HEMODYNAMICS FOR ASYMMETRIC INLET AXIAL VELOCITY PROFILE IN CAROTID BIFURCATION MODEL

The asymmetric inlet velocity profile has been observed in phantom model using LDA and in health subjects using Magnet Resonance (MR). The effects of asymmetric inlet axial velocity profile on the flow field and the Wall Shear Stress (WSS) of carotid bifurcation were numerically studied herein with...

Full description

Saved in:
Bibliographic Details
Published inJournal of Hydrodynamics Vol. 20; no. 5; pp. 656 - 661
Main Authors DING, Zu-rong, LIU, Bin, YANG, Shuo, XIA, Yan
Format Journal Article
LanguageEnglish
Published Singapore Elsevier Ltd 01.10.2008
Springer Singapore
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The asymmetric inlet velocity profile has been observed in phantom model using LDA and in health subjects using Magnet Resonance (MR). The effects of asymmetric inlet axial velocity profile on the flow field and the Wall Shear Stress (WSS) of carotid bifurcation were numerically studied herein with the TF-AHCB model, The results show that the Wall Shear Stress Gradient (WSSG) in the front part of the sinus for inward-tilting inlet axial velocity profile is nearly 2 times of that for the symmetric one in the beginning of systole, the end of systole, and diastole, respectively. The area of WSS below 5× 10^-3 Pa at the outer wall of the sinus for outward-tilting inlet axial velocity profile is 1.5 times of that for the inward-tilting one during diastole of the cardiac cycle. The asymmetric inlet velocity profiles can reduce the flow velocity near the inner wall of the sinus, which has been normally considered a high velocity region. It is concluded that besides bifurcation geometry and flow waveform, the asymmetry of inlet velocity profile is probably a factor influencing atherosclerosis.
AbstractList The asymmetric inlet velocity profile has been observed in phantom model using LDA and in health subjects using Magnet Resonance (MR). The effects of asymmetric inlet axial velocity profile on the flow field and the Wall Shear Stress (WSS) of carotid bifurcation were numerically studied herein with the TF-AHCB model. The results show that the Wall Shear Stress Gradient (WSSG) in the front part of the sinus for inward-tilting inlet axial velocity profile is nearly 2 times of that for the symmetric one in the beginning of systole, the end of systole, and diastole, respectively. The area of WSS below 5 x 10(-3) Pa at the outer wall of the sinus for outward-tilting inlet axial velocity profile is 1.5 times of that for the inward-tilting one during diastole of the cardiac cycle. The asymmetric inlet velocity profiles can reduce the flow velocity near the inner wall of the sinus, which has been normally considered a high velocity region. It is concluded that besides bifurcation geometry and flow waveform, the asymmetry of inlet velocity profile is probably a factor influencing atherosclerosis.
The asymmetric inlet velocity profile has been observed in phantom model using LDA and in health subjects using Magnet Resonance (MR). The effects of asymmetric inlet axial velocity profile on the flow field and the Wall Shear Stress (WSS) of carotid bifurcation were numerically studied herein with the TF-AHCB model. The results show that the Wall Shear Stress Gradient (WSSG) in the front part of the sinus for inward-tilting inlet axial velocity profile is nearly 2 times of that for the symmetric one in the beginning of systole, the end of systole, and diastole, respectively. The area of WSS below 5×10 −3 Pa at the outer wall of the sinus for outward-tilting inlet axial velocity profile is 1.5 times of that for the inward-tilting one during diastole of the cardiac cycle. The asymmetric inlet velocity profiles can reduce the flow velocity near the inner wall of the sinus, which has been normally considered a high velocity region. It is concluded that besides bifurcation geometry and flow waveform, the asymmetry of inlet velocity profile is probably a factor influencing atherosclerosis.
The asymmetric inlet velocity profile has been observed in phantom model using LDA and in health subjects using Magnet Resonance (MR). The effects of asymmetric inlet axial velocity profile on the flow field and the Wall Shear Stress (WSS) of carotid bifurcation were numerically studied herein with the TF-AHCB model. The results show that the Wall Shear Stress Gradient (WSSG) in the front part of the sinus for inward-tilting inlet axial velocity profile is nearly 2 times of that for the symmetric one in the beginning of systole, the end of systole, and diastole, respectively. The area of WSS below 5×10 −3 Pa at the outer wall of the sinus for outward-tilting inlet axial velocity profile is 1.5 times of that for the inward-tilting one during diastole of the cardiac cycle. The asymmetric inlet velocity profiles can reduce the flow velocity near the inner wall of the sinus, which has been normally considered a high velocity region. It is concluded that besides bifurcation geometry and flow waveform, the asymmetry of inlet velocity profile is probably a factor influencing atherosclerosis.
The asymmetric inlet velocity profile has been observed in phantom model using LDA and in health subjects using Magnet Resonance (MR). The effects of asymmetric inlet axial velocity profile on the flow field and the Wall Shear Stress (WSS) of carotid bifurcation were numerically studied herein with the TF-AHCB model, The results show that the Wall Shear Stress Gradient (WSSG) in the front part of the sinus for inward-tilting inlet axial velocity profile is nearly 2 times of that for the symmetric one in the beginning of systole, the end of systole, and diastole, respectively. The area of WSS below 5× 10^-3 Pa at the outer wall of the sinus for outward-tilting inlet axial velocity profile is 1.5 times of that for the inward-tilting one during diastole of the cardiac cycle. The asymmetric inlet velocity profiles can reduce the flow velocity near the inner wall of the sinus, which has been normally considered a high velocity region. It is concluded that besides bifurcation geometry and flow waveform, the asymmetry of inlet velocity profile is probably a factor influencing atherosclerosis.
The asymmetric inlet velocity profile has been observed in phantom model using LDA and in health subjects using Magnet Resonance (MR). The effects of asymmetric inlet axial velocity profile on the flow field and the Wall Shear Stress (WSS) of carotid bifurcation were numerically studied herein with the TF-AHCB model. The results show that the Wall Shear Stress Gradient (WSSG) in the front part of the sinus for inward-tilting inlet axial velocity profile is nearly 2 times of that for the symmetric one in the beginning of systole, the end of systole, and diastole, respectively. The area of WSS below 5x10 super(-3) Pa at the outer wall of the sinus for outward-tilting inlet axial velocity profile is 1.5 times of that for the inward-tilting one during diastole of the cardiac cycle. The asymmetric inlet velocity profiles can reduce the flow velocity near the inner wall of the sinus, which has been normally considered a high velocity region. It is concluded that besides bifurcation geometry and flow waveform, the asymmetry of inlet velocity profile is probably a factor influencing atherosclerosis.
Author DING Zu-rong LIU Bin YANG Shuo XIA Yan
AuthorAffiliation Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240, China
Author_xml – sequence: 1
  givenname: Zu-rong
  surname: DING
  fullname: DING, Zu-rong
  email: zrding@sjtu.edu.cn
– sequence: 2
  givenname: Bin
  surname: LIU
  fullname: LIU, Bin
– sequence: 3
  givenname: Shuo
  surname: YANG
  fullname: YANG, Shuo
– sequence: 4
  givenname: Yan
  surname: XIA
  fullname: XIA, Yan
BookMark eNqFkEFv0zAYhiM0JLbBT0CyOCA4BD7HseOIAwpZyiylDUpTRE9W4rjDI0s2O0Xi3-Ou48Klp8_S9z7vZz0Xwdk4jToIXmP4gAGzj2sMgEMGlL8D_p4BhjSMngXnmCc8BBJHZ_79L_IiuHDuFoCwFOLzYHNdLKur7SpbinyNFlWNsvV2uSyaWuRIrMqiQdkPkZXoe1FWuWi26FtdLURZ-CXKs7pqxBX6IhabOs8aUa2QbyvKl8HzXTs4_eppXgabRdHk12FZfRV5VoYqjukcKsV6Dl2nY9ZFHFSv8E4nHCdpDKRTPeFtEscJiXDSJzhNFKW07zD0fcco1oxcBm-Pvfd2ethrN8s745QehnbU095JQiIPQ3IyiFMKQNmhkR6Dyk7OWb2T99bctfaPxCAPtuWjbXlQKYHLR9sy8tyn_zhl5nY20zjb1gwnaXaknb823mgrb6e9Hb26k-DnI6i95d_Gg04ZPSrdG6vVLPvJnGx48_Txn9N48-Cvy65Vv3Zm0DLiNI0JTclfETKuew
CitedBy_id crossref_primary_10_1007_s13239_019_00448_9
crossref_primary_10_1016_j_jmmm_2011_11_022
crossref_primary_10_1016_S1001_6058_08_60198_5
crossref_primary_10_3390_sym12071083
crossref_primary_10_1016_j_powtec_2020_02_009
Cites_doi 10.1016/S0021-9290(99)00053-6
10.1115/1.2895743
10.1016/0021-9150(83)90113-2
10.1016/S0021-9290(06)85520-X
10.1115/1.2891384
10.1016/S1076-6332(03)80562-7
10.1016/S0021-9290(01)00148-8
10.1146/annurev.fl.15.010183.002333
10.1007/978-1-4757-1752-5
10.1016/j.jbiomech.2006.11.002
10.1161/01.ATV.5.3.293
ContentType Journal Article
Copyright 2008 Publishing House for Journal of Hydrodynamics
China Ship Scientific Research Center 2008
Copyright_xml – notice: 2008 Publishing House for Journal of Hydrodynamics
– notice: China Ship Scientific Research Center 2008
DBID 2RA
92L
CQIGP
W91
~WA
AAYXX
CITATION
F1W
H96
L.G
7TB
7U5
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/S1001-6058(08)60109-2
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-医药卫生
中文科技期刊数据库- 镜像站点
CrossRef
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database



Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate HEMODYNAMICS FOR ASYMMETRIC INLET AXIAL VELOCITY PROFILE IN CAROTID BIFURCATION MODEL
EISSN 1878-0342
1000-4874
EndPage 661
ExternalDocumentID 10_1016_S1001_6058_08_60109_2
S1001605808601092
28594359
GroupedDBID --K
--M
-01
-0A
-EM
-SA
-S~
.~1
0R~
1B1
1~.
1~5
2B.
2C0
2RA
4.4
406
457
4G.
5GY
5VR
5VS
5XA
5XB
5XL
7-5
71M
8P~
92H
92I
92L
92M
9D9
9DA
AABNK
AACTN
AAEDT
AAFGU
AAHNG
AAIAL
AAIKJ
AAKOC
AALMO
AALRI
AAOAW
AAQFI
AAUYE
AAXUO
ABDZT
ABECU
ABFGW
ABFTV
ABJOX
ABKAS
ABKCH
ABMAC
ABMQK
ABPIF
ABTEG
ABXDB
ABXPI
ABYKQ
ACBMV
ACBRV
ACBYP
ACDAQ
ACGFS
ACHSB
ACIGE
ACIPQ
ACMLO
ACNNM
ACOKC
ACRLP
ACTTH
ACVWB
ACWMK
ADALY
ADEZE
ADHHG
ADKNI
ADMDM
ADRFC
ADTZH
ADURQ
ADYFF
AEBSH
AECPX
AEFTE
AEJRE
AEKER
AENEX
AEPYU
AESTI
AEVTX
AFKWA
AFQWF
AFUIB
AGDGC
AGGBP
AGHFR
AGJBK
AGMZJ
AGUBO
AGYEJ
AHJVU
AIAKS
AIEXJ
AIKHN
AILAN
AIMYW
AITGF
AITUG
AJBFU
AJDOV
AJOXV
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMYLF
AXJTR
AXYYD
BGNMA
BJAXD
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CDYEO
CHBEP
CIAHI
CQIGP
CS3
CW9
DU5
EBLON
EBS
EFJIC
EJD
EO9
EP2
EP3
FA0
FDB
FEDTE
FINBP
FIRID
FNLPD
FNPLU
FSGXE
FYGXN
GBLVA
GGCAI
GJIRD
HVGLF
HZ~
IHE
IPNFZ
J-C
J1W
JJJVA
JUIAU
JZLTJ
KOM
KOV
LLZTM
M41
M4Y
MO0
N9A
NQJWS
NU0
O9-
OAUVE
OZT
P-8
P-9
PC.
Q--
Q-0
Q38
R-A
REI
RIG
RLLFE
ROL
RPZ
RSV
RT1
S..
SDC
SDF
SDG
SES
SNE
SOJ
SPC
SRMVM
SSLCW
SST
SSZ
STPWE
T5K
T8Q
TCJ
TGT
TSG
U1F
U1G
U5A
U5K
UOJIU
UTJUX
VFIZW
W91
Z5O
Z81
ZMTXR
~LB
~WA
AAEDW
AATNV
AAYFA
ABTKH
ACZOJ
ADMUD
ADOXG
AESKC
AFNRJ
AGQEE
AMRAJ
AMXSW
DPUIP
EFLBG
FIGPU
IKXTQ
IWAJR
NPVJJ
PT4
SNPRN
SOHCF
VEKWB
Z7R
AACDK
AAJBT
AASML
AAXDM
AAXKI
ABAKF
ABJNI
ABWVN
ACAOD
ACDTI
ACPIV
ACRPL
ADMLS
ADNMO
AEFQL
AEIPS
AEMSY
AFBBN
AGRTI
AIGIU
AKRWK
ANKPU
SJYHP
AATTM
AAYWO
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFDZB
AFHIU
AFOHR
AFPUW
AFXIZ
AGCQF
AGRNS
AHPBZ
AHWEU
AIGII
AIIUN
AIXLP
AKBMS
AKYEP
ATHPR
AYFIA
CITATION
SSH
F1W
H96
L.G
7TB
7U5
8FD
EFKBS
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c445t-cc6d80bbe46b280cdc1fe78179403bcd38a74473217d7197c555db10ddb651e63
IEDL.DBID .~1
ISSN 1001-6058
IngestDate Tue Aug 05 11:32:14 EDT 2025
Fri Jul 11 01:09:39 EDT 2025
Thu Apr 24 22:53:41 EDT 2025
Tue Jul 01 02:16:44 EDT 2025
Fri Feb 21 02:30:56 EST 2025
Fri Feb 23 02:19:32 EST 2024
Fri Nov 25 14:53:21 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords carotid bifurcation
inlet velocity profile
Wall Shear Stress(WSS)
Wall Shear Stress Gradient (WSSG)
numerical simulation
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-cc6d80bbe46b280cdc1fe78179403bcd38a74473217d7197c555db10ddb651e63
Notes 31-1563/T
R331
carotid bifurcation, numerical simulation, inlet velocity profile, Wall Shear Stress(WSS), Wall Shear Stress Gradient(WSSG)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 19500566
PQPubID 23462
PageCount 6
ParticipantIDs proquest_miscellaneous_33232107
proquest_miscellaneous_19500566
crossref_primary_10_1016_S1001_6058_08_60109_2
crossref_citationtrail_10_1016_S1001_6058_08_60109_2
springer_journals_10_1016_S1001_6058_08_60109_2
elsevier_sciencedirect_doi_10_1016_S1001_6058_08_60109_2
chongqing_backfile_28594359
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-10-01
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: 2008-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of Hydrodynamics
PublicationTitleAbbrev J Hydrodyn
PublicationTitleAlternate Journal of Hydrodynamics
PublicationYear 2008
Publisher Elsevier Ltd
Springer Singapore
Publisher_xml – name: Elsevier Ltd
– name: Springer Singapore
References NEREM (bib1) 1992; 114
WAKE, OSHINSKI, TANNENBAUM (bib10) 2006; 39
BRESSLOFF (bib4) 2007; 40
FATEMI, RITTGERS (bib15) 1994; 116
DING, WANG, LI (bib3) 2001; 4
CEBRAL, YIM, LOHNER (bib12) 2002; 9
ZENDEHBODI, MOYAERI (bib6) 1999; 32
DING, SHI, ZHU (bib7) 2006; 21
YANG, DING, WANG (bib9) 2005; 20
KU, GIDDENS, ZARINS (bib2) 1985; 5
FUNG (bib11) 1981
FRIEDMAN, DETERS, MARK (bib5) 1983; 46
BERGER, TALBOT (bib14) 1983; 15
SHI, DING, YANG (bib8) 2005; 20
DING, LIU (bib13) 2008; 45
Ding, Shi, Zhu (CR7) 2006; 21
Yang, Ding, Wang (CR9) 2005; 20
Shi, Ding, Yang (CR8) 2005; 20
Fung (CR11) 1981
Zendehbodi, Moyaeri (CR6) 1999; 32
Fatemi, Rittgers (CR15) 1994; 116
Nerem (CR1) 1992; 114
Ding, Wang, Li (CR3) 2001; 4
Ding, Liu (CR13) 2008; 45
Friedman, Deters, Mark (CR5) 1983; 46
Wake, Oshinski, Tannenbaum (CR10) 2006; 39
Berger, Talbot (CR14) 1983; 15
Bressloff (CR4) 2007; 40
Cebral, Yim, Lohner (CR12) 2002; 9
Ku, Giddens, Zarins (CR2) 1985; 5
M H Friedman (20050656_CR5) 1983; 46
Y C Fung (20050656_CR11) 1981
N W Bressloff (20050656_CR4) 2007; 40
R S Fatemi (20050656_CR15) 1994; 116
G R Zendehbodi (20050656_CR6) 1999; 32
S Yang (20050656_CR9) 2005; 20
Z-r Ding (20050656_CR7) 2006; 21
A K Wake (20050656_CR10) 2006; 39
D N Ku (20050656_CR2) 1985; 5
Z-r Ding (20050656_CR3) 2001; 4
L Shi (20050656_CR8) 2005; 20
J R Cebral (20050656_CR12) 2002; 9
R M Nerem (20050656_CR1) 1992; 114
Z R Ding (20050656_CR13) 2008; 45
S A Berger (20050656_CR14) 1983; 15
References_xml – volume: 32
  start-page: 959
  year: 1999
  end-page: 965
  ident: bib6
  article-title: Comparison of physiological and simple pulsatile flows through stenosed arteries [J]
  publication-title: J. Biomech.
– volume: 20
  start-page: 604
  year: 2005
  end-page: 608
  ident: bib9
  article-title: Effect of asy-mmetrical entry velocity profile on outer wall shear stress in two carotid bifurcation models [J]
  publication-title: Chinese Quarterly of Mechanics
– volume: 20
  start-page: 140
  year: 2005
  end-page: 143
  ident: bib8
  article-title: Effect of asymmetrical entry velocity profile on the flow separation in carotid artery sinus[J]
  publication-title: Journal of Medical Biomechanics
– volume: 46
  start-page: 225
  year: 1983
  end-page: 231
  ident: bib5
  article-title: Arterial geometry affects hemodynamics: A potential risk factor for atherosclerosis [J]
  publication-title: Atherosclerosis
– volume: 5
  start-page: 293
  year: 1985
  end-page: 302
  ident: bib2
  article-title: Pulsative flow and atherosclerosis in the human carotid bifurcation [J]
  publication-title: Arteriosclerosis
– volume: 40
  start-page: 2483
  year: 2007
  end-page: 2491
  ident: bib4
  article-title: W. Parametric geometry exploration of the human carotid artery bifurcation [J]
  publication-title: J. Biomech.
– volume: 15
  start-page: 461
  year: 1983
  end-page: 512
  ident: bib14
  article-title: Flow in curved pipes [J]
  publication-title: Journal of Fluid Mechanics
– volume: 116
  start-page: 361
  year: 1994
  end-page: 368
  ident: bib15
  article-title: Derivation of shear rater from near-wall LDA measurements under steady and pulsatile flow conditions [J]
  publication-title: ASME J. Biomechanical Engineering
– volume: 114
  start-page: 274
  year: 1992
  end-page: 282
  ident: bib1
  article-title: M. Vascular fluid mechanics, the arterial wall, and atherosclerosis [J]
  publication-title: ASME J. Biomechanical Engineering
– volume: 4
  start-page: 1555
  year: 2001
  end-page: 1562
  ident: bib3
  article-title: Flow field and oscillatory shear stress in a tuning-fork-shaped model of the average human carotid bifurcation [J]
  publication-title: J. Biomech.
– volume: 39
  start-page: S607
  year: 2006
  ident: bib10
  article-title: On boundary conditions for carotid artery model: In vivo measured velocity distribution versus fully developed flow [J]
  publication-title: J. Biomech.
– volume: 21
  start-page: 108
  year: 2006
  ident: bib7
  article-title: Asymmetry of inlet velocity profile of carotid bifurcation and risk factors [J]
  publication-title: Journal of Medical Biomechanics
– volume: 45
  start-page: 152
  year: 2008
  end-page: 153
  ident: bib13
  article-title: Studies on the velocity profile in a bent common carotid model using PIV[J]
  publication-title: Biorheology
– volume: 9
  start-page: 1286
  year: 2002
  end-page: 1299
  ident: bib12
  article-title: Blood flow modeling in carotid arteries with computational fluid dynamics and MR imaging [J]
  publication-title: Acad Radiol
– year: 1981
  ident: bib11
  publication-title: Biomechanics [M]
– volume: 32
  start-page: 959
  year: 1999
  end-page: 965
  ident: CR6
  article-title: Comparison of physiological and simple pulsatile flows through stenosed arteries [J]
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(99)00053-6
– volume: 116
  start-page: 361
  year: 1994
  end-page: 368
  ident: CR15
  article-title: Derivation of shear rater from near-wall LDA measurements under steady and pulsatile flow conditions [J]
  publication-title: ASME J. Biomechanical Engineering
  doi: 10.1115/1.2895743
– volume: 46
  start-page: 225
  year: 1983
  end-page: 231
  ident: CR5
  article-title: Arterial geometry affects hemodynamics: A potential risk factor for atherosclerosis [J]
  publication-title: Atherosclerosis
  doi: 10.1016/0021-9150(83)90113-2
– volume: 20
  start-page: 140
  issue: 3
  year: 2005
  end-page: 143
  ident: CR8
  article-title: Effect of asymmetrical entry velocity profile on the flow separation in carotid artery sinus[J]
  publication-title: Journal of Medical Biomechanics
– volume: 39
  start-page: S607
  year: 2006
  ident: CR10
  article-title: On boundary conditions for carotid artery model: In vivo measured velocity distribution versus fully developed flow [J]
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(06)85520-X
– volume: 21
  start-page: 108
  year: 2006
  ident: CR7
  article-title: Asymmetry of inlet velocity profile of carotid bifurcation and risk factors [J]
  publication-title: Journal of Medical Biomechanics
– volume: 114
  start-page: 274
  issue: 3
  year: 1992
  end-page: 282
  ident: CR1
  article-title: Vascular fluid mechanics, the arterial wall, and atherosclerosis [J]
  publication-title: ASME J. Biomechanical Engineering
  doi: 10.1115/1.2891384
– volume: 9
  start-page: 1286
  year: 2002
  end-page: 1299
  ident: CR12
  article-title: Blood flow modeling in carotid arteries with computational fluid dynamics and MR imaging [J]
  publication-title: Acad Radiol
  doi: 10.1016/S1076-6332(03)80562-7
– volume: 4
  start-page: 1555
  year: 2001
  end-page: 1562
  ident: CR3
  article-title: Flow field and oscillatory shear stress in a tuning-fork-shaped model of the average human carotid bifurcation [J]
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(01)00148-8
– volume: 20
  start-page: 604
  issue: 4
  year: 2005
  end-page: 608
  ident: CR9
  article-title: Effect of asy-mmetrical entry velocity profile on outer wall shear stress in two carotid bifurcation models [J]
  publication-title: Chinese Quarterly of Mechanics
– volume: 15
  start-page: 461
  year: 1983
  end-page: 512
  ident: CR14
  article-title: Flow in curved pipes [J]
  publication-title: Journal of Fluid Mechanics
  doi: 10.1146/annurev.fl.15.010183.002333
– year: 1981
  ident: CR11
  publication-title: [M]
  doi: 10.1007/978-1-4757-1752-5
– volume: 45
  start-page: 152
  issue: 1-2
  year: 2008
  end-page: 153
  ident: CR13
  article-title: Studies on the velocity profile in a bent common carotid model using PIV[J]
  publication-title: Biorheology
– volume: 40
  start-page: 2483
  year: 2007
  end-page: 2491
  ident: CR4
  article-title: Parametric geometry exploration of the human carotid artery bifurcation [J]
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2006.11.002
– volume: 5
  start-page: 293
  issue: 3
  year: 1985
  end-page: 302
  ident: CR2
  article-title: Pulsative flow and atherosclerosis in the human carotid bifurcation [J]
  publication-title: Arteriosclerosis
  doi: 10.1161/01.ATV.5.3.293
– volume: 5
  start-page: 293
  issue: 3
  year: 1985
  ident: 20050656_CR2
  publication-title: Arteriosclerosis
  doi: 10.1161/01.ATV.5.3.293
– volume: 20
  start-page: 140
  issue: 3
  year: 2005
  ident: 20050656_CR8
  publication-title: Journal of Medical Biomechanics
– volume: 40
  start-page: 2483
  year: 2007
  ident: 20050656_CR4
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2006.11.002
– volume: 4
  start-page: 1555
  year: 2001
  ident: 20050656_CR3
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(01)00148-8
– volume: 39
  start-page: S607
  year: 2006
  ident: 20050656_CR10
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(06)85520-X
– volume: 114
  start-page: 274
  issue: 3
  year: 1992
  ident: 20050656_CR1
  publication-title: ASME J. Biomechanical Engineering
  doi: 10.1115/1.2891384
– volume: 46
  start-page: 225
  year: 1983
  ident: 20050656_CR5
  publication-title: Atherosclerosis
  doi: 10.1016/0021-9150(83)90113-2
– volume: 21
  start-page: 108
  year: 2006
  ident: 20050656_CR7
  publication-title: Journal of Medical Biomechanics
– volume-title: Biomechanics [M]
  year: 1981
  ident: 20050656_CR11
  doi: 10.1007/978-1-4757-1752-5
– volume: 45
  start-page: 152
  issue: 1-2
  year: 2008
  ident: 20050656_CR13
  publication-title: Biorheology
– volume: 15
  start-page: 461
  year: 1983
  ident: 20050656_CR14
  publication-title: Journal of Fluid Mechanics
  doi: 10.1146/annurev.fl.15.010183.002333
– volume: 9
  start-page: 1286
  year: 2002
  ident: 20050656_CR12
  publication-title: Acad Radiol
  doi: 10.1016/S1076-6332(03)80562-7
– volume: 20
  start-page: 604
  issue: 4
  year: 2005
  ident: 20050656_CR9
  publication-title: Chinese Quarterly of Mechanics
– volume: 32
  start-page: 959
  year: 1999
  ident: 20050656_CR6
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(99)00053-6
– volume: 116
  start-page: 361
  year: 1994
  ident: 20050656_CR15
  publication-title: ASME J. Biomechanical Engineering
  doi: 10.1115/1.2895743
SSID ssj0036904
ssj0036903
Score 1.7746471
Snippet The asymmetric inlet velocity profile has been observed in phantom model using LDA and in health subjects using Magnet Resonance (MR). The effects of...
The asymmetric inlet velocity profile has been observed in phantom model using LDA and in health subjects using Magnet Resonance (MR). The effects of...
SourceID proquest
crossref
springer
elsevier
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 656
SubjectTerms carotid bifurcation
Engineering
Engineering Fluid Dynamics
Hydrology/Water Resources
inlet velocity profile
Numerical and Computational Physics
numerical simulation
Simulation
Wall Shear Stress Gradient (WSSG)
Wall Shear Stress(WSS)
数字模拟技术
生物工程
血流动力学
颈动脉
Title HEMODYNAMICS FOR ASYMMETRIC INLET AXIAL VELOCITY PROFILE IN CAROTID BIFURCATION MODEL
URI http://lib.cqvip.com/qk/86648X/20085/28594359.html
https://dx.doi.org/10.1016/S1001-6058(08)60109-2
https://link.springer.com/article/10.1016/S1001-6058(08)60109-2
https://www.proquest.com/docview/19500566
https://www.proquest.com/docview/33232107
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB4heqGHipZWTXnUBw7tYcmu1147x4CKAhGoapuWm7V-hK4gGyCJRC_97czsI6WVAKmnlSzba83neezOC2DXhyRkuSWfupeR4B7loEe-CjKNYz9OxsFTvvPJaTYYieMzebYCB20uDIVVNrK_lumVtG5Gug01u1dF0f2aVD2SpUajnPw7JIeFUHTL934vwzxS_PqrPMsUOkSz_2Tx1DtUgx9i_bHaJOJUY-HntDy_Rs3xkK66Z4v-4z6ttNLhOrxozEnWr0_8ElZC-Qqe3ysyuAGjQZhMfd14fsbQRmX92a_JhDppOXZUIm6sf4u3kH0PqNjQKGef6z7erCgZxYPMC8_2i_Hipv67x6h92uVrGB1--nYwiJpmCpETQs4j5zKvY2uDyCzXsfMOcVCa-DFOrUN8coXkS_ETxaukp5yU0tsk9t5mEvFM38BqOS3DW2A8yVWP54lyYy6Qf3NuddA29CzOVjzvwOaShKiM3QWd2VClPLTNeh0QLVGNa-qQUzuMS7MMOCNcDOFiYm0qXAzvwN5y2VVdiOOpBbpFzPx1owwqi6eWvm8RNsht5ELJyzBdzAw1zUWTMXt4RppySotSHei2V8M0YmH2-Fvf_f-BN2GNt3V6ky1Ynd8swjYaS3O7U3HDDjzrHw0Hp_QcfvkxvAMgTAzT
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB4hONAeqpa2akpbfOihPSzZ9dpr55iiovAUEqTiZq0fgRVkAySR4MJvZ2YfKa1EkXq1bK_lz_Pwzng-gK8-JCHLLcXUvYwE96gHPcpVkGkc-1EyCp7eOx8cZoOh2D2Vp0uw1b6FobTKRvfXOr3S1k1Lt9nN7lVRdI-TiiNZanTKKb6DenhFoPgSjcHm_SLPI8XrXxVaptwh6v77GU89RdX4Ldbfq1kiTkUWzifl2TWajqeM1SNn9K_4aWWWtl_Dq8afZP16yW9gKZRr8PJRlcG3MByE8cTXzPNThk4q60_vxmOi0nJsp0TgWP8WjyH7FdCyoVfOjmoib1aUjBJCZoVnP4rR_Kb-vceIP-3yHQy3f55sDaKGTSFyQshZ5FzmdWxtEJnlOnbeIRBKk0DGqXUIUK6EUCneUbxKespJKb1NYu9tJhHQ9D0sl5MyfADGk1z1eJ4oN-ICBTjnVgdtQ89ib8XzDqwvthCtsbugNRsqlYfOWa8Dot1U45pC5MSHcWkWGWeEiyFcTKxNhYvhHdhcDLuqK3E8N0C3iJk_jpRBa_Hc0I0WYYPiRjGUvAyT-dQQay76jNnTPdKU07so1YFuezRMoxem__7qx_9f8AasDk4O9s3-zuHeOrzgbdHe5BMsz27m4TN6TjP7pZKMB8SeDL4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HEMODYNAMICS+FOR+ASYMMETRIC+INLET+AXIAL+VELOCITY+PROFILE+IN+CAROTID+BIFURCATION+MODEL&rft.jtitle=Journal+of+hydrodynamics.+Series+B&rft.au=DING+Zu-rong+LIU+Bin+YANG+Shuo+XIA+Yan&rft.date=2008-10-01&rft.issn=1001-6058&rft.volume=20&rft.issue=5&rft.spage=656&rft.epage=661&rft_id=info:doi/10.1016%2FS1001-6058%2808%2960109-2&rft.externalDocID=28594359
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86648X%2F86648X.jpg