Magnetohydrodynamical Torsional Oscillations from Thermoresistive Instability in Hot Jupiters

Hot Jupiter atmospheres may be subject to a thermoresistive instability where an increase in the electrical conductivity due to ohmic heating results in runaway of the atmospheric temperature. We introduce a simplified one-dimensional model of the equatorial substellar region of a hot Jupiter that i...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 959; no. 1; pp. 41 - 50
Main Authors Hardy, Raphaël, Charbonneau, Paul, Cumming, Andrew
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.12.2023
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hot Jupiter atmospheres may be subject to a thermoresistive instability where an increase in the electrical conductivity due to ohmic heating results in runaway of the atmospheric temperature. We introduce a simplified one-dimensional model of the equatorial substellar region of a hot Jupiter that includes the temperature dependence and time dependence of the electrical conductivity, as well as the dynamical back-reaction of the magnetic field on the flow. This model extends our previous one-zone model to include the radial structure of the atmosphere. Spatial gradients of electrical conductivity strongly modify the radial profile of Alfvénic oscillations, leading to steepening and downward transport of magnetic field, enhancing dissipation at depth. We find unstable solutions that lead to self-sustained oscillations for equilibrium temperatures in the range T eq ≈ 1000–1200 K and radial magnetic field strength in the range ≈10–100 G. For a given set of parameters, self-sustained oscillations occur in a narrow range of equilibrium temperatures that allow the magnetic Reynolds number to alternate between large and small values during an oscillation cycle. With our simplified geometry, outside of this temperature window the system reaches a steady state in which the effect of the magnetic field can be approximated as a magnetic drag term. Our results show that thermoresistive instability is a possible source of variability in magnetized hot Jupiters at colder temperatures and emphasize the importance of including the temperature dependence of electrical conductivity in models of atmospheric dynamics.
AbstractList Hot Jupiter atmospheres may be subject to a thermoresistive instability where an increase in the electrical conductivity due to ohmic heating results in runaway of the atmospheric temperature. We introduce a simplified one-dimensional model of the equatorial substellar region of a hot Jupiter that includes the temperature dependence and time dependence of the electrical conductivity, as well as the dynamical back-reaction of the magnetic field on the flow. This model extends our previous one-zone model to include the radial structure of the atmosphere. Spatial gradients of electrical conductivity strongly modify the radial profile of Alfvénic oscillations, leading to steepening and downward transport of magnetic field, enhancing dissipation at depth. We find unstable solutions that lead to self-sustained oscillations for equilibrium temperatures in the range Teq ≈ 1000–1200 K and radial magnetic field strength in the range ≈10–100 G. For a given set of parameters, self-sustained oscillations occur in a narrow range of equilibrium temperatures that allow the magnetic Reynolds number to alternate between large and small values during an oscillation cycle. With our simplified geometry, outside of this temperature window the system reaches a steady state in which the effect of the magnetic field can be approximated as a magnetic drag term. Our results show that thermoresistive instability is a possible source of variability in magnetized hot Jupiters at colder temperatures and emphasize the importance of including the temperature dependence of electrical conductivity in models of atmospheric dynamics.
Hot Jupiter atmospheres may be subject to a thermoresistive instability where an increase in the electrical conductivity due to ohmic heating results in runaway of the atmospheric temperature. We introduce a simplified one-dimensional model of the equatorial substellar region of a hot Jupiter that includes the temperature dependence and time dependence of the electrical conductivity, as well as the dynamical back-reaction of the magnetic field on the flow. This model extends our previous one-zone model to include the radial structure of the atmosphere. Spatial gradients of electrical conductivity strongly modify the radial profile of Alfvénic oscillations, leading to steepening and downward transport of magnetic field, enhancing dissipation at depth. We find unstable solutions that lead to self-sustained oscillations for equilibrium temperatures in the range T _eq ≈ 1000–1200 K and radial magnetic field strength in the range ≈10–100 G. For a given set of parameters, self-sustained oscillations occur in a narrow range of equilibrium temperatures that allow the magnetic Reynolds number to alternate between large and small values during an oscillation cycle. With our simplified geometry, outside of this temperature window the system reaches a steady state in which the effect of the magnetic field can be approximated as a magnetic drag term. Our results show that thermoresistive instability is a possible source of variability in magnetized hot Jupiters at colder temperatures and emphasize the importance of including the temperature dependence of electrical conductivity in models of atmospheric dynamics.
Hot Jupiter atmospheres may be subject to a thermoresistive instability where an increase in the electrical conductivity due to ohmic heating results in runaway of the atmospheric temperature. We introduce a simplified one-dimensional model of the equatorial substellar region of a hot Jupiter that includes the temperature dependence and time dependence of the electrical conductivity, as well as the dynamical back-reaction of the magnetic field on the flow. This model extends our previous one-zone model to include the radial structure of the atmosphere. Spatial gradients of electrical conductivity strongly modify the radial profile of Alfvénic oscillations, leading to steepening and downward transport of magnetic field, enhancing dissipation at depth. We find unstable solutions that lead to self-sustained oscillations for equilibrium temperatures in the range T eq ≈ 1000–1200 K and radial magnetic field strength in the range ≈10–100 G. For a given set of parameters, self-sustained oscillations occur in a narrow range of equilibrium temperatures that allow the magnetic Reynolds number to alternate between large and small values during an oscillation cycle. With our simplified geometry, outside of this temperature window the system reaches a steady state in which the effect of the magnetic field can be approximated as a magnetic drag term. Our results show that thermoresistive instability is a possible source of variability in magnetized hot Jupiters at colder temperatures and emphasize the importance of including the temperature dependence of electrical conductivity in models of atmospheric dynamics.
Author Cumming, Andrew
Charbonneau, Paul
Hardy, Raphaël
Author_xml – sequence: 1
  givenname: Raphaël
  orcidid: 0000-0002-2599-6225
  surname: Hardy
  fullname: Hardy, Raphaël
  organization: Université de Montréal Institut de Recherche sur les Exoplanètes (iREx), Montréal, QC H3C 3J7, Canada
– sequence: 2
  givenname: Paul
  orcidid: 0000-0003-1618-3924
  surname: Charbonneau
  fullname: Charbonneau, Paul
  organization: Université de Montréal Département de Physique, Montréal, QC H3C 3J7, Canada
– sequence: 3
  givenname: Andrew
  orcidid: 0000-0002-6335-0169
  surname: Cumming
  fullname: Cumming, Andrew
  organization: Université de Montréal Institut de Recherche sur les Exoplanètes (iREx), Montréal, QC H3C 3J7, Canada
BookMark eNp9kd1rFDEUxYNUcFt993FAHx2bZHIzyaMUtSuVvqzgi4S7-WizzE7GJCvsf-9sRyqI9Ol-cM5J-N1zcjam0RPymtH3nRL9JYNOtaKD_hId1VI9I6vH1RlZUUpFK7v--wtyXsruNHKtV-THV7wbfU33R5eTO464jxaHZpNyiWmcu9ti4zBgnafShJz2zebe533KvsRS4y_frMdScRuHWI9NHJvrVJsvhylWn8tL8jzgUPyrP_WCfPv0cXN13d7cfl5ffbhprRBQW8edEEFYsJ4BVzLgFrhmDmwXBKCmvpeole5ZUBwU145KisqpXjHZAe8uyHrJdQl3Zspxj_loEkbzsEj5zmCu0Q7e-F4zLbYWgtgK4EIBzPFMcWnBa-znrDdL1pTTz4Mv1ezSIc8oiuFKz6i5pDCr6KKyOZWSfXh8lVFzOog50Tcn-mY5yGyR_1hsrA9ga8Y4PGV8txhjmv5-5gn52__IcdoZDdowI5iZXOh-A5Ogq9Y
CitedBy_id crossref_primary_10_3847_1538_3881_ad8dd7
crossref_primary_10_3847_1538_4357_ad9902
Cites_doi 10.1051/0004-6361/202037905
10.1103/PhysRevLett.116.161102
10.1086/521793
10.1111/j.1365-2966.2011.18315.x
10.1088/0004-637X/699/1/564
10.1051/0004-6361:20020101
10.1088/0004-637X/690/1/822
10.3847/0004-637X/821/1/9
10.1088/0004-637X/745/2/138
10.1038/s41550-017-0131
10.1086/318667
10.1093/mnras/stac2849
10.1088/0004-637X/720/1/344
10.1146/annurev-earth-082517-010137
10.1088/0004-637X/723/2/1436
10.1111/j.1365-2966.2007.11897.x
10.1088/0004-637X/714/2/1334
10.1088/0004-637X/747/1/82
10.3847/1538-4357/ac0e2e
10.1088/0004-637X/764/1/103
10.3847/2041-8213/abe86d
10.1051/0004-6361:20030252
10.1093/mnras/stz2018
10.1088/0004-637X/738/1/71
10.1088/2041-8205/754/1/L9
10.1002/asna.20224011
10.1093/mnras/stad2311
10.1088/0004-637X/719/2/1421
10.1086/523786
10.1051/0004-6361/201116713
10.1080/03091929208228087
10.1086/160617
10.1088/0004-637X/754/1/22
10.1088/0004-637X/794/2/132
10.1051/0004-6361:20011624
10.1051/0004-6361/201014251
10.3847/2041-8213/aa93fd
10.1007/s11214-020-00703-9
10.1088/0004-637X/724/1/313
10.1038/nature05782
10.1088/0004-637X/790/1/53
10.1038/s41550-017-0351-6
10.3847/2041-8213/aa72da
10.1038/s41550-016-0004
10.1038/378355a0
10.3847/2041-8213/ac0fec
10.3847/1538-3881/ab1b30
10.3847/1538-3881/ac3746
10.1086/444354
10.3847/2041-8213/ab05dd
10.1088/2041-8205/782/1/L4
10.3847/0004-637X/821/1/16
10.1007/978-3-642-10352-0_8
10.3847/2041-8213/ab5a89
10.1088/2041-8205/714/2/L238
10.1086/375565
10.3847/1538-4357/ac9bfc
10.1086/427689
ContentType Journal Article
Copyright 2023. The Author(s). Published by the American Astronomical Society.
2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. The Author(s). Published by the American Astronomical Society.
– notice: 2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOA
DOI 10.3847/1538-4357/ad0968
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
ExternalDocumentID oai_doaj_org_article_e79194bc5f4b45248550e71826c5e9a7
10_3847_1538_4357_ad0968
apjad0968
GrantInformation_xml – fundername: Gouvernement du Canada ∣ Natural Sciences and Engineering Research Council of Canada (NSERC)
  grantid: RGPIN-2023-03620
  funderid: https://doi.org/10.13039/501100000038
– fundername: Gouvernement du Canada ∣ Natural Sciences and Engineering Research Council of Canada (NSERC)
  grantid: RGPIN-2018-05278
  funderid: https://doi.org/10.13039/501100000038
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
TSCCA
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
2WC
ID FETCH-LOGICAL-c445t-d2d44f4c5ce15286fab5291d5c3f45a90e76a98971f825829d060a8d878163523
IEDL.DBID DOA
ISSN 0004-637X
IngestDate Wed Aug 27 01:32:04 EDT 2025
Wed Aug 13 06:41:46 EDT 2025
Thu Apr 24 22:52:22 EDT 2025
Tue Jul 01 03:39:43 EDT 2025
Tue Aug 20 22:17:09 EDT 2024
Sun Aug 18 15:00:26 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-d2d44f4c5ce15286fab5291d5c3f45a90e76a98971f825829d060a8d878163523
Notes The Solar System, Exoplanets, and Astrobiology
AAS48349
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6335-0169
0000-0002-2599-6225
0000-0003-1618-3924
OpenAccessLink https://doaj.org/article/e79194bc5f4b45248550e71826c5e9a7
PQID 2898472605
PQPubID 4562441
PageCount 10
ParticipantIDs iop_journals_10_3847_1538_4357_ad0968
crossref_primary_10_3847_1538_4357_ad0968
doaj_primary_oai_doaj_org_article_e79194bc5f4b45248550e71826c5e9a7
crossref_citationtrail_10_3847_1538_4357_ad0968
proquest_journals_2898472605
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2023
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Menou (apjad0968bib36) 2012a; 745
Beltz (apjad0968bib5) 2022; 163
Perna (apjad0968bib39) 2010b; 724
Lewis (apjad0968bib33) 2010; 720
Menou (apjad0968bib37) 2012b; 754
Perna (apjad0968bib38) 2010a; 719
Rogers (apjad0968bib46) 2014; 794
Busse (apjad0968bib8) 1992; 64
Showman (apjad0968bib51) 2009; 699
Welbanks (apjad0968bib57) 2019; 887
Komacek (apjad0968bib31) 2016; 821
Kataria (apjad0968bib27) 2016; 821
Soriano-Guerrero (apjad0968bib54) 2023; 525
Rogers (apjad0968bib47) 2017; 841
Rauscher (apjad0968bib42) 2013; 764
Jackson (apjad0968bib26) 2019; 157
Bell (apjad0968bib4) 2019; 489
Hindle (apjad0968bib24) 2021b; 916
Lodders (apjad0968bib34) 2010; 16
Read (apjad0968bib43) 2018; 46
Bodenheimer (apjad0968bib6) 2003; 592
Cowan (apjad0968bib10) 2007; 379
Dietrich (apjad0968bib15) 2022; 517
Mayor (apjad0968bib35) 1995; 378
Rüdiger (apjad0968bib49) 2022; 343
Schneider (apjad0968bib50) 2011; 532
Thorngren (apjad0968bib55) 2021; 909
Showman (apjad0968bib52) 2002; 385
Batygin (apjad0968bib3) 2010; 714
Rogers (apjad0968bib45) 2017; 1
Yadav (apjad0968bib58) 2017; 849
Crossfield (apjad0968bib12) 2010; 723
Freedman (apjad0968bib18) 2008; 174
Guillot (apjad0968bib19) 2002; 385
Baraffe (apjad0968bib2) 2003; 402
Zellem (apjad0968bib59) 2014; 790
Armstrong (apjad0968bib1) 2016; 1
Hindle (apjad0968bib23) 2021a; 922
Rogers (apjad0968bib48) 2014; 782
Knutson (apjad0968bib29) 2009; 690
Davidson (apjad0968bib14) 2001
Hindle (apjad0968bib22) 2019; 872
Knutson (apjad0968bib28) 2007; 447
von Essen (apjad0968bib56) 2020; 639
Reiners (apjad0968bib44) 2010; 522
Cowan (apjad0968bib11) 2012; 747
Imamura (apjad0968bib25) 2020; 216
Showman (apjad0968bib53) 2011; 738
Rauscher (apjad0968bib41) 2010; 714
Bodenheimer (apjad0968bib7) 2001; 548
Pétrélis (apjad0968bib40) 2016; 116
Draine (apjad0968bib17) 1983; 264
Heng (apjad0968bib21) 2011; 413
Laughlin (apjad0968bib32) 2005; 621
Dang (apjad0968bib13) 2018; 2
Cooper (apjad0968bib9) 2005; 629
Knutson (apjad0968bib30) 2012; 754
Dobbs-Dixon (apjad0968bib16) 2008; 673
Hardy (apjad0968bib20) 2022; 940
References_xml – volume: 639
  start-page: A34
  year: 2020
  ident: apjad0968bib56
  publication-title: A&A
  doi: 10.1051/0004-6361/202037905
– volume: 116
  start-page: 161102
  year: 2016
  ident: apjad0968bib40
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.116.161102
– volume: 174
  start-page: 504
  year: 2008
  ident: apjad0968bib18
  publication-title: ApJS
  doi: 10.1086/521793
– volume: 413
  start-page: 2380
  year: 2011
  ident: apjad0968bib21
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.18315.x
– volume: 699
  start-page: 564
  year: 2009
  ident: apjad0968bib51
  publication-title: ApJ
  doi: 10.1088/0004-637X/699/1/564
– volume: 385
  start-page: 166
  year: 2002
  ident: apjad0968bib52
  publication-title: A&A
  doi: 10.1051/0004-6361:20020101
– volume: 690
  start-page: 822
  year: 2009
  ident: apjad0968bib29
  publication-title: ApJ
  doi: 10.1088/0004-637X/690/1/822
– volume: 821
  start-page: 9
  year: 2016
  ident: apjad0968bib27
  publication-title: ApJ
  doi: 10.3847/0004-637X/821/1/9
– volume: 745
  start-page: 138
  year: 2012a
  ident: apjad0968bib36
  publication-title: ApJ
  doi: 10.1088/0004-637X/745/2/138
– volume: 1
  start-page: 0131
  year: 2017
  ident: apjad0968bib45
  publication-title: NatAs
  doi: 10.1038/s41550-017-0131
– volume: 548
  start-page: 466
  year: 2001
  ident: apjad0968bib7
  publication-title: ApJ
  doi: 10.1086/318667
– volume: 517
  start-page: 3113
  year: 2022
  ident: apjad0968bib15
  publication-title: MNRAS
  doi: 10.1093/mnras/stac2849
– volume: 720
  start-page: 344
  year: 2010
  ident: apjad0968bib33
  publication-title: ApJ
  doi: 10.1088/0004-637X/720/1/344
– volume: 46
  start-page: 175
  year: 2018
  ident: apjad0968bib43
  publication-title: AREPS
  doi: 10.1146/annurev-earth-082517-010137
– volume: 723
  start-page: 1436
  year: 2010
  ident: apjad0968bib12
  publication-title: ApJ
  doi: 10.1088/0004-637X/723/2/1436
– volume: 379
  start-page: 641
  year: 2007
  ident: apjad0968bib10
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2007.11897.x
– volume: 714
  start-page: 1334
  year: 2010
  ident: apjad0968bib41
  publication-title: ApJ
  doi: 10.1088/0004-637X/714/2/1334
– volume: 747
  start-page: 82
  year: 2012
  ident: apjad0968bib11
  publication-title: ApJ
  doi: 10.1088/0004-637X/747/1/82
– volume: 922
  start-page: 176
  year: 2021a
  ident: apjad0968bib23
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac0e2e
– volume: 764
  start-page: 103
  year: 2013
  ident: apjad0968bib42
  publication-title: ApJ
  doi: 10.1088/0004-637X/764/1/103
– volume: 909
  start-page: L16
  year: 2021
  ident: apjad0968bib55
  publication-title: ApJL
  doi: 10.3847/2041-8213/abe86d
– volume: 402
  start-page: 701
  year: 2003
  ident: apjad0968bib2
  publication-title: A&A
  doi: 10.1051/0004-6361:20030252
– volume: 489
  start-page: 1995
  year: 2019
  ident: apjad0968bib4
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2018
– year: 2001
  ident: apjad0968bib14
– volume: 738
  start-page: 71
  year: 2011
  ident: apjad0968bib53
  publication-title: ApJ
  doi: 10.1088/0004-637X/738/1/71
– volume: 754
  start-page: L9
  year: 2012b
  ident: apjad0968bib37
  publication-title: ApJL
  doi: 10.1088/2041-8205/754/1/L9
– volume: 343
  start-page: e24011
  year: 2022
  ident: apjad0968bib49
  publication-title: AN
  doi: 10.1002/asna.20224011
– volume: 525
  start-page: 626
  year: 2023
  ident: apjad0968bib54
  publication-title: MNRAS
  doi: 10.1093/mnras/stad2311
– volume: 719
  start-page: 1421
  year: 2010a
  ident: apjad0968bib38
  publication-title: ApJ
  doi: 10.1088/0004-637X/719/2/1421
– volume: 673
  start-page: 513
  year: 2008
  ident: apjad0968bib16
  publication-title: ApJ
  doi: 10.1086/523786
– volume: 532
  start-page: A79
  year: 2011
  ident: apjad0968bib50
  publication-title: A&A
  doi: 10.1051/0004-6361/201116713
– volume: 64
  start-page: 135
  year: 1992
  ident: apjad0968bib8
  publication-title: GApFD
  doi: 10.1080/03091929208228087
– volume: 264
  start-page: 485
  year: 1983
  ident: apjad0968bib17
  publication-title: ApJ
  doi: 10.1086/160617
– volume: 754
  start-page: 22
  year: 2012
  ident: apjad0968bib30
  publication-title: ApJ
  doi: 10.1088/0004-637X/754/1/22
– volume: 794
  start-page: 132
  year: 2014
  ident: apjad0968bib46
  publication-title: ApJ
  doi: 10.1088/0004-637X/794/2/132
– volume: 385
  start-page: 156
  year: 2002
  ident: apjad0968bib19
  publication-title: A&A
  doi: 10.1051/0004-6361:20011624
– volume: 522
  start-page: A13
  year: 2010
  ident: apjad0968bib44
  publication-title: A&A
  doi: 10.1051/0004-6361/201014251
– volume: 849
  start-page: L12
  year: 2017
  ident: apjad0968bib58
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa93fd
– volume: 216
  start-page: 87
  year: 2020
  ident: apjad0968bib25
  publication-title: SSRv
  doi: 10.1007/s11214-020-00703-9
– volume: 724
  start-page: 313
  year: 2010b
  ident: apjad0968bib39
  publication-title: ApJ
  doi: 10.1088/0004-637X/724/1/313
– volume: 447
  start-page: 183
  year: 2007
  ident: apjad0968bib28
  publication-title: Natur
  doi: 10.1038/nature05782
– volume: 790
  start-page: 53
  year: 2014
  ident: apjad0968bib59
  publication-title: ApJ
  doi: 10.1088/0004-637X/790/1/53
– volume: 2
  start-page: 220
  year: 2018
  ident: apjad0968bib13
  publication-title: NatAs
  doi: 10.1038/s41550-017-0351-6
– volume: 841
  start-page: L26
  year: 2017
  ident: apjad0968bib47
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa72da
– volume: 1
  start-page: 0004
  year: 2016
  ident: apjad0968bib1
  publication-title: NatAs
  doi: 10.1038/s41550-016-0004
– volume: 378
  start-page: 355
  year: 1995
  ident: apjad0968bib35
  publication-title: Natur
  doi: 10.1038/378355a0
– volume: 916
  start-page: L8
  year: 2021b
  ident: apjad0968bib24
  publication-title: ApJL
  doi: 10.3847/2041-8213/ac0fec
– volume: 157
  start-page: 239
  year: 2019
  ident: apjad0968bib26
  publication-title: AJ
  doi: 10.3847/1538-3881/ab1b30
– volume: 163
  start-page: 35
  year: 2022
  ident: apjad0968bib5
  publication-title: AJ
  doi: 10.3847/1538-3881/ac3746
– volume: 629
  start-page: L45
  year: 2005
  ident: apjad0968bib9
  publication-title: ApJL
  doi: 10.1086/444354
– volume: 872
  start-page: L27
  year: 2019
  ident: apjad0968bib22
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab05dd
– volume: 782
  start-page: L4
  year: 2014
  ident: apjad0968bib48
  publication-title: ApJL
  doi: 10.1088/2041-8205/782/1/L4
– volume: 821
  start-page: 16
  year: 2016
  ident: apjad0968bib31
  publication-title: ApJ
  doi: 10.3847/0004-637X/821/1/16
– volume: 16
  start-page: 379
  year: 2010
  ident: apjad0968bib34
  publication-title: ApSSP
  doi: 10.1007/978-3-642-10352-0_8
– volume: 887
  start-page: L20
  year: 2019
  ident: apjad0968bib57
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab5a89
– volume: 714
  start-page: L238
  year: 2010
  ident: apjad0968bib3
  publication-title: ApJL
  doi: 10.1088/2041-8205/714/2/L238
– volume: 592
  start-page: 555
  year: 2003
  ident: apjad0968bib6
  publication-title: ApJ
  doi: 10.1086/375565
– volume: 940
  start-page: 123
  year: 2022
  ident: apjad0968bib20
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac9bfc
– volume: 621
  start-page: 1072
  year: 2005
  ident: apjad0968bib32
  publication-title: ApJ
  doi: 10.1086/427689
SSID ssj0004299
Score 2.4540482
Snippet Hot Jupiter atmospheres may be subject to a thermoresistive instability where an increase in the electrical conductivity due to ohmic heating results in...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 41
SubjectTerms Astrophysical fluid dynamics
Astrophysics
Atmospheric dynamics
Atmospheric models
Atmospheric temperature
Electrical conductivity
Electrical resistivity
Equatorial regions
Exoplanet atmospheric dynamics
Exoplanet atmospheric variability
Extrasolar planets
Field strength
Fluid flow
Gas giant planets
Instability
Jupiter
Magnetic fields
Magnetohydrodynamics
Modelling
One dimensional models
Reynolds number
Stability
Temperature
Temperature dependence
Torsional oscillations
SummonAdditionalLinks – databaseName: IOP Science Platform
  dbid: IOP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiQuBQqoW1rkAyBxyO4msRNbnAqiWlWC9tBKewBZfvIqSbTJIi2_nnGc3aqAKsTNiia2M2PPw5n5DPDMFKXn3rOEaa8Sas00USzVic68tr4Qxuk-y_d9MbugJ3M234JXm1qYuhlU_xibESg4sjDs7xx16aTfo2jly4my6IDzW3A752g4Q_Xe6dlVUWQmBt-XJkVezuM_yr_2cM0m9dD9aGlw-D_0c290ju_Bh_V0Y67Jt_Gy02Pz8zckx__8nvuwMzij5CiSPoAtV-3C3lEbjsfr7yvygvTtePrR7sKds9h6CB_fqU-V6-rPK4saON5qjz2d14uI8kFOcT6XQ54dCTUsBBfkImT1tkGr_HAkpClEkPAV-VKRWd2Rk2UTKqLbR3Bx_Pb8zSwZbmpIDKWsS2xmKfXUMOPQH-CFV5plIrXM5J4yJaauLJTgokw9RqQ8E3ZaTBW3vOToD2Is_Bi2q7pye0DCdVnM-oxpo6jxTKSKc-cE4zZ3QrMRTNaykmaAMQ-3aVxKDGcCP2Xgpwz8lJGfI3i5eaOJEB430L4O4t_QBfDt_gEKTg6Ck64UqaDaME81ZRETzpUhUDPMCVWO4DnKWg7KoL1hsMNrdKr5KgUTMpU0lY31IzhYL78rIgyQsa8Qhe7_4zBP4G6GnlnMwTmA7W6xdIfoSXX6ab9jfgFXSxYE
  priority: 102
  providerName: IOP Publishing
Title Magnetohydrodynamical Torsional Oscillations from Thermoresistive Instability in Hot Jupiters
URI https://iopscience.iop.org/article/10.3847/1538-4357/ad0968
https://www.proquest.com/docview/2898472605
https://doaj.org/article/e79194bc5f4b45248550e71826c5e9a7
Volume 959
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kIPgi2io9bcs-VMGHcJfcTrL7WIvlLOj1ocW-yLKf2lKTcEmF---dyeaqRagvvixLmGyW2dmdmc3Mbxg7dGUVZYyQgY0mE97NMgO5zWwRrY-lcsEOUb6fy8WFOL2Eyz9KfVFMWIIHToybhkqhn20dRGEFJACuUJFV7CAoM-SRo87bOFObjEg8ZdNPyTkev9NhW6NhUE2NR5td3lNCA1Y_qparpv3rQB60zMkz9nQ0D_lRmtZz9ijU22z3qKML6-bHmr_lQz_dR3Tb7PFZ6u2wr5_Mtzr0zfe1xzMx1ZnHkc6bVcLd4EtUdjdj5BunrBKOIrKiONuO9vnPwClwIMF2r_lVzRdNz09vW8pR7l6wi5MP58eLbKydkDkhoM984YWIwoELqKFlGY2FQuUe3DwKMAp5WBolVZVH9BFlofysnBnpZSXRQkPv9CXbqps67DJOBazAxwKsM8JFULmRMgQF0s-DsjBh0w0ztRuBxam-xY1GB4PYr4n9mtivE_sn7N3dG20C1XiA9j2tzx0dwWEPD1BI9Cgk-l9CMmFvcHX1uD27Bz62f4_OtNdagdK5FrlufZywvY18_CZClxXHIr_w1f-Y62v2hErap5CZPbbVr27DPho-vT0YZBzbj8szbJfzL78ARYMAow
linkProvider Directory of Open Access Journals
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCMSFR6HqQgs-ABKH7G4SO7aP5bFaCrR7aKW9IOMn0JYk2mSRll_POM62KqAKiZsVTWxnbM_DmfkGoWemYJ57TxOqvUqINeNE0VQnOvPa-kIYp7so34Niekz253Te1zntcmGquhf9Q2hGoODIwnC-c5Clo-6MgpZnI2XBAOej2vrr6AbNQXeGDL7D2UViZCZ6-5ckRc7m8T_lX3u5pJc6-H7QNjCFP2R0p3gmd9Hn9ZRjvMnpcNnqofn5G5rjf3zTPXSnN0rxXiS_j665chNt7zXhmrz6vsIvcNeOtyDNJro5i60H6NNH9aV0bfV1ZUESx-r20NNRtYhoH_gQ5nTWx9vhkMuCYWMuQnRvE6TLD4dDuEIEC1_hbyWeVi3eX9YhM7p5iI4nb49eT5O-YkNiCKFtYjNLiCeGGgd2AS-80jQTqaUm94QqMXasUIILlnrwTHkm7LgYK24542AXgk-8hTbKqnTbCIeyWdT6jGqjiPFUpIpz5wTlNndC0wEarddLmh7OPFTVOJPg1gSeysBTGXgqI08H6OX5G3WE8riC9lXYAud0AYS7ewCLJ_vFk46JVBBtqCea0IgN51hw2Ax1QrEBeg7rLXuh0Fwx2O4lOlWfSEGFTCVJJWyEAdpZb8ELInCUoa_gjT76x2GeoluzNxP54d3B-8fodgbGWgzL2UEb7WLpdsG4avWT7gD9AnlUG2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetohydrodynamical+Torsional+Oscillations+from+Thermoresistive+Instability+in+Hot+Jupiters&rft.jtitle=The+Astrophysical+journal&rft.au=Hardy%2C+Rapha%C3%ABl&rft.au=Charbonneau%2C+Paul&rft.au=Cumming%2C+Andrew&rft.date=2023-12-01&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=959&rft.issue=1&rft.spage=41&rft_id=info:doi/10.3847%2F1538-4357%2Fad0968&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_ad0968
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon