multi-layered scaffolds, but also is helpful for understanding the regeneration mechanism of cartilage-subchondral bone. Keywords: 3D printing, Scaffold, Methacrylated gelatin (GelMA), Osteochondral defect, Cartilage repair |
ArticleNumber | 107708 |
Author | Yan, Mengling Suo, Hairui Liu, Jingyi Li, Liang Fu, Jianzhong Yin, Jun |
Author_xml | – sequence: 1 givenname: Jingyi surname: Liu fullname: Liu, Jingyi organization: The State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China – sequence: 2 givenname: Liang surname: Li fullname: Li, Liang organization: Department of Orthopedics, No. 906 Hospital of People's Liberation Army, Ningbo 315040, China – sequence: 3 givenname: Hairui surname: Suo fullname: Suo, Hairui organization: College of Automation, Hangzhou Dianzi University, Hangzhou 310018, China – sequence: 4 givenname: Mengling surname: Yan fullname: Yan, Mengling organization: The State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China – sequence: 5 givenname: Jun orcidid: 0000-0002-1937-6812 surname: Yin fullname: Yin, Jun email: junyin@zju.edu.cn organization: The State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China – sequence: 6 givenname: Jianzhong surname: Fu fullname: Fu, Jianzhong email: fjz@zju.edu.cn organization: The State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China |
BackLink | https://www.osti.gov/biblio/1547619$$D View this record in Osti.gov |
BookMark | eNqFkU9rFTEUxYNU8LX6DVwE9_OaZDKTjAvhUbUtVNzoxk3In3vbPGaSkolCv715jm5c6CpwOefHOTnn5CzlBIS85mzPGR8vj_vF1gDrXjA-tZNSTD8jO65V30k-qTOyY2KUHRdqeEHO1_XImBCqlzvyrX9PH0tMNaZ7mpG6mJe4QI2eLt_nGrvZPkGBQK9h_nS4TDcHunqLmOdAMRea1wrZP-QUip1pAARfaYFHG8tL8hztvMKr3-8F-frxw5erm-7u8_Xt1eGu81IOtQsSrWO9dSiV8yLYITA99ai1BB5wGrRArrnC3o_aaRyscD0woYPU3AXXX5DbjRuyPZpWZrHlyWQbza9DLvfGllZoBoPolEOFduJMOjtoq9QA2HhhxGnkjfVmY7Ve0aw-VvAPPqfUahk-SDXyqYnebiJf8roWQNN0tsacarFxNpyZ0yzmaLZZzGkWs83SzPIv85_E_7G922zQfvJHhHIKB8lDiOWULeT4b8BPnBesQQ |
CitedBy_id | crossref_primary_10_1002_jbm_b_35067 crossref_primary_10_1557_s43579_021_00038_8 crossref_primary_10_1002_app_52155 crossref_primary_10_1002_apj_2360 crossref_primary_10_1088_1748_605X_abc744 crossref_primary_10_1088_1748_605X_ad06c2 crossref_primary_10_3390_polym16131932 crossref_primary_10_3390_polym13050727 crossref_primary_10_1016_j_carbpol_2023_121232 crossref_primary_10_1016_j_mtcomm_2020_100979 crossref_primary_10_1016_j_biomaterials_2023_121999 crossref_primary_10_1016_j_cej_2024_156322 crossref_primary_10_1039_D2BM01891H crossref_primary_10_1016_j_bprint_2020_e00101 crossref_primary_10_3390_polym12123027 crossref_primary_10_1039_D3BM00626C crossref_primary_10_1002_adfm_201909089 crossref_primary_10_1021_acsbiomaterials_2c00813 crossref_primary_10_1073_pnas_2313464121 crossref_primary_10_1016_j_jddst_2025_106720 crossref_primary_10_1002_jbm_b_35079 crossref_primary_10_3390_jfb12010017 crossref_primary_10_3390_mi13071038 crossref_primary_10_1016_j_actbio_2024_03_029 crossref_primary_10_1038_s41528_022_00184_6 crossref_primary_10_1016_j_cobme_2024_100544 crossref_primary_10_1016_j_actbio_2020_06_011 crossref_primary_10_1002_admt_202201421 crossref_primary_10_1007_s10853_021_06229_x crossref_primary_10_1016_j_carbpol_2020_117499 crossref_primary_10_1016_j_ijbiomac_2025_139843 crossref_primary_10_1088_1758_5090_ac5413 crossref_primary_10_3390_ijms222212420 crossref_primary_10_1039_C9TB01494B crossref_primary_10_1016_j_bprint_2022_e00239 crossref_primary_10_1016_j_cej_2020_125081 crossref_primary_10_1002_adhm_202203115 crossref_primary_10_1088_1758_5090_ac8768 crossref_primary_10_3390_polym16050706 crossref_primary_10_3389_fbioe_2021_810155 crossref_primary_10_3390_nano14090749 crossref_primary_10_1016_j_mtnano_2024_100519 crossref_primary_10_1021_acsbiomaterials_2c01321 crossref_primary_10_1016_j_cej_2024_150551 crossref_primary_10_1016_j_bioactmat_2021_06_027 crossref_primary_10_3389_fmats_2019_00313 crossref_primary_10_1039_D1BM01540K crossref_primary_10_1002_adfm_202006697 crossref_primary_10_1016_j_carbpol_2023_121738 crossref_primary_10_1016_j_bioactmat_2024_10_001 crossref_primary_10_1016_j_cej_2023_146685 crossref_primary_10_1177_08839115221119211 crossref_primary_10_1016_j_lfs_2022_121043 crossref_primary_10_3389_fbioe_2023_1153663 crossref_primary_10_3390_polym12091930 crossref_primary_10_1186_s42825_024_00170_w crossref_primary_10_1002_anbr_202400059 crossref_primary_10_1021_acs_biomac_3c01072 crossref_primary_10_1007_s10853_023_08374_x crossref_primary_10_1002_admt_202201244 crossref_primary_10_1016_j_matdes_2019_108184 crossref_primary_10_1016_j_colsurfb_2020_111192 crossref_primary_10_13168_cs_2024_0009 crossref_primary_10_1093_rb_rbaa042 crossref_primary_10_1021_acs_chemrev_9b00812 crossref_primary_10_1016_j_slast_2023_02_003 crossref_primary_10_1016_j_biomaterials_2019_119456 crossref_primary_10_1002_jbm_b_34451 crossref_primary_10_3390_ijms23031841 crossref_primary_10_1021_acsbiomaterials_4c00910 crossref_primary_10_1093_rb_rbac109 crossref_primary_10_1007_s10856_022_06669_0 crossref_primary_10_1016_j_carpta_2025_100752 crossref_primary_10_1039_D1TB02628C crossref_primary_10_1002_adhm_202403840 crossref_primary_10_1016_j_carbpol_2022_120188 crossref_primary_10_1002_adhm_201901648 crossref_primary_10_1007_s42247_024_00730_0 crossref_primary_10_1007_s00339_020_03860_4 crossref_primary_10_1021_acsabm_0c01630 crossref_primary_10_1021_acsami_2c19058 crossref_primary_10_1111_jace_18048 crossref_primary_10_1515_auto_2023_0060 crossref_primary_10_1016_j_jddst_2022_104111 crossref_primary_10_1039_D4BM01132E crossref_primary_10_1039_D3CP00921A crossref_primary_10_3390_polym13010070 crossref_primary_10_1016_j_carbpol_2024_122232 crossref_primary_10_1088_1758_5090_acb73d crossref_primary_10_1039_D0TB00688B crossref_primary_10_1002_adhm_202001342 crossref_primary_10_4028_www_scientific_net_JBBBE_54_103 crossref_primary_10_1016_j_compstruct_2025_118848 crossref_primary_10_3390_mi13050780 crossref_primary_10_3390_ijms24032121 crossref_primary_10_3390_polym13132146 crossref_primary_10_1007_s42242_020_00119_y crossref_primary_10_1089_ten_tea_2020_0350 crossref_primary_10_1016_j_ijpharm_2023_123162 crossref_primary_10_1021_acsami_1c01321 crossref_primary_10_1177_11795972241288099 crossref_primary_10_1016_j_bioactmat_2023_01_012 crossref_primary_10_1007_s42242_021_00177_w crossref_primary_10_1016_j_bioactmat_2022_04_016 crossref_primary_10_1016_j_bioactmat_2023_04_016 crossref_primary_10_1002_mame_202000285 crossref_primary_10_1002_nano_202400149 crossref_primary_10_1080_87559129_2020_1858313 crossref_primary_10_1007_s12257_019_0086_6 crossref_primary_10_3390_polym15071674 crossref_primary_10_1007_s44174_022_00023_2 crossref_primary_10_3390_gels8020084 crossref_primary_10_1515_ntrev_2022_0127 crossref_primary_10_1016_j_bprint_2024_e00365 crossref_primary_10_1016_j_carbpol_2025_123480 crossref_primary_10_1186_s40580_023_00402_5 crossref_primary_10_3389_fmats_2020_528590 crossref_primary_10_1002_adhm_202000208 crossref_primary_10_1002_app_55129 crossref_primary_10_1021_acsbiomaterials_3c01132 crossref_primary_10_3390_ijms252011131 crossref_primary_10_1088_1758_5090_ad0071 crossref_primary_10_3390_gels10110745 crossref_primary_10_3390_md21040212 crossref_primary_10_1016_j_compositesb_2021_109102 crossref_primary_10_1002_mame_202300272 crossref_primary_10_1021_acsabm_3c00093 crossref_primary_10_1186_s42825_020_00043_y crossref_primary_10_1021_acs_biomac_3c01271 crossref_primary_10_3390_polym16040534 crossref_primary_10_5851_kosfa_2021_e14 crossref_primary_10_1016_j_bioactmat_2021_05_011 crossref_primary_10_1021_acs_biomac_3c01424 crossref_primary_10_1088_1758_5090_adba8e crossref_primary_10_1016_j_msec_2020_110937 crossref_primary_10_1080_17452759_2024_2384662 crossref_primary_10_1016_j_colsurfb_2020_111159 crossref_primary_10_1021_acs_chemmater_0c03018 crossref_primary_10_1002_adhm_202001008 crossref_primary_10_1002_adhm_202001404 crossref_primary_10_1016_j_bioadv_2023_213737 |
Cites_doi | 10.1021/acsami.8b03445 10.1007/s42242-018-0004-3 10.1089/ten.tea.2013.0545 10.1002/jor.23121 10.1016/j.biomaterials.2009.08.055 10.1038/srep31036 10.1007/s42242-018-0003-4 10.1186/ar4309 10.1016/j.ijbiomac.2015.05.005 10.1002/adfm.201706644 10.1039/C5TB02113H 10.1016/j.jmbbm.2018.04.022 10.1089/ten.tea.2013.0356 10.1016/j.actbio.2018.07.039 10.1088/1758-5090/aa7078 10.1016/j.ijbiomac.2017.11.017 10.1002/jbm.a.35356 10.1016/j.actbio.2018.08.014 10.1016/j.polymer.2018.06.022 10.1021/acsbiomaterials.6b00587 10.1021/acsbiomaterials.7b00333 10.3390/ijms19061755 10.1089/scd.2012.0116 10.1016/j.jbiomech.2018.03.037 10.1016/j.jmst.2017.11.016 10.1007/s10853-017-0775-5 10.1016/j.actbio.2017.09.005 10.1039/c3bm00199g 10.1016/j.actbio.2008.09.020 10.1177/0363546518780991 10.1163/156856201744489 10.1007/s42242-018-0015-0 10.1016/j.knee.2013.03.009 10.1177/1947603517700954 10.1089/ten.tea.2014.0138 10.22203/eCM.v005a03 10.1016/j.biomaterials.2016.02.006 10.1002/mabi.200900176 10.1089/ten.tea.2011.0543 10.1021/acsami.7b16059 10.1016/j.msec.2018.11.003 10.1039/C6TB00681G 10.1002/jbm.1217 |
ContentType | Journal Article |
Copyright | 2019 The Authors |
Copyright_xml | – notice: 2019 The Authors |
DBID | 6I. AAFTH AAYXX CITATION OTOTI DOA |
DOI | 10.1016/j.matdes.2019.107708 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef OSTI.GOV DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4197 |
ExternalDocumentID | oai_doaj_org_article_ffb7bf7fa9104ba58a775efb3ed6f961 1547619 10_1016_j_matdes_2019_107708 S0264127519301455 |
GroupedDBID | --K --M -~X .~1 0SF 1B1 1~. 4.4 457 4G. 5GY 5VS 6I. 7-5 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAFTH AAIAV AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BCNDV BJAXD BKOJK BLXMC EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ IHE J1W KOM M41 MO0 NCXOZ OAUVE OK1 P2P PC. Q38 ROL SDF SDG SDP SPC SSM SST SSZ T5K ~G- 0R~ 29M AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ JJJVA MAGPM O9- P-8 P-9 R2- RIG RNS RPZ SEW SMS SSH WUQ AALMO ABPIF ABPTK OTOTI EFKBS |
ID | FETCH-LOGICAL-c445t-d4fab03abf47bc2da5d0893f884e1df9582f1817f3c68b8f5a2b3e028d481bdb3 |
IEDL.DBID | DOA |
ISSN | 0264-1275 |
IngestDate | Wed Aug 27 01:15:12 EDT 2025 Fri May 19 00:39:11 EDT 2023 Tue Jul 01 02:23:52 EDT 2025 Thu Apr 24 23:05:13 EDT 2025 Fri Feb 23 02:30:28 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Cartilage repair Scaffold 3D printing Osteochondral defect Methacrylated gelatin (GelMA) |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-d4fab03abf47bc2da5d0893f884e1df9582f1817f3c68b8f5a2b3e028d481bdb3 |
Notes | 2017C01063 USDOE Office of Electricity (OE), Advanced Grid Research & Development. Power Systems Engineering Research |
ORCID | 0000-0002-1937-6812 0000000219376812 |
OpenAccessLink | https://doaj.org/article/ffb7bf7fa9104ba58a775efb3ed6f961 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ffb7bf7fa9104ba58a775efb3ed6f961 osti_scitechconnect_1547619 crossref_citationtrail_10_1016_j_matdes_2019_107708 crossref_primary_10_1016_j_matdes_2019_107708 elsevier_sciencedirect_doi_10_1016_j_matdes_2019_107708 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-05 |
PublicationDateYYYYMMDD | 2019-06-05 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | United Kingdom |
PublicationPlace_xml | – name: United Kingdom |
PublicationTitle | Materials & design |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Matsiko, Gleeson, O'brien (bb0185) 2015; 21 Pinheiro, Cooley, Jun, Prabhu, Elder (bb0140) 2016; 34 Levingstone, Matsiko, Dickson, O'brien, Gleeson (bb0020) 2014; 1 Maryam, Wang, Liu, Liu (bb0045) 2018; 1 Yin, Zhang, Xiang, Wei, Yang, Wang, Fu (bb0130) 2018; 148 Zhang, Zhang, Zhang, Jia, Liu, Xiong, Sun (bb0215) 2017; 9 Jin-hyung, Ki-mo, Kwang, Young, Hyuntae, Kyunghoon, Min, Yeom, Hwa, Won, Ho, Kimoon, Dong-woo (bb0095) 2016; 8 B.N. Loy, Z. Melissa, G.A. Laxman, T.R. Tooley, T. Maerz, J. Bicos, J. Guettler, A biomechanical and structural comparison of articular cartilage and subchondral bone of the glenoid and humeral head, Orthopaedic Journal of Sports Medicine 6 (2018) Loy, B. N., Zimel, M., Gowda, A. L., Tooley, T. R., Maerz, T., Bicos, J., & Guettler, J. (2018) 2325967118785854. Hutmacher (bb0075) 2001; 12 Sio-mei, Liang-yu, Ta-jen (bb0190) 2009; 5 Azizeh-mitra, Hoque, Rangabhatala, Uth (bb0025) 2015; 103 Shahbazarab, Teimouri, Chermahini, Azadi (bb0165) 2018; 108 Cui, Kurt, Finn, Lotz, D'lima (bb0210) 2012; 18 Wang, Wei, Zhou, Wei, Liang, Zhang, You, Shi, Chen, He (bb0205) 2018; 79 Zhang, He, Yan, Li, Zhang, Cui, Jing (bb0070) 2016; 4 Grace, Garcia, Jamali (bb0005) 2017; 3 Algul, Hande, Aydin, Kelleci, Ozdatli, Yener (bb0040) 2015; 79 Levingstone, Ramesh, Brady, Brama, Kearney, Gleeson, O'brien (bb0065) 2016; 87 Gao, Xu, Liang, Liu, Li, Wu, Zhang, Lin, Wu, Ruan, Liu (bb0030) 2018; 28 Holmes, Zhu, Li, Lee, Zhang (bb0050) 2015; 21 Travis, Simone, Johannes, Georgi, Malda, Schuurman, Crawford, Hutmacher (bb0090) 2009; 9 Shah, Liang, Sandeep, Parikh, Schwartz, Goldstein, Lavelle, Datta, Grande (bb0170) 2018; 9 Kang, Zeng (bb0055) 2018; 78 Stephanie, Kristi (bb0135) 2002; 59 Silvia, Henning (bb0240) 2014; 20 Sachlos, Czernuszka (bb0060) 2003; 5 Kumar, Adity, Murugavel (bb0125) 2019; 96 Longley, Ferreira, Gentile (bb0015) 2018; 19 Fairbanks, Schwartz, Christopher, Kristi (bb0100) 2009; 30 Karoly jakab1, Forgacs (bb0160) 2010; 2 Alvin, Chen, Yao, Dustin, Wong, Albert, Cai, William, Robert (bb0035) 2018; 73 Yin, Yan, Wang, Fu, Suo (bb0110) 2018; 10 Monzon, Liu, Sara, Miguel, Ricardo, Ribeiro, Reis (bb0085) 2018; 1 Hitomi, Hoon, Poh, Nam-joon (bb0105) 2016; 6 Motealleh, Eqtesadi, Civantos, Pajares, Miranda (bb0115) 2017; 52 Zhou, Zhang, Cai, Jun, Qin, Wei, Zhu, Jiang, Shen, Zhang, Hong (bb0150) 2017; 63 Shen, Dai, Li, Xu, Gou, Gao (bb0175) 2018; 4 Lee, Park, Lee, Moon, Wang (bb0230) 2018; 46 Y.K. Dai, L. Gang, L.M. A, D.A. Wang, C.Y. Gao, Cell-free macro-porous fibrin scaffolds for in situ inductive regeneration of full-thickness cartilage defects, J. Mater. Chem. B 4 (2016) 4410–4419. Jia, Jing, Zhang, Pan, Zhong, Xin, Yang, Wei, Zhuo, Wu, Hao (bb0010) 2018; 10 Ratner, Hoffman, Schoen, Lemons (bb0180) 2013; 1 Nam, Karunanithi, Poh, Naveen, Chen, Hussin, Chan, Kamarul (bb0220) 2013; 15 Zhang, Yang, Wei, Chen, Tong, Liu, Qin, Hua, Ji, Hong, Zou (bb0225) 2013; 22 Zhang, Luo, Ma, Gao, Li, Xue, Yang, Cui (bb0080) 2018; 1 Motealleh, Eqtesadi, Pajares, Miranda (bb0120) 2018; 84 Youa, Li, Hua, Huangd, Cao, Hua (bb0145) 2018; 34 Yao, Kang, Li, Liu, Xie, Wang, Liu, Wang, Ren (bb0155) 2018; 13 Patil, Nikolai, Lin, Won, Darryl (bb0200) 2014; 21 Pinheiro (10.1016/j.matdes.2019.107708_bb0140) 2016; 34 Matsiko (10.1016/j.matdes.2019.107708_bb0185) 2015; 21 Zhang (10.1016/j.matdes.2019.107708_bb0080) 2018; 1 Fairbanks (10.1016/j.matdes.2019.107708_bb0100) 2009; 30 Shahbazarab (10.1016/j.matdes.2019.107708_bb0165) 2018; 108 Cui (10.1016/j.matdes.2019.107708_bb0210) 2012; 18 Holmes (10.1016/j.matdes.2019.107708_bb0050) 2015; 21 Youa (10.1016/j.matdes.2019.107708_bb0145) 2018; 34 Lee (10.1016/j.matdes.2019.107708_bb0230) 2018; 46 Zhang (10.1016/j.matdes.2019.107708_bb0225) 2013; 22 Motealleh (10.1016/j.matdes.2019.107708_bb0120) 2018; 84 Azizeh-mitra (10.1016/j.matdes.2019.107708_bb0025) 2015; 103 Kumar (10.1016/j.matdes.2019.107708_bb0125) 2019; 96 Karoly jakab1 (10.1016/j.matdes.2019.107708_bb0160) 2010; 2 Jin-hyung (10.1016/j.matdes.2019.107708_bb0095) 2016; 8 Levingstone (10.1016/j.matdes.2019.107708_bb0020) 2014; 1 Algul (10.1016/j.matdes.2019.107708_bb0040) 2015; 79 Wang (10.1016/j.matdes.2019.107708_bb0205) 2018; 79 Hitomi (10.1016/j.matdes.2019.107708_bb0105) 2016; 6 Patil (10.1016/j.matdes.2019.107708_bb0200) 2014; 21 Zhang (10.1016/j.matdes.2019.107708_bb0070) 2016; 4 Yao (10.1016/j.matdes.2019.107708_bb0155) 2018; 13 Shah (10.1016/j.matdes.2019.107708_bb0170) 2018; 9 Kang (10.1016/j.matdes.2019.107708_bb0055) 2018; 78 Maryam (10.1016/j.matdes.2019.107708_bb0045) 2018; 1 Jia (10.1016/j.matdes.2019.107708_bb0010) 2018; 10 Ratner (10.1016/j.matdes.2019.107708_bb0180) 2013; 1 Sachlos (10.1016/j.matdes.2019.107708_bb0060) 2003; 5 Levingstone (10.1016/j.matdes.2019.107708_bb0065) 2016; 87 Nam (10.1016/j.matdes.2019.107708_bb0220) 2013; 15 Shen (10.1016/j.matdes.2019.107708_bb0175) 2018; 4 Zhang (10.1016/j.matdes.2019.107708_bb0215) 2017; 9 Motealleh (10.1016/j.matdes.2019.107708_bb0115) 2017; 52 Stephanie (10.1016/j.matdes.2019.107708_bb0135) 2002; 59 Grace (10.1016/j.matdes.2019.107708_bb0005) 2017; 3 Hutmacher (10.1016/j.matdes.2019.107708_bb0075) 2001; 12 Alvin (10.1016/j.matdes.2019.107708_bb0035) 2018; 73 Yin (10.1016/j.matdes.2019.107708_bb0130) 2018; 148 10.1016/j.matdes.2019.107708_bb0195 Monzon (10.1016/j.matdes.2019.107708_bb0085) 2018; 1 Sio-mei (10.1016/j.matdes.2019.107708_bb0190) 2009; 5 Longley (10.1016/j.matdes.2019.107708_bb0015) 2018; 19 10.1016/j.matdes.2019.107708_bb0235 Travis (10.1016/j.matdes.2019.107708_bb0090) 2009; 9 Yin (10.1016/j.matdes.2019.107708_bb0110) 2018; 10 Zhou (10.1016/j.matdes.2019.107708_bb0150) 2017; 63 Silvia (10.1016/j.matdes.2019.107708_bb0240) 2014; 20 Gao (10.1016/j.matdes.2019.107708_bb0030) 2018; 28 |
References_xml | – volume: 59 start-page: 63 year: 2002 end-page: 72 ident: bb0135 article-title: Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels publication-title: J. Biomed. Mater. Res. – volume: 84 start-page: 35 year: 2018 end-page: 45 ident: bb0120 article-title: Enhancing the mechanical and in vitro performance of robocast bioglass scaffolds by polymeric coatings: effect of polymer composition publication-title: J. Mech. Behav. Biomed. Mater. – volume: 21 start-page: 486 year: 2015 end-page: 497 ident: bb0185 article-title: Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition publication-title: Tissue Engineering - Part a – volume: 21 start-page: 119 year: 2014 end-page: 125 ident: bb0200 article-title: Comparative biomechanical analysis of human and caprine knee articular cartilage publication-title: Knee – volume: 87 start-page: 69 year: 2016 end-page: 81 ident: bb0065 article-title: Cell-free multi-layered collagen-based scaffolds demonstrate layer specific regeneration of functional osteochondral tissue in caprine joints publication-title: Biomaterials – volume: 4 start-page: 2628 year: 2016 end-page: 2645 ident: bb0070 article-title: Regeneration of hyaline-like cartilage and subchondral bone simultaneously by poly(L-glutamic acid) based osteochondral scaffolds with induced autologous adipose derived stem cells publication-title: J. Mater. Chem. B – volume: 9 start-page: 438 year: 2018 end-page: 449 ident: bb0170 article-title: Optimization of degradation profile for new scaffold in cartilage repair publication-title: Cartilage – volume: 21 start-page: 403 year: 2015 end-page: 415 ident: bb0050 article-title: Development of novel three-dimensional printed scaffolds for osteochondral regeneration publication-title: Tissue Engineering - Part a – volume: 9 year: 2017 ident: bb0215 article-title: Biomimetic design and fabrication of multilayered osteochondral scaffolds by low-temperature deposition manufacturing and thermal-induced phase-separation techniques publication-title: Biofabrication – volume: 10 start-page: 20296 year: 2018 end-page: 22030 ident: bb0010 article-title: Multilayered scaffold with a compact interfacial layer enhances osteochondral defect repair publication-title: ACS Appl. Mater. Interfaces – volume: 34 start-page: 1037 year: 2016 end-page: 1046 ident: bb0140 article-title: Comparison of natural crosslinking agents for the stabilization of xenogenic articular cartilage publication-title: J. Orthop. Res. – volume: 20 start-page: 2052 year: 2014 end-page: 2076 ident: bb0240 article-title: Bioinspired scaffolds for osteochondral regeneration publication-title: Tissue Engineering - Part a – volume: 8 year: 2016 ident: bb0095 article-title: Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint publication-title: Biofabrication – volume: 52 start-page: 9179 year: 2017 end-page: 9191 ident: bb0115 article-title: Robocast 45S5 bioglass scaffolds: in vitro behavior publication-title: J. Mater. Sci. – volume: 148 start-page: 93 year: 2018 end-page: 100 ident: bb0130 article-title: The influence of cross-sectional morphology on the compressive resistance of polymeric nerve conduits publication-title: Polymer – volume: 12 start-page: 107 year: 2001 end-page: 124 ident: bb0075 article-title: Scaffold design and fabrication technologies for engineering tissues - state of the art and future perspectives publication-title: Journal of Biomaterials Science Polymer Edition – volume: 10 start-page: 6849 year: 2018 end-page: 6857 ident: bb0110 article-title: 3D bioprinting of low-concentration cell-laden gelatin methacrylate (gelma) bioinks with a two-step cross-linking strategy publication-title: ACS Appl. Mater. Interfaces – volume: 103 start-page: 2460 year: 2015 end-page: 2481 ident: bb0025 article-title: Current strategies in multiphasic scaffold design for osteochondral tissue engineering: a review publication-title: J. Biomed. Mater. Res. A – volume: 1 start-page: 703 year: 2013 end-page: 710 ident: bb0180 article-title: Preparation of porous PLGA/Ti biphasic scaffold and osteochondral defect repair publication-title: Biomaterials Science – volume: 1 start-page: 2 year: 2018 end-page: 13 ident: bb0080 article-title: 3D bioprinting: an emerging technology full of opportunities and challenges publication-title: BIO-DESIGN and Manufacturing – volume: 34 start-page: 1016 year: 2018 end-page: 1025 ident: bb0145 article-title: Bilayered HA/CS/PEGDA hydrogel with good biocompatibility and self-healing property for potential application in osteochondral defect repair publication-title: Journal of Materials Science & Technology – reference: B.N. Loy, Z. Melissa, G.A. Laxman, T.R. Tooley, T. Maerz, J. Bicos, J. Guettler, A biomechanical and structural comparison of articular cartilage and subchondral bone of the glenoid and humeral head, Orthopaedic Journal of Sports Medicine 6 (2018) Loy, B. N., Zimel, M., Gowda, A. L., Tooley, T. R., Maerz, T., Bicos, J., & Guettler, J. (2018) 2325967118785854. – volume: 2 year: 2010 ident: bb0160 article-title: Tissue engineering by self-assembly and bio- printing of living cells publication-title: Biofabrication – volume: 5 start-page: 670 year: 2009 end-page: 679 ident: bb0190 article-title: Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering publication-title: Acta Biomater. – volume: 79 start-page: 363 year: 2015 end-page: 369 ident: bb0040 article-title: Biocompatibility of biomimetic multilayered alginate–chitosan/β-TCP scaffold for osteochondral tissue publication-title: Int. J. Biol. Macromol. – volume: 3 start-page: 2657 year: 2017 end-page: 2668 ident: bb0005 article-title: 3D bioprinting: new directions in articular cartilage tissue engineering publication-title: ACS Biomaterials Science and Engineering – reference: Y.K. Dai, L. Gang, L.M. A, D.A. Wang, C.Y. Gao, Cell-free macro-porous fibrin scaffolds for in situ inductive regeneration of full-thickness cartilage defects, J. Mater. Chem. B 4 (2016) 4410–4419. – volume: 9 start-page: 1049 year: 2009 end-page: 1058 ident: bb0090 article-title: Strategies for zonal cartilage repair using hydrogels publication-title: Macromol. Biosci. – volume: 1 start-page: 69 year: 2018 end-page: 75 ident: bb0085 article-title: Functionally graded additive manufacturing to achieve functionality specifications of osteochondral scaffolds publication-title: BIO-DESIGN and Manufacturing – volume: 63 start-page: 64 year: 2017 end-page: 75 ident: bb0150 article-title: Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair publication-title: Acta Biomater. – volume: 13 year: 2018 ident: bb0155 article-title: Novel beta-TCP/PVA bilayered hydrogels with considerable physical and bio-functional properties for osteochondral repair publication-title: Biomed. Mater. – volume: 6 start-page: 31036 year: 2016 ident: bb0105 article-title: Precise tuning of facile one-pot gelatin methacryloyl (gelma) synthesis publication-title: Sci. Rep. – volume: 15 start-page: R129 year: 2013 ident: bb0220 article-title: The effects of staged intra-articular injection of cultured autologous mesenchymal stromal cells on the repair of damaged cartilage: a pilot study in caprine model publication-title: Arthritis Research & Therapy – volume: 5 start-page: 29 year: 2003 end-page: 40 ident: bb0060 article-title: Making tissue engineering scaffolds work: review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds publication-title: European Cells & Materials – volume: 108 start-page: 1017 year: 2018 end-page: 1102 ident: bb0165 article-title: Fabrication and characterization of nanobiocomposite scaffold of zein/chitosan/nanohydroxyapatite prepared by freeze-drying method for bone tissue engineering publication-title: Int. J. Biol. Macromol. – volume: 19 start-page: 1755 year: 2018 end-page: 1771 ident: bb0015 article-title: Recent approaches to the manufacturing of biomimetic multi-phasic scaffolds for osteochondral regeneration publication-title: International Journal of Molecular Science – volume: 4 start-page: 1942 year: 2018 end-page: 1953 ident: bb0175 article-title: Regeneration of the osteochondral defect by a wollastonite and macroporous fibrin biphasic scaffold publication-title: ACS Biomaterials Science and Engineering – volume: 28 year: 2018 ident: bb0030 article-title: Direct 3D printing of high strength biohybrid gradient hydrogel scaffolds for efficient repair of osteochondral defect publication-title: Adv. Funct. Mater. – volume: 1 start-page: 200 year: 2014 end-page: 1996 ident: bb0020 article-title: A biomimetic multi-layered collagen-based scaffold for osteochondral repair publication-title: ACTA Biomaterialia 10 – volume: 79 start-page: 168 year: 2018 end-page: 181 ident: bb0205 article-title: Fabrication of heterogeneous porous bilayered nanofibrous vascular grafts by two-step phase separation technique publication-title: Acta Biomater. – volume: 18 start-page: 1304 year: 2012 end-page: 1312 ident: bb0210 article-title: Direct human cartilage repair using three-dimensional bioprinting technology publication-title: Tissue Engineering - Part a – volume: 1 start-page: 101 year: 2018 end-page: 114 ident: bb0045 article-title: Osteochondral tissue repair in osteoarthritic joints: clinical challenges and opportunities in tissue engineering publication-title: BIO-DESIGN and Manufacturing – volume: 30 start-page: 6702 year: 2009 end-page: 6707 ident: bb0100 article-title: Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6- trimethylbenzoylphosphinate: polymerization rate and cytocompatibility publication-title: Biomaterials – volume: 96 start-page: 20 year: 2019 end-page: 29 ident: bb0125 article-title: Effect of surfactant concentration on textural characteristics and biomineralization behavior of mesoporous bioactive glasses publication-title: Materials Science & Engineering C – volume: 46 start-page: 2242 year: 2018 end-page: 2252 ident: bb0230 article-title: Therapeutic efficacy of spherical aggregated human bone marrow–derived mesenchymal stem cells cultured for osteochondral defects of rabbit knee joints publication-title: Am. J. Sports Med. – volume: 78 start-page: 365 year: 2018 end-page: 377 ident: bb0055 article-title: Functionally graded multilayer scaffolds for in vivo osteochondral tissue engineering publication-title: Acta Biomater. – volume: 22 start-page: 90 year: 2013 end-page: 101 ident: bb0225 article-title: Neonatal desensitization supports long-term survival and functional integration of human embryonic stem cell-derived mesenchymal stem cells in rat joint cartilage without immunosuppression publication-title: Stem Cells Dev. – volume: 73 start-page: 127 year: 2018 end-page: 136 ident: bb0035 article-title: Biomechanics of osteochondral impact with cushioning and graft insertion: cartilage damage is correlated with delivered energy publication-title: J. Biomech. – volume: 10 start-page: 20296 year: 2018 ident: 10.1016/j.matdes.2019.107708_bb0010 article-title: Multilayered scaffold with a compact interfacial layer enhances osteochondral defect repair publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b03445 – volume: 1 start-page: 2 year: 2018 ident: 10.1016/j.matdes.2019.107708_bb0080 article-title: 3D bioprinting: an emerging technology full of opportunities and challenges publication-title: BIO-DESIGN and Manufacturing doi: 10.1007/s42242-018-0004-3 – volume: 21 start-page: 486 year: 2015 ident: 10.1016/j.matdes.2019.107708_bb0185 article-title: Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition publication-title: Tissue Engineering - Part a doi: 10.1089/ten.tea.2013.0545 – volume: 34 start-page: 1037 year: 2016 ident: 10.1016/j.matdes.2019.107708_bb0140 article-title: Comparison of natural crosslinking agents for the stabilization of xenogenic articular cartilage publication-title: J. Orthop. Res. doi: 10.1002/jor.23121 – volume: 30 start-page: 6702 year: 2009 ident: 10.1016/j.matdes.2019.107708_bb0100 article-title: Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6- trimethylbenzoylphosphinate: polymerization rate and cytocompatibility publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.08.055 – volume: 6 start-page: 31036 year: 2016 ident: 10.1016/j.matdes.2019.107708_bb0105 article-title: Precise tuning of facile one-pot gelatin methacryloyl (gelma) synthesis publication-title: Sci. Rep. doi: 10.1038/srep31036 – volume: 1 start-page: 69 year: 2018 ident: 10.1016/j.matdes.2019.107708_bb0085 article-title: Functionally graded additive manufacturing to achieve functionality specifications of osteochondral scaffolds publication-title: BIO-DESIGN and Manufacturing doi: 10.1007/s42242-018-0003-4 – volume: 15 start-page: R129 year: 2013 ident: 10.1016/j.matdes.2019.107708_bb0220 article-title: The effects of staged intra-articular injection of cultured autologous mesenchymal stromal cells on the repair of damaged cartilage: a pilot study in caprine model publication-title: Arthritis Research & Therapy doi: 10.1186/ar4309 – volume: 79 start-page: 363 year: 2015 ident: 10.1016/j.matdes.2019.107708_bb0040 article-title: Biocompatibility of biomimetic multilayered alginate–chitosan/β-TCP scaffold for osteochondral tissue publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2015.05.005 – volume: 28 year: 2018 ident: 10.1016/j.matdes.2019.107708_bb0030 article-title: Direct 3D printing of high strength biohybrid gradient hydrogel scaffolds for efficient repair of osteochondral defect publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201706644 – ident: 10.1016/j.matdes.2019.107708_bb0195 – volume: 4 start-page: 2628 year: 2016 ident: 10.1016/j.matdes.2019.107708_bb0070 article-title: Regeneration of hyaline-like cartilage and subchondral bone simultaneously by poly(L-glutamic acid) based osteochondral scaffolds with induced autologous adipose derived stem cells publication-title: J. Mater. Chem. B doi: 10.1039/C5TB02113H – volume: 84 start-page: 35 year: 2018 ident: 10.1016/j.matdes.2019.107708_bb0120 article-title: Enhancing the mechanical and in vitro performance of robocast bioglass scaffolds by polymeric coatings: effect of polymer composition publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2018.04.022 – volume: 20 start-page: 2052 year: 2014 ident: 10.1016/j.matdes.2019.107708_bb0240 article-title: Bioinspired scaffolds for osteochondral regeneration publication-title: Tissue Engineering - Part a doi: 10.1089/ten.tea.2013.0356 – volume: 13 year: 2018 ident: 10.1016/j.matdes.2019.107708_bb0155 article-title: Novel beta-TCP/PVA bilayered hydrogels with considerable physical and bio-functional properties for osteochondral repair publication-title: Biomed. Mater. – volume: 78 start-page: 365 year: 2018 ident: 10.1016/j.matdes.2019.107708_bb0055 article-title: Functionally graded multilayer scaffolds for in vivo osteochondral tissue engineering publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.07.039 – volume: 9 year: 2017 ident: 10.1016/j.matdes.2019.107708_bb0215 article-title: Biomimetic design and fabrication of multilayered osteochondral scaffolds by low-temperature deposition manufacturing and thermal-induced phase-separation techniques publication-title: Biofabrication doi: 10.1088/1758-5090/aa7078 – volume: 2 year: 2010 ident: 10.1016/j.matdes.2019.107708_bb0160 article-title: Tissue engineering by self-assembly and bio- printing of living cells publication-title: Biofabrication – volume: 108 start-page: 1017 year: 2018 ident: 10.1016/j.matdes.2019.107708_bb0165 article-title: Fabrication and characterization of nanobiocomposite scaffold of zein/chitosan/nanohydroxyapatite prepared by freeze-drying method for bone tissue engineering publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.11.017 – volume: 103 start-page: 2460 year: 2015 ident: 10.1016/j.matdes.2019.107708_bb0025 article-title: Current strategies in multiphasic scaffold design for osteochondral tissue engineering: a review publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.35356 – volume: 79 start-page: 168 year: 2018 ident: 10.1016/j.matdes.2019.107708_bb0205 article-title: Fabrication of heterogeneous porous bilayered nanofibrous vascular grafts by two-step phase separation technique publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.08.014 – volume: 148 start-page: 93 year: 2018 ident: 10.1016/j.matdes.2019.107708_bb0130 article-title: The influence of cross-sectional morphology on the compressive resistance of polymeric nerve conduits publication-title: Polymer doi: 10.1016/j.polymer.2018.06.022 – volume: 3 start-page: 2657 year: 2017 ident: 10.1016/j.matdes.2019.107708_bb0005 article-title: 3D bioprinting: new directions in articular cartilage tissue engineering publication-title: ACS Biomaterials Science and Engineering doi: 10.1021/acsbiomaterials.6b00587 – volume: 4 start-page: 1942 year: 2018 ident: 10.1016/j.matdes.2019.107708_bb0175 article-title: Regeneration of the osteochondral defect by a wollastonite and macroporous fibrin biphasic scaffold publication-title: ACS Biomaterials Science and Engineering doi: 10.1021/acsbiomaterials.7b00333 – volume: 19 start-page: 1755 year: 2018 ident: 10.1016/j.matdes.2019.107708_bb0015 article-title: Recent approaches to the manufacturing of biomimetic multi-phasic scaffolds for osteochondral regeneration publication-title: International Journal of Molecular Science doi: 10.3390/ijms19061755 – volume: 22 start-page: 90 year: 2013 ident: 10.1016/j.matdes.2019.107708_bb0225 article-title: Neonatal desensitization supports long-term survival and functional integration of human embryonic stem cell-derived mesenchymal stem cells in rat joint cartilage without immunosuppression publication-title: Stem Cells Dev. doi: 10.1089/scd.2012.0116 – volume: 73 start-page: 127 year: 2018 ident: 10.1016/j.matdes.2019.107708_bb0035 article-title: Biomechanics of osteochondral impact with cushioning and graft insertion: cartilage damage is correlated with delivered energy publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2018.03.037 – volume: 34 start-page: 1016 year: 2018 ident: 10.1016/j.matdes.2019.107708_bb0145 article-title: Bilayered HA/CS/PEGDA hydrogel with good biocompatibility and self-healing property for potential application in osteochondral defect repair publication-title: Journal of Materials Science & Technology doi: 10.1016/j.jmst.2017.11.016 – volume: 52 start-page: 9179 year: 2017 ident: 10.1016/j.matdes.2019.107708_bb0115 article-title: Robocast 45S5 bioglass scaffolds: in vitro behavior publication-title: J. Mater. Sci. doi: 10.1007/s10853-017-0775-5 – volume: 63 start-page: 64 year: 2017 ident: 10.1016/j.matdes.2019.107708_bb0150 article-title: Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.09.005 – volume: 1 start-page: 200 year: 2014 ident: 10.1016/j.matdes.2019.107708_bb0020 article-title: A biomimetic multi-layered collagen-based scaffold for osteochondral repair publication-title: ACTA Biomaterialia 10 – volume: 1 start-page: 703 year: 2013 ident: 10.1016/j.matdes.2019.107708_bb0180 article-title: Preparation of porous PLGA/Ti biphasic scaffold and osteochondral defect repair publication-title: Biomaterials Science doi: 10.1039/c3bm00199g – volume: 5 start-page: 670 year: 2009 ident: 10.1016/j.matdes.2019.107708_bb0190 article-title: Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering publication-title: Acta Biomater. doi: 10.1016/j.actbio.2008.09.020 – volume: 46 start-page: 2242 year: 2018 ident: 10.1016/j.matdes.2019.107708_bb0230 article-title: Therapeutic efficacy of spherical aggregated human bone marrow–derived mesenchymal stem cells cultured for osteochondral defects of rabbit knee joints publication-title: Am. J. Sports Med. doi: 10.1177/0363546518780991 – volume: 12 start-page: 107 year: 2001 ident: 10.1016/j.matdes.2019.107708_bb0075 article-title: Scaffold design and fabrication technologies for engineering tissues - state of the art and future perspectives publication-title: Journal of Biomaterials Science Polymer Edition doi: 10.1163/156856201744489 – volume: 1 start-page: 101 year: 2018 ident: 10.1016/j.matdes.2019.107708_bb0045 article-title: Osteochondral tissue repair in osteoarthritic joints: clinical challenges and opportunities in tissue engineering publication-title: BIO-DESIGN and Manufacturing doi: 10.1007/s42242-018-0015-0 – volume: 21 start-page: 119 year: 2014 ident: 10.1016/j.matdes.2019.107708_bb0200 article-title: Comparative biomechanical analysis of human and caprine knee articular cartilage publication-title: Knee doi: 10.1016/j.knee.2013.03.009 – volume: 9 start-page: 438 year: 2018 ident: 10.1016/j.matdes.2019.107708_bb0170 article-title: Optimization of degradation profile for new scaffold in cartilage repair publication-title: Cartilage doi: 10.1177/1947603517700954 – volume: 21 start-page: 403 year: 2015 ident: 10.1016/j.matdes.2019.107708_bb0050 article-title: Development of novel three-dimensional printed scaffolds for osteochondral regeneration publication-title: Tissue Engineering - Part a doi: 10.1089/ten.tea.2014.0138 – volume: 5 start-page: 29 year: 2003 ident: 10.1016/j.matdes.2019.107708_bb0060 article-title: Making tissue engineering scaffolds work: review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds publication-title: European Cells & Materials doi: 10.22203/eCM.v005a03 – volume: 87 start-page: 69 year: 2016 ident: 10.1016/j.matdes.2019.107708_bb0065 article-title: Cell-free multi-layered collagen-based scaffolds demonstrate layer specific regeneration of functional osteochondral tissue in caprine joints publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.02.006 – volume: 9 start-page: 1049 year: 2009 ident: 10.1016/j.matdes.2019.107708_bb0090 article-title: Strategies for zonal cartilage repair using hydrogels publication-title: Macromol. Biosci. doi: 10.1002/mabi.200900176 – volume: 18 start-page: 1304 year: 2012 ident: 10.1016/j.matdes.2019.107708_bb0210 article-title: Direct human cartilage repair using three-dimensional bioprinting technology publication-title: Tissue Engineering - Part a doi: 10.1089/ten.tea.2011.0543 – volume: 10 start-page: 6849 year: 2018 ident: 10.1016/j.matdes.2019.107708_bb0110 article-title: 3D bioprinting of low-concentration cell-laden gelatin methacrylate (gelma) bioinks with a two-step cross-linking strategy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b16059 – volume: 96 start-page: 20 year: 2019 ident: 10.1016/j.matdes.2019.107708_bb0125 article-title: Effect of surfactant concentration on textural characteristics and biomineralization behavior of mesoporous bioactive glasses publication-title: Materials Science & Engineering C doi: 10.1016/j.msec.2018.11.003 – ident: 10.1016/j.matdes.2019.107708_bb0235 doi: 10.1039/C6TB00681G – volume: 8 year: 2016 ident: 10.1016/j.matdes.2019.107708_bb0095 article-title: Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint publication-title: Biofabrication – volume: 59 start-page: 63 year: 2002 ident: 10.1016/j.matdes.2019.107708_bb0135 article-title: Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.1217 |
SSID | ssj0022734 |
Score | 2.5962956 |
Snippet | Currently, osteochondral defects frequently cause limited motion and impaired function of the joint, leading to serious healthcare problems, and it is still... |
SourceID | doaj osti crossref elsevier |
SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 107708 |
SubjectTerms | 3D printing Cartilage repair Methacrylated gelatin (GelMA) Osteochondral defect Scaffold |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELba7aU9IChUXQrIB67RJrEdO8elUBZQeymVKi6RX4OClqQK20P_PTN5rLanSj3GivMYOzOfnW--Yexj6r2UYLMEXZ_ABUrqExO8TTKqJRJzq2zPJry8KlY38vutut1j51MuDNEqR98_-PTeW48ti9Gai7u6Xlzj6kGSPDlCEPo3pvbZQS7KAqf2wfLbj9XVdt1FCi7DVgtJ9Gk1ZdD1NC_EhSGSbndWYpPWVGdyJ0L1Qv6PAtWsxW9vJwZdvGQvRvDIl8PzvWJ7sTlmRzuSgq_ZL_GZ014dsZl5C5zS6-u_lKnIe-5gsrYPVJ6Tf43ry-WiWS35P28B2nXgiF855Xy06BKb0OGdQiS2B-8wZtXdG3Zz8eXn-SoZ6yckaH-1SQIOgkuFdSC183mwKqQIT8AYGbMApTI5YIDXIHxhnAFlcyciAo4gEcwGJ07YrGmbeMp4ATEK49JYgJR5yA04a0qwqRWIoYSdMzHZrPKjuDjVuFhXE4vsTzVYuiJLV4Ol5yzZ9robxDWeOP8TDcf2XJLG7hva7nc1zo0KwGkHGiwCIemsMlZrFQHfLBRQFtmc6Wkwq0czDS9VP3H7Mxp76kUCu56YSNgNQSjtBb199nXP2CEd9QQ09Y7NNt19fI9QZ-M-jFP5P-of_PE priority: 102 providerName: Elsevier |
Title | 3D printing of biomimetic multi-layered GelMA/nHA scaffold for osteochondral defect repair |
URI | https://dx.doi.org/10.1016/j.matdes.2019.107708 https://www.osti.gov/biblio/1547619 https://doaj.org/article/ffb7bf7fa9104ba58a775efb3ed6f961 |
Volume | 171 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTxsxELWqcIFDBaWINAX50OuKzdpeO8e0JYRWcCpS1MvKXyMFpbsoDQf-PTPr3SiccuFq2WtrPOt5tt68Yexb7r2UYMcZHn0CLyi5z0zwNhtTLZFYWGVbNuHdfTl_kL8WarFT6os4YUkeOBnuCsBpBxosxjXprDJWaxXBiRhKmKSLD8a8_jLVXbVItCW9rpAqn1Z90lzL7EIoGCJJdY8n2KQ1lZbcCUqtdv-b2DRo8HfbCTuzY_axw4t8mtZ5wj7E-hM72lERPGV_xU9Oz3NEYOYNcMqoX_6j5ETe0gWzlX2hipz8Jq7uplf1fMr_ewvQrAJHyMopzaPBU7AOa5wpRCJ48DWGqeX6M3uYXf_5Mc-6kgkZmlxtsoB2d7mwDqR2vghWhRwRCRgj4zjARJkCMKZrEL40zoCyBVoSMUaQiF-DE2dsUDd1PGe8hBiFcXksQcoiFAacNROwuRUIm4QdMtHbrPKdnjiVtVhVPXHssUqWrsjSVbL0kGXbUU9JT2NP_--0Hdu-pIbdNqCPVJ2PVPt8ZMh0v5lVBywSYMBPLfdMP6K9p1GkqeuJfITDEHfS88-X91jciB3ShC39TH1lg836OV4g0Nm4S3Ywvf09v79sffsVFNj9zg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECZSZ2gzFH2iTvrg0FWwJJIiPbppU6WJvTQBgi4CKfICFY4UKM6Qf987PQxnCtCVEvU4Uncfqe--Y-xrXJZSgk0idH0CFyhxGRlf2iihWiIhtcp2bMLlKssv5a8rdbXHjsdcGKJVDr6_9-mdtx5aZoM1Z7dVNfuNqwdJ8uQIQejfmHrG9kmdSk3Y_uL0LF9t112k4NJvtZBEn1ZjBl1H80Jc6APpdidzbNKa6kzuRKhOyP9RoJo0-O3txKCTV-zlAB75on--12wv1G_YwY6k4Fv2R3zntFdHbGbeAKf0-uqGMhV5xx2M1vaBynPyn2G9XMzqfMHvSgvQrD1H_Mop56NBl1j7Fu_kA7E9eIsxq2rfscuTHxfHeTTUT4jQ_moTeRwEFwvrQGpXpt4qHyM8AWNkSDzMlUkBA7wGUWbGGVA2dSIg4PASwax34j2b1E0dPjCeQQjCuDhkIGXqUwPOmjnY2ArEUMJOmRhtVpSDuDjVuFgXI4vsb9FbuiBLF72lpyza9rrtxTWeOP8bDcf2XJLG7hqa9roY5kYB4LQDDRaBkHRWGau1CoBv5jOYZ8mU6XEwi0czDS9VPXH7Ixp76kUCuyUxkbAbglDaCzr87-t-Yc_zi-V5cX66OjtiL-hIR0ZTH9lk096HTwh7Nu7zMK3_Adoq_9c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+printing+of+biomimetic+multi-layered+GelMA%2FnHA+scaffold+for+osteochondral+defect+repair&rft.jtitle=Materials+%26+design&rft.au=Liu%2C+Jingyi&rft.au=Li%2C+Liang&rft.au=Suo%2C+Hairui&rft.au=Yan%2C+Mengling&rft.date=2019-06-05&rft.issn=0264-1275&rft.volume=171&rft.spage=107708&rft_id=info:doi/10.1016%2Fj.matdes.2019.107708&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matdes_2019_107708 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon |