3D printing of biomimetic multi-layered GelMA/nHA scaffold for osteochondral defect repair

Currently, osteochondral defects frequently cause limited motion and impaired function of the joint, leading to serious healthcare problems, and it is still very challenging to realize the simultaneous regeneration of subchondral bone with cartilage. In the current study, we designed a tri-layered s...

Full description

Saved in:
Bibliographic Details
Published inMaterials & design Vol. 171; no. C; p. 107708
Main Authors Liu, Jingyi, Li, Liang, Suo, Hairui, Yan, Mengling, Yin, Jun, Fu, Jianzhong
Format Journal Article
LanguageEnglish
Published United Kingdom Elsevier Ltd 05.06.2019
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Currently, osteochondral defects frequently cause limited motion and impaired function of the joint, leading to serious healthcare problems, and it is still very challenging to realize the simultaneous regeneration of subchondral bone with cartilage. In the current study, we designed a tri-layered scaffold and fabricated it using the extrusion-based multi-nozzle 3D printing technology. The bioinks used for 3D printing included a 15% methacrylated gelatin (GelMA) hydrogel for cartilage on top layer, a combination of 20% GelMA and 3% nanohydroxyapatite (nHA) (20/3% GelMA/nHA) hydrogel for interfacial layer, and a 30/3% GelMA/nHA hydrogel for subchondral bone at bottom layer. The water absorption capacity, biodegradation, and mechanical properties of hydrogels and scaffolds were characterized, and in vitro assay with bone marrow mesenchymal stem cells (BMSCs) was performed to indicate the biocompatibility of scaffolds. Based on the results of in vivo repair of rabbit osteochondral defect, the neo-tissues in defects integrated better with the surrounding tissues, the joint surface of the defects was smoother, and more cartilage-specific extracellular matrix and collagen type II were observed using the tri-layered scaffolds. This study not only provides a potential manufacturing method for multi-layered scaffolds, but also is helpful for understanding the regeneration mechanism of cartilage-subchondral bone. [Display omitted] •A functionally graded osteochondral scaffold was manufactured using GelMA/nHA hydrogels by extrusion-based 3D printing•The scaffold manufacturing process was simple and efficient without additional postprocess•The scaffolds have appropriate swelling ratio, biodegradation rate, mechanical properties, and excellent biocompatibility•The tri-layered GelMA/nHA scaffolds showed promising in vivo results of rabbit osteochondral defect repair
AbstractList Currently, osteochondral defects frequently cause limited motion and impaired function of the joint, leading to serious healthcare problems, and it is still very challenging to realize the simultaneous regeneration of subchondral bone with cartilage. In the current study, we designed a tri-layered scaffold and fabricated it using the extrusion-based multi-nozzle 3D printing technology. The bioinks used for 3D printing included a 15% methacrylated gelatin (GelMA) hydrogel for cartilage on top layer, a combination of 20% GelMA and 3% nanohydroxyapatite (nHA) (20/3% GelMA/nHA) hydrogel for interfacial layer, and a 30/3% GelMA/nHA hydrogel for subchondral bone at bottom layer. The water absorption capacity, biodegradation, and mechanical properties of hydrogels and scaffolds were characterized, and in vitro assay with bone marrow mesenchymal stem cells (BMSCs) was performed to indicate the biocompatibility of scaffolds. Based on the results of in vivo repair of rabbit osteochondral defect, the neo-tissues in defects integrated better with the surrounding tissues, the joint surface of the defects was smoother, and more cartilage-specific extracellular matrix and collagen type II were observed using the tri-layered scaffolds. This study not only provides a potential manufacturing method for multi-layered scaffolds, but also is helpful for understanding the regeneration mechanism of cartilage-subchondral bone. [Display omitted] •A functionally graded osteochondral scaffold was manufactured using GelMA/nHA hydrogels by extrusion-based 3D printing•The scaffold manufacturing process was simple and efficient without additional postprocess•The scaffolds have appropriate swelling ratio, biodegradation rate, mechanical properties, and excellent biocompatibility•The tri-layered GelMA/nHA scaffolds showed promising in vivo results of rabbit osteochondral defect repair
Currently, osteochondral defects frequently cause limited motion and impaired function of the joint, leading to serious healthcare problems, and it is still very challenging to realize the simultaneous regeneration of subchondral bone with cartilage. In the current study, we designed a tri-layered scaffold and fabricated it using the extrusion-based multi-nozzle 3D printing technology. The bioinks used for 3D printing included a 15% methacrylated gelatin (GelMA) hydrogel for cartilage on top layer, a combination of 20% GelMA and 3% nanohydroxyapatite (nHA) (20/3% GelMA/nHA) hydrogel for interfacial layer, and a 30/3% GelMA/nHA hydrogel for subchondral bone at bottom layer. The water absorption capacity, biodegradation, and mechanical properties of hydrogels and scaffolds were characterized, and in vitro assay with bone marrow mesenchymal stem cells (BMSCs) was performed to indicate the biocompatibility of scaffolds. Based on the results of in vivo repair of rabbit osteochondral defect, the neo-tissues in defects integrated better with the surrounding tissues, the joint surface of the defects was smoother, and more cartilage-specific extracellular matrix and collagen type II were observed using the tri-layered scaffolds. This study not only provides a potential manufacturing method for multi-layered scaffolds, but also is helpful for understanding the regeneration mechanism of cartilage-subchondral bone. Keywords: 3D printing, Scaffold, Methacrylated gelatin (GelMA), Osteochondral defect, Cartilage repair
ArticleNumber 107708
Author Yan, Mengling
Suo, Hairui
Liu, Jingyi
Li, Liang
Fu, Jianzhong
Yin, Jun
Author_xml – sequence: 1
  givenname: Jingyi
  surname: Liu
  fullname: Liu, Jingyi
  organization: The State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
– sequence: 2
  givenname: Liang
  surname: Li
  fullname: Li, Liang
  organization: Department of Orthopedics, No. 906 Hospital of People's Liberation Army, Ningbo 315040, China
– sequence: 3
  givenname: Hairui
  surname: Suo
  fullname: Suo, Hairui
  organization: College of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
– sequence: 4
  givenname: Mengling
  surname: Yan
  fullname: Yan, Mengling
  organization: The State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
– sequence: 5
  givenname: Jun
  orcidid: 0000-0002-1937-6812
  surname: Yin
  fullname: Yin, Jun
  email: junyin@zju.edu.cn
  organization: The State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
– sequence: 6
  givenname: Jianzhong
  surname: Fu
  fullname: Fu, Jianzhong
  email: fjz@zju.edu.cn
  organization: The State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
BackLink https://www.osti.gov/biblio/1547619$$D View this record in Osti.gov
BookMark eNqFkU9rFTEUxYNU8LX6DVwE9_OaZDKTjAvhUbUtVNzoxk3In3vbPGaSkolCv715jm5c6CpwOefHOTnn5CzlBIS85mzPGR8vj_vF1gDrXjA-tZNSTD8jO65V30k-qTOyY2KUHRdqeEHO1_XImBCqlzvyrX9PH0tMNaZ7mpG6mJe4QI2eLt_nGrvZPkGBQK9h_nS4TDcHunqLmOdAMRea1wrZP-QUip1pAARfaYFHG8tL8hztvMKr3-8F-frxw5erm-7u8_Xt1eGu81IOtQsSrWO9dSiV8yLYITA99ai1BB5wGrRArrnC3o_aaRyscD0woYPU3AXXX5DbjRuyPZpWZrHlyWQbza9DLvfGllZoBoPolEOFduJMOjtoq9QA2HhhxGnkjfVmY7Ve0aw-VvAPPqfUahk-SDXyqYnebiJf8roWQNN0tsacarFxNpyZ0yzmaLZZzGkWs83SzPIv85_E_7G922zQfvJHhHIKB8lDiOWULeT4b8BPnBesQQ
CitedBy_id crossref_primary_10_1002_jbm_b_35067
crossref_primary_10_1557_s43579_021_00038_8
crossref_primary_10_1002_app_52155
crossref_primary_10_1002_apj_2360
crossref_primary_10_1088_1748_605X_abc744
crossref_primary_10_1088_1748_605X_ad06c2
crossref_primary_10_3390_polym16131932
crossref_primary_10_3390_polym13050727
crossref_primary_10_1016_j_carbpol_2023_121232
crossref_primary_10_1016_j_mtcomm_2020_100979
crossref_primary_10_1016_j_biomaterials_2023_121999
crossref_primary_10_1016_j_cej_2024_156322
crossref_primary_10_1039_D2BM01891H
crossref_primary_10_1016_j_bprint_2020_e00101
crossref_primary_10_3390_polym12123027
crossref_primary_10_1039_D3BM00626C
crossref_primary_10_1002_adfm_201909089
crossref_primary_10_1021_acsbiomaterials_2c00813
crossref_primary_10_1073_pnas_2313464121
crossref_primary_10_1016_j_jddst_2025_106720
crossref_primary_10_1002_jbm_b_35079
crossref_primary_10_3390_jfb12010017
crossref_primary_10_3390_mi13071038
crossref_primary_10_1016_j_actbio_2024_03_029
crossref_primary_10_1038_s41528_022_00184_6
crossref_primary_10_1016_j_cobme_2024_100544
crossref_primary_10_1016_j_actbio_2020_06_011
crossref_primary_10_1002_admt_202201421
crossref_primary_10_1007_s10853_021_06229_x
crossref_primary_10_1016_j_carbpol_2020_117499
crossref_primary_10_1016_j_ijbiomac_2025_139843
crossref_primary_10_1088_1758_5090_ac5413
crossref_primary_10_3390_ijms222212420
crossref_primary_10_1039_C9TB01494B
crossref_primary_10_1016_j_bprint_2022_e00239
crossref_primary_10_1016_j_cej_2020_125081
crossref_primary_10_1002_adhm_202203115
crossref_primary_10_1088_1758_5090_ac8768
crossref_primary_10_3390_polym16050706
crossref_primary_10_3389_fbioe_2021_810155
crossref_primary_10_3390_nano14090749
crossref_primary_10_1016_j_mtnano_2024_100519
crossref_primary_10_1021_acsbiomaterials_2c01321
crossref_primary_10_1016_j_cej_2024_150551
crossref_primary_10_1016_j_bioactmat_2021_06_027
crossref_primary_10_3389_fmats_2019_00313
crossref_primary_10_1039_D1BM01540K
crossref_primary_10_1002_adfm_202006697
crossref_primary_10_1016_j_carbpol_2023_121738
crossref_primary_10_1016_j_bioactmat_2024_10_001
crossref_primary_10_1016_j_cej_2023_146685
crossref_primary_10_1177_08839115221119211
crossref_primary_10_1016_j_lfs_2022_121043
crossref_primary_10_3389_fbioe_2023_1153663
crossref_primary_10_3390_polym12091930
crossref_primary_10_1186_s42825_024_00170_w
crossref_primary_10_1002_anbr_202400059
crossref_primary_10_1021_acs_biomac_3c01072
crossref_primary_10_1007_s10853_023_08374_x
crossref_primary_10_1002_admt_202201244
crossref_primary_10_1016_j_matdes_2019_108184
crossref_primary_10_1016_j_colsurfb_2020_111192
crossref_primary_10_13168_cs_2024_0009
crossref_primary_10_1093_rb_rbaa042
crossref_primary_10_1021_acs_chemrev_9b00812
crossref_primary_10_1016_j_slast_2023_02_003
crossref_primary_10_1016_j_biomaterials_2019_119456
crossref_primary_10_1002_jbm_b_34451
crossref_primary_10_3390_ijms23031841
crossref_primary_10_1021_acsbiomaterials_4c00910
crossref_primary_10_1093_rb_rbac109
crossref_primary_10_1007_s10856_022_06669_0
crossref_primary_10_1016_j_carpta_2025_100752
crossref_primary_10_1039_D1TB02628C
crossref_primary_10_1002_adhm_202403840
crossref_primary_10_1016_j_carbpol_2022_120188
crossref_primary_10_1002_adhm_201901648
crossref_primary_10_1007_s42247_024_00730_0
crossref_primary_10_1007_s00339_020_03860_4
crossref_primary_10_1021_acsabm_0c01630
crossref_primary_10_1021_acsami_2c19058
crossref_primary_10_1111_jace_18048
crossref_primary_10_1515_auto_2023_0060
crossref_primary_10_1016_j_jddst_2022_104111
crossref_primary_10_1039_D4BM01132E
crossref_primary_10_1039_D3CP00921A
crossref_primary_10_3390_polym13010070
crossref_primary_10_1016_j_carbpol_2024_122232
crossref_primary_10_1088_1758_5090_acb73d
crossref_primary_10_1039_D0TB00688B
crossref_primary_10_1002_adhm_202001342
crossref_primary_10_4028_www_scientific_net_JBBBE_54_103
crossref_primary_10_1016_j_compstruct_2025_118848
crossref_primary_10_3390_mi13050780
crossref_primary_10_3390_ijms24032121
crossref_primary_10_3390_polym13132146
crossref_primary_10_1007_s42242_020_00119_y
crossref_primary_10_1089_ten_tea_2020_0350
crossref_primary_10_1016_j_ijpharm_2023_123162
crossref_primary_10_1021_acsami_1c01321
crossref_primary_10_1177_11795972241288099
crossref_primary_10_1016_j_bioactmat_2023_01_012
crossref_primary_10_1007_s42242_021_00177_w
crossref_primary_10_1016_j_bioactmat_2022_04_016
crossref_primary_10_1016_j_bioactmat_2023_04_016
crossref_primary_10_1002_mame_202000285
crossref_primary_10_1002_nano_202400149
crossref_primary_10_1080_87559129_2020_1858313
crossref_primary_10_1007_s12257_019_0086_6
crossref_primary_10_3390_polym15071674
crossref_primary_10_1007_s44174_022_00023_2
crossref_primary_10_3390_gels8020084
crossref_primary_10_1515_ntrev_2022_0127
crossref_primary_10_1016_j_bprint_2024_e00365
crossref_primary_10_1016_j_carbpol_2025_123480
crossref_primary_10_1186_s40580_023_00402_5
crossref_primary_10_3389_fmats_2020_528590
crossref_primary_10_1002_adhm_202000208
crossref_primary_10_1002_app_55129
crossref_primary_10_1021_acsbiomaterials_3c01132
crossref_primary_10_3390_ijms252011131
crossref_primary_10_1088_1758_5090_ad0071
crossref_primary_10_3390_gels10110745
crossref_primary_10_3390_md21040212
crossref_primary_10_1016_j_compositesb_2021_109102
crossref_primary_10_1002_mame_202300272
crossref_primary_10_1021_acsabm_3c00093
crossref_primary_10_1186_s42825_020_00043_y
crossref_primary_10_1021_acs_biomac_3c01271
crossref_primary_10_3390_polym16040534
crossref_primary_10_5851_kosfa_2021_e14
crossref_primary_10_1016_j_bioactmat_2021_05_011
crossref_primary_10_1021_acs_biomac_3c01424
crossref_primary_10_1088_1758_5090_adba8e
crossref_primary_10_1016_j_msec_2020_110937
crossref_primary_10_1080_17452759_2024_2384662
crossref_primary_10_1016_j_colsurfb_2020_111159
crossref_primary_10_1021_acs_chemmater_0c03018
crossref_primary_10_1002_adhm_202001008
crossref_primary_10_1002_adhm_202001404
crossref_primary_10_1016_j_bioadv_2023_213737
Cites_doi 10.1021/acsami.8b03445
10.1007/s42242-018-0004-3
10.1089/ten.tea.2013.0545
10.1002/jor.23121
10.1016/j.biomaterials.2009.08.055
10.1038/srep31036
10.1007/s42242-018-0003-4
10.1186/ar4309
10.1016/j.ijbiomac.2015.05.005
10.1002/adfm.201706644
10.1039/C5TB02113H
10.1016/j.jmbbm.2018.04.022
10.1089/ten.tea.2013.0356
10.1016/j.actbio.2018.07.039
10.1088/1758-5090/aa7078
10.1016/j.ijbiomac.2017.11.017
10.1002/jbm.a.35356
10.1016/j.actbio.2018.08.014
10.1016/j.polymer.2018.06.022
10.1021/acsbiomaterials.6b00587
10.1021/acsbiomaterials.7b00333
10.3390/ijms19061755
10.1089/scd.2012.0116
10.1016/j.jbiomech.2018.03.037
10.1016/j.jmst.2017.11.016
10.1007/s10853-017-0775-5
10.1016/j.actbio.2017.09.005
10.1039/c3bm00199g
10.1016/j.actbio.2008.09.020
10.1177/0363546518780991
10.1163/156856201744489
10.1007/s42242-018-0015-0
10.1016/j.knee.2013.03.009
10.1177/1947603517700954
10.1089/ten.tea.2014.0138
10.22203/eCM.v005a03
10.1016/j.biomaterials.2016.02.006
10.1002/mabi.200900176
10.1089/ten.tea.2011.0543
10.1021/acsami.7b16059
10.1016/j.msec.2018.11.003
10.1039/C6TB00681G
10.1002/jbm.1217
ContentType Journal Article
Copyright 2019 The Authors
Copyright_xml – notice: 2019 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
OTOTI
DOA
DOI 10.1016/j.matdes.2019.107708
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4197
ExternalDocumentID oai_doaj_org_article_ffb7bf7fa9104ba58a775efb3ed6f961
1547619
10_1016_j_matdes_2019_107708
S0264127519301455
GroupedDBID --K
--M
-~X
.~1
0SF
1B1
1~.
4.4
457
4G.
5GY
5VS
6I.
7-5
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BCNDV
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
IHE
J1W
KOM
M41
MO0
NCXOZ
OAUVE
OK1
P2P
PC.
Q38
ROL
SDF
SDG
SDP
SPC
SSM
SST
SSZ
T5K
~G-
0R~
29M
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
JJJVA
MAGPM
O9-
P-8
P-9
R2-
RIG
RNS
RPZ
SEW
SMS
SSH
WUQ
AALMO
ABPIF
ABPTK
OTOTI
EFKBS
ID FETCH-LOGICAL-c445t-d4fab03abf47bc2da5d0893f884e1df9582f1817f3c68b8f5a2b3e028d481bdb3
IEDL.DBID DOA
ISSN 0264-1275
IngestDate Wed Aug 27 01:15:12 EDT 2025
Fri May 19 00:39:11 EDT 2023
Tue Jul 01 02:23:52 EDT 2025
Thu Apr 24 23:05:13 EDT 2025
Fri Feb 23 02:30:28 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Cartilage repair
Scaffold
3D printing
Osteochondral defect
Methacrylated gelatin (GelMA)
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-d4fab03abf47bc2da5d0893f884e1df9582f1817f3c68b8f5a2b3e028d481bdb3
Notes 2017C01063
USDOE Office of Electricity (OE), Advanced Grid Research & Development. Power Systems Engineering Research
ORCID 0000-0002-1937-6812
0000000219376812
OpenAccessLink https://doaj.org/article/ffb7bf7fa9104ba58a775efb3ed6f961
ParticipantIDs doaj_primary_oai_doaj_org_article_ffb7bf7fa9104ba58a775efb3ed6f961
osti_scitechconnect_1547619
crossref_citationtrail_10_1016_j_matdes_2019_107708
crossref_primary_10_1016_j_matdes_2019_107708
elsevier_sciencedirect_doi_10_1016_j_matdes_2019_107708
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-05
PublicationDateYYYYMMDD 2019-06-05
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-05
  day: 05
PublicationDecade 2010
PublicationPlace United Kingdom
PublicationPlace_xml – name: United Kingdom
PublicationTitle Materials & design
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Matsiko, Gleeson, O'brien (bb0185) 2015; 21
Pinheiro, Cooley, Jun, Prabhu, Elder (bb0140) 2016; 34
Levingstone, Matsiko, Dickson, O'brien, Gleeson (bb0020) 2014; 1
Maryam, Wang, Liu, Liu (bb0045) 2018; 1
Yin, Zhang, Xiang, Wei, Yang, Wang, Fu (bb0130) 2018; 148
Zhang, Zhang, Zhang, Jia, Liu, Xiong, Sun (bb0215) 2017; 9
Jin-hyung, Ki-mo, Kwang, Young, Hyuntae, Kyunghoon, Min, Yeom, Hwa, Won, Ho, Kimoon, Dong-woo (bb0095) 2016; 8
B.N. Loy, Z. Melissa, G.A. Laxman, T.R. Tooley, T. Maerz, J. Bicos, J. Guettler, A biomechanical and structural comparison of articular cartilage and subchondral bone of the glenoid and humeral head, Orthopaedic Journal of Sports Medicine 6 (2018) Loy, B. N., Zimel, M., Gowda, A. L., Tooley, T. R., Maerz, T., Bicos, J., & Guettler, J. (2018) 2325967118785854.
Hutmacher (bb0075) 2001; 12
Sio-mei, Liang-yu, Ta-jen (bb0190) 2009; 5
Azizeh-mitra, Hoque, Rangabhatala, Uth (bb0025) 2015; 103
Shahbazarab, Teimouri, Chermahini, Azadi (bb0165) 2018; 108
Cui, Kurt, Finn, Lotz, D'lima (bb0210) 2012; 18
Wang, Wei, Zhou, Wei, Liang, Zhang, You, Shi, Chen, He (bb0205) 2018; 79
Zhang, He, Yan, Li, Zhang, Cui, Jing (bb0070) 2016; 4
Grace, Garcia, Jamali (bb0005) 2017; 3
Algul, Hande, Aydin, Kelleci, Ozdatli, Yener (bb0040) 2015; 79
Levingstone, Ramesh, Brady, Brama, Kearney, Gleeson, O'brien (bb0065) 2016; 87
Gao, Xu, Liang, Liu, Li, Wu, Zhang, Lin, Wu, Ruan, Liu (bb0030) 2018; 28
Holmes, Zhu, Li, Lee, Zhang (bb0050) 2015; 21
Travis, Simone, Johannes, Georgi, Malda, Schuurman, Crawford, Hutmacher (bb0090) 2009; 9
Shah, Liang, Sandeep, Parikh, Schwartz, Goldstein, Lavelle, Datta, Grande (bb0170) 2018; 9
Kang, Zeng (bb0055) 2018; 78
Stephanie, Kristi (bb0135) 2002; 59
Silvia, Henning (bb0240) 2014; 20
Sachlos, Czernuszka (bb0060) 2003; 5
Kumar, Adity, Murugavel (bb0125) 2019; 96
Longley, Ferreira, Gentile (bb0015) 2018; 19
Fairbanks, Schwartz, Christopher, Kristi (bb0100) 2009; 30
Karoly jakab1, Forgacs (bb0160) 2010; 2
Alvin, Chen, Yao, Dustin, Wong, Albert, Cai, William, Robert (bb0035) 2018; 73
Yin, Yan, Wang, Fu, Suo (bb0110) 2018; 10
Monzon, Liu, Sara, Miguel, Ricardo, Ribeiro, Reis (bb0085) 2018; 1
Hitomi, Hoon, Poh, Nam-joon (bb0105) 2016; 6
Motealleh, Eqtesadi, Civantos, Pajares, Miranda (bb0115) 2017; 52
Zhou, Zhang, Cai, Jun, Qin, Wei, Zhu, Jiang, Shen, Zhang, Hong (bb0150) 2017; 63
Shen, Dai, Li, Xu, Gou, Gao (bb0175) 2018; 4
Lee, Park, Lee, Moon, Wang (bb0230) 2018; 46
Y.K. Dai, L. Gang, L.M. A, D.A. Wang, C.Y. Gao, Cell-free macro-porous fibrin scaffolds for in situ inductive regeneration of full-thickness cartilage defects, J. Mater. Chem. B 4 (2016) 4410–4419.
Jia, Jing, Zhang, Pan, Zhong, Xin, Yang, Wei, Zhuo, Wu, Hao (bb0010) 2018; 10
Ratner, Hoffman, Schoen, Lemons (bb0180) 2013; 1
Nam, Karunanithi, Poh, Naveen, Chen, Hussin, Chan, Kamarul (bb0220) 2013; 15
Zhang, Yang, Wei, Chen, Tong, Liu, Qin, Hua, Ji, Hong, Zou (bb0225) 2013; 22
Zhang, Luo, Ma, Gao, Li, Xue, Yang, Cui (bb0080) 2018; 1
Motealleh, Eqtesadi, Pajares, Miranda (bb0120) 2018; 84
Youa, Li, Hua, Huangd, Cao, Hua (bb0145) 2018; 34
Yao, Kang, Li, Liu, Xie, Wang, Liu, Wang, Ren (bb0155) 2018; 13
Patil, Nikolai, Lin, Won, Darryl (bb0200) 2014; 21
Pinheiro (10.1016/j.matdes.2019.107708_bb0140) 2016; 34
Matsiko (10.1016/j.matdes.2019.107708_bb0185) 2015; 21
Zhang (10.1016/j.matdes.2019.107708_bb0080) 2018; 1
Fairbanks (10.1016/j.matdes.2019.107708_bb0100) 2009; 30
Shahbazarab (10.1016/j.matdes.2019.107708_bb0165) 2018; 108
Cui (10.1016/j.matdes.2019.107708_bb0210) 2012; 18
Holmes (10.1016/j.matdes.2019.107708_bb0050) 2015; 21
Youa (10.1016/j.matdes.2019.107708_bb0145) 2018; 34
Lee (10.1016/j.matdes.2019.107708_bb0230) 2018; 46
Zhang (10.1016/j.matdes.2019.107708_bb0225) 2013; 22
Motealleh (10.1016/j.matdes.2019.107708_bb0120) 2018; 84
Azizeh-mitra (10.1016/j.matdes.2019.107708_bb0025) 2015; 103
Kumar (10.1016/j.matdes.2019.107708_bb0125) 2019; 96
Karoly jakab1 (10.1016/j.matdes.2019.107708_bb0160) 2010; 2
Jin-hyung (10.1016/j.matdes.2019.107708_bb0095) 2016; 8
Levingstone (10.1016/j.matdes.2019.107708_bb0020) 2014; 1
Algul (10.1016/j.matdes.2019.107708_bb0040) 2015; 79
Wang (10.1016/j.matdes.2019.107708_bb0205) 2018; 79
Hitomi (10.1016/j.matdes.2019.107708_bb0105) 2016; 6
Patil (10.1016/j.matdes.2019.107708_bb0200) 2014; 21
Zhang (10.1016/j.matdes.2019.107708_bb0070) 2016; 4
Yao (10.1016/j.matdes.2019.107708_bb0155) 2018; 13
Shah (10.1016/j.matdes.2019.107708_bb0170) 2018; 9
Kang (10.1016/j.matdes.2019.107708_bb0055) 2018; 78
Maryam (10.1016/j.matdes.2019.107708_bb0045) 2018; 1
Jia (10.1016/j.matdes.2019.107708_bb0010) 2018; 10
Ratner (10.1016/j.matdes.2019.107708_bb0180) 2013; 1
Sachlos (10.1016/j.matdes.2019.107708_bb0060) 2003; 5
Levingstone (10.1016/j.matdes.2019.107708_bb0065) 2016; 87
Nam (10.1016/j.matdes.2019.107708_bb0220) 2013; 15
Shen (10.1016/j.matdes.2019.107708_bb0175) 2018; 4
Zhang (10.1016/j.matdes.2019.107708_bb0215) 2017; 9
Motealleh (10.1016/j.matdes.2019.107708_bb0115) 2017; 52
Stephanie (10.1016/j.matdes.2019.107708_bb0135) 2002; 59
Grace (10.1016/j.matdes.2019.107708_bb0005) 2017; 3
Hutmacher (10.1016/j.matdes.2019.107708_bb0075) 2001; 12
Alvin (10.1016/j.matdes.2019.107708_bb0035) 2018; 73
Yin (10.1016/j.matdes.2019.107708_bb0130) 2018; 148
10.1016/j.matdes.2019.107708_bb0195
Monzon (10.1016/j.matdes.2019.107708_bb0085) 2018; 1
Sio-mei (10.1016/j.matdes.2019.107708_bb0190) 2009; 5
Longley (10.1016/j.matdes.2019.107708_bb0015) 2018; 19
10.1016/j.matdes.2019.107708_bb0235
Travis (10.1016/j.matdes.2019.107708_bb0090) 2009; 9
Yin (10.1016/j.matdes.2019.107708_bb0110) 2018; 10
Zhou (10.1016/j.matdes.2019.107708_bb0150) 2017; 63
Silvia (10.1016/j.matdes.2019.107708_bb0240) 2014; 20
Gao (10.1016/j.matdes.2019.107708_bb0030) 2018; 28
References_xml – volume: 59
  start-page: 63
  year: 2002
  end-page: 72
  ident: bb0135
  article-title: Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels
  publication-title: J. Biomed. Mater. Res.
– volume: 84
  start-page: 35
  year: 2018
  end-page: 45
  ident: bb0120
  article-title: Enhancing the mechanical and in vitro performance of robocast bioglass scaffolds by polymeric coatings: effect of polymer composition
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 21
  start-page: 486
  year: 2015
  end-page: 497
  ident: bb0185
  article-title: Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition
  publication-title: Tissue Engineering - Part a
– volume: 21
  start-page: 119
  year: 2014
  end-page: 125
  ident: bb0200
  article-title: Comparative biomechanical analysis of human and caprine knee articular cartilage
  publication-title: Knee
– volume: 87
  start-page: 69
  year: 2016
  end-page: 81
  ident: bb0065
  article-title: Cell-free multi-layered collagen-based scaffolds demonstrate layer specific regeneration of functional osteochondral tissue in caprine joints
  publication-title: Biomaterials
– volume: 4
  start-page: 2628
  year: 2016
  end-page: 2645
  ident: bb0070
  article-title: Regeneration of hyaline-like cartilage and subchondral bone simultaneously by poly(L-glutamic acid) based osteochondral scaffolds with induced autologous adipose derived stem cells
  publication-title: J. Mater. Chem. B
– volume: 9
  start-page: 438
  year: 2018
  end-page: 449
  ident: bb0170
  article-title: Optimization of degradation profile for new scaffold in cartilage repair
  publication-title: Cartilage
– volume: 21
  start-page: 403
  year: 2015
  end-page: 415
  ident: bb0050
  article-title: Development of novel three-dimensional printed scaffolds for osteochondral regeneration
  publication-title: Tissue Engineering - Part a
– volume: 9
  year: 2017
  ident: bb0215
  article-title: Biomimetic design and fabrication of multilayered osteochondral scaffolds by low-temperature deposition manufacturing and thermal-induced phase-separation techniques
  publication-title: Biofabrication
– volume: 10
  start-page: 20296
  year: 2018
  end-page: 22030
  ident: bb0010
  article-title: Multilayered scaffold with a compact interfacial layer enhances osteochondral defect repair
  publication-title: ACS Appl. Mater. Interfaces
– volume: 34
  start-page: 1037
  year: 2016
  end-page: 1046
  ident: bb0140
  article-title: Comparison of natural crosslinking agents for the stabilization of xenogenic articular cartilage
  publication-title: J. Orthop. Res.
– volume: 20
  start-page: 2052
  year: 2014
  end-page: 2076
  ident: bb0240
  article-title: Bioinspired scaffolds for osteochondral regeneration
  publication-title: Tissue Engineering - Part a
– volume: 8
  year: 2016
  ident: bb0095
  article-title: Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint
  publication-title: Biofabrication
– volume: 52
  start-page: 9179
  year: 2017
  end-page: 9191
  ident: bb0115
  article-title: Robocast 45S5 bioglass scaffolds: in vitro behavior
  publication-title: J. Mater. Sci.
– volume: 148
  start-page: 93
  year: 2018
  end-page: 100
  ident: bb0130
  article-title: The influence of cross-sectional morphology on the compressive resistance of polymeric nerve conduits
  publication-title: Polymer
– volume: 12
  start-page: 107
  year: 2001
  end-page: 124
  ident: bb0075
  article-title: Scaffold design and fabrication technologies for engineering tissues - state of the art and future perspectives
  publication-title: Journal of Biomaterials Science Polymer Edition
– volume: 10
  start-page: 6849
  year: 2018
  end-page: 6857
  ident: bb0110
  article-title: 3D bioprinting of low-concentration cell-laden gelatin methacrylate (gelma) bioinks with a two-step cross-linking strategy
  publication-title: ACS Appl. Mater. Interfaces
– volume: 103
  start-page: 2460
  year: 2015
  end-page: 2481
  ident: bb0025
  article-title: Current strategies in multiphasic scaffold design for osteochondral tissue engineering: a review
  publication-title: J. Biomed. Mater. Res. A
– volume: 1
  start-page: 703
  year: 2013
  end-page: 710
  ident: bb0180
  article-title: Preparation of porous PLGA/Ti biphasic scaffold and osteochondral defect repair
  publication-title: Biomaterials Science
– volume: 1
  start-page: 2
  year: 2018
  end-page: 13
  ident: bb0080
  article-title: 3D bioprinting: an emerging technology full of opportunities and challenges
  publication-title: BIO-DESIGN and Manufacturing
– volume: 34
  start-page: 1016
  year: 2018
  end-page: 1025
  ident: bb0145
  article-title: Bilayered HA/CS/PEGDA hydrogel with good biocompatibility and self-healing property for potential application in osteochondral defect repair
  publication-title: Journal of Materials Science & Technology
– reference: B.N. Loy, Z. Melissa, G.A. Laxman, T.R. Tooley, T. Maerz, J. Bicos, J. Guettler, A biomechanical and structural comparison of articular cartilage and subchondral bone of the glenoid and humeral head, Orthopaedic Journal of Sports Medicine 6 (2018) Loy, B. N., Zimel, M., Gowda, A. L., Tooley, T. R., Maerz, T., Bicos, J., & Guettler, J. (2018) 2325967118785854.
– volume: 2
  year: 2010
  ident: bb0160
  article-title: Tissue engineering by self-assembly and bio- printing of living cells
  publication-title: Biofabrication
– volume: 5
  start-page: 670
  year: 2009
  end-page: 679
  ident: bb0190
  article-title: Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering
  publication-title: Acta Biomater.
– volume: 79
  start-page: 363
  year: 2015
  end-page: 369
  ident: bb0040
  article-title: Biocompatibility of biomimetic multilayered alginate–chitosan/β-TCP scaffold for osteochondral tissue
  publication-title: Int. J. Biol. Macromol.
– volume: 3
  start-page: 2657
  year: 2017
  end-page: 2668
  ident: bb0005
  article-title: 3D bioprinting: new directions in articular cartilage tissue engineering
  publication-title: ACS Biomaterials Science and Engineering
– reference: Y.K. Dai, L. Gang, L.M. A, D.A. Wang, C.Y. Gao, Cell-free macro-porous fibrin scaffolds for in situ inductive regeneration of full-thickness cartilage defects, J. Mater. Chem. B 4 (2016) 4410–4419.
– volume: 9
  start-page: 1049
  year: 2009
  end-page: 1058
  ident: bb0090
  article-title: Strategies for zonal cartilage repair using hydrogels
  publication-title: Macromol. Biosci.
– volume: 1
  start-page: 69
  year: 2018
  end-page: 75
  ident: bb0085
  article-title: Functionally graded additive manufacturing to achieve functionality specifications of osteochondral scaffolds
  publication-title: BIO-DESIGN and Manufacturing
– volume: 63
  start-page: 64
  year: 2017
  end-page: 75
  ident: bb0150
  article-title: Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair
  publication-title: Acta Biomater.
– volume: 13
  year: 2018
  ident: bb0155
  article-title: Novel beta-TCP/PVA bilayered hydrogels with considerable physical and bio-functional properties for osteochondral repair
  publication-title: Biomed. Mater.
– volume: 6
  start-page: 31036
  year: 2016
  ident: bb0105
  article-title: Precise tuning of facile one-pot gelatin methacryloyl (gelma) synthesis
  publication-title: Sci. Rep.
– volume: 15
  start-page: R129
  year: 2013
  ident: bb0220
  article-title: The effects of staged intra-articular injection of cultured autologous mesenchymal stromal cells on the repair of damaged cartilage: a pilot study in caprine model
  publication-title: Arthritis Research & Therapy
– volume: 5
  start-page: 29
  year: 2003
  end-page: 40
  ident: bb0060
  article-title: Making tissue engineering scaffolds work: review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds
  publication-title: European Cells & Materials
– volume: 108
  start-page: 1017
  year: 2018
  end-page: 1102
  ident: bb0165
  article-title: Fabrication and characterization of nanobiocomposite scaffold of zein/chitosan/nanohydroxyapatite prepared by freeze-drying method for bone tissue engineering
  publication-title: Int. J. Biol. Macromol.
– volume: 19
  start-page: 1755
  year: 2018
  end-page: 1771
  ident: bb0015
  article-title: Recent approaches to the manufacturing of biomimetic multi-phasic scaffolds for osteochondral regeneration
  publication-title: International Journal of Molecular Science
– volume: 4
  start-page: 1942
  year: 2018
  end-page: 1953
  ident: bb0175
  article-title: Regeneration of the osteochondral defect by a wollastonite and macroporous fibrin biphasic scaffold
  publication-title: ACS Biomaterials Science and Engineering
– volume: 28
  year: 2018
  ident: bb0030
  article-title: Direct 3D printing of high strength biohybrid gradient hydrogel scaffolds for efficient repair of osteochondral defect
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 200
  year: 2014
  end-page: 1996
  ident: bb0020
  article-title: A biomimetic multi-layered collagen-based scaffold for osteochondral repair
  publication-title: ACTA Biomaterialia 10
– volume: 79
  start-page: 168
  year: 2018
  end-page: 181
  ident: bb0205
  article-title: Fabrication of heterogeneous porous bilayered nanofibrous vascular grafts by two-step phase separation technique
  publication-title: Acta Biomater.
– volume: 18
  start-page: 1304
  year: 2012
  end-page: 1312
  ident: bb0210
  article-title: Direct human cartilage repair using three-dimensional bioprinting technology
  publication-title: Tissue Engineering - Part a
– volume: 1
  start-page: 101
  year: 2018
  end-page: 114
  ident: bb0045
  article-title: Osteochondral tissue repair in osteoarthritic joints: clinical challenges and opportunities in tissue engineering
  publication-title: BIO-DESIGN and Manufacturing
– volume: 30
  start-page: 6702
  year: 2009
  end-page: 6707
  ident: bb0100
  article-title: Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6- trimethylbenzoylphosphinate: polymerization rate and cytocompatibility
  publication-title: Biomaterials
– volume: 96
  start-page: 20
  year: 2019
  end-page: 29
  ident: bb0125
  article-title: Effect of surfactant concentration on textural characteristics and biomineralization behavior of mesoporous bioactive glasses
  publication-title: Materials Science & Engineering C
– volume: 46
  start-page: 2242
  year: 2018
  end-page: 2252
  ident: bb0230
  article-title: Therapeutic efficacy of spherical aggregated human bone marrow–derived mesenchymal stem cells cultured for osteochondral defects of rabbit knee joints
  publication-title: Am. J. Sports Med.
– volume: 78
  start-page: 365
  year: 2018
  end-page: 377
  ident: bb0055
  article-title: Functionally graded multilayer scaffolds for in vivo osteochondral tissue engineering
  publication-title: Acta Biomater.
– volume: 22
  start-page: 90
  year: 2013
  end-page: 101
  ident: bb0225
  article-title: Neonatal desensitization supports long-term survival and functional integration of human embryonic stem cell-derived mesenchymal stem cells in rat joint cartilage without immunosuppression
  publication-title: Stem Cells Dev.
– volume: 73
  start-page: 127
  year: 2018
  end-page: 136
  ident: bb0035
  article-title: Biomechanics of osteochondral impact with cushioning and graft insertion: cartilage damage is correlated with delivered energy
  publication-title: J. Biomech.
– volume: 10
  start-page: 20296
  year: 2018
  ident: 10.1016/j.matdes.2019.107708_bb0010
  article-title: Multilayered scaffold with a compact interfacial layer enhances osteochondral defect repair
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b03445
– volume: 1
  start-page: 2
  year: 2018
  ident: 10.1016/j.matdes.2019.107708_bb0080
  article-title: 3D bioprinting: an emerging technology full of opportunities and challenges
  publication-title: BIO-DESIGN and Manufacturing
  doi: 10.1007/s42242-018-0004-3
– volume: 21
  start-page: 486
  year: 2015
  ident: 10.1016/j.matdes.2019.107708_bb0185
  article-title: Scaffold mean pore size influences mesenchymal stem cell chondrogenic differentiation and matrix deposition
  publication-title: Tissue Engineering - Part a
  doi: 10.1089/ten.tea.2013.0545
– volume: 34
  start-page: 1037
  year: 2016
  ident: 10.1016/j.matdes.2019.107708_bb0140
  article-title: Comparison of natural crosslinking agents for the stabilization of xenogenic articular cartilage
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.23121
– volume: 30
  start-page: 6702
  year: 2009
  ident: 10.1016/j.matdes.2019.107708_bb0100
  article-title: Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6- trimethylbenzoylphosphinate: polymerization rate and cytocompatibility
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.08.055
– volume: 6
  start-page: 31036
  year: 2016
  ident: 10.1016/j.matdes.2019.107708_bb0105
  article-title: Precise tuning of facile one-pot gelatin methacryloyl (gelma) synthesis
  publication-title: Sci. Rep.
  doi: 10.1038/srep31036
– volume: 1
  start-page: 69
  year: 2018
  ident: 10.1016/j.matdes.2019.107708_bb0085
  article-title: Functionally graded additive manufacturing to achieve functionality specifications of osteochondral scaffolds
  publication-title: BIO-DESIGN and Manufacturing
  doi: 10.1007/s42242-018-0003-4
– volume: 15
  start-page: R129
  year: 2013
  ident: 10.1016/j.matdes.2019.107708_bb0220
  article-title: The effects of staged intra-articular injection of cultured autologous mesenchymal stromal cells on the repair of damaged cartilage: a pilot study in caprine model
  publication-title: Arthritis Research & Therapy
  doi: 10.1186/ar4309
– volume: 79
  start-page: 363
  year: 2015
  ident: 10.1016/j.matdes.2019.107708_bb0040
  article-title: Biocompatibility of biomimetic multilayered alginate–chitosan/β-TCP scaffold for osteochondral tissue
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2015.05.005
– volume: 28
  year: 2018
  ident: 10.1016/j.matdes.2019.107708_bb0030
  article-title: Direct 3D printing of high strength biohybrid gradient hydrogel scaffolds for efficient repair of osteochondral defect
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201706644
– ident: 10.1016/j.matdes.2019.107708_bb0195
– volume: 4
  start-page: 2628
  year: 2016
  ident: 10.1016/j.matdes.2019.107708_bb0070
  article-title: Regeneration of hyaline-like cartilage and subchondral bone simultaneously by poly(L-glutamic acid) based osteochondral scaffolds with induced autologous adipose derived stem cells
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C5TB02113H
– volume: 84
  start-page: 35
  year: 2018
  ident: 10.1016/j.matdes.2019.107708_bb0120
  article-title: Enhancing the mechanical and in vitro performance of robocast bioglass scaffolds by polymeric coatings: effect of polymer composition
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2018.04.022
– volume: 20
  start-page: 2052
  year: 2014
  ident: 10.1016/j.matdes.2019.107708_bb0240
  article-title: Bioinspired scaffolds for osteochondral regeneration
  publication-title: Tissue Engineering - Part a
  doi: 10.1089/ten.tea.2013.0356
– volume: 13
  year: 2018
  ident: 10.1016/j.matdes.2019.107708_bb0155
  article-title: Novel beta-TCP/PVA bilayered hydrogels with considerable physical and bio-functional properties for osteochondral repair
  publication-title: Biomed. Mater.
– volume: 78
  start-page: 365
  year: 2018
  ident: 10.1016/j.matdes.2019.107708_bb0055
  article-title: Functionally graded multilayer scaffolds for in vivo osteochondral tissue engineering
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2018.07.039
– volume: 9
  year: 2017
  ident: 10.1016/j.matdes.2019.107708_bb0215
  article-title: Biomimetic design and fabrication of multilayered osteochondral scaffolds by low-temperature deposition manufacturing and thermal-induced phase-separation techniques
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/aa7078
– volume: 2
  year: 2010
  ident: 10.1016/j.matdes.2019.107708_bb0160
  article-title: Tissue engineering by self-assembly and bio- printing of living cells
  publication-title: Biofabrication
– volume: 108
  start-page: 1017
  year: 2018
  ident: 10.1016/j.matdes.2019.107708_bb0165
  article-title: Fabrication and characterization of nanobiocomposite scaffold of zein/chitosan/nanohydroxyapatite prepared by freeze-drying method for bone tissue engineering
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.11.017
– volume: 103
  start-page: 2460
  year: 2015
  ident: 10.1016/j.matdes.2019.107708_bb0025
  article-title: Current strategies in multiphasic scaffold design for osteochondral tissue engineering: a review
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.35356
– volume: 79
  start-page: 168
  year: 2018
  ident: 10.1016/j.matdes.2019.107708_bb0205
  article-title: Fabrication of heterogeneous porous bilayered nanofibrous vascular grafts by two-step phase separation technique
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2018.08.014
– volume: 148
  start-page: 93
  year: 2018
  ident: 10.1016/j.matdes.2019.107708_bb0130
  article-title: The influence of cross-sectional morphology on the compressive resistance of polymeric nerve conduits
  publication-title: Polymer
  doi: 10.1016/j.polymer.2018.06.022
– volume: 3
  start-page: 2657
  year: 2017
  ident: 10.1016/j.matdes.2019.107708_bb0005
  article-title: 3D bioprinting: new directions in articular cartilage tissue engineering
  publication-title: ACS Biomaterials Science and Engineering
  doi: 10.1021/acsbiomaterials.6b00587
– volume: 4
  start-page: 1942
  year: 2018
  ident: 10.1016/j.matdes.2019.107708_bb0175
  article-title: Regeneration of the osteochondral defect by a wollastonite and macroporous fibrin biphasic scaffold
  publication-title: ACS Biomaterials Science and Engineering
  doi: 10.1021/acsbiomaterials.7b00333
– volume: 19
  start-page: 1755
  year: 2018
  ident: 10.1016/j.matdes.2019.107708_bb0015
  article-title: Recent approaches to the manufacturing of biomimetic multi-phasic scaffolds for osteochondral regeneration
  publication-title: International Journal of Molecular Science
  doi: 10.3390/ijms19061755
– volume: 22
  start-page: 90
  year: 2013
  ident: 10.1016/j.matdes.2019.107708_bb0225
  article-title: Neonatal desensitization supports long-term survival and functional integration of human embryonic stem cell-derived mesenchymal stem cells in rat joint cartilage without immunosuppression
  publication-title: Stem Cells Dev.
  doi: 10.1089/scd.2012.0116
– volume: 73
  start-page: 127
  year: 2018
  ident: 10.1016/j.matdes.2019.107708_bb0035
  article-title: Biomechanics of osteochondral impact with cushioning and graft insertion: cartilage damage is correlated with delivered energy
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2018.03.037
– volume: 34
  start-page: 1016
  year: 2018
  ident: 10.1016/j.matdes.2019.107708_bb0145
  article-title: Bilayered HA/CS/PEGDA hydrogel with good biocompatibility and self-healing property for potential application in osteochondral defect repair
  publication-title: Journal of Materials Science & Technology
  doi: 10.1016/j.jmst.2017.11.016
– volume: 52
  start-page: 9179
  year: 2017
  ident: 10.1016/j.matdes.2019.107708_bb0115
  article-title: Robocast 45S5 bioglass scaffolds: in vitro behavior
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-017-0775-5
– volume: 63
  start-page: 64
  year: 2017
  ident: 10.1016/j.matdes.2019.107708_bb0150
  article-title: Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.09.005
– volume: 1
  start-page: 200
  year: 2014
  ident: 10.1016/j.matdes.2019.107708_bb0020
  article-title: A biomimetic multi-layered collagen-based scaffold for osteochondral repair
  publication-title: ACTA Biomaterialia 10
– volume: 1
  start-page: 703
  year: 2013
  ident: 10.1016/j.matdes.2019.107708_bb0180
  article-title: Preparation of porous PLGA/Ti biphasic scaffold and osteochondral defect repair
  publication-title: Biomaterials Science
  doi: 10.1039/c3bm00199g
– volume: 5
  start-page: 670
  year: 2009
  ident: 10.1016/j.matdes.2019.107708_bb0190
  article-title: Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2008.09.020
– volume: 46
  start-page: 2242
  year: 2018
  ident: 10.1016/j.matdes.2019.107708_bb0230
  article-title: Therapeutic efficacy of spherical aggregated human bone marrow–derived mesenchymal stem cells cultured for osteochondral defects of rabbit knee joints
  publication-title: Am. J. Sports Med.
  doi: 10.1177/0363546518780991
– volume: 12
  start-page: 107
  year: 2001
  ident: 10.1016/j.matdes.2019.107708_bb0075
  article-title: Scaffold design and fabrication technologies for engineering tissues - state of the art and future perspectives
  publication-title: Journal of Biomaterials Science Polymer Edition
  doi: 10.1163/156856201744489
– volume: 1
  start-page: 101
  year: 2018
  ident: 10.1016/j.matdes.2019.107708_bb0045
  article-title: Osteochondral tissue repair in osteoarthritic joints: clinical challenges and opportunities in tissue engineering
  publication-title: BIO-DESIGN and Manufacturing
  doi: 10.1007/s42242-018-0015-0
– volume: 21
  start-page: 119
  year: 2014
  ident: 10.1016/j.matdes.2019.107708_bb0200
  article-title: Comparative biomechanical analysis of human and caprine knee articular cartilage
  publication-title: Knee
  doi: 10.1016/j.knee.2013.03.009
– volume: 9
  start-page: 438
  year: 2018
  ident: 10.1016/j.matdes.2019.107708_bb0170
  article-title: Optimization of degradation profile for new scaffold in cartilage repair
  publication-title: Cartilage
  doi: 10.1177/1947603517700954
– volume: 21
  start-page: 403
  year: 2015
  ident: 10.1016/j.matdes.2019.107708_bb0050
  article-title: Development of novel three-dimensional printed scaffolds for osteochondral regeneration
  publication-title: Tissue Engineering - Part a
  doi: 10.1089/ten.tea.2014.0138
– volume: 5
  start-page: 29
  year: 2003
  ident: 10.1016/j.matdes.2019.107708_bb0060
  article-title: Making tissue engineering scaffolds work: review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds
  publication-title: European Cells & Materials
  doi: 10.22203/eCM.v005a03
– volume: 87
  start-page: 69
  year: 2016
  ident: 10.1016/j.matdes.2019.107708_bb0065
  article-title: Cell-free multi-layered collagen-based scaffolds demonstrate layer specific regeneration of functional osteochondral tissue in caprine joints
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.02.006
– volume: 9
  start-page: 1049
  year: 2009
  ident: 10.1016/j.matdes.2019.107708_bb0090
  article-title: Strategies for zonal cartilage repair using hydrogels
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.200900176
– volume: 18
  start-page: 1304
  year: 2012
  ident: 10.1016/j.matdes.2019.107708_bb0210
  article-title: Direct human cartilage repair using three-dimensional bioprinting technology
  publication-title: Tissue Engineering - Part a
  doi: 10.1089/ten.tea.2011.0543
– volume: 10
  start-page: 6849
  year: 2018
  ident: 10.1016/j.matdes.2019.107708_bb0110
  article-title: 3D bioprinting of low-concentration cell-laden gelatin methacrylate (gelma) bioinks with a two-step cross-linking strategy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b16059
– volume: 96
  start-page: 20
  year: 2019
  ident: 10.1016/j.matdes.2019.107708_bb0125
  article-title: Effect of surfactant concentration on textural characteristics and biomineralization behavior of mesoporous bioactive glasses
  publication-title: Materials Science & Engineering C
  doi: 10.1016/j.msec.2018.11.003
– ident: 10.1016/j.matdes.2019.107708_bb0235
  doi: 10.1039/C6TB00681G
– volume: 8
  year: 2016
  ident: 10.1016/j.matdes.2019.107708_bb0095
  article-title: Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint
  publication-title: Biofabrication
– volume: 59
  start-page: 63
  year: 2002
  ident: 10.1016/j.matdes.2019.107708_bb0135
  article-title: Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.1217
SSID ssj0022734
Score 2.5962956
Snippet Currently, osteochondral defects frequently cause limited motion and impaired function of the joint, leading to serious healthcare problems, and it is still...
SourceID doaj
osti
crossref
elsevier
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 107708
SubjectTerms 3D printing
Cartilage repair
Methacrylated gelatin (GelMA)
Osteochondral defect
Scaffold
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELba7aU9IChUXQrIB67RJrEdO8elUBZQeymVKi6RX4OClqQK20P_PTN5rLanSj3GivMYOzOfnW--Yexj6r2UYLMEXZ_ABUrqExO8TTKqJRJzq2zPJry8KlY38vutut1j51MuDNEqR98_-PTeW48ti9Gai7u6Xlzj6kGSPDlCEPo3pvbZQS7KAqf2wfLbj9XVdt1FCi7DVgtJ9Gk1ZdD1NC_EhSGSbndWYpPWVGdyJ0L1Qv6PAtWsxW9vJwZdvGQvRvDIl8PzvWJ7sTlmRzuSgq_ZL_GZ014dsZl5C5zS6-u_lKnIe-5gsrYPVJ6Tf43ry-WiWS35P28B2nXgiF855Xy06BKb0OGdQiS2B-8wZtXdG3Zz8eXn-SoZ6yckaH-1SQIOgkuFdSC183mwKqQIT8AYGbMApTI5YIDXIHxhnAFlcyciAo4gEcwGJ07YrGmbeMp4ATEK49JYgJR5yA04a0qwqRWIoYSdMzHZrPKjuDjVuFhXE4vsTzVYuiJLV4Ol5yzZ9robxDWeOP8TDcf2XJLG7hva7nc1zo0KwGkHGiwCIemsMlZrFQHfLBRQFtmc6Wkwq0czDS9VP3H7Mxp76kUCu56YSNgNQSjtBb199nXP2CEd9QQ09Y7NNt19fI9QZ-M-jFP5P-of_PE
  priority: 102
  providerName: Elsevier
Title 3D printing of biomimetic multi-layered GelMA/nHA scaffold for osteochondral defect repair
URI https://dx.doi.org/10.1016/j.matdes.2019.107708
https://www.osti.gov/biblio/1547619
https://doaj.org/article/ffb7bf7fa9104ba58a775efb3ed6f961
Volume 171
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTxsxELWqcIFDBaWINAX50OuKzdpeO8e0JYRWcCpS1MvKXyMFpbsoDQf-PTPr3SiccuFq2WtrPOt5tt68Yexb7r2UYMcZHn0CLyi5z0zwNhtTLZFYWGVbNuHdfTl_kL8WarFT6os4YUkeOBnuCsBpBxosxjXprDJWaxXBiRhKmKSLD8a8_jLVXbVItCW9rpAqn1Z90lzL7EIoGCJJdY8n2KQ1lZbcCUqtdv-b2DRo8HfbCTuzY_axw4t8mtZ5wj7E-hM72lERPGV_xU9Oz3NEYOYNcMqoX_6j5ETe0gWzlX2hipz8Jq7uplf1fMr_ewvQrAJHyMopzaPBU7AOa5wpRCJ48DWGqeX6M3uYXf_5Mc-6kgkZmlxtsoB2d7mwDqR2vghWhRwRCRgj4zjARJkCMKZrEL40zoCyBVoSMUaQiF-DE2dsUDd1PGe8hBiFcXksQcoiFAacNROwuRUIm4QdMtHbrPKdnjiVtVhVPXHssUqWrsjSVbL0kGXbUU9JT2NP_--0Hdu-pIbdNqCPVJ2PVPt8ZMh0v5lVBywSYMBPLfdMP6K9p1GkqeuJfITDEHfS88-X91jciB3ShC39TH1lg836OV4g0Nm4S3Ywvf09v79sffsVFNj9zg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECZSZ2gzFH2iTvrg0FWwJJIiPbppU6WJvTQBgi4CKfICFY4UKM6Qf987PQxnCtCVEvU4Uncfqe--Y-xrXJZSgk0idH0CFyhxGRlf2iihWiIhtcp2bMLlKssv5a8rdbXHjsdcGKJVDr6_9-mdtx5aZoM1Z7dVNfuNqwdJ8uQIQejfmHrG9kmdSk3Y_uL0LF9t112k4NJvtZBEn1ZjBl1H80Jc6APpdidzbNKa6kzuRKhOyP9RoJo0-O3txKCTV-zlAB75on--12wv1G_YwY6k4Fv2R3zntFdHbGbeAKf0-uqGMhV5xx2M1vaBynPyn2G9XMzqfMHvSgvQrD1H_Mop56NBl1j7Fu_kA7E9eIsxq2rfscuTHxfHeTTUT4jQ_moTeRwEFwvrQGpXpt4qHyM8AWNkSDzMlUkBA7wGUWbGGVA2dSIg4PASwax34j2b1E0dPjCeQQjCuDhkIGXqUwPOmjnY2ArEUMJOmRhtVpSDuDjVuFgXI4vsb9FbuiBLF72lpyza9rrtxTWeOP8bDcf2XJLG7hqa9roY5kYB4LQDDRaBkHRWGau1CoBv5jOYZ8mU6XEwi0czDS9VPXH7Ixp76kUCuyUxkbAbglDaCzr87-t-Yc_zi-V5cX66OjtiL-hIR0ZTH9lk096HTwh7Nu7zMK3_Adoq_9c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+printing+of+biomimetic+multi-layered+GelMA%2FnHA+scaffold+for+osteochondral+defect+repair&rft.jtitle=Materials+%26+design&rft.au=Liu%2C+Jingyi&rft.au=Li%2C+Liang&rft.au=Suo%2C+Hairui&rft.au=Yan%2C+Mengling&rft.date=2019-06-05&rft.issn=0264-1275&rft.volume=171&rft.spage=107708&rft_id=info:doi/10.1016%2Fj.matdes.2019.107708&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matdes_2019_107708
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon