An Extended Hydro-Mechanical Coupling Model Based on Smoothed Particle Hydrodynamics for Simulating Crack Propagation in Rocks under Hydraulic and Compressive Loads

A seepage model based on smoothed particle hydrodynamics (SPH) was developed for the seepage simulation of pore water in porous rock mass media. Then, the effectiveness of the seepage model was proved by a two-dimensional seepage benchmark example. Under the framework of SPH based on the total Lagra...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 16; no. 4; p. 1572
Main Authors Mu, Dianrui, Tang, Aiping, Qu, Haigang, Wang, Junjie
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 13.02.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A seepage model based on smoothed particle hydrodynamics (SPH) was developed for the seepage simulation of pore water in porous rock mass media. Then, the effectiveness of the seepage model was proved by a two-dimensional seepage benchmark example. Under the framework of SPH based on the total Lagrangian formula, an extended hydro-mechanical coupling model (EHM-TLF-SPH) was proposed to simulate the crack propagation and coalescence process of rock samples with prefabricated flaws under hydraulic and compressive loads. In the SPH program, the Lagrangian kernel was used to approximate the equations of motion of particles. Then, the influence of flaw water pressure on crack propagation and coalescence models of rock samples with single or two parallel prefabricated flaws was studied by two numerical examples. The simulation results agreed well with the test results, verifying the validity and accuracy of the EHM-TLF-SPH model. The results showed that with the increase in flaw water pressure, the crack initiation angle and stress of the wing crack decreased gradually. The crack initiation location of the wing crack moved to the prefabricated flaw tip, while the crack initiation location of the shear crack was far away from the prefabricated flaw tip. In addition, the influence of the permeability coefficient and flaw water pressure on the osmotic pressure was also investigated, which revealed the fracturing mechanism of hydraulic cracking engineering.
AbstractList A seepage model based on smoothed particle hydrodynamics (SPH) was developed for the seepage simulation of pore water in porous rock mass media. Then, the effectiveness of the seepage model was proved by a two-dimensional seepage benchmark example. Under the framework of SPH based on the total Lagrangian formula, an extended hydro-mechanical coupling model (EHM-TLF-SPH) was proposed to simulate the crack propagation and coalescence process of rock samples with prefabricated flaws under hydraulic and compressive loads. In the SPH program, the Lagrangian kernel was used to approximate the equations of motion of particles. Then, the influence of flaw water pressure on crack propagation and coalescence models of rock samples with single or two parallel prefabricated flaws was studied by two numerical examples. The simulation results agreed well with the test results, verifying the validity and accuracy of the EHM-TLF-SPH model. The results showed that with the increase in flaw water pressure, the crack initiation angle and stress of the wing crack decreased gradually. The crack initiation location of the wing crack moved to the prefabricated flaw tip, while the crack initiation location of the shear crack was far away from the prefabricated flaw tip. In addition, the influence of the permeability coefficient and flaw water pressure on the osmotic pressure was also investigated, which revealed the fracturing mechanism of hydraulic cracking engineering.
A seepage model based on smoothed particle hydrodynamics (SPH) was developed for the seepage simulation of pore water in porous rock mass media. Then, the effectiveness of the seepage model was proved by a two-dimensional seepage benchmark example. Under the framework of SPH based on the total Lagrangian formula, an extended hydro-mechanical coupling model (EHM-TLF-SPH) was proposed to simulate the crack propagation and coalescence process of rock samples with prefabricated flaws under hydraulic and compressive loads. In the SPH program, the Lagrangian kernel was used to approximate the equations of motion of particles. Then, the influence of flaw water pressure on crack propagation and coalescence models of rock samples with single or two parallel prefabricated flaws was studied by two numerical examples. The simulation results agreed well with the test results, verifying the validity and accuracy of the EHM-TLF-SPH model. The results showed that with the increase in flaw water pressure, the crack initiation angle and stress of the wing crack decreased gradually. The crack initiation location of the wing crack moved to the prefabricated flaw tip, while the crack initiation location of the shear crack was far away from the prefabricated flaw tip. In addition, the influence of the permeability coefficient and flaw water pressure on the osmotic pressure was also investigated, which revealed the fracturing mechanism of hydraulic cracking engineering.A seepage model based on smoothed particle hydrodynamics (SPH) was developed for the seepage simulation of pore water in porous rock mass media. Then, the effectiveness of the seepage model was proved by a two-dimensional seepage benchmark example. Under the framework of SPH based on the total Lagrangian formula, an extended hydro-mechanical coupling model (EHM-TLF-SPH) was proposed to simulate the crack propagation and coalescence process of rock samples with prefabricated flaws under hydraulic and compressive loads. In the SPH program, the Lagrangian kernel was used to approximate the equations of motion of particles. Then, the influence of flaw water pressure on crack propagation and coalescence models of rock samples with single or two parallel prefabricated flaws was studied by two numerical examples. The simulation results agreed well with the test results, verifying the validity and accuracy of the EHM-TLF-SPH model. The results showed that with the increase in flaw water pressure, the crack initiation angle and stress of the wing crack decreased gradually. The crack initiation location of the wing crack moved to the prefabricated flaw tip, while the crack initiation location of the shear crack was far away from the prefabricated flaw tip. In addition, the influence of the permeability coefficient and flaw water pressure on the osmotic pressure was also investigated, which revealed the fracturing mechanism of hydraulic cracking engineering.
Audience Academic
Author Mu, Dianrui
Wang, Junjie
Tang, Aiping
Qu, Haigang
AuthorAffiliation 1 School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
2 Department of Civil Engineering, University of Ottawa, Ottawa, ON K1N6N5, Canada
AuthorAffiliation_xml – name: 2 Department of Civil Engineering, University of Ottawa, Ottawa, ON K1N6N5, Canada
– name: 1 School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
Author_xml – sequence: 1
  givenname: Dianrui
  orcidid: 0000-0002-1426-3798
  surname: Mu
  fullname: Mu, Dianrui
– sequence: 2
  givenname: Aiping
  surname: Tang
  fullname: Tang, Aiping
– sequence: 3
  givenname: Haigang
  orcidid: 0000-0002-4988-3524
  surname: Qu
  fullname: Qu, Haigang
– sequence: 4
  givenname: Junjie
  surname: Wang
  fullname: Wang, Junjie
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36837200$$D View this record in MEDLINE/PubMed
BookMark eNptkt9uFCEUxiemxtbaGx_AkHhjTLbCwCxwY7JuqjXZxsbqNTnLMLu0DKww07jv44N62m21NkICJ_D7vsOf87zaiym6qnrJ6DHnmr7rgU2pYI2sn1QHTOvphGkh9h7E-9VRKZcUG-dM1fpZtc-nisua0oPq1yySk5-Di61ryem2zWly5uwaorcQyDyNm-Djipyl1gXyAQpSKZKLPqVhjfE55MHb4HbSdhuh97aQLmVy4fsxwHCjnmewV-Q8pw2scAUNfCRfk70qZMTE-VYNY_CWQGwxa7_JrhR_7cgiQVteVE87CMUd3c2H1fePJ9_mp5PFl0-f57PFxArRDBMLLXMO5HTplGjEUnFWd2qppeICuJSic0vldKM6qoSrtYKuYVpqANVo1PLD6v3OdzMue9daF4cMwWyy7yFvTQJv_t2Jfm1W6dpo3eh6ytHgzZ1BTj9GVwbT-2JdCBBdGouppaJU4agRff0IvUxjjng9pKRuOKdMInW8o1YQnPGxS5jXYm8dPjRWQudxfSYFZ40WrEbBq4dX-HP2-x9HgO4Am1Mp2XXG-uH2U9DZB8Oouakr87euUPL2keTe9T_wb_1Qz2E
CitedBy_id crossref_primary_10_1007_s11629_023_8362_5
crossref_primary_10_1007_s40948_024_00756_y
crossref_primary_10_3390_buildings14103140
crossref_primary_10_3390_ma16196560
crossref_primary_10_3390_ma16237292
Cites_doi 10.1016/j.ijmst.2018.07.006
10.1016/j.ijimpeng.2019.02.001
10.1093/mnras/181.3.375
10.1016/j.compgeo.2016.10.019
10.1016/0021-9991(83)90036-0
10.1016/j.ijrmms.2020.104383
10.1016/j.engfracmech.2020.107086
10.1007/s00603-017-1204-4
10.1002/nag.3211
10.1016/j.enganabound.2020.12.001
10.1016/j.compgeo.2021.104413
10.1002/mats.202100029
10.1007/s00603-008-0003-3
10.1016/j.ijsolstr.2014.08.006
10.1007/s00466-018-1542-4
10.1016/j.cma.2016.02.037
10.1029/WR005i006p01273
10.1016/j.tafmec.2022.103355
10.1016/j.ijmecsci.2019.05.003
10.1016/j.measurement.2017.09.006
10.1016/S0022-5096(99)00029-0
10.1016/j.ijrmms.2019.104138
10.1007/s13369-021-05672-x
10.1086/112164
10.1007/s00603-021-02753-z
10.1016/j.ijrmms.2016.04.018
10.1115/1.4010337
10.1016/j.enganabound.2009.07.006
10.1016/j.ijimpeng.2013.03.006
10.1016/j.enggeo.2019.02.005
10.1016/j.jcp.2013.12.039
10.1007/s11069-013-0736-5
10.1016/j.tust.2021.104020
10.1007/s12517-022-09493-6
10.1016/j.engfracmech.2022.108364
10.1063/1.1712886
10.1007/s00366-019-00740-1
10.1061/(ASCE)EM.1943-7889.0001378
10.1029/95JB00040
10.1061/(ASCE)GM.1943-5622.0000778
10.1002/1097-0207(20000730)48:9<1359::AID-NME829>3.0.CO;2-U
10.1007/s00603-018-1717-5
10.1007/s00603-021-02519-7
10.1016/j.engfracmech.2016.06.013
10.1016/j.tust.2018.11.018
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/ma16041572
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID PMC9959263
A743159412
36837200
10_3390_ma16041572
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41672287
– fundername: China Scholarship Council
  grantid: 202106120229
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
TR2
TUS
GROUPED_DOAJ
NPM
PMFND
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c445t-cad1eea76be8454b8312f8b97834a3774feb8e958f084e298af51979aa859ad13
IEDL.DBID BENPR
ISSN 1996-1944
IngestDate Thu Aug 21 18:37:48 EDT 2025
Fri Jul 11 16:09:03 EDT 2025
Fri Jul 25 11:48:43 EDT 2025
Tue Jun 10 20:36:44 EDT 2025
Wed Feb 19 02:24:50 EST 2025
Tue Jul 01 03:11:08 EDT 2025
Thu Apr 24 23:10:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords osmotic pressure
hydro-mechanical coupling
seepage model
crack propagation
smoothed particle hydrodynamics (SPH)
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c445t-cad1eea76be8454b8312f8b97834a3774feb8e958f084e298af51979aa859ad13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4988-3524
0000-0002-1426-3798
OpenAccessLink https://www.proquest.com/docview/2779533017?pq-origsite=%requestingapplication%
PMID 36837200
PQID 2779533017
PQPubID 2032366
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9959263
proquest_miscellaneous_2780082789
proquest_journals_2779533017
gale_infotracacademiconefile_A743159412
pubmed_primary_36837200
crossref_citationtrail_10_3390_ma16041572
crossref_primary_10_3390_ma16041572
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230213
PublicationDateYYYYMMDD 2023-02-13
PublicationDate_xml – month: 2
  year: 2023
  text: 20230213
  day: 13
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Materials
PublicationTitleAlternate Materials (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zheng (ref_5) 2021; 139
Silling (ref_16) 2000; 48
Belytschko (ref_41) 2000; 48
Weibull (ref_53) 1951; 18
Zhou (ref_20) 2017; 17
ref_55
Wang (ref_48) 2016; 163
Monaghan (ref_46) 1983; 52
ref_19
Silva (ref_2) 2014; 51
Gharehdash (ref_30) 2019; 36
Xu (ref_23) 2018; 62
Yu (ref_26) 2021; 55
Zhang (ref_17) 2020; 234
Lee (ref_35) 2016; 305
Mu (ref_40) 2022; 119
Bi (ref_33) 2017; 83
Sun (ref_7) 2021; 45
Zhang (ref_9) 2010; 34
Wu (ref_8) 2019; 52
Mu (ref_25) 2022; 265
Huang (ref_44) 2013; 69
Chakraborty (ref_49) 2013; 58
Gharehdash (ref_28) 2020; 135
Snow (ref_34) 1969; 5
Xu (ref_6) 2021; 115
Lucy (ref_22) 1977; 82
Ren (ref_24) 2021; 31
Yu (ref_31) 2021; 46
Liu (ref_11) 2019; 84
Liu (ref_1) 2018; 43
Islam (ref_50) 2019; 157–158
ref_36
Wei (ref_52) 2019; 40
Helmons (ref_13) 2016; 86
Gingold (ref_21) 1977; 181
Shen (ref_54) 1995; 100
Mu (ref_32) 2022; 15
ref_39
Zhou (ref_18) 2020; 132
Bi (ref_4) 2017; 50
Biot (ref_43) 1941; 12
Katiyar (ref_38) 2014; 261
Shou (ref_37) 2021; 123
Zhou (ref_27) 2018; 144
Ajayi (ref_10) 2019; 29
ref_47
ref_45
ref_42
Sun (ref_12) 2019; 124
ref_3
Li (ref_14) 2018; 114
Zhou (ref_15) 2019; 251
Gharehdash (ref_29) 2021; 54
Mu (ref_51) 2022; 25
References_xml – volume: 29
  start-page: 469
  year: 2019
  ident: ref_10
  article-title: Numerical investigation of the effectiveness of radon control measures in cave mines
  publication-title: Int. J. Min. Sci. Technol.
  doi: 10.1016/j.ijmst.2018.07.006
– volume: 135
  start-page: 103235
  year: 2020
  ident: ref_28
  article-title: Blast induced fracture modelling using smoothed particle hydrodynamics
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2019.02.001
– volume: 181
  start-page: 375
  year: 1977
  ident: ref_21
  article-title: Smoothed particle hydrodynamics: Theory and application to non-spherical stars
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/181.3.375
– volume: 83
  start-page: 1
  year: 2017
  ident: ref_33
  article-title: Numerical simulation of kinetic friction in the fracture process of rocks in the framework of General Particle Dynamics
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2016.10.019
– volume: 52
  start-page: 374
  year: 1983
  ident: ref_46
  article-title: Shock simulation by the particle method SPH
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(83)90036-0
– volume: 132
  start-page: 104383
  year: 2020
  ident: ref_18
  article-title: Hydromechanical bond-based peridynamic model for pressurized and fluid-driven fracturing processes in fissured porous rocks
  publication-title: Int. J. Rock Mech. Min.
  doi: 10.1016/j.ijrmms.2020.104383
– volume: 234
  start-page: 107086
  year: 2020
  ident: ref_17
  article-title: An extended ordinary state-based peridynamic approach for modelling hydraulic fracturing
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2020.107086
– volume: 50
  start-page: 1833
  year: 2017
  ident: ref_4
  article-title: A novel numerical algorithm for simulation of initiation, propagation and coalescence of flaws subject to internal fluid pressure and vertical stress in the framework of general particle dynamics
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-017-1204-4
– ident: ref_39
– ident: ref_42
– volume: 45
  start-page: 1500
  year: 2021
  ident: ref_7
  article-title: An extended numerical manifold method for unsaturated soil-water interaction analysis at micro-scale
  publication-title: Int. J. Numer. Anal. Met.
  doi: 10.1002/nag.3211
– volume: 123
  start-page: 133
  year: 2021
  ident: ref_37
  article-title: A coupled hydro-mechanical non-ordinary state-based peridynamics for the fissured porous rocks
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2020.12.001
– volume: 139
  start-page: 104413
  year: 2021
  ident: ref_5
  article-title: Discontinuous deformation analysis with distributed bond for the modelling of rock deformation and failure
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2021.104413
– volume: 31
  start-page: 2100029
  year: 2021
  ident: ref_24
  article-title: Simulation of polymer melt injection molding filling flow based on an improved SPH method with modified low-dissipation Riemann solver
  publication-title: Macromol. Theory Simul.
  doi: 10.1002/mats.202100029
– ident: ref_55
  doi: 10.1007/s00603-008-0003-3
– volume: 51
  start-page: 4122
  year: 2014
  ident: ref_2
  article-title: Finite Element study of fracture initiation in flaws subject to internal fluid pressure and vertical stress
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2014.08.006
– volume: 62
  start-page: 963
  year: 2018
  ident: ref_23
  article-title: A technique to remove the tensile instability in weakly compressible SPH
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-018-1542-4
– volume: 25
  start-page: 1
  year: 2022
  ident: ref_51
  article-title: A bond-based smoothed particle hydrodynamics considering frictional contact effect for simulating rock fracture
  publication-title: Acta Geotech.
– volume: 305
  start-page: 111
  year: 2016
  ident: ref_35
  article-title: Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2016.02.037
– volume: 5
  start-page: 1273
  year: 1969
  ident: ref_34
  article-title: Anisotropic permeability of fractured media
  publication-title: Water Resour. Res.
  doi: 10.1029/WR005i006p01273
– volume: 119
  start-page: 103355
  year: 2022
  ident: ref_40
  article-title: An improved smoothed particle hydrodynamics method for simulating crack propagation and coalescence in brittle fracture of rock materials
  publication-title: Theory Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2022.103355
– volume: 157–158
  start-page: 498
  year: 2019
  ident: ref_50
  article-title: A Total Lagrangian SPH method for modelling damage and failure in solids
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2019.05.003
– volume: 114
  start-page: 25
  year: 2018
  ident: ref_14
  article-title: A study on drum cutting properties with full-scale experiments and numerical simulations
  publication-title: Measurement
  doi: 10.1016/j.measurement.2017.09.006
– volume: 48
  start-page: 175
  year: 2000
  ident: ref_16
  article-title: Reformulation of elasticity theory for discontinuities and long-range forces
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(99)00029-0
– ident: ref_45
– volume: 124
  start-page: 104138
  year: 2019
  ident: ref_12
  article-title: Coupled hydro-mechanical analysis for grout penetration in fractured rocks using the finite-discrete element method
  publication-title: Int. J. Rock Mech. Min.
  doi: 10.1016/j.ijrmms.2019.104138
– volume: 46
  start-page: 11089
  year: 2021
  ident: ref_31
  article-title: Numerical simulation on the interaction modes between hydraulic and natural fractures based on a new SPH method
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-021-05672-x
– volume: 82
  start-page: 1013
  year: 1977
  ident: ref_22
  article-title: A numerical approach to testing the fission hypothesis
  publication-title: Astron. J.
  doi: 10.1086/112164
– volume: 55
  start-page: 1633
  year: 2021
  ident: ref_26
  article-title: An improved form of SPH method for simulating the thermo-mechanical-damage coupling problems and its applications
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-021-02753-z
– volume: 86
  start-page: 224
  year: 2016
  ident: ref_13
  article-title: Simulating hydro mechanical effects in rock deformation by combination of the discrete element method and the smoothed particle method
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2016.04.018
– volume: 43
  start-page: 393
  year: 2018
  ident: ref_1
  article-title: Analysis of spatial distribution of cracks caused by hydraulic fracturing based on zero-thickness cohesive elements
  publication-title: J. China Coal Soc.
– ident: ref_3
– volume: 18
  start-page: 293
  year: 1951
  ident: ref_53
  article-title: A statistical distribution function of wide applicability
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4010337
– ident: ref_47
– volume: 34
  start-page: 41
  year: 2010
  ident: ref_9
  article-title: Numerical analysis of 2-D crack propagation problems using the numerical manifold method
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2009.07.006
– volume: 58
  start-page: 84
  year: 2013
  ident: ref_49
  article-title: A pseudo-spring based fracture model for SPH simulation of impact dynamics
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2013.03.006
– volume: 251
  start-page: 100
  year: 2019
  ident: ref_15
  article-title: Novel grain-based model for simulation of brittle failure of Alxa porphyritic granite
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2019.02.005
– volume: 261
  start-page: 209
  year: 2014
  ident: ref_38
  article-title: A peridynamic formulation of pressure driven convective fluid transport in porous media
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.12.039
– volume: 69
  start-page: 809
  year: 2013
  ident: ref_44
  article-title: Numerical simulation of flow processes in liquefied soils using a soil-water-coupled smoothed particle hydrodynamics method
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-013-0736-5
– volume: 115
  start-page: 104020
  year: 2021
  ident: ref_6
  article-title: An extended numerical manifold method for simulation of grouting reinforcement in deep rock tunnels
  publication-title: Tunn. Undergr. Sp. Tech.
  doi: 10.1016/j.tust.2021.104020
– volume: 15
  start-page: 485
  year: 2022
  ident: ref_32
  article-title: A hydraulic-mechanical coupling model based on smoothed particle dynamics for simulating rock fracture
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-022-09493-6
– volume: 265
  start-page: 108364
  year: 2022
  ident: ref_25
  article-title: A coupled thermo-mechanical bond-based smoothed particle dynamics model for simulating thermal cracking in rocks
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2022.108364
– volume: 12
  start-page: 155
  year: 1941
  ident: ref_43
  article-title: General theory of three-dimensional consolidation
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1712886
– volume: 36
  start-page: 915
  year: 2019
  ident: ref_30
  article-title: Numerical study on mechanical and hydraulic behaviour of blast-induced fractured rock
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-019-00740-1
– volume: 40
  start-page: 4533
  year: 2019
  ident: ref_52
  article-title: Experimental study and numerical simulation of inclined flaws and horizontal fissures propagation and coalescence process in rocks
  publication-title: Rock Soil Mech.
– volume: 144
  start-page: 04017156
  year: 2018
  ident: ref_27
  article-title: Numerical simulation of thermal cracking in rocks based on general particle dynamics
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)EM.1943-7889.0001378
– volume: 100
  start-page: 5975
  year: 1995
  ident: ref_54
  article-title: Coalescence of fractures under shear stresses experiments
  publication-title: J. Geophys. Res.
  doi: 10.1029/95JB00040
– volume: 17
  start-page: 04016086
  year: 2017
  ident: ref_20
  article-title: Numerical simulation of failure of rock-like material subjected to compressive loads using improved peridynamic method
  publication-title: Int. J. Geomech.
  doi: 10.1061/(ASCE)GM.1943-5622.0000778
– volume: 48
  start-page: 1359
  year: 2000
  ident: ref_41
  article-title: A unified stability analysis of meshless particle methods
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/1097-0207(20000730)48:9<1359::AID-NME829>3.0.CO;2-U
– ident: ref_36
– volume: 52
  start-page: 2335
  year: 2019
  ident: ref_8
  article-title: A cohesive element-based numerical manifold method for hydraulic fracturing modelling with Voronoi grains
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-018-1717-5
– ident: ref_19
– volume: 54
  start-page: 4419
  year: 2021
  ident: ref_29
  article-title: Field scale modelling of explosion-generated crack densities in granitic rocks using dual-support smoothed particle hydrodynamics (DS-SPH)
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-021-02519-7
– volume: 163
  start-page: 248
  year: 2016
  ident: ref_48
  article-title: Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2016.06.013
– volume: 84
  start-page: 472
  year: 2019
  ident: ref_11
  article-title: Simulation of coupled hydro-mechanical interactions during grouting process in fractured media based on the combined finite-discrete element method
  publication-title: Tunn. Undergr. Sp. Tech.
  doi: 10.1016/j.tust.2018.11.018
SSID ssj0000331829
Score 2.3672605
Snippet A seepage model based on smoothed particle hydrodynamics (SPH) was developed for the seepage simulation of pore water in porous rock mass media. Then, the...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1572
SubjectTerms Analysis
Coupling
Crack initiation
Crack propagation
Cracking (fracturing)
Efficiency
Engineering
Equations of motion
Finite element analysis
Fluid dynamics
Fluid mechanics
Hydraulic fracturing
Numerical analysis
Osmosis
Permeability
Pore water
Porous media
Prefabrication
Propagation
Rock masses
Seepage
Simulation
Simulation methods
Smooth particle hydrodynamics
Solids
Water pressure
Title An Extended Hydro-Mechanical Coupling Model Based on Smoothed Particle Hydrodynamics for Simulating Crack Propagation in Rocks under Hydraulic and Compressive Loads
URI https://www.ncbi.nlm.nih.gov/pubmed/36837200
https://www.proquest.com/docview/2779533017
https://www.proquest.com/docview/2780082789
https://pubmed.ncbi.nlm.nih.gov/PMC9959263
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swEBZr-rI9lHU_vXVFY4OxB9PYkm3paaQhaRhrCe0KeTOSJXehid3ZyWD_z_7Q3dmKm5SxR6OTEdzp9Ol09x0hH6WRuZKG-cgu53OmmK8sADluszBiRnMVYzXy-UU8ueZfZ9HMBdxql1a58YmNozZlhjHykzBJmkzIIPly99PHrlH4uupaaOyRfXDBQvTI_unoYnrZRVn6DGw2lC0vKYP7_clSBTGWpSfhzkn00B9vHUi7yZJbp8_4KTlwsJEOWj0fkke2eEaebJEJPid_BgUduZA2nfw2VemfW6zrRTXQYbnG2tsbis3PFvQUDi9Dy4JeLUuswTJ06myonWraRvU1BUxLr-bLpskXzB5WKrul0wqu2jeNTum8oJfgU2uK1WhVM1utF_OMqsJQ9DZNou0vS7-VytQvyPV49H048V0PBj_jPFr5mTKBtSqJtRU84lqwIMyFxoARVwywY261sDISeV9wG0qhciyFlUqJSMJc9pL0irKwrwntK4PgUFujAcZYgKYAbZjMEi3yUEXaI583-kgzR1COfTIWKVxUUHfpve488qGTvWtpOf4p9QnVmuJehT9lypUcwHqQ9SodIHyKJA9A8mij-dRt4jq9NzmPvO-GYfvhm4oqbLlGGYEoKhHSI69aQ-kWxGKBPYD6Hkl2TKgTQGrv3ZFi_qOh-EYWuDBmb_6_rLfkcQiYC5PIA3ZEeqtqbd8BRlrpY7InxmfHbjvA19ks-AsuFBfU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOQAHxJtAASNAiMOqWdu7ax8QCqEhpUlV0VbqbfGuve2qyW7JJqD8H878Rmb21QQhbj17bFma8cxne74ZQl4roxKtDHewupwjuOaOtgDkhI2Zx00ktI9s5PG-PzwWX068kw3yu-HCYFpl4xNLR23yGN_It1kQlJmQbvDh4ruDXaPwd7VpoVGZxZ5d_oQrW_F-9xPo9w1jg52j_tCpuwo4sRDe3Im1ca3VgR9ZKTwRSe6yREb4BCI0BzSU2Eha5cmkK4VlSuoEyZ1Ka-kpmMth3WvkuuAQyZGZPvjcvul0OZwQpqoqqDDe3Z5q10cSfMDW4t7f3n8l_K2nZq7EusEdcrsGqbRXWdVdsmGze-TWSunC--RXL6M79QM6HS7NLHfGFlnEqHTazxfI9D2l2GptQj9CqDQ0z-jhNEfGl6EHtcVWU80y09M0LiggaHqYTsuWYjC7P9PxOT2YwcX-tLQgmmb0K3jwgiL3bVbO1otJGlOdGYq-rUzr_WHpKNemeECOr0Q3D8lmlmf2MaFdbRCKRtZEAJosAGEAUlzFQSQTpr2oQ941-gjjuhw6duWYhHAtQt2Fl7rrkFet7EVVBOSfUm9RrSF6Blgp1jXBAfaDNbbCHoI1TwkXJLcazYe1yyjCSwPvkJftMBx2_MHRmc0XKCMRswVSdcijylDaDXFfYsehbocEaybUCmAh8fWRLD0rC4pjzTnm8yf_39YLcmN4NB6Fo939vafkJgO0h-nrLt8im_PZwj4DdDaPnpdHgpJvV30G_wC95FGb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyF4QNwpDDAChHiI2thOYj8g1HWtOrZV1cakvQUndrZqbTJ6AfX_8Cv4dZyT21qEeNtzji1L5_bZOec7hLxTRiVaGe4gu5wjuOaOtgDkhI2Zx00ktI_dyEdDf3Aqvpx5Z1vkd9ULg2WVVUzMA7XJYnwjb7EgyCsh3aCVlGURo73-56vvDk6Qwj-t1TiNwkQO7OonXN_mn_b3QNfvGev3vnYHTjlhwImF8BZOrI1rrQ78yErhiUhylyUywucQoTkgo8RG0ipPJm0pLFNSJ9joqbSWnoK1HPa9RbYDvBU1yPZubzg6rl942hz8hamCE5Vz1W5NtetjS3zANrLg37lgLRluFmquZb7-fXKvhKy0U9jYA7Jl04fk7hqR4SPyq5PSXvmcTgcrM8ucI4s9xWgCtJstse_3nOLgtQndhcRpaJbSk2mG_V-Gjkr7LZaaVaqn43hOAU_Tk_E0HzAGq7szHV_S0Qyu-ee5PdFxSo8hns8pdsLN8tV6ORnHVKeGYqTLi3x_WHqYaTN_TE5vRDtPSCPNUvuM0LY2CEwjayKAUBZgMcAqruIgkgnTXtQkHyt9hHFJjo4zOiYhXJJQd-G17prkbS17VVCC_FPqA6o1xDgBO8W6bHeA8yDjVthB6OYp4YLkTqX5sAwg8_Da3JvkTf0ZXB__5-jUZkuUkYjgAqma5GlhKPWBuC9x_lC7SYINE6oFkFZ880s6vsjpxZGBjvn8-f-P9ZrcBv8LD_eHBy_IHQbQD2vZXb5DGovZ0r4EqLaIXpU-Qcm3m3bDP8gfVy0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Extended+Hydro-Mechanical+Coupling+Model+Based+on+Smoothed+Particle+Hydrodynamics+for+Simulating+Crack+Propagation+in+Rocks+under+Hydraulic+and+Compressive+Loads&rft.jtitle=Materials&rft.au=Mu%2C+Dianrui&rft.au=Tang%2C+Aiping&rft.au=Qu%2C+Haigang&rft.au=Wang%2C+Junjie&rft.date=2023-02-13&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=16&rft.issue=4&rft.spage=1572&rft_id=info:doi/10.3390%2Fma16041572&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ma16041572
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon