Zebrafish regulatory genomic resources for disease modelling and regeneration
In the past decades, the zebrafish has become a disease model with increasing popularity owing to its advantages that include fast development, easy genetic manipulation, simplicity for imaging, and sharing conserved disease-associated genes and pathways with those of human. In parallel, studies of...
Saved in:
Published in | Disease models & mechanisms Vol. 16; no. 8 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
The Company of Biologists Ltd
01.08.2023
The Company of Biologists |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the past decades, the zebrafish has become a disease model with increasing popularity owing to its advantages that include fast development, easy genetic manipulation, simplicity for imaging, and sharing conserved disease-associated genes and pathways with those of human. In parallel, studies of disease mechanisms are increasingly focusing on non-coding mutations, which require genome annotation maps of regulatory elements, such as enhancers and promoters. In line with this, genomic resources for zebrafish research are expanding, producing a variety of genomic data that help in defining regulatory elements and their conservation between zebrafish and humans. Here, we discuss recent developments in generating functional annotation maps for regulatory elements of the zebrafish genome and how this can be applied to human diseases. We highlight community-driven developments, such as DANIO-CODE, in generating a centralised and standardised catalogue of zebrafish genomics data and functional annotations; consider the advantages and limitations of current annotation maps; and offer considerations for interpreting and integrating existing maps with comparative genomics tools. We also discuss the need for developing standardised genomics protocols and bioinformatic pipelines and provide suggestions for the development of analysis and visualisation tools that will integrate various multiomic bulk sequencing data together with fast-expanding data on single-cell methods, such as single-cell assay for transposase-accessible chromatin with sequencing. Such integration tools are essential to exploit the multiomic chromatin characterisation offered by bulk genomics together with the cell-type resolution offered by emerging single-cell methods. Together, these advances will build an expansive toolkit for interrogating the mechanisms of human disease in zebrafish. |
---|---|
AbstractList | In the past decades, the zebrafish has become a disease model with increasing popularity owing to its advantages that include fast development, easy genetic manipulation, simplicity for imaging, and sharing conserved disease-associated genes and pathways with those of human. In parallel, studies of disease mechanisms are increasingly focusing on non-coding mutations, which require genome annotation maps of regulatory elements, such as enhancers and promoters. In line with this, genomic resources for zebrafish research are expanding, producing a variety of genomic data that help in defining regulatory elements and their conservation between zebrafish and humans. Here, we discuss recent developments in generating functional annotation maps for regulatory elements of the zebrafish genome and how this can be applied to human diseases. We highlight community-driven developments, such as DANIO-CODE, in generating a centralised and standardised catalogue of zebrafish genomics data and functional annotations; consider the advantages and limitations of current annotation maps; and offer considerations for interpreting and integrating existing maps with comparative genomics tools. We also discuss the need for developing standardised genomics protocols and bioinformatic pipelines and provide suggestions for the development of analysis and visualisation tools that will integrate various multiomic bulk sequencing data together with fast-expanding data on single-cell methods, such as single-cell assay for transposase-accessible chromatin with sequencing. Such integration tools are essential to exploit the multiomic chromatin characterisation offered by bulk genomics together with the cell-type resolution offered by emerging single-cell methods. Together, these advances will build an expansive toolkit for interrogating the mechanisms of human disease in zebrafish.
Summary:
Regulatory genomics resources for zebrafish need to be expanded to fulfil this model's potential in exploring the genetics of human disease. Bulk and single-cell genomics resources offer complementary advantages, which are best exploited by improving data integration. In the past decades, the zebrafish has become a disease model with increasing popularity owing to its advantages that include fast development, easy genetic manipulation, simplicity for imaging, and sharing conserved disease-associated genes and pathways with those of human. In parallel, studies of disease mechanisms are increasingly focusing on non-coding mutations, which require genome annotation maps of regulatory elements, such as enhancers and promoters. In line with this, genomic resources for zebrafish research are expanding, producing a variety of genomic data that help in defining regulatory elements and their conservation between zebrafish and humans. Here, we discuss recent developments in generating functional annotation maps for regulatory elements of the zebrafish genome and how this can be applied to human diseases. We highlight community-driven developments, such as DANIO-CODE, in generating a centralised and standardised catalogue of zebrafish genomics data and functional annotations; consider the advantages and limitations of current annotation maps; and offer considerations for interpreting and integrating existing maps with comparative genomics tools. We also discuss the need for developing standardised genomics protocols and bioinformatic pipelines and provide suggestions for the development of analysis and visualisation tools that will integrate various multiomic bulk sequencing data together with fast-expanding data on single-cell methods, such as single-cell assay for transposase-accessible chromatin with sequencing. Such integration tools are essential to exploit the multiomic chromatin characterisation offered by bulk genomics together with the cell-type resolution offered by emerging single-cell methods. Together, these advances will build an expansive toolkit for interrogating the mechanisms of human disease in zebrafish. In the past decades, the zebrafish has become a disease model with increasing popularity owing to its advantages that include fast development, easy genetic manipulation, simplicity for imaging, and sharing conserved disease-associated genes and pathways with those of human. In parallel, studies of disease mechanisms are increasingly focusing on non-coding mutations, which require genome annotation maps of regulatory elements, such as enhancers and promoters. In line with this, genomic resources for zebrafish research are expanding, producing a variety of genomic data that help in defining regulatory elements and their conservation between zebrafish and humans. Here, we discuss recent developments in generating functional annotation maps for regulatory elements of the zebrafish genome and how this can be applied to human diseases. We highlight community-driven developments, such as DANIO-CODE, in generating a centralised and standardised catalogue of zebrafish genomics data and functional annotations; consider the advantages and limitations of current annotation maps; and offer considerations for interpreting and integrating existing maps with comparative genomics tools. We also discuss the need for developing standardised genomics protocols and bioinformatic pipelines and provide suggestions for the development of analysis and visualisation tools that will integrate various multiomic bulk sequencing data together with fast-expanding data on single-cell methods, such as single-cell assay for transposase-accessible chromatin with sequencing. Such integration tools are essential to exploit the multiomic chromatin characterisation offered by bulk genomics together with the cell-type resolution offered by emerging single-cell methods. Together, these advances will build an expansive toolkit for interrogating the mechanisms of human disease in zebrafish.In the past decades, the zebrafish has become a disease model with increasing popularity owing to its advantages that include fast development, easy genetic manipulation, simplicity for imaging, and sharing conserved disease-associated genes and pathways with those of human. In parallel, studies of disease mechanisms are increasingly focusing on non-coding mutations, which require genome annotation maps of regulatory elements, such as enhancers and promoters. In line with this, genomic resources for zebrafish research are expanding, producing a variety of genomic data that help in defining regulatory elements and their conservation between zebrafish and humans. Here, we discuss recent developments in generating functional annotation maps for regulatory elements of the zebrafish genome and how this can be applied to human diseases. We highlight community-driven developments, such as DANIO-CODE, in generating a centralised and standardised catalogue of zebrafish genomics data and functional annotations; consider the advantages and limitations of current annotation maps; and offer considerations for interpreting and integrating existing maps with comparative genomics tools. We also discuss the need for developing standardised genomics protocols and bioinformatic pipelines and provide suggestions for the development of analysis and visualisation tools that will integrate various multiomic bulk sequencing data together with fast-expanding data on single-cell methods, such as single-cell assay for transposase-accessible chromatin with sequencing. Such integration tools are essential to exploit the multiomic chromatin characterisation offered by bulk genomics together with the cell-type resolution offered by emerging single-cell methods. Together, these advances will build an expansive toolkit for interrogating the mechanisms of human disease in zebrafish. ABSTRACT In the past decades, the zebrafish has become a disease model with increasing popularity owing to its advantages that include fast development, easy genetic manipulation, simplicity for imaging, and sharing conserved disease-associated genes and pathways with those of human. In parallel, studies of disease mechanisms are increasingly focusing on non-coding mutations, which require genome annotation maps of regulatory elements, such as enhancers and promoters. In line with this, genomic resources for zebrafish research are expanding, producing a variety of genomic data that help in defining regulatory elements and their conservation between zebrafish and humans. Here, we discuss recent developments in generating functional annotation maps for regulatory elements of the zebrafish genome and how this can be applied to human diseases. We highlight community-driven developments, such as DANIO-CODE, in generating a centralised and standardised catalogue of zebrafish genomics data and functional annotations; consider the advantages and limitations of current annotation maps; and offer considerations for interpreting and integrating existing maps with comparative genomics tools. We also discuss the need for developing standardised genomics protocols and bioinformatic pipelines and provide suggestions for the development of analysis and visualisation tools that will integrate various multiomic bulk sequencing data together with fast-expanding data on single-cell methods, such as single-cell assay for transposase-accessible chromatin with sequencing. Such integration tools are essential to exploit the multiomic chromatin characterisation offered by bulk genomics together with the cell-type resolution offered by emerging single-cell methods. Together, these advances will build an expansive toolkit for interrogating the mechanisms of human disease in zebrafish. |
Author | Müller, Ferenc Baranasic, Damir Jimenez Gonzalez, Ada |
AuthorAffiliation | 1 Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham , Birmingham B15 2TT , UK 4 Division of Electronics , Ruđer Bošković Institute , Bijenička cesta 54, 10000 Zagreb , Croatia 2 Institute of Clinical Sciences , Faculty of Medicine , Imperial College London, Hammersmith Hospital Campus , London SW7 2AZ , UK 3 MRC London Institute of Medical Sciences , London W12 0NN , UK |
AuthorAffiliation_xml | – name: 4 Division of Electronics , Ruđer Bošković Institute , Bijenička cesta 54, 10000 Zagreb , Croatia – name: 2 Institute of Clinical Sciences , Faculty of Medicine , Imperial College London, Hammersmith Hospital Campus , London SW7 2AZ , UK – name: 3 MRC London Institute of Medical Sciences , London W12 0NN , UK – name: 1 Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham , Birmingham B15 2TT , UK |
Author_xml | – sequence: 1 givenname: Ada orcidid: 0000-0001-7702-6135 surname: Jimenez Gonzalez fullname: Jimenez Gonzalez, Ada organization: Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK – sequence: 2 givenname: Damir orcidid: 0000-0001-5948-0932 surname: Baranasic fullname: Baranasic, Damir organization: Division of Electronics, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia – sequence: 3 givenname: Ferenc orcidid: 0000-0002-0996-774X surname: Müller fullname: Müller, Ferenc organization: Institute of Cancer and Genomic Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37529920$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkUtP3TAQha0KVB7tpj-gyhJVuuBn7KwQQuUhgdi0m24s2xkHo8QGO0Hi3-PLpVewGmt85jujOQdoJ6YICP0g-JhQTk_6aTrGAlOFv6B9IgVfKU7IzvaN2R46KOUB45Yq1n1Fe0wK2nUU76Pbf2Cz8aHcNxmGZTRzyi_NADFNwdVWSUt2UBqfctOHAqZAM6UexjHEoTGxX49BhGzmkOI3tOvNWOD7ez1Efy9-_zm_Wt3cXV6fn92sHOdiXjlw3kjhWuaEEOA9MQzaFlvqFbWia3sqCYC3XDmhOkods4w7Ky33ynrPDtH1htsn86Afc5hMftHJBP3WSHnQJs_BjaCNhF5wQYhyjPMWd53hmMvWS0KVkaqyTjesx8VO0DuIczbjJ-jnnxju9ZCeNcG8Hhh3lXD0TsjpaYEy6ykUV09kIqSlaKqqfxW3a7NfG6nLqZQMfutDsF6HqWuYehNmFf_8uNlW-j899gqRiZ3d |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2023_169780 |
Cites_doi | 10.1242/dmm.049977 10.1126/science.abb8598 10.1093/nar/gkx1074 10.1186/1471-213X-10-105 10.1016/j.celrep.2023.112571 10.1242/dev.100347 10.1007/s00125-022-05856-6 10.1093/hmg/ddg180 10.1038/s41587-020-0439-x 10.1101/2022.06.15.496239 10.1038/nn.2798 10.1242/dev.191262 10.1126/science.abj6987 10.1016/j.ydbio.2006.11.004 10.1534/g3.115.026849 10.1038/s41467-020-19452-y 10.1126/science.aaz3090 10.1186/gb-2008-9-2-r34 10.1038/srep15814 10.1186/s13059-023-02914-z 10.1038/s41588-022-01089-w 10.1038/nature09692 10.1016/j.bbadis.2014.01.008 10.1093/nar/gkz1199 10.1101/gr.269860.120 10.1101/gr.203679.115 10.1038/s41588-022-01129-5 10.1016/j.xgen.2021.100083 10.1038/s41586-020-2962-9 10.7554/eLife.65601 10.1038/s41467-018-07451-z 10.1038/nature17644 10.1242/dev.156521 10.1101/2023.03.20.533545 10.1126/science.aax8137 10.1038/s41467-021-25604-5 10.1098/rstb.2013.0021 10.1126/sciadv.aav0547 10.1242/dev.200343 10.1016/j.celrep.2018.06.003 10.1006/dbio.1999.9462 10.1038/s42003-020-0798-3 10.1093/g3journal/jkab379 10.1038/s41467-020-19015-1 10.1093/nar/gkw1116 10.1016/bs.adgen.2016.04.002 10.1002/dvdy.23989 10.1038/nature12787 10.1038/s41576-020-0239-7 10.1146/annurev-genom-090413-025448 10.1016/j.xgen.2022.100170 10.1101/gr.275837.121 10.1186/gb-2007-8-s1-s4 10.1016/j.molcel.2018.10.017 10.1126/science.1105136 10.1371/journal.pgen.1005193 10.3389/fcell.2019.00013 10.1534/genetics.115.176917 10.1101/gr.169508.113 10.1007/s11248-018-0098-6 10.1038/s41467-022-29551-7 10.1186/s40246-022-00423-x 10.1038/cr.2015.35 10.1109/TVCG.2021.3114876 10.1002/dvdy.430 10.7554/eLife.43186 10.1038/srep06545 10.1038/s41588-019-0481-0 10.1016/j.molmet.2015.12.004 10.1126/science.1126431 10.1038/s41467-021-21427-6 10.1093/bfgp/elp033 10.1186/s12920-022-01216-w 10.1016/j.bbadis.2020.165662 10.7554/eLife.51325 10.1093/nar/gkab1091 10.1016/j.cell.2016.09.018 10.1093/nar/gkh458 10.1038/nature11992 10.1155/2012/159807 10.1038/s41467-019-09582-3 10.1093/nar/gkac238 10.1038/s41586-022-05688-9 10.1038/nature12111 10.1093/hmg/dds165 10.1186/s12920-019-0574-8 10.1038/ng.2870 10.1186/s12864-022-08349-3 10.1002/stem.3182 10.1016/j.devcel.2015.01.032 10.1016/j.devcel.2022.12.007 10.1093/nar/gkab1049 10.1093/nar/gkac1072 10.1101/2023.03.06.531398 |
ContentType | Journal Article |
Copyright | 2023. Published by The Company of Biologists Ltd. 2023. Published by The Company of Biologists Ltd 2023 |
Copyright_xml | – notice: 2023. Published by The Company of Biologists Ltd. – notice: 2023. Published by The Company of Biologists Ltd 2023 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1242/dmm.050280 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1754-8411 |
ExternalDocumentID | oai_doaj_org_article_a7ed545118c3446099a40476f7128a78 10_1242_dmm_050280 37529920 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: 817923 – fundername: ; grantid: 965406 |
GroupedDBID | 0R~ 29G 2WC 53G 5GY 5VS 6~0 6~1 7X7 8FI 8FJ AAFWJ ABUWG ADBBV AENEX AFKRA AFPKN AGGIJ AIPOO ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BBNVY BCNDV BENPR BHPHI BTFSW CCPQU CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EE- EIF F5P F9R FRJ FRP FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE HZ~ INIJC KQ8 M7P M~E NPM O9- OK1 P2P PIMPY RHF RHI RNS RPM TR2 UKHRP W2D W8F AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c445t-cecfa75c63c555eff1a3e660b2f82b596d271eefb48c58922c3b34cb7b4f8bff3 |
IEDL.DBID | RPM |
ISSN | 1754-8403 1754-8411 |
IngestDate | Tue Oct 22 15:12:50 EDT 2024 Tue Sep 17 21:31:53 EDT 2024 Sat Oct 26 01:57:30 EDT 2024 Fri Aug 23 00:36:24 EDT 2024 Sat Nov 02 12:25:12 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Genomic resources Regeneration Disease modelling |
Language | English |
License | 2023. Published by The Company of Biologists Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-cecfa75c63c555eff1a3e660b2f82b596d271eefb48c58922c3b34cb7b4f8bff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors declare no competing or financial interests. Competing interests |
ORCID | 0000-0001-5948-0932 0000-0001-7702-6135 0000-0002-0996-774X |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10417509/ |
PMID | 37529920 |
PQID | 2845104168 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a7ed545118c3446099a40476f7128a78 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10417509 proquest_miscellaneous_2845104168 crossref_primary_10_1242_dmm_050280 pubmed_primary_37529920 |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Disease models & mechanisms |
PublicationTitleAlternate | Dis Model Mech |
PublicationYear | 2023 |
Publisher | The Company of Biologists Ltd The Company of Biologists |
Publisher_xml | – name: The Company of Biologists Ltd – name: The Company of Biologists |
References | Thompson (2023080207533379500_DMM050280C80) 2020; 147 Kikuchi (2023080207533379500_DMM050280C48) 2019; 12 Amatruda (2023080207533379500_DMM050280C4) 1999; 216 Kikuta (2023080207533379500_DMM050280C49) 2007; 8 Wang (2023080207533379500_DMM050280C84) 2020; 369 Bhatia (2023080207533379500_DMM050280C10) 2015; 11 Chen (2023080207533379500_DMM050280C15) 2019; 5 Mukherjee (2023080207533379500_DMM050280C67) 2018; 27 Wang (2023080207533379500_DMM050280C85) 2022; 32 Kaaij (2023080207533379500_DMM050280C42) 2018; 24 Kimura (2023080207533379500_DMM050280C50) 2014; 4 Lange (2023080207533379500_DMM050280C53) 2023 Kawakami (2023080207533379500_DMM050280C45) 2010; 10 Howe (2023080207533379500_DMM050280C38) 2013; 496 Dobrzycki (2023080207533379500_DMM050280C22) 2020; 3 Hadzhiev (2023080207533379500_DMM050280C33) 2023; 58 Nurk (2023080207533379500_DMM050280C71) 2022; 376 Sur (2023080207533379500_DMM050280C78) 2023 Wong (2023080207533379500_DMM050280C88) 2020; 370 Chernyavskaya (2023080207533379500_DMM050280C16) 2022; 23 Zhang (2023080207533379500_DMM050280C93) 2020; 38 Argelaguet (2023080207533379500_DMM050280C6) 2022 Pasquali (2023080207533379500_DMM050280C72) 2014; 46 Liu (2023080207533379500_DMM050280C58) 2020; 9 Colombo (2023080207533379500_DMM050280C18) 2015; 5 Smemo (2023080207533379500_DMM050280C77) 2012; 21 Akdogan-Ozdilek (2023080207533379500_DMM050280C2) 2022; 251 Yang (2023080207533379500_DMM050280C89) 2020; 588 Bhatia (2023080207533379500_DMM050280C11) 2021; 10 Hu (2023080207533379500_DMM050280C40) 2022; 54 Hoang (2023080207533379500_DMM050280C37) 2020; 370 Kamimoto (2023080207533379500_DMM050280C43) 2023; 614 Polychronopoulos (2023080207533379500_DMM050280C74) 2017; 45 Howe (2023080207533379500_DMM050280C39) 2017; 45 Kramer (2023080207533379500_DMM050280C52) 2022; 12 Frazer (2023080207533379500_DMM050280C30) 2004; 32 Engström (2023080207533379500_DMM050280C25) 2008; 9 Mattis (2023080207533379500_DMM050280C63) 2023; 66 Pérez-Rico (2023080207533379500_DMM050280C73) 2017; 27 Mosimann (2023080207533379500_DMM050280C66) 2013; 242 Liu (2023080207533379500_DMM050280C57) 2019; 7 Wike (2023080207533379500_DMM050280C87) 2021; 31 Laue (2023080207533379500_DMM050280C54) 2019; 10 Kirchner (2023080207533379500_DMM050280C51) 2016; 5 Brown (2023080207533379500_DMM050280C14) 2015; 16 Watanabe (2023080207533379500_DMM050280C86) 2019; 51 Elgar (2023080207533379500_DMM050280C23) 2009; 8 Franke (2023080207533379500_DMM050280C29) 2021; 12 Long (2023080207533379500_DMM050280C59) 2015; 25 De Gobbi (2023080207533379500_DMM050280C20) 2006; 312 Mullins (2023080207533379500_DMM050280C68) 2021; 148 Ferre-Fernández (2023080207533379500_DMM050280C28) 2022; 16 Truong (2023080207533379500_DMM050280C81) 2023; 16 Goldman (2023080207533379500_DMM050280C32) 2020; 21 Kang (2023080207533379500_DMM050280C44) 2016; 532 Zhang (2023080207533379500_DMM050280C92) 2018; 72 Harmston (2023080207533379500_DMM050280C35) 2013; 368 Van Der Vaart (2023080207533379500_DMM050280C82) 2012; 2012 Andersson (2023080207533379500_DMM050280C5) 2014; 507 Ghiasvand (2023080207533379500_DMM050280C31) 2011; 14 Suzuki (2023080207533379500_DMM050280C79) 2019; 8 Ablain (2023080207533379500_DMM050280C1) 2015; 32 Mcgarvey (2023080207533379500_DMM050280C64) 2022; 2 Yuan (2023080207533379500_DMM050280C91) 2018; 9 Bordeira-Carriço (2023080207533379500_DMM050280C12) 2022; 13 Nassar (2023080207533379500_DMM050280C69) 2023; 51 Alsheikh (2023080207533379500_DMM050280C3) 2022; 15 Vrljicak (2023080207533379500_DMM050280C83) 2016; 6 Ewels (2023080207533379500_DMM050280C27) 2020; 38 Diesh (2023080207533379500_DMM050280C21) 2023; 24 Avila Cobos (2023080207533379500_DMM050280C7) 2020; 11 Roberts (2023080207533379500_DMM050280C76) 2014; 141 Balwierz (2023080207533379500_DMM050280C8) 2014; 24 Lyi (2023080207533379500_DMM050280C61) 2022; 28 Bragato (2023080207533379500_DMM050280C13) 2020; 1866 Kettleborough (2023080207533379500_DMM050280C47) 2013; 496 Lettice (2023080207533379500_DMM050280C55) 2003; 12 Jimenez (2023080207533379500_DMM050280C41) 2022; 2 Kawakami (2023080207533379500_DMM050280C46) 2016; 95 ENCODE Project Consortium (2023080207533379500_DMM050280C24) 2004; 306 Meier (2023080207533379500_DMM050280C65) 2018; 145 Cunningham (2023080207533379500_DMM050280C19) 2022; 50 Helmsauer (2023080207533379500_DMM050280C36) 2020; 11 Li (2023080207533379500_DMM050280C56) 2022; 50 Nguyen (2023080207533379500_DMM050280C70) 2022; 50 Clément (2023080207533379500_DMM050280C17) 2020; 48 Hans (2023080207533379500_DMM050280C34) 2021; 12 Zizioli (2023080207533379500_DMM050280C94) 2014; 1842 Long (2023080207533379500_DMM050280C60) 2016; 167 Rada-Iglesias (2023080207533379500_DMM050280C75) 2011; 470 Mahony (2023080207533379500_DMM050280C62) 2023; 42 Baranasic (2023080207533379500_DMM050280C9) 2022; 54 Ertzer (2023080207533379500_DMM050280C26) 2007; 301 Yin (2023080207533379500_DMM050280C90) 2015; 200 |
References_xml | – volume: 16 start-page: dmm049977 year: 2023 ident: 2023080207533379500_DMM050280C81 article-title: PRDM1 DNA-binding zinc finger domain is required for normal limb development and is disrupted in split hand/foot malformation publication-title: Dis. Model. Mech. doi: 10.1242/dmm.049977 contributor: fullname: Truong – volume: 370 start-page: eabb8598 year: 2020 ident: 2023080207533379500_DMM050280C37 article-title: Gene regulatory networks controlling vertebrate retinal regeneration publication-title: Science doi: 10.1126/science.abb8598 contributor: fullname: Hoang – volume: 45 start-page: 12611 year: 2017 ident: 2023080207533379500_DMM050280C74 article-title: Conserved non-coding elements: developmental gene regulation meets genome organization publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1074 contributor: fullname: Polychronopoulos – volume: 10 start-page: 105 year: 2010 ident: 2023080207533379500_DMM050280C45 article-title: zTrap: zebrafish gene trap and enhancer trap database publication-title: BMC Dev. Biol. doi: 10.1186/1471-213X-10-105 contributor: fullname: Kawakami – volume: 42 start-page: 112571 year: 2023 ident: 2023080207533379500_DMM050280C62 article-title: Lineage skewing and genome instability underlie marrow failure in a zebrafish model of GATA2 deficiency publication-title: Cell Rep. doi: 10.1016/j.celrep.2023.112571 contributor: fullname: Mahony – volume: 141 start-page: 715 year: 2014 ident: 2023080207533379500_DMM050280C76 article-title: Targeted transgene integration overcomes variability of position effects in zebrafish publication-title: Development doi: 10.1242/dev.100347 contributor: fullname: Roberts – volume: 66 start-page: 674 year: 2023 ident: 2023080207533379500_DMM050280C63 article-title: Loss of RREB1 in pancreatic beta cells reduces cellular insulin content and affects endocrine cell gene expression publication-title: Diabetologia doi: 10.1007/s00125-022-05856-6 contributor: fullname: Mattis – volume: 12 start-page: 1725 year: 2003 ident: 2023080207533379500_DMM050280C55 article-title: A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddg180 contributor: fullname: Lettice – volume: 38 start-page: 276 year: 2020 ident: 2023080207533379500_DMM050280C27 article-title: The nf-core framework for community-curated bioinformatics pipelines publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0439-x contributor: fullname: Ewels – start-page: 2022.06.15.496239 year: 2022 ident: 2023080207533379500_DMM050280C6 article-title: Decoding gene regulation in the mouse embryo using single-cell multi-omics publication-title: BioRxiv. doi: 10.1101/2022.06.15.496239 contributor: fullname: Argelaguet – volume: 14 start-page: 578 year: 2011 ident: 2023080207533379500_DMM050280C31 article-title: Deletion of a remote enhancer near ATOH7 disrupts retinal neurogenesis, causing NCRNA disease publication-title: Nat. Neurosci. doi: 10.1038/nn.2798 contributor: fullname: Ghiasvand – volume: 147 start-page: dev191262 year: 2020 ident: 2023080207533379500_DMM050280C80 article-title: Identification and requirements of enhancers that direct gene expression during zebrafish fin regeneration publication-title: Development doi: 10.1242/dev.191262 contributor: fullname: Thompson – volume: 376 start-page: 44 year: 2022 ident: 2023080207533379500_DMM050280C71 article-title: The complete sequence of a human genome publication-title: Science doi: 10.1126/science.abj6987 contributor: fullname: Nurk – volume: 301 start-page: 578 year: 2007 ident: 2023080207533379500_DMM050280C26 article-title: Cooperation of sonic hedgehog enhancers in midline expression publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2006.11.004 contributor: fullname: Ertzer – volume: 6 start-page: 805 year: 2016 ident: 2023080207533379500_DMM050280C83 article-title: Genome-wide analysis of transposon and retroviral insertions reveals preferential integrations in regions of DNA flexibility publication-title: G3 doi: 10.1534/g3.115.026849 contributor: fullname: Vrljicak – volume: 11 start-page: 5823 year: 2020 ident: 2023080207533379500_DMM050280C36 article-title: Enhancer hijacking determines extrachromosomal circular MYCN amplicon architecture in neuroblastoma publication-title: Nat. Commun. doi: 10.1038/s41467-020-19452-y contributor: fullname: Helmsauer – volume: 369 start-page: eaaz3090 year: 2020 ident: 2023080207533379500_DMM050280C84 article-title: Changes in regeneration-responsive enhancers shape regenerative capacities in vertebrates publication-title: Science doi: 10.1126/science.aaz3090 contributor: fullname: Wang – volume: 9 start-page: R34 year: 2008 ident: 2023080207533379500_DMM050280C25 article-title: Ancora: a web resource for exploring highly conserved noncoding elements and their association with developmental regulatory genes publication-title: Genome Biol. doi: 10.1186/gb-2008-9-2-r34 contributor: fullname: Engström – volume: 5 start-page: 15814 year: 2015 ident: 2023080207533379500_DMM050280C18 article-title: A zebrafish model of Poikiloderma with Neutropenia recapitulates the human syndrome hallmarks and traces back neutropenia to the myeloid progenitor publication-title: Sci. Rep. doi: 10.1038/srep15814 contributor: fullname: Colombo – volume: 24 start-page: 74 year: 2023 ident: 2023080207533379500_DMM050280C21 article-title: JBrowse 2: a modular genome browser with views of synteny and structural variation publication-title: Genome Biol. doi: 10.1186/s13059-023-02914-z contributor: fullname: Diesh – volume: 54 start-page: 1037 year: 2022 ident: 2023080207533379500_DMM050280C9 article-title: Multiomic atlas with functional stratification and developmental dynamics of zebrafish cis-regulatory elements publication-title: Nat. Genet. doi: 10.1038/s41588-022-01089-w contributor: fullname: Baranasic – volume: 470 start-page: 279 year: 2011 ident: 2023080207533379500_DMM050280C75 article-title: A unique chromatin signature uncovers early developmental enhancers in humans publication-title: Nature doi: 10.1038/nature09692 contributor: fullname: Rada-Iglesias – volume: 1842 start-page: 665 year: 2014 ident: 2023080207533379500_DMM050280C94 article-title: Molecular cloning and knockdown of galactocerebrosidase in zebrafish: new insights into the pathogenesis of Krabbe's disease publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbadis.2014.01.008 contributor: fullname: Zizioli – volume: 48 start-page: 2357 year: 2020 ident: 2023080207533379500_DMM050280C17 article-title: Enhancer–gene maps in the human and zebrafish genomes using evolutionary linkage conservation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz1199 contributor: fullname: Clément – volume: 31 start-page: 981 year: 2021 ident: 2023080207533379500_DMM050280C87 article-title: Chromatin architecture transitions from zebrafish sperm through early embryogenesis publication-title: Genome Res. doi: 10.1101/gr.269860.120 contributor: fullname: Wike – volume: 27 start-page: 259 year: 2017 ident: 2023080207533379500_DMM050280C73 article-title: Comparative analyses of super-enhancers reveal conserved elements in vertebrate genomes publication-title: Genome Res. doi: 10.1101/gr.203679.115 contributor: fullname: Pérez-Rico – volume: 54 start-page: 1227 year: 2022 ident: 2023080207533379500_DMM050280C40 article-title: Origin and function of activated fibroblast states during zebrafish heart regeneration publication-title: Nat. Genet. doi: 10.1038/s41588-022-01129-5 contributor: fullname: Hu – volume: 2 start-page: 100083 year: 2022 ident: 2023080207533379500_DMM050280C64 article-title: Single-cell-resolved dynamics of chromatin architecture delineate cell and regulatory states in zebrafish embryos publication-title: Cell Genomics doi: 10.1016/j.xgen.2021.100083 contributor: fullname: Mcgarvey – volume: 588 start-page: 337 year: 2020 ident: 2023080207533379500_DMM050280C89 article-title: A map of cis-regulatory elements and 3D genome structures in zebrafish publication-title: Nature doi: 10.1038/s41586-020-2962-9 contributor: fullname: Yang – volume: 10 start-page: e65601 year: 2021 ident: 2023080207533379500_DMM050280C11 article-title: Quantitative spatial and temporal assessment of regulatory element activity in zebrafish Stainier, D.Y. (ed.) publication-title: Elife doi: 10.7554/eLife.65601 contributor: fullname: Bhatia – volume: 9 start-page: 4977 year: 2018 ident: 2023080207533379500_DMM050280C91 article-title: Heart enhancers with deeply conserved regulatory activity are established early in zebrafish development publication-title: Nat. Commun. doi: 10.1038/s41467-018-07451-z contributor: fullname: Yuan – volume: 532 start-page: 201 year: 2016 ident: 2023080207533379500_DMM050280C44 article-title: Modulation of tissue repair by regeneration enhancer elements publication-title: Nature doi: 10.1038/nature17644 contributor: fullname: Kang – volume: 145 start-page: dev156521 year: 2018 ident: 2023080207533379500_DMM050280C65 article-title: Cohesin facilitates zygotic genome activation in zebrafish publication-title: Development doi: 10.1242/dev.156521 contributor: fullname: Meier – start-page: 2023.03.20.533545 year: 2023 ident: 2023080207533379500_DMM050280C78 article-title: Single-cell analysis of shared signatures and transcriptional diversity during zebrafish development publication-title: BioRxiv doi: 10.1101/2023.03.20.533545 contributor: fullname: Sur – volume: 370 start-page: eaax8137 year: 2020 ident: 2023080207533379500_DMM050280C88 article-title: Deep conservation of the enhancer regulatory code in animals publication-title: Science doi: 10.1126/science.aax8137 contributor: fullname: Wong – volume: 12 start-page: 5415 year: 2021 ident: 2023080207533379500_DMM050280C29 article-title: CTCF knockout in zebrafish induces alterations in regulatory landscapes and developmental gene expression publication-title: Nat. Commun. doi: 10.1038/s41467-021-25604-5 contributor: fullname: Franke – volume: 368 start-page: 20130021 year: 2013 ident: 2023080207533379500_DMM050280C35 article-title: The mystery of extreme non-coding conservation publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. doi: 10.1098/rstb.2013.0021 contributor: fullname: Harmston – volume: 5 start-page: eaav0547 year: 2019 ident: 2023080207533379500_DMM050280C15 article-title: De novo assembly of the goldfish (Carassius auratus) genome and the evolution of genes after whole-genome duplication publication-title: Sci. Adv. doi: 10.1126/sciadv.aav0547 contributor: fullname: Chen – volume: 148 start-page: dev200343 year: 2021 ident: 2023080207533379500_DMM050280C68 article-title: The zebrafish issue: 25 years on publication-title: Development doi: 10.1242/dev.200343 contributor: fullname: Mullins – volume: 24 start-page: 1 year: 2018 ident: 2023080207533379500_DMM050280C42 article-title: Systemic loss and gain of chromatin architecture throughout zebrafish development publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.06.003 contributor: fullname: Kaaij – volume: 216 start-page: 1 year: 1999 ident: 2023080207533379500_DMM050280C4 article-title: Dissecting hematopoiesis and disease using the zebrafish publication-title: Dev. Biol. doi: 10.1006/dbio.1999.9462 contributor: fullname: Amatruda – volume: 3 start-page: 1 year: 2020 ident: 2023080207533379500_DMM050280C22 article-title: Deletion of a conserved Gata2 enhancer impairs haemogenic endothelium programming and adult Zebrafish haematopoiesis publication-title: Commun. Biol. doi: 10.1038/s42003-020-0798-3 contributor: fullname: Dobrzycki – volume: 12 start-page: jkab379 year: 2022 ident: 2023080207533379500_DMM050280C52 article-title: Transcriptional profile and chromatin accessibility in zebrafish melanocytes and melanoma tumors publication-title: G3 doi: 10.1093/g3journal/jkab379 contributor: fullname: Kramer – volume: 11 start-page: 5650 year: 2020 ident: 2023080207533379500_DMM050280C7 article-title: Benchmarking of cell type deconvolution pipelines for transcriptomics data publication-title: Nat. Commun. doi: 10.1038/s41467-020-19015-1 contributor: fullname: Avila Cobos – volume: 45 start-page: D758 year: 2017 ident: 2023080207533379500_DMM050280C39 article-title: The Zebrafish Model Organism Database: new support for human disease models, mutation details, gene expression phenotypes and searching publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1116 contributor: fullname: Howe – volume: 95 start-page: 65 year: 2016 ident: 2023080207533379500_DMM050280C46 article-title: Gal4 driver transgenic zebrafish: powerful tools to study developmental biology, organogenesis, and neuroscience publication-title: Adv. Genet. doi: 10.1016/bs.adgen.2016.04.002 contributor: fullname: Kawakami – volume: 242 start-page: 949 year: 2013 ident: 2023080207533379500_DMM050280C66 article-title: Site-directed zebrafish transgenesis into single landing sites with the phiC31 integrase system publication-title: Dev. Dyn. doi: 10.1002/dvdy.23989 contributor: fullname: Mosimann – volume: 507 start-page: 455 year: 2014 ident: 2023080207533379500_DMM050280C5 article-title: An atlas of active enhancers across human cell types and tissues publication-title: Nature doi: 10.1038/nature12787 contributor: fullname: Andersson – volume: 21 start-page: 511 year: 2020 ident: 2023080207533379500_DMM050280C32 article-title: Gene regulatory programmes of tissue regeneration publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-020-0239-7 contributor: fullname: Goldman – volume: 16 start-page: 31 year: 2015 ident: 2023080207533379500_DMM050280C14 article-title: Lessons from modENCODE publication-title: Annu. Rev. Genomics Hum. Genet. doi: 10.1146/annurev-genom-090413-025448 contributor: fullname: Brown – volume: 2 start-page: 100170 year: 2022 ident: 2023080207533379500_DMM050280C41 article-title: A regulatory network of Sox and Six transcription factors initiate a cell fate transformation during hearing regeneration in adult zebrafish publication-title: Cell Genomics doi: 10.1016/j.xgen.2022.100170 contributor: fullname: Jimenez – volume: 32 start-page: 378 year: 2022 ident: 2023080207533379500_DMM050280C85 article-title: Antibody-free profiling of transcription factor occupancy during early embryogenesis by FitCUT&RUN publication-title: Genome Res. doi: 10.1101/gr.275837.121 contributor: fullname: Wang – volume: 8 start-page: S4 year: 2007 ident: 2023080207533379500_DMM050280C49 article-title: Retroviral enhancer detection insertions in zebrafish combined with comparative genomics reveal genomic regulatory blocks - a fundamental feature of vertebrate genomes publication-title: Genome Biol. doi: 10.1186/gb-2007-8-s1-s4 contributor: fullname: Kikuta – volume: 72 start-page: 673 year: 2018 ident: 2023080207533379500_DMM050280C92 article-title: Widespread enhancer dememorization and promoter priming during parental-to-zygotic transition publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.10.017 contributor: fullname: Zhang – volume: 306 start-page: 636 year: 2004 ident: 2023080207533379500_DMM050280C24 article-title: The ENCODE (ENCyclopedia Of DNA Elements) project publication-title: Science doi: 10.1126/science.1105136 contributor: fullname: ENCODE Project Consortium – volume: 11 start-page: e1005193 year: 2015 ident: 2023080207533379500_DMM050280C10 article-title: Functional assessment of disease-associated regulatory variants in vivo using a versatile dual colour transgenesis strategy in zebrafish publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1005193 contributor: fullname: Bhatia – volume: 7 start-page: 13 year: 2019 ident: 2023080207533379500_DMM050280C57 article-title: Expanding the CRISPR toolbox in zebrafish for studying development and disease publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2019.00013 contributor: fullname: Liu – volume: 200 start-page: 431 year: 2015 ident: 2023080207533379500_DMM050280C90 article-title: Multiplex conditional mutagenesis using transgenic expression of Cas9 and sgRNAs publication-title: Genetics doi: 10.1534/genetics.115.176917 contributor: fullname: Yin – volume: 24 start-page: 869 year: 2014 ident: 2023080207533379500_DMM050280C8 article-title: ISMARA: automated modeling of genomic signals as a democracy of regulatory motifs publication-title: Genome Res. doi: 10.1101/gr.169508.113 contributor: fullname: Balwierz – volume: 27 start-page: 559 year: 2018 ident: 2023080207533379500_DMM050280C67 article-title: Generation and characterization of a zebrafish muscle specific inducible Cre line publication-title: Transgenic Res. doi: 10.1007/s11248-018-0098-6 contributor: fullname: Mukherjee – volume: 13 start-page: 1945 year: 2022 ident: 2023080207533379500_DMM050280C12 article-title: Multidimensional chromatin profiling of zebrafish pancreas to uncover and investigate disease-relevant enhancers publication-title: Nat. Commun. doi: 10.1038/s41467-022-29551-7 contributor: fullname: Bordeira-Carriço – volume: 16 start-page: 49 year: 2022 ident: 2023080207533379500_DMM050280C28 article-title: CRISPR-Cas9-mediated functional dissection of the foxc1 genomic region in zebrafish identifies critical conserved cis-regulatory elements publication-title: Hum. Genomics doi: 10.1186/s40246-022-00423-x contributor: fullname: Ferre-Fernández – volume: 25 start-page: 638 year: 2015 ident: 2023080207533379500_DMM050280C59 article-title: Regulation of transcriptionally active genes via the catalytically inactive Cas9 in C. elegans and D. rerio publication-title: Cell Res. doi: 10.1038/cr.2015.35 contributor: fullname: Long – volume: 28 start-page: 140 year: 2022 ident: 2023080207533379500_DMM050280C61 article-title: Gosling: a grammar-based toolkit for scalable and interactive genomics data visualization publication-title: IEEE Trans. Vis. Comput. Graph doi: 10.1109/TVCG.2021.3114876 contributor: fullname: Lyi – volume: 251 start-page: 729 year: 2022 ident: 2023080207533379500_DMM050280C2 article-title: Identification of chromatin states during zebrafish gastrulation using CUT&RUN and CUT&Tag publication-title: Dev. Dyn. doi: 10.1002/dvdy.430 contributor: fullname: Akdogan-Ozdilek – volume: 8 start-page: e43186 year: 2019 ident: 2023080207533379500_DMM050280C79 article-title: Arid3a regulates nephric tubule regeneration via evolutionarily conserved regeneration signal-response enhancers Bronner, M.E. and Drummond, I. (eds.) publication-title: Elife doi: 10.7554/eLife.43186 contributor: fullname: Suzuki – volume: 4 start-page: 6545 year: 2014 ident: 2023080207533379500_DMM050280C50 article-title: Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering publication-title: Sci. Rep. doi: 10.1038/srep06545 contributor: fullname: Kimura – volume: 51 start-page: 1339 year: 2019 ident: 2023080207533379500_DMM050280C86 article-title: A global overview of pleiotropy and genetic architecture in complex traits publication-title: Nat. Genet. doi: 10.1038/s41588-019-0481-0 contributor: fullname: Watanabe – volume: 5 start-page: 171 year: 2016 ident: 2023080207533379500_DMM050280C51 article-title: Altered DNA methylation of glycolytic and lipogenic genes in liver from obese and type 2 diabetic patients publication-title: Mol. Metab doi: 10.1016/j.molmet.2015.12.004 contributor: fullname: Kirchner – volume: 312 start-page: 1215 year: 2006 ident: 2023080207533379500_DMM050280C20 article-title: A regulatory SNP causes a human genetic disease by creating a new transcriptional promoter publication-title: Science doi: 10.1126/science.1126431 contributor: fullname: De Gobbi – volume: 12 start-page: 1125 year: 2021 ident: 2023080207533379500_DMM050280C34 article-title: Cre-Controlled CRISPR mutagenesis provides fast and easy conditional gene inactivation in zebrafish publication-title: Nat. Commun. doi: 10.1038/s41467-021-21427-6 contributor: fullname: Hans – volume: 8 start-page: 256 year: 2009 ident: 2023080207533379500_DMM050280C23 article-title: Pan-vertebrate conserved non-coding sequences associated with developmental regulation publication-title: Brief. Funct. Genomic. Proteomic. doi: 10.1093/bfgp/elp033 contributor: fullname: Elgar – volume: 15 start-page: 74 year: 2022 ident: 2023080207533379500_DMM050280C3 article-title: The landscape of GWAS validation; systematic review identifying 309 validated non-coding variants across 130 human diseases publication-title: BMC Med Genomics doi: 10.1186/s12920-022-01216-w contributor: fullname: Alsheikh – volume: 1866 start-page: 165662 year: 2020 ident: 2023080207533379500_DMM050280C13 article-title: Glycogen storage in a zebrafish Pompe disease model is reduced by 3-BrPA treatment publication-title: Biochim. Biophys. Acta. Mol. Basis Dis. doi: 10.1016/j.bbadis.2020.165662 contributor: fullname: Bragato – volume: 9 start-page: e51325 year: 2020 ident: 2023080207533379500_DMM050280C58 article-title: Analysis of zebrafish periderm enhancers facilitates identification of a regulatory variant near human KRT8/18 publication-title: Elife doi: 10.7554/eLife.51325 contributor: fullname: Liu – volume: 50 start-page: D1025 year: 2022 ident: 2023080207533379500_DMM050280C70 article-title: Genomicus in 2022: comparative tools for thousands of genomes and reconstructed ancestors publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab1091 contributor: fullname: Nguyen – volume: 167 start-page: 1170 year: 2016 ident: 2023080207533379500_DMM050280C60 article-title: Ever-changing landscapes: transcriptional enhancers in development and evolution publication-title: Cell doi: 10.1016/j.cell.2016.09.018 contributor: fullname: Long – volume: 32 start-page: W273 year: 2004 ident: 2023080207533379500_DMM050280C30 article-title: VISTA: computational tools for comparative genomics publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh458 contributor: fullname: Frazer – volume: 496 start-page: 494 year: 2013 ident: 2023080207533379500_DMM050280C47 article-title: A systematic genome-wide analysis of zebrafish protein-coding gene function publication-title: Nature doi: 10.1038/nature11992 contributor: fullname: Kettleborough – volume: 2012 start-page: 159807 year: 2012 ident: 2023080207533379500_DMM050280C82 article-title: Pathogen recognition and activation of the innate immune response in zebrafish publication-title: Adv. Hematol. doi: 10.1155/2012/159807 contributor: fullname: Van Der Vaart – volume: 10 start-page: 1551 year: 2019 ident: 2023080207533379500_DMM050280C54 article-title: The maternal to zygotic transition regulates genome-wide heterochromatin establishment in the zebrafish embryo publication-title: Nat. Commun. doi: 10.1038/s41467-019-09582-3 contributor: fullname: Laue – volume: 50 start-page: W774 year: 2022 ident: 2023080207533379500_DMM050280C56 article-title: WashU epigenome browser update 2022 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac238 contributor: fullname: Li – volume: 614 start-page: 742 year: 2023 ident: 2023080207533379500_DMM050280C43 article-title: Dissecting cell identity via network inference and in silico gene perturbation publication-title: Nature doi: 10.1038/s41586-022-05688-9 contributor: fullname: Kamimoto – volume: 496 start-page: 498 year: 2013 ident: 2023080207533379500_DMM050280C38 article-title: The zebrafish reference genome sequence and its relationship to the human genome publication-title: Nature doi: 10.1038/nature12111 contributor: fullname: Howe – volume: 21 start-page: 3255 year: 2012 ident: 2023080207533379500_DMM050280C77 article-title: Regulatory variation in a TBX5 enhancer leads to isolated congenital heart disease publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/dds165 contributor: fullname: Smemo – volume: 12 start-page: 128 year: 2019 ident: 2023080207533379500_DMM050280C48 article-title: Enhancer variants associated with Alzheimer's disease affect gene expression via chromatin looping publication-title: BMC Med. Genomics doi: 10.1186/s12920-019-0574-8 contributor: fullname: Kikuchi – volume: 46 start-page: 136 year: 2014 ident: 2023080207533379500_DMM050280C72 article-title: Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants publication-title: Nat. Genet. doi: 10.1038/ng.2870 contributor: fullname: Pasquali – volume: 23 start-page: 116 year: 2022 ident: 2023080207533379500_DMM050280C16 article-title: Long-read sequencing of the zebrafish genome reorganizes genomic architecture publication-title: BMC Genomics doi: 10.1186/s12864-022-08349-3 contributor: fullname: Chernyavskaya – volume: 38 start-page: 875 year: 2020 ident: 2023080207533379500_DMM050280C93 article-title: Bone morphogenetic protein signaling regulates Id1-mediated neural stem cell quiescence in the adult zebrafish brain via a phylogenetically conserved enhancer module publication-title: Stem Cells doi: 10.1002/stem.3182 contributor: fullname: Zhang – volume: 32 start-page: 756 year: 2015 ident: 2023080207533379500_DMM050280C1 article-title: A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish publication-title: Dev. Cell doi: 10.1016/j.devcel.2015.01.032 contributor: fullname: Ablain – volume: 58 start-page: 155 year: 2023 ident: 2023080207533379500_DMM050280C33 article-title: The miR-430 locus with extreme promoter density forms a transcription body during the minor wave of zygotic genome activation publication-title: Dev. Cell doi: 10.1016/j.devcel.2022.12.007 contributor: fullname: Hadzhiev – volume: 50 start-page: D988 year: 2022 ident: 2023080207533379500_DMM050280C19 article-title: Ensembl 2022 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab1049 contributor: fullname: Cunningham – volume: 51 start-page: D1188 year: 2023 ident: 2023080207533379500_DMM050280C69 article-title: The UCSC Genome Browser database: 2023 update publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac1072 contributor: fullname: Nassar – start-page: 2023.03.06.531398 year: 2023 ident: 2023080207533379500_DMM050280C53 article-title: Zebrahub – multimodal zebrafish developmental atlas reveals the state transition dynamics of late vertebrate pluripotent axial progenitors publication-title: bioRxiv doi: 10.1101/2023.03.06.531398 contributor: fullname: Lange |
SSID | ssj0062839 |
Score | 2.398992 |
Snippet | In the past decades, the zebrafish has become a disease model with increasing popularity owing to its advantages that include fast development, easy genetic... ABSTRACT In the past decades, the zebrafish has become a disease model with increasing popularity owing to its advantages that include fast development, easy... |
SourceID | doaj pubmedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
SubjectTerms | Animals Chromatin disease modelling Genome genomic resources Genomics - methods Humans regeneration Regeneration - genetics Special Zebrafish - genetics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI4QEogLgvEaLxXBtdA1SZMcATFNSOPEJMSlylPssA7tcdi_x266iSEkLlzTtI3s1P5cx58JuVGOMasYRKpOZdjCTIMdDDxVzOTGOUC8dVFY_6XoDdjzG3_71uoLz4RFeuAouDstvONIoiUthdAFAI1mGRNFEGBZtYhlvplaBlPRBhfgNFVdCslZCiEMbYhJwR_dudHoNuOYUVxzRTVj_28w8-dpyW_up7tHdhvcmNzH9e6TDV-1yFbsJLloke1-kyM_IP13zAWH4fQjmcRG8-PJIkEu1tHQwlD8XT9NAK0mTXomqfvhYGF6oiuHt9Vk1KizQzLoPr0-9tKmaUJqGeOz1HobtOC2oJZz7kPoaOqLIjN5kLnhqnC56HgfDJOWS5XnlhrKrBGGBWlCoEdksxpX_oQkEskEbeGNNR4_dS1syKTqaCcpNqxpk-ul_MrPyI1RYkwBUi5BymWUcps8oGhXM5DPuh4ALZeNlsu_tNwmV0vFlLD_MamhKz-eT0twr2BWAFbCnOOoqNWrqODgbXNYglxT4dpa1q9Uw4-aYxsfiWDq9D9Wf0Z2sEt9PDd4TjZnk7m_ACwzM5f1tv0CsN_wAg priority: 102 providerName: Directory of Open Access Journals |
Title | Zebrafish regulatory genomic resources for disease modelling and regeneration |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37529920 https://www.proquest.com/docview/2845104168 https://pubmed.ncbi.nlm.nih.gov/PMC10417509 https://doaj.org/article/a7ed545118c3446099a40476f7128a78 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCbaDit6GbbulT0CD9vViWM9fVyLFsWAFMWwAsEuhiRLa4DZKZL00H8_UrKLZthpV1mCBZISSZH8CPClajh3FUdPtakKamFm8B4MIq-4LW3ToMUbi8Lml_Limn9biMUeyKEWJibtO7ucdL_bSbe8ibmVt62bDnli06v5KboQM9J0033YRwkdfPR0_0pUmFUsgxQ8R_eF9aCkqIumTdtOCkHRxCM4ZErgXUyNvh9ppAjc_y9r8--kyUda6Pw5POvNx-xr2uYL2PPdMTxNDSXvj-Fw3ofKX8L8J4WEw3Jzk61Tv_nV-j4jSNZ26XAovdpvMjRasz5Kk8W2OFSfnpmuoWURk5pY9wquz89-nF7kfe-E3HEutrnzLhglnGROCOFDmBnmpSxsGXRpRSWbUs28D5ZrJ3RVlo5Zxp1VlgdtQ2Cv4aBbdf4tZJowBZ301llPJ94oFwpdzUyjGfWtGcHngX71bYLIqMm1QILXSPA6EXwEJ0TahxkEax0HVutfdc_c2ijfCEJM046hn4rWq-EFVzIoVKNG6RF8GhhT4zGg2Ibp_OpuU6OWFSQWEue8SYx6-NXA6BHoHRbu7GX3C0pehNoeJO3d_y99D0fUoj4lDX6Ag-36zn9EQ2Zrxyi9CzWGJydnl1ffx_E5YBxl-Q9iqPX4 |
link.rule.ids | 230,315,730,783,787,867,888,2109,27936,27937,31732,33757,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VIkovFZRXaAEjuDpx7H35CBVVgLri0EoVF2ufbSTsVEl66L9nZm1XDeLUq70rr2Zmd2Y8s98H8Ll0jNmSYabqyowozDSeg4GnJTO5cQ4j3ngprDoVs3P244JfbIEY7sLEpn1r5uP2TzNu51ext_K6sZOhT2zyqzrCFGJKnm7yCB7jhs3YkKV3J7BAl1nGi5CcpZjAFD0sKXqjiWuaccapnrgLO4XkeBoT1fc9nxSh-_8Xb_7bNnnPDx0_g70-gEy-dAt9Dlu-3YcnHaXk7T7sVH2x_AVUv6koHOarq2TZMc4vlrcJgbI2c4uPuv_2qwTD1qSv0ySRGIduqCe6dTQtolKT8l7C-fG3s6NZ2rMnpJYxvk6tt0FLbkVhOec-hKkuvBCZyYPKDS-Fy-XU-2CYslyVeW4LUzBrpGFBmRCKV7DdLlr_BhJFqIJWeGONpz2vpQ2ZKqfaqYKYa0bwaZBffd2BZNSUXKDAaxR43Ql8BF9JtHcjCNg6PlgsL-tevbWW3nHCTFO2wEwV41fNMiZFkOhItVQj-DgopsaNQNUN3frFzapGP8vJMASOed0p6u5Tg6JHoDZUuLGWzTdoexFse7C1tw-f-gGezs6qk_rk--nPA9glwvquhfAQttfLG_8Ow5q1eR9t-C86NfXY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB5BEVEvFZRXeBrB1bFj78tHKETlkaoHKlVcrH22kbATJemh_74za7tqECeu9q68mpndmfHMfh_Ax8oxZiuGmaqrcqIw03gOBp5WzBTGOYx446Ww-Yk4PmPfz_l531W56dsqW2sWk_ZPM2kXl7G3ctXYbOgTy07nR5hCTMnTZSsXsvvwADdtLoZMvTuFBbrNKl6G5CzFJKbsoUnRI2WuaSY5p5riPoxKyfFEJrrvO34pwvf_K-b8u3Xyji-aPYKDPohMPnWLfQz3fHsIDztayetDGM37gvkTmP-mwnBYbC6Tdcc6v1xfJwTM2iwsPur-3W8SDF2TvlaTRHIcuqWe6NbRtIhMTQp8Cmezr7-OjtOeQSG1jPFtar0NWnIrSss59yFMdemFyE0RVGF4JVwhp94Hw5TlqioKW5qSWSMNC8qEUD6DvXbZ-heQKEIWtMIbazztey1tyFU11U6VxF4zhg-D_OpVB5RRU4KBAq9R4HUn8DF8JtHejiBw6_hgub6oexXXWnrHCTdN2RKzVYxhNcuZFEGiM9VSjeH9oJgaNwNVOHTrl1ebGn0tJ-MQOOZ5p6jbTw2KHoPaUeHOWnbfoP1FwO3B3l7-_9R3MDr9Mqt_fjv58Qr2ibO-6yJ8DXvb9ZV_g5HN1ryNJnwDxs726w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zebrafish+regulatory+genomic+resources+for+disease+modelling+and+regeneration&rft.jtitle=Disease+models+%26+mechanisms&rft.au=Jimenez+Gonzalez%2C+Ada&rft.au=Baranasic%2C+Damir&rft.au=M%C3%BCller%2C+Ferenc&rft.date=2023-08-01&rft.eissn=1754-8411&rft.volume=16&rft.issue=8&rft_id=info:doi/10.1242%2Fdmm.050280&rft_id=info%3Apmid%2F37529920&rft.externalDocID=37529920 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-8403&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-8403&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-8403&client=summon |