Magnetohydrodynamical Torsional Oscillations from Thermoresistive Instability in Hot Jupiters
Hot Jupiter atmospheres may be subject to a thermoresistive instability where an increase in the electrical conductivity due to ohmic heating results in runaway of the atmospheric temperature. We introduce a simplified one-dimensional model of the equatorial substellar region of a hot Jupiter that i...
Saved in:
Published in | The Astrophysical journal Vol. 959; no. 1; pp. 41 - 50 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
01.12.2023
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hot Jupiter atmospheres may be subject to a thermoresistive instability where an increase in the electrical conductivity due to ohmic heating results in runaway of the atmospheric temperature. We introduce a simplified one-dimensional model of the equatorial substellar region of a hot Jupiter that includes the temperature dependence and time dependence of the electrical conductivity, as well as the dynamical back-reaction of the magnetic field on the flow. This model extends our previous one-zone model to include the radial structure of the atmosphere. Spatial gradients of electrical conductivity strongly modify the radial profile of Alfvénic oscillations, leading to steepening and downward transport of magnetic field, enhancing dissipation at depth. We find unstable solutions that lead to self-sustained oscillations for equilibrium temperatures in the range
T
eq
≈ 1000–1200 K and radial magnetic field strength in the range ≈10–100 G. For a given set of parameters, self-sustained oscillations occur in a narrow range of equilibrium temperatures that allow the magnetic Reynolds number to alternate between large and small values during an oscillation cycle. With our simplified geometry, outside of this temperature window the system reaches a steady state in which the effect of the magnetic field can be approximated as a magnetic drag term. Our results show that thermoresistive instability is a possible source of variability in magnetized hot Jupiters at colder temperatures and emphasize the importance of including the temperature dependence of electrical conductivity in models of atmospheric dynamics. |
---|---|
AbstractList | Hot Jupiter atmospheres may be subject to a thermoresistive instability where an increase in the electrical conductivity due to ohmic heating results in runaway of the atmospheric temperature. We introduce a simplified one-dimensional model of the equatorial substellar region of a hot Jupiter that includes the temperature dependence and time dependence of the electrical conductivity, as well as the dynamical back-reaction of the magnetic field on the flow. This model extends our previous one-zone model to include the radial structure of the atmosphere. Spatial gradients of electrical conductivity strongly modify the radial profile of Alfvénic oscillations, leading to steepening and downward transport of magnetic field, enhancing dissipation at depth. We find unstable solutions that lead to self-sustained oscillations for equilibrium temperatures in the range Teq ≈ 1000–1200 K and radial magnetic field strength in the range ≈10–100 G. For a given set of parameters, self-sustained oscillations occur in a narrow range of equilibrium temperatures that allow the magnetic Reynolds number to alternate between large and small values during an oscillation cycle. With our simplified geometry, outside of this temperature window the system reaches a steady state in which the effect of the magnetic field can be approximated as a magnetic drag term. Our results show that thermoresistive instability is a possible source of variability in magnetized hot Jupiters at colder temperatures and emphasize the importance of including the temperature dependence of electrical conductivity in models of atmospheric dynamics. Hot Jupiter atmospheres may be subject to a thermoresistive instability where an increase in the electrical conductivity due to ohmic heating results in runaway of the atmospheric temperature. We introduce a simplified one-dimensional model of the equatorial substellar region of a hot Jupiter that includes the temperature dependence and time dependence of the electrical conductivity, as well as the dynamical back-reaction of the magnetic field on the flow. This model extends our previous one-zone model to include the radial structure of the atmosphere. Spatial gradients of electrical conductivity strongly modify the radial profile of Alfvénic oscillations, leading to steepening and downward transport of magnetic field, enhancing dissipation at depth. We find unstable solutions that lead to self-sustained oscillations for equilibrium temperatures in the range T _eq ≈ 1000–1200 K and radial magnetic field strength in the range ≈10–100 G. For a given set of parameters, self-sustained oscillations occur in a narrow range of equilibrium temperatures that allow the magnetic Reynolds number to alternate between large and small values during an oscillation cycle. With our simplified geometry, outside of this temperature window the system reaches a steady state in which the effect of the magnetic field can be approximated as a magnetic drag term. Our results show that thermoresistive instability is a possible source of variability in magnetized hot Jupiters at colder temperatures and emphasize the importance of including the temperature dependence of electrical conductivity in models of atmospheric dynamics. Hot Jupiter atmospheres may be subject to a thermoresistive instability where an increase in the electrical conductivity due to ohmic heating results in runaway of the atmospheric temperature. We introduce a simplified one-dimensional model of the equatorial substellar region of a hot Jupiter that includes the temperature dependence and time dependence of the electrical conductivity, as well as the dynamical back-reaction of the magnetic field on the flow. This model extends our previous one-zone model to include the radial structure of the atmosphere. Spatial gradients of electrical conductivity strongly modify the radial profile of Alfvénic oscillations, leading to steepening and downward transport of magnetic field, enhancing dissipation at depth. We find unstable solutions that lead to self-sustained oscillations for equilibrium temperatures in the range T eq ≈ 1000–1200 K and radial magnetic field strength in the range ≈10–100 G. For a given set of parameters, self-sustained oscillations occur in a narrow range of equilibrium temperatures that allow the magnetic Reynolds number to alternate between large and small values during an oscillation cycle. With our simplified geometry, outside of this temperature window the system reaches a steady state in which the effect of the magnetic field can be approximated as a magnetic drag term. Our results show that thermoresistive instability is a possible source of variability in magnetized hot Jupiters at colder temperatures and emphasize the importance of including the temperature dependence of electrical conductivity in models of atmospheric dynamics. |
Author | Cumming, Andrew Charbonneau, Paul Hardy, Raphaël |
Author_xml | – sequence: 1 givenname: Raphaël orcidid: 0000-0002-2599-6225 surname: Hardy fullname: Hardy, Raphaël organization: Université de Montréal Institut de Recherche sur les Exoplanètes (iREx), Montréal, QC H3C 3J7, Canada – sequence: 2 givenname: Paul orcidid: 0000-0003-1618-3924 surname: Charbonneau fullname: Charbonneau, Paul organization: Université de Montréal Département de Physique, Montréal, QC H3C 3J7, Canada – sequence: 3 givenname: Andrew orcidid: 0000-0002-6335-0169 surname: Cumming fullname: Cumming, Andrew organization: Université de Montréal Institut de Recherche sur les Exoplanètes (iREx), Montréal, QC H3C 3J7, Canada |
BookMark | eNp9kd1rFDEUxYNUcFt993FAHx2bZHIzyaMUtSuVvqzgi4S7-WizzE7GJCvsf-9sRyqI9Ol-cM5J-N1zcjam0RPymtH3nRL9JYNOtaKD_hId1VI9I6vH1RlZUUpFK7v--wtyXsruNHKtV-THV7wbfU33R5eTO464jxaHZpNyiWmcu9ti4zBgnafShJz2zebe533KvsRS4y_frMdScRuHWI9NHJvrVJsvhylWn8tL8jzgUPyrP_WCfPv0cXN13d7cfl5ffbhprRBQW8edEEFYsJ4BVzLgFrhmDmwXBKCmvpeole5ZUBwU145KisqpXjHZAe8uyHrJdQl3Zspxj_loEkbzsEj5zmCu0Q7e-F4zLbYWgtgK4EIBzPFMcWnBa-znrDdL1pTTz4Mv1ezSIc8oiuFKz6i5pDCr6KKyOZWSfXh8lVFzOog50Tcn-mY5yGyR_1hsrA9ga8Y4PGV8txhjmv5-5gn52__IcdoZDdowI5iZXOh-A5Ogq9Y |
CitedBy_id | crossref_primary_10_3847_1538_3881_ad8dd7 crossref_primary_10_3847_1538_4357_ad9902 |
Cites_doi | 10.1051/0004-6361/202037905 10.1103/PhysRevLett.116.161102 10.1086/521793 10.1111/j.1365-2966.2011.18315.x 10.1088/0004-637X/699/1/564 10.1051/0004-6361:20020101 10.1088/0004-637X/690/1/822 10.3847/0004-637X/821/1/9 10.1088/0004-637X/745/2/138 10.1038/s41550-017-0131 10.1086/318667 10.1093/mnras/stac2849 10.1088/0004-637X/720/1/344 10.1146/annurev-earth-082517-010137 10.1088/0004-637X/723/2/1436 10.1111/j.1365-2966.2007.11897.x 10.1088/0004-637X/714/2/1334 10.1088/0004-637X/747/1/82 10.3847/1538-4357/ac0e2e 10.1088/0004-637X/764/1/103 10.3847/2041-8213/abe86d 10.1051/0004-6361:20030252 10.1093/mnras/stz2018 10.1088/0004-637X/738/1/71 10.1088/2041-8205/754/1/L9 10.1002/asna.20224011 10.1093/mnras/stad2311 10.1088/0004-637X/719/2/1421 10.1086/523786 10.1051/0004-6361/201116713 10.1080/03091929208228087 10.1086/160617 10.1088/0004-637X/754/1/22 10.1088/0004-637X/794/2/132 10.1051/0004-6361:20011624 10.1051/0004-6361/201014251 10.3847/2041-8213/aa93fd 10.1007/s11214-020-00703-9 10.1088/0004-637X/724/1/313 10.1038/nature05782 10.1088/0004-637X/790/1/53 10.1038/s41550-017-0351-6 10.3847/2041-8213/aa72da 10.1038/s41550-016-0004 10.1038/378355a0 10.3847/2041-8213/ac0fec 10.3847/1538-3881/ab1b30 10.3847/1538-3881/ac3746 10.1086/444354 10.3847/2041-8213/ab05dd 10.1088/2041-8205/782/1/L4 10.3847/0004-637X/821/1/16 10.1007/978-3-642-10352-0_8 10.3847/2041-8213/ab5a89 10.1088/2041-8205/714/2/L238 10.1086/375565 10.3847/1538-4357/ac9bfc 10.1086/427689 |
ContentType | Journal Article |
Copyright | 2023. The Author(s). Published by the American Astronomical Society. 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. The Author(s). Published by the American Astronomical Society. – notice: 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 7TG 8FD H8D KL. L7M DOA |
DOI | 10.3847/1538-4357/ad0968 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1538-4357 |
ExternalDocumentID | oai_doaj_org_article_e79194bc5f4b45248550e71826c5e9a7 10_3847_1538_4357_ad0968 apjad0968 |
GrantInformation_xml | – fundername: Gouvernement du Canada ∣ Natural Sciences and Engineering Research Council of Canada (NSERC) grantid: RGPIN-2023-03620 funderid: https://doi.org/10.13039/501100000038 – fundername: Gouvernement du Canada ∣ Natural Sciences and Engineering Research Council of Canada (NSERC) grantid: RGPIN-2018-05278 funderid: https://doi.org/10.13039/501100000038 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 TSCCA WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M 2WC |
ID | FETCH-LOGICAL-c445t-d2d44f4c5ce15286fab5291d5c3f45a90e76a98971f825829d060a8d878163523 |
IEDL.DBID | DOA |
ISSN | 0004-637X |
IngestDate | Wed Aug 27 01:32:04 EDT 2025 Wed Aug 13 06:41:46 EDT 2025 Thu Apr 24 22:52:22 EDT 2025 Tue Jul 01 03:39:43 EDT 2025 Tue Aug 20 22:17:09 EDT 2024 Sun Aug 18 15:00:26 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-d2d44f4c5ce15286fab5291d5c3f45a90e76a98971f825829d060a8d878163523 |
Notes | The Solar System, Exoplanets, and Astrobiology AAS48349 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6335-0169 0000-0002-2599-6225 0000-0003-1618-3924 |
OpenAccessLink | https://doaj.org/article/e79194bc5f4b45248550e71826c5e9a7 |
PQID | 2898472605 |
PQPubID | 4562441 |
PageCount | 10 |
ParticipantIDs | iop_journals_10_3847_1538_4357_ad0968 crossref_primary_10_3847_1538_4357_ad0968 doaj_primary_oai_doaj_org_article_e79194bc5f4b45248550e71826c5e9a7 crossref_citationtrail_10_3847_1538_4357_ad0968 proquest_journals_2898472605 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2023 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Menou (apjad0968bib36) 2012a; 745 Beltz (apjad0968bib5) 2022; 163 Perna (apjad0968bib39) 2010b; 724 Lewis (apjad0968bib33) 2010; 720 Menou (apjad0968bib37) 2012b; 754 Perna (apjad0968bib38) 2010a; 719 Rogers (apjad0968bib46) 2014; 794 Busse (apjad0968bib8) 1992; 64 Showman (apjad0968bib51) 2009; 699 Welbanks (apjad0968bib57) 2019; 887 Komacek (apjad0968bib31) 2016; 821 Kataria (apjad0968bib27) 2016; 821 Soriano-Guerrero (apjad0968bib54) 2023; 525 Rogers (apjad0968bib47) 2017; 841 Rauscher (apjad0968bib42) 2013; 764 Jackson (apjad0968bib26) 2019; 157 Bell (apjad0968bib4) 2019; 489 Hindle (apjad0968bib24) 2021b; 916 Lodders (apjad0968bib34) 2010; 16 Read (apjad0968bib43) 2018; 46 Bodenheimer (apjad0968bib6) 2003; 592 Cowan (apjad0968bib10) 2007; 379 Dietrich (apjad0968bib15) 2022; 517 Mayor (apjad0968bib35) 1995; 378 Rüdiger (apjad0968bib49) 2022; 343 Schneider (apjad0968bib50) 2011; 532 Thorngren (apjad0968bib55) 2021; 909 Showman (apjad0968bib52) 2002; 385 Batygin (apjad0968bib3) 2010; 714 Rogers (apjad0968bib45) 2017; 1 Yadav (apjad0968bib58) 2017; 849 Crossfield (apjad0968bib12) 2010; 723 Freedman (apjad0968bib18) 2008; 174 Guillot (apjad0968bib19) 2002; 385 Baraffe (apjad0968bib2) 2003; 402 Zellem (apjad0968bib59) 2014; 790 Armstrong (apjad0968bib1) 2016; 1 Hindle (apjad0968bib23) 2021a; 922 Rogers (apjad0968bib48) 2014; 782 Knutson (apjad0968bib29) 2009; 690 Davidson (apjad0968bib14) 2001 Hindle (apjad0968bib22) 2019; 872 Knutson (apjad0968bib28) 2007; 447 von Essen (apjad0968bib56) 2020; 639 Reiners (apjad0968bib44) 2010; 522 Cowan (apjad0968bib11) 2012; 747 Imamura (apjad0968bib25) 2020; 216 Showman (apjad0968bib53) 2011; 738 Rauscher (apjad0968bib41) 2010; 714 Bodenheimer (apjad0968bib7) 2001; 548 Pétrélis (apjad0968bib40) 2016; 116 Draine (apjad0968bib17) 1983; 264 Heng (apjad0968bib21) 2011; 413 Laughlin (apjad0968bib32) 2005; 621 Dang (apjad0968bib13) 2018; 2 Cooper (apjad0968bib9) 2005; 629 Knutson (apjad0968bib30) 2012; 754 Dobbs-Dixon (apjad0968bib16) 2008; 673 Hardy (apjad0968bib20) 2022; 940 |
References_xml | – volume: 639 start-page: A34 year: 2020 ident: apjad0968bib56 publication-title: A&A doi: 10.1051/0004-6361/202037905 – volume: 116 start-page: 161102 year: 2016 ident: apjad0968bib40 publication-title: PhRvL doi: 10.1103/PhysRevLett.116.161102 – volume: 174 start-page: 504 year: 2008 ident: apjad0968bib18 publication-title: ApJS doi: 10.1086/521793 – volume: 413 start-page: 2380 year: 2011 ident: apjad0968bib21 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.18315.x – volume: 699 start-page: 564 year: 2009 ident: apjad0968bib51 publication-title: ApJ doi: 10.1088/0004-637X/699/1/564 – volume: 385 start-page: 166 year: 2002 ident: apjad0968bib52 publication-title: A&A doi: 10.1051/0004-6361:20020101 – volume: 690 start-page: 822 year: 2009 ident: apjad0968bib29 publication-title: ApJ doi: 10.1088/0004-637X/690/1/822 – volume: 821 start-page: 9 year: 2016 ident: apjad0968bib27 publication-title: ApJ doi: 10.3847/0004-637X/821/1/9 – volume: 745 start-page: 138 year: 2012a ident: apjad0968bib36 publication-title: ApJ doi: 10.1088/0004-637X/745/2/138 – volume: 1 start-page: 0131 year: 2017 ident: apjad0968bib45 publication-title: NatAs doi: 10.1038/s41550-017-0131 – volume: 548 start-page: 466 year: 2001 ident: apjad0968bib7 publication-title: ApJ doi: 10.1086/318667 – volume: 517 start-page: 3113 year: 2022 ident: apjad0968bib15 publication-title: MNRAS doi: 10.1093/mnras/stac2849 – volume: 720 start-page: 344 year: 2010 ident: apjad0968bib33 publication-title: ApJ doi: 10.1088/0004-637X/720/1/344 – volume: 46 start-page: 175 year: 2018 ident: apjad0968bib43 publication-title: AREPS doi: 10.1146/annurev-earth-082517-010137 – volume: 723 start-page: 1436 year: 2010 ident: apjad0968bib12 publication-title: ApJ doi: 10.1088/0004-637X/723/2/1436 – volume: 379 start-page: 641 year: 2007 ident: apjad0968bib10 publication-title: MNRAS doi: 10.1111/j.1365-2966.2007.11897.x – volume: 714 start-page: 1334 year: 2010 ident: apjad0968bib41 publication-title: ApJ doi: 10.1088/0004-637X/714/2/1334 – volume: 747 start-page: 82 year: 2012 ident: apjad0968bib11 publication-title: ApJ doi: 10.1088/0004-637X/747/1/82 – volume: 922 start-page: 176 year: 2021a ident: apjad0968bib23 publication-title: ApJ doi: 10.3847/1538-4357/ac0e2e – volume: 764 start-page: 103 year: 2013 ident: apjad0968bib42 publication-title: ApJ doi: 10.1088/0004-637X/764/1/103 – volume: 909 start-page: L16 year: 2021 ident: apjad0968bib55 publication-title: ApJL doi: 10.3847/2041-8213/abe86d – volume: 402 start-page: 701 year: 2003 ident: apjad0968bib2 publication-title: A&A doi: 10.1051/0004-6361:20030252 – volume: 489 start-page: 1995 year: 2019 ident: apjad0968bib4 publication-title: MNRAS doi: 10.1093/mnras/stz2018 – year: 2001 ident: apjad0968bib14 – volume: 738 start-page: 71 year: 2011 ident: apjad0968bib53 publication-title: ApJ doi: 10.1088/0004-637X/738/1/71 – volume: 754 start-page: L9 year: 2012b ident: apjad0968bib37 publication-title: ApJL doi: 10.1088/2041-8205/754/1/L9 – volume: 343 start-page: e24011 year: 2022 ident: apjad0968bib49 publication-title: AN doi: 10.1002/asna.20224011 – volume: 525 start-page: 626 year: 2023 ident: apjad0968bib54 publication-title: MNRAS doi: 10.1093/mnras/stad2311 – volume: 719 start-page: 1421 year: 2010a ident: apjad0968bib38 publication-title: ApJ doi: 10.1088/0004-637X/719/2/1421 – volume: 673 start-page: 513 year: 2008 ident: apjad0968bib16 publication-title: ApJ doi: 10.1086/523786 – volume: 532 start-page: A79 year: 2011 ident: apjad0968bib50 publication-title: A&A doi: 10.1051/0004-6361/201116713 – volume: 64 start-page: 135 year: 1992 ident: apjad0968bib8 publication-title: GApFD doi: 10.1080/03091929208228087 – volume: 264 start-page: 485 year: 1983 ident: apjad0968bib17 publication-title: ApJ doi: 10.1086/160617 – volume: 754 start-page: 22 year: 2012 ident: apjad0968bib30 publication-title: ApJ doi: 10.1088/0004-637X/754/1/22 – volume: 794 start-page: 132 year: 2014 ident: apjad0968bib46 publication-title: ApJ doi: 10.1088/0004-637X/794/2/132 – volume: 385 start-page: 156 year: 2002 ident: apjad0968bib19 publication-title: A&A doi: 10.1051/0004-6361:20011624 – volume: 522 start-page: A13 year: 2010 ident: apjad0968bib44 publication-title: A&A doi: 10.1051/0004-6361/201014251 – volume: 849 start-page: L12 year: 2017 ident: apjad0968bib58 publication-title: ApJL doi: 10.3847/2041-8213/aa93fd – volume: 216 start-page: 87 year: 2020 ident: apjad0968bib25 publication-title: SSRv doi: 10.1007/s11214-020-00703-9 – volume: 724 start-page: 313 year: 2010b ident: apjad0968bib39 publication-title: ApJ doi: 10.1088/0004-637X/724/1/313 – volume: 447 start-page: 183 year: 2007 ident: apjad0968bib28 publication-title: Natur doi: 10.1038/nature05782 – volume: 790 start-page: 53 year: 2014 ident: apjad0968bib59 publication-title: ApJ doi: 10.1088/0004-637X/790/1/53 – volume: 2 start-page: 220 year: 2018 ident: apjad0968bib13 publication-title: NatAs doi: 10.1038/s41550-017-0351-6 – volume: 841 start-page: L26 year: 2017 ident: apjad0968bib47 publication-title: ApJL doi: 10.3847/2041-8213/aa72da – volume: 1 start-page: 0004 year: 2016 ident: apjad0968bib1 publication-title: NatAs doi: 10.1038/s41550-016-0004 – volume: 378 start-page: 355 year: 1995 ident: apjad0968bib35 publication-title: Natur doi: 10.1038/378355a0 – volume: 916 start-page: L8 year: 2021b ident: apjad0968bib24 publication-title: ApJL doi: 10.3847/2041-8213/ac0fec – volume: 157 start-page: 239 year: 2019 ident: apjad0968bib26 publication-title: AJ doi: 10.3847/1538-3881/ab1b30 – volume: 163 start-page: 35 year: 2022 ident: apjad0968bib5 publication-title: AJ doi: 10.3847/1538-3881/ac3746 – volume: 629 start-page: L45 year: 2005 ident: apjad0968bib9 publication-title: ApJL doi: 10.1086/444354 – volume: 872 start-page: L27 year: 2019 ident: apjad0968bib22 publication-title: ApJL doi: 10.3847/2041-8213/ab05dd – volume: 782 start-page: L4 year: 2014 ident: apjad0968bib48 publication-title: ApJL doi: 10.1088/2041-8205/782/1/L4 – volume: 821 start-page: 16 year: 2016 ident: apjad0968bib31 publication-title: ApJ doi: 10.3847/0004-637X/821/1/16 – volume: 16 start-page: 379 year: 2010 ident: apjad0968bib34 publication-title: ApSSP doi: 10.1007/978-3-642-10352-0_8 – volume: 887 start-page: L20 year: 2019 ident: apjad0968bib57 publication-title: ApJL doi: 10.3847/2041-8213/ab5a89 – volume: 714 start-page: L238 year: 2010 ident: apjad0968bib3 publication-title: ApJL doi: 10.1088/2041-8205/714/2/L238 – volume: 592 start-page: 555 year: 2003 ident: apjad0968bib6 publication-title: ApJ doi: 10.1086/375565 – volume: 940 start-page: 123 year: 2022 ident: apjad0968bib20 publication-title: ApJ doi: 10.3847/1538-4357/ac9bfc – volume: 621 start-page: 1072 year: 2005 ident: apjad0968bib32 publication-title: ApJ doi: 10.1086/427689 |
SSID | ssj0004299 |
Score | 2.4540482 |
Snippet | Hot Jupiter atmospheres may be subject to a thermoresistive instability where an increase in the electrical conductivity due to ohmic heating results in... |
SourceID | doaj proquest crossref iop |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 41 |
SubjectTerms | Astrophysical fluid dynamics Astrophysics Atmospheric dynamics Atmospheric models Atmospheric temperature Electrical conductivity Electrical resistivity Equatorial regions Exoplanet atmospheric dynamics Exoplanet atmospheric variability Extrasolar planets Field strength Fluid flow Gas giant planets Instability Jupiter Magnetic fields Magnetohydrodynamics Modelling One dimensional models Reynolds number Stability Temperature Temperature dependence Torsional oscillations |
SummonAdditionalLinks | – databaseName: IOP Science Platform dbid: IOP link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiQuBQqoW1rkAyBxyO4msRNbnAqiWlWC9tBKewBZfvIqSbTJIi2_nnGc3aqAKsTNiia2M2PPw5n5DPDMFKXn3rOEaa8Sas00USzVic68tr4Qxuk-y_d9MbugJ3M234JXm1qYuhlU_xibESg4sjDs7xx16aTfo2jly4my6IDzW3A752g4Q_Xe6dlVUWQmBt-XJkVezuM_yr_2cM0m9dD9aGlw-D_0c290ju_Bh_V0Y67Jt_Gy02Pz8zckx__8nvuwMzij5CiSPoAtV-3C3lEbjsfr7yvygvTtePrR7sKds9h6CB_fqU-V6-rPK4saON5qjz2d14uI8kFOcT6XQ54dCTUsBBfkImT1tkGr_HAkpClEkPAV-VKRWd2Rk2UTKqLbR3Bx_Pb8zSwZbmpIDKWsS2xmKfXUMOPQH-CFV5plIrXM5J4yJaauLJTgokw9RqQ8E3ZaTBW3vOToD2Is_Bi2q7pye0DCdVnM-oxpo6jxTKSKc-cE4zZ3QrMRTNaykmaAMQ-3aVxKDGcCP2Xgpwz8lJGfI3i5eaOJEB430L4O4t_QBfDt_gEKTg6Ck64UqaDaME81ZRETzpUhUDPMCVWO4DnKWg7KoL1hsMNrdKr5KgUTMpU0lY31IzhYL78rIgyQsa8Qhe7_4zBP4G6GnlnMwTmA7W6xdIfoSXX6ab9jfgFXSxYE priority: 102 providerName: IOP Publishing |
Title | Magnetohydrodynamical Torsional Oscillations from Thermoresistive Instability in Hot Jupiters |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/ad0968 https://www.proquest.com/docview/2898472605 https://doaj.org/article/e79194bc5f4b45248550e71826c5e9a7 |
Volume | 959 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kIPgi2io9bcs-VMGHcJfcTrL7WIvlLOj1ocW-yLKf2lKTcEmF---dyeaqRagvvixLmGyW2dmdmc3Mbxg7dGUVZYyQgY0mE97NMgO5zWwRrY-lcsEOUb6fy8WFOL2Eyz9KfVFMWIIHToybhkqhn20dRGEFJACuUJFV7CAoM-SRo87bOFObjEg8ZdNPyTkev9NhW6NhUE2NR5td3lNCA1Y_qparpv3rQB60zMkz9nQ0D_lRmtZz9ijU22z3qKML6-bHmr_lQz_dR3Tb7PFZ6u2wr5_Mtzr0zfe1xzMx1ZnHkc6bVcLd4EtUdjdj5BunrBKOIrKiONuO9vnPwClwIMF2r_lVzRdNz09vW8pR7l6wi5MP58eLbKydkDkhoM984YWIwoELqKFlGY2FQuUe3DwKMAp5WBolVZVH9BFlofysnBnpZSXRQkPv9CXbqps67DJOBazAxwKsM8JFULmRMgQF0s-DsjBh0w0ztRuBxam-xY1GB4PYr4n9mtivE_sn7N3dG20C1XiA9j2tzx0dwWEPD1BI9Cgk-l9CMmFvcHX1uD27Bz62f4_OtNdagdK5FrlufZywvY18_CZClxXHIr_w1f-Y62v2hErap5CZPbbVr27DPho-vT0YZBzbj8szbJfzL78ARYMAow |
linkProvider | Directory of Open Access Journals |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCMSFR6HqQgs-ABKH7G4SO7aP5bFaCrR7aKW9IOMn0JYk2mSRll_POM62KqAKiZsVTWxnbM_DmfkGoWemYJ57TxOqvUqINeNE0VQnOvPa-kIYp7so34Niekz253Te1zntcmGquhf9Q2hGoODIwnC-c5Clo-6MgpZnI2XBAOej2vrr6AbNQXeGDL7D2UViZCZ6-5ckRc7m8T_lX3u5pJc6-H7QNjCFP2R0p3gmd9Hn9ZRjvMnpcNnqofn5G5rjf3zTPXSnN0rxXiS_j665chNt7zXhmrz6vsIvcNeOtyDNJro5i60H6NNH9aV0bfV1ZUESx-r20NNRtYhoH_gQ5nTWx9vhkMuCYWMuQnRvE6TLD4dDuEIEC1_hbyWeVi3eX9YhM7p5iI4nb49eT5O-YkNiCKFtYjNLiCeGGgd2AS-80jQTqaUm94QqMXasUIILlnrwTHkm7LgYK24542AXgk-8hTbKqnTbCIeyWdT6jGqjiPFUpIpz5wTlNndC0wEarddLmh7OPFTVOJPg1gSeysBTGXgqI08H6OX5G3WE8riC9lXYAud0AYS7ewCLJ_vFk46JVBBtqCea0IgN51hw2Ax1QrEBeg7rLXuh0Fwx2O4lOlWfSEGFTCVJJWyEAdpZb8ELInCUoa_gjT76x2GeoluzNxP54d3B-8fodgbGWgzL2UEb7WLpdsG4avWT7gD9AnlUG2g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetohydrodynamical+Torsional+Oscillations+from+Thermoresistive+Instability+in+Hot+Jupiters&rft.jtitle=The+Astrophysical+journal&rft.au=Hardy%2C+Rapha%C3%ABl&rft.au=Charbonneau%2C+Paul&rft.au=Cumming%2C+Andrew&rft.date=2023-12-01&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=959&rft.issue=1&rft.spage=41&rft_id=info:doi/10.3847%2F1538-4357%2Fad0968&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_ad0968 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |