An Extended Hydro-Mechanical Coupling Model Based on Smoothed Particle Hydrodynamics for Simulating Crack Propagation in Rocks under Hydraulic and Compressive Loads
A seepage model based on smoothed particle hydrodynamics (SPH) was developed for the seepage simulation of pore water in porous rock mass media. Then, the effectiveness of the seepage model was proved by a two-dimensional seepage benchmark example. Under the framework of SPH based on the total Lagra...
Saved in:
Published in | Materials Vol. 16; no. 4; p. 1572 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
13.02.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A seepage model based on smoothed particle hydrodynamics (SPH) was developed for the seepage simulation of pore water in porous rock mass media. Then, the effectiveness of the seepage model was proved by a two-dimensional seepage benchmark example. Under the framework of SPH based on the total Lagrangian formula, an extended hydro-mechanical coupling model (EHM-TLF-SPH) was proposed to simulate the crack propagation and coalescence process of rock samples with prefabricated flaws under hydraulic and compressive loads. In the SPH program, the Lagrangian kernel was used to approximate the equations of motion of particles. Then, the influence of flaw water pressure on crack propagation and coalescence models of rock samples with single or two parallel prefabricated flaws was studied by two numerical examples. The simulation results agreed well with the test results, verifying the validity and accuracy of the EHM-TLF-SPH model. The results showed that with the increase in flaw water pressure, the crack initiation angle and stress of the wing crack decreased gradually. The crack initiation location of the wing crack moved to the prefabricated flaw tip, while the crack initiation location of the shear crack was far away from the prefabricated flaw tip. In addition, the influence of the permeability coefficient and flaw water pressure on the osmotic pressure was also investigated, which revealed the fracturing mechanism of hydraulic cracking engineering. |
---|---|
AbstractList | A seepage model based on smoothed particle hydrodynamics (SPH) was developed for the seepage simulation of pore water in porous rock mass media. Then, the effectiveness of the seepage model was proved by a two-dimensional seepage benchmark example. Under the framework of SPH based on the total Lagrangian formula, an extended hydro-mechanical coupling model (EHM-TLF-SPH) was proposed to simulate the crack propagation and coalescence process of rock samples with prefabricated flaws under hydraulic and compressive loads. In the SPH program, the Lagrangian kernel was used to approximate the equations of motion of particles. Then, the influence of flaw water pressure on crack propagation and coalescence models of rock samples with single or two parallel prefabricated flaws was studied by two numerical examples. The simulation results agreed well with the test results, verifying the validity and accuracy of the EHM-TLF-SPH model. The results showed that with the increase in flaw water pressure, the crack initiation angle and stress of the wing crack decreased gradually. The crack initiation location of the wing crack moved to the prefabricated flaw tip, while the crack initiation location of the shear crack was far away from the prefabricated flaw tip. In addition, the influence of the permeability coefficient and flaw water pressure on the osmotic pressure was also investigated, which revealed the fracturing mechanism of hydraulic cracking engineering. A seepage model based on smoothed particle hydrodynamics (SPH) was developed for the seepage simulation of pore water in porous rock mass media. Then, the effectiveness of the seepage model was proved by a two-dimensional seepage benchmark example. Under the framework of SPH based on the total Lagrangian formula, an extended hydro-mechanical coupling model (EHM-TLF-SPH) was proposed to simulate the crack propagation and coalescence process of rock samples with prefabricated flaws under hydraulic and compressive loads. In the SPH program, the Lagrangian kernel was used to approximate the equations of motion of particles. Then, the influence of flaw water pressure on crack propagation and coalescence models of rock samples with single or two parallel prefabricated flaws was studied by two numerical examples. The simulation results agreed well with the test results, verifying the validity and accuracy of the EHM-TLF-SPH model. The results showed that with the increase in flaw water pressure, the crack initiation angle and stress of the wing crack decreased gradually. The crack initiation location of the wing crack moved to the prefabricated flaw tip, while the crack initiation location of the shear crack was far away from the prefabricated flaw tip. In addition, the influence of the permeability coefficient and flaw water pressure on the osmotic pressure was also investigated, which revealed the fracturing mechanism of hydraulic cracking engineering.A seepage model based on smoothed particle hydrodynamics (SPH) was developed for the seepage simulation of pore water in porous rock mass media. Then, the effectiveness of the seepage model was proved by a two-dimensional seepage benchmark example. Under the framework of SPH based on the total Lagrangian formula, an extended hydro-mechanical coupling model (EHM-TLF-SPH) was proposed to simulate the crack propagation and coalescence process of rock samples with prefabricated flaws under hydraulic and compressive loads. In the SPH program, the Lagrangian kernel was used to approximate the equations of motion of particles. Then, the influence of flaw water pressure on crack propagation and coalescence models of rock samples with single or two parallel prefabricated flaws was studied by two numerical examples. The simulation results agreed well with the test results, verifying the validity and accuracy of the EHM-TLF-SPH model. The results showed that with the increase in flaw water pressure, the crack initiation angle and stress of the wing crack decreased gradually. The crack initiation location of the wing crack moved to the prefabricated flaw tip, while the crack initiation location of the shear crack was far away from the prefabricated flaw tip. In addition, the influence of the permeability coefficient and flaw water pressure on the osmotic pressure was also investigated, which revealed the fracturing mechanism of hydraulic cracking engineering. |
Audience | Academic |
Author | Mu, Dianrui Wang, Junjie Tang, Aiping Qu, Haigang |
AuthorAffiliation | 1 School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China 2 Department of Civil Engineering, University of Ottawa, Ottawa, ON K1N6N5, Canada |
AuthorAffiliation_xml | – name: 2 Department of Civil Engineering, University of Ottawa, Ottawa, ON K1N6N5, Canada – name: 1 School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China |
Author_xml | – sequence: 1 givenname: Dianrui orcidid: 0000-0002-1426-3798 surname: Mu fullname: Mu, Dianrui – sequence: 2 givenname: Aiping surname: Tang fullname: Tang, Aiping – sequence: 3 givenname: Haigang orcidid: 0000-0002-4988-3524 surname: Qu fullname: Qu, Haigang – sequence: 4 givenname: Junjie surname: Wang fullname: Wang, Junjie |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36837200$$D View this record in MEDLINE/PubMed |
BookMark | eNptkt9uFCEUxiemxtbaGx_AkHhjTLbCwCxwY7JuqjXZxsbqNTnLMLu0DKww07jv44N62m21NkICJ_D7vsOf87zaiym6qnrJ6DHnmr7rgU2pYI2sn1QHTOvphGkh9h7E-9VRKZcUG-dM1fpZtc-nisua0oPq1yySk5-Di61ryem2zWly5uwaorcQyDyNm-Djipyl1gXyAQpSKZKLPqVhjfE55MHb4HbSdhuh97aQLmVy4fsxwHCjnmewV-Q8pw2scAUNfCRfk70qZMTE-VYNY_CWQGwxa7_JrhR_7cgiQVteVE87CMUd3c2H1fePJ9_mp5PFl0-f57PFxArRDBMLLXMO5HTplGjEUnFWd2qppeICuJSic0vldKM6qoSrtYKuYVpqANVo1PLD6v3OdzMue9daF4cMwWyy7yFvTQJv_t2Jfm1W6dpo3eh6ytHgzZ1BTj9GVwbT-2JdCBBdGouppaJU4agRff0IvUxjjng9pKRuOKdMInW8o1YQnPGxS5jXYm8dPjRWQudxfSYFZ40WrEbBq4dX-HP2-x9HgO4Am1Mp2XXG-uH2U9DZB8Oouakr87euUPL2keTe9T_wb_1Qz2E |
CitedBy_id | crossref_primary_10_1007_s11629_023_8362_5 crossref_primary_10_1007_s40948_024_00756_y crossref_primary_10_3390_buildings14103140 crossref_primary_10_3390_ma16196560 crossref_primary_10_3390_ma16237292 |
Cites_doi | 10.1016/j.ijmst.2018.07.006 10.1016/j.ijimpeng.2019.02.001 10.1093/mnras/181.3.375 10.1016/j.compgeo.2016.10.019 10.1016/0021-9991(83)90036-0 10.1016/j.ijrmms.2020.104383 10.1016/j.engfracmech.2020.107086 10.1007/s00603-017-1204-4 10.1002/nag.3211 10.1016/j.enganabound.2020.12.001 10.1016/j.compgeo.2021.104413 10.1002/mats.202100029 10.1007/s00603-008-0003-3 10.1016/j.ijsolstr.2014.08.006 10.1007/s00466-018-1542-4 10.1016/j.cma.2016.02.037 10.1029/WR005i006p01273 10.1016/j.tafmec.2022.103355 10.1016/j.ijmecsci.2019.05.003 10.1016/j.measurement.2017.09.006 10.1016/S0022-5096(99)00029-0 10.1016/j.ijrmms.2019.104138 10.1007/s13369-021-05672-x 10.1086/112164 10.1007/s00603-021-02753-z 10.1016/j.ijrmms.2016.04.018 10.1115/1.4010337 10.1016/j.enganabound.2009.07.006 10.1016/j.ijimpeng.2013.03.006 10.1016/j.enggeo.2019.02.005 10.1016/j.jcp.2013.12.039 10.1007/s11069-013-0736-5 10.1016/j.tust.2021.104020 10.1007/s12517-022-09493-6 10.1016/j.engfracmech.2022.108364 10.1063/1.1712886 10.1007/s00366-019-00740-1 10.1061/(ASCE)EM.1943-7889.0001378 10.1029/95JB00040 10.1061/(ASCE)GM.1943-5622.0000778 10.1002/1097-0207(20000730)48:9<1359::AID-NME829>3.0.CO;2-U 10.1007/s00603-018-1717-5 10.1007/s00603-021-02519-7 10.1016/j.engfracmech.2016.06.013 10.1016/j.tust.2018.11.018 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/ma16041572 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | PMC9959263 A743159412 36837200 10_3390_ma16041572 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41672287 – fundername: China Scholarship Council grantid: 202106120229 |
GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM TR2 TUS GROUPED_DOAJ NPM PMFND 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c445t-cad1eea76be8454b8312f8b97834a3774feb8e958f084e298af51979aa859ad13 |
IEDL.DBID | BENPR |
ISSN | 1996-1944 |
IngestDate | Thu Aug 21 18:37:48 EDT 2025 Fri Jul 11 16:09:03 EDT 2025 Fri Jul 25 11:48:43 EDT 2025 Tue Jun 10 20:36:44 EDT 2025 Wed Feb 19 02:24:50 EST 2025 Tue Jul 01 03:11:08 EDT 2025 Thu Apr 24 23:10:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | osmotic pressure hydro-mechanical coupling seepage model crack propagation smoothed particle hydrodynamics (SPH) |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c445t-cad1eea76be8454b8312f8b97834a3774feb8e958f084e298af51979aa859ad13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4988-3524 0000-0002-1426-3798 |
OpenAccessLink | https://www.proquest.com/docview/2779533017?pq-origsite=%requestingapplication% |
PMID | 36837200 |
PQID | 2779533017 |
PQPubID | 2032366 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9959263 proquest_miscellaneous_2780082789 proquest_journals_2779533017 gale_infotracacademiconefile_A743159412 pubmed_primary_36837200 crossref_citationtrail_10_3390_ma16041572 crossref_primary_10_3390_ma16041572 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230213 |
PublicationDateYYYYMMDD | 2023-02-13 |
PublicationDate_xml | – month: 2 year: 2023 text: 20230213 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Materials |
PublicationTitleAlternate | Materials (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Zheng (ref_5) 2021; 139 Silling (ref_16) 2000; 48 Belytschko (ref_41) 2000; 48 Weibull (ref_53) 1951; 18 Zhou (ref_20) 2017; 17 ref_55 Wang (ref_48) 2016; 163 Monaghan (ref_46) 1983; 52 ref_19 Silva (ref_2) 2014; 51 Gharehdash (ref_30) 2019; 36 Xu (ref_23) 2018; 62 Yu (ref_26) 2021; 55 Zhang (ref_17) 2020; 234 Lee (ref_35) 2016; 305 Mu (ref_40) 2022; 119 Bi (ref_33) 2017; 83 Sun (ref_7) 2021; 45 Zhang (ref_9) 2010; 34 Wu (ref_8) 2019; 52 Mu (ref_25) 2022; 265 Huang (ref_44) 2013; 69 Chakraborty (ref_49) 2013; 58 Gharehdash (ref_28) 2020; 135 Snow (ref_34) 1969; 5 Xu (ref_6) 2021; 115 Lucy (ref_22) 1977; 82 Ren (ref_24) 2021; 31 Yu (ref_31) 2021; 46 Liu (ref_11) 2019; 84 Liu (ref_1) 2018; 43 Islam (ref_50) 2019; 157–158 ref_36 Wei (ref_52) 2019; 40 Helmons (ref_13) 2016; 86 Gingold (ref_21) 1977; 181 Shen (ref_54) 1995; 100 Mu (ref_32) 2022; 15 ref_39 Zhou (ref_18) 2020; 132 Bi (ref_4) 2017; 50 Biot (ref_43) 1941; 12 Katiyar (ref_38) 2014; 261 Shou (ref_37) 2021; 123 Zhou (ref_27) 2018; 144 Ajayi (ref_10) 2019; 29 ref_47 ref_45 ref_42 Sun (ref_12) 2019; 124 ref_3 Li (ref_14) 2018; 114 Zhou (ref_15) 2019; 251 Gharehdash (ref_29) 2021; 54 Mu (ref_51) 2022; 25 |
References_xml | – volume: 29 start-page: 469 year: 2019 ident: ref_10 article-title: Numerical investigation of the effectiveness of radon control measures in cave mines publication-title: Int. J. Min. Sci. Technol. doi: 10.1016/j.ijmst.2018.07.006 – volume: 135 start-page: 103235 year: 2020 ident: ref_28 article-title: Blast induced fracture modelling using smoothed particle hydrodynamics publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2019.02.001 – volume: 181 start-page: 375 year: 1977 ident: ref_21 article-title: Smoothed particle hydrodynamics: Theory and application to non-spherical stars publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/181.3.375 – volume: 83 start-page: 1 year: 2017 ident: ref_33 article-title: Numerical simulation of kinetic friction in the fracture process of rocks in the framework of General Particle Dynamics publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2016.10.019 – volume: 52 start-page: 374 year: 1983 ident: ref_46 article-title: Shock simulation by the particle method SPH publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(83)90036-0 – volume: 132 start-page: 104383 year: 2020 ident: ref_18 article-title: Hydromechanical bond-based peridynamic model for pressurized and fluid-driven fracturing processes in fissured porous rocks publication-title: Int. J. Rock Mech. Min. doi: 10.1016/j.ijrmms.2020.104383 – volume: 234 start-page: 107086 year: 2020 ident: ref_17 article-title: An extended ordinary state-based peridynamic approach for modelling hydraulic fracturing publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2020.107086 – volume: 50 start-page: 1833 year: 2017 ident: ref_4 article-title: A novel numerical algorithm for simulation of initiation, propagation and coalescence of flaws subject to internal fluid pressure and vertical stress in the framework of general particle dynamics publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-017-1204-4 – ident: ref_39 – ident: ref_42 – volume: 45 start-page: 1500 year: 2021 ident: ref_7 article-title: An extended numerical manifold method for unsaturated soil-water interaction analysis at micro-scale publication-title: Int. J. Numer. Anal. Met. doi: 10.1002/nag.3211 – volume: 123 start-page: 133 year: 2021 ident: ref_37 article-title: A coupled hydro-mechanical non-ordinary state-based peridynamics for the fissured porous rocks publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2020.12.001 – volume: 139 start-page: 104413 year: 2021 ident: ref_5 article-title: Discontinuous deformation analysis with distributed bond for the modelling of rock deformation and failure publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2021.104413 – volume: 31 start-page: 2100029 year: 2021 ident: ref_24 article-title: Simulation of polymer melt injection molding filling flow based on an improved SPH method with modified low-dissipation Riemann solver publication-title: Macromol. Theory Simul. doi: 10.1002/mats.202100029 – ident: ref_55 doi: 10.1007/s00603-008-0003-3 – volume: 51 start-page: 4122 year: 2014 ident: ref_2 article-title: Finite Element study of fracture initiation in flaws subject to internal fluid pressure and vertical stress publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2014.08.006 – volume: 62 start-page: 963 year: 2018 ident: ref_23 article-title: A technique to remove the tensile instability in weakly compressible SPH publication-title: Comput. Mech. doi: 10.1007/s00466-018-1542-4 – volume: 25 start-page: 1 year: 2022 ident: ref_51 article-title: A bond-based smoothed particle hydrodynamics considering frictional contact effect for simulating rock fracture publication-title: Acta Geotech. – volume: 305 start-page: 111 year: 2016 ident: ref_35 article-title: Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2016.02.037 – volume: 5 start-page: 1273 year: 1969 ident: ref_34 article-title: Anisotropic permeability of fractured media publication-title: Water Resour. Res. doi: 10.1029/WR005i006p01273 – volume: 119 start-page: 103355 year: 2022 ident: ref_40 article-title: An improved smoothed particle hydrodynamics method for simulating crack propagation and coalescence in brittle fracture of rock materials publication-title: Theory Appl. Fract. Mech. doi: 10.1016/j.tafmec.2022.103355 – volume: 157–158 start-page: 498 year: 2019 ident: ref_50 article-title: A Total Lagrangian SPH method for modelling damage and failure in solids publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2019.05.003 – volume: 114 start-page: 25 year: 2018 ident: ref_14 article-title: A study on drum cutting properties with full-scale experiments and numerical simulations publication-title: Measurement doi: 10.1016/j.measurement.2017.09.006 – volume: 48 start-page: 175 year: 2000 ident: ref_16 article-title: Reformulation of elasticity theory for discontinuities and long-range forces publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(99)00029-0 – ident: ref_45 – volume: 124 start-page: 104138 year: 2019 ident: ref_12 article-title: Coupled hydro-mechanical analysis for grout penetration in fractured rocks using the finite-discrete element method publication-title: Int. J. Rock Mech. Min. doi: 10.1016/j.ijrmms.2019.104138 – volume: 46 start-page: 11089 year: 2021 ident: ref_31 article-title: Numerical simulation on the interaction modes between hydraulic and natural fractures based on a new SPH method publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-021-05672-x – volume: 82 start-page: 1013 year: 1977 ident: ref_22 article-title: A numerical approach to testing the fission hypothesis publication-title: Astron. J. doi: 10.1086/112164 – volume: 55 start-page: 1633 year: 2021 ident: ref_26 article-title: An improved form of SPH method for simulating the thermo-mechanical-damage coupling problems and its applications publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-021-02753-z – volume: 86 start-page: 224 year: 2016 ident: ref_13 article-title: Simulating hydro mechanical effects in rock deformation by combination of the discrete element method and the smoothed particle method publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2016.04.018 – volume: 43 start-page: 393 year: 2018 ident: ref_1 article-title: Analysis of spatial distribution of cracks caused by hydraulic fracturing based on zero-thickness cohesive elements publication-title: J. China Coal Soc. – ident: ref_3 – volume: 18 start-page: 293 year: 1951 ident: ref_53 article-title: A statistical distribution function of wide applicability publication-title: J. Appl. Mech. doi: 10.1115/1.4010337 – ident: ref_47 – volume: 34 start-page: 41 year: 2010 ident: ref_9 article-title: Numerical analysis of 2-D crack propagation problems using the numerical manifold method publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2009.07.006 – volume: 58 start-page: 84 year: 2013 ident: ref_49 article-title: A pseudo-spring based fracture model for SPH simulation of impact dynamics publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2013.03.006 – volume: 251 start-page: 100 year: 2019 ident: ref_15 article-title: Novel grain-based model for simulation of brittle failure of Alxa porphyritic granite publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2019.02.005 – volume: 261 start-page: 209 year: 2014 ident: ref_38 article-title: A peridynamic formulation of pressure driven convective fluid transport in porous media publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.12.039 – volume: 69 start-page: 809 year: 2013 ident: ref_44 article-title: Numerical simulation of flow processes in liquefied soils using a soil-water-coupled smoothed particle hydrodynamics method publication-title: Nat. Hazards doi: 10.1007/s11069-013-0736-5 – volume: 115 start-page: 104020 year: 2021 ident: ref_6 article-title: An extended numerical manifold method for simulation of grouting reinforcement in deep rock tunnels publication-title: Tunn. Undergr. Sp. Tech. doi: 10.1016/j.tust.2021.104020 – volume: 15 start-page: 485 year: 2022 ident: ref_32 article-title: A hydraulic-mechanical coupling model based on smoothed particle dynamics for simulating rock fracture publication-title: Arab. J. Geosci. doi: 10.1007/s12517-022-09493-6 – volume: 265 start-page: 108364 year: 2022 ident: ref_25 article-title: A coupled thermo-mechanical bond-based smoothed particle dynamics model for simulating thermal cracking in rocks publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2022.108364 – volume: 12 start-page: 155 year: 1941 ident: ref_43 article-title: General theory of three-dimensional consolidation publication-title: J. Appl. Phys. doi: 10.1063/1.1712886 – volume: 36 start-page: 915 year: 2019 ident: ref_30 article-title: Numerical study on mechanical and hydraulic behaviour of blast-induced fractured rock publication-title: Eng. Comput. doi: 10.1007/s00366-019-00740-1 – volume: 40 start-page: 4533 year: 2019 ident: ref_52 article-title: Experimental study and numerical simulation of inclined flaws and horizontal fissures propagation and coalescence process in rocks publication-title: Rock Soil Mech. – volume: 144 start-page: 04017156 year: 2018 ident: ref_27 article-title: Numerical simulation of thermal cracking in rocks based on general particle dynamics publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)EM.1943-7889.0001378 – volume: 100 start-page: 5975 year: 1995 ident: ref_54 article-title: Coalescence of fractures under shear stresses experiments publication-title: J. Geophys. Res. doi: 10.1029/95JB00040 – volume: 17 start-page: 04016086 year: 2017 ident: ref_20 article-title: Numerical simulation of failure of rock-like material subjected to compressive loads using improved peridynamic method publication-title: Int. J. Geomech. doi: 10.1061/(ASCE)GM.1943-5622.0000778 – volume: 48 start-page: 1359 year: 2000 ident: ref_41 article-title: A unified stability analysis of meshless particle methods publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/1097-0207(20000730)48:9<1359::AID-NME829>3.0.CO;2-U – ident: ref_36 – volume: 52 start-page: 2335 year: 2019 ident: ref_8 article-title: A cohesive element-based numerical manifold method for hydraulic fracturing modelling with Voronoi grains publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-018-1717-5 – ident: ref_19 – volume: 54 start-page: 4419 year: 2021 ident: ref_29 article-title: Field scale modelling of explosion-generated crack densities in granitic rocks using dual-support smoothed particle hydrodynamics (DS-SPH) publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-021-02519-7 – volume: 163 start-page: 248 year: 2016 ident: ref_48 article-title: Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non-ordinary state-based peridynamics publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2016.06.013 – volume: 84 start-page: 472 year: 2019 ident: ref_11 article-title: Simulation of coupled hydro-mechanical interactions during grouting process in fractured media based on the combined finite-discrete element method publication-title: Tunn. Undergr. Sp. Tech. doi: 10.1016/j.tust.2018.11.018 |
SSID | ssj0000331829 |
Score | 2.3672605 |
Snippet | A seepage model based on smoothed particle hydrodynamics (SPH) was developed for the seepage simulation of pore water in porous rock mass media. Then, the... |
SourceID | pubmedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1572 |
SubjectTerms | Analysis Coupling Crack initiation Crack propagation Cracking (fracturing) Efficiency Engineering Equations of motion Finite element analysis Fluid dynamics Fluid mechanics Hydraulic fracturing Numerical analysis Osmosis Permeability Pore water Porous media Prefabrication Propagation Rock masses Seepage Simulation Simulation methods Smooth particle hydrodynamics Solids Water pressure |
Title | An Extended Hydro-Mechanical Coupling Model Based on Smoothed Particle Hydrodynamics for Simulating Crack Propagation in Rocks under Hydraulic and Compressive Loads |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36837200 https://www.proquest.com/docview/2779533017 https://www.proquest.com/docview/2780082789 https://pubmed.ncbi.nlm.nih.gov/PMC9959263 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swEBZr-rI9lHU_vXVFY4OxB9PYkm3paaQhaRhrCe0KeTOSJXehid3ZyWD_z_7Q3dmKm5SxR6OTEdzp9Ol09x0hH6WRuZKG-cgu53OmmK8sADluszBiRnMVYzXy-UU8ueZfZ9HMBdxql1a58YmNozZlhjHykzBJmkzIIPly99PHrlH4uupaaOyRfXDBQvTI_unoYnrZRVn6DGw2lC0vKYP7_clSBTGWpSfhzkn00B9vHUi7yZJbp8_4KTlwsJEOWj0fkke2eEaebJEJPid_BgUduZA2nfw2VemfW6zrRTXQYbnG2tsbis3PFvQUDi9Dy4JeLUuswTJ06myonWraRvU1BUxLr-bLpskXzB5WKrul0wqu2jeNTum8oJfgU2uK1WhVM1utF_OMqsJQ9DZNou0vS7-VytQvyPV49H048V0PBj_jPFr5mTKBtSqJtRU84lqwIMyFxoARVwywY261sDISeV9wG0qhciyFlUqJSMJc9pL0irKwrwntK4PgUFujAcZYgKYAbZjMEi3yUEXaI583-kgzR1COfTIWKVxUUHfpve488qGTvWtpOf4p9QnVmuJehT9lypUcwHqQ9SodIHyKJA9A8mij-dRt4jq9NzmPvO-GYfvhm4oqbLlGGYEoKhHSI69aQ-kWxGKBPYD6Hkl2TKgTQGrv3ZFi_qOh-EYWuDBmb_6_rLfkcQiYC5PIA3ZEeqtqbd8BRlrpY7InxmfHbjvA19ks-AsuFBfU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOQAHxJtAASNAiMOqWdu7ax8QCqEhpUlV0VbqbfGuve2qyW7JJqD8H878Rmb21QQhbj17bFma8cxne74ZQl4roxKtDHewupwjuOaOtgDkhI2Zx00ktI9s5PG-PzwWX068kw3yu-HCYFpl4xNLR23yGN_It1kQlJmQbvDh4ruDXaPwd7VpoVGZxZ5d_oQrW_F-9xPo9w1jg52j_tCpuwo4sRDe3Im1ca3VgR9ZKTwRSe6yREb4BCI0BzSU2Eha5cmkK4VlSuoEyZ1Ka-kpmMth3WvkuuAQyZGZPvjcvul0OZwQpqoqqDDe3Z5q10cSfMDW4t7f3n8l_K2nZq7EusEdcrsGqbRXWdVdsmGze-TWSunC--RXL6M79QM6HS7NLHfGFlnEqHTazxfI9D2l2GptQj9CqDQ0z-jhNEfGl6EHtcVWU80y09M0LiggaHqYTsuWYjC7P9PxOT2YwcX-tLQgmmb0K3jwgiL3bVbO1otJGlOdGYq-rUzr_WHpKNemeECOr0Q3D8lmlmf2MaFdbRCKRtZEAJosAGEAUlzFQSQTpr2oQ941-gjjuhw6duWYhHAtQt2Fl7rrkFet7EVVBOSfUm9RrSF6Blgp1jXBAfaDNbbCHoI1TwkXJLcazYe1yyjCSwPvkJftMBx2_MHRmc0XKCMRswVSdcijylDaDXFfYsehbocEaybUCmAh8fWRLD0rC4pjzTnm8yf_39YLcmN4NB6Fo939vafkJgO0h-nrLt8im_PZwj4DdDaPnpdHgpJvV30G_wC95FGb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyF4QNwpDDAChHiI2thOYj8g1HWtOrZV1cakvQUndrZqbTJ6AfX_8Cv4dZyT21qEeNtzji1L5_bZOec7hLxTRiVaGe4gu5wjuOaOtgDkhI2Zx00ktI_dyEdDf3Aqvpx5Z1vkd9ULg2WVVUzMA7XJYnwjb7EgyCsh3aCVlGURo73-56vvDk6Qwj-t1TiNwkQO7OonXN_mn_b3QNfvGev3vnYHTjlhwImF8BZOrI1rrQ78yErhiUhylyUywucQoTkgo8RG0ipPJm0pLFNSJ9joqbSWnoK1HPa9RbYDvBU1yPZubzg6rl942hz8hamCE5Vz1W5NtetjS3zANrLg37lgLRluFmquZb7-fXKvhKy0U9jYA7Jl04fk7hqR4SPyq5PSXvmcTgcrM8ucI4s9xWgCtJstse_3nOLgtQndhcRpaJbSk2mG_V-Gjkr7LZaaVaqn43hOAU_Tk_E0HzAGq7szHV_S0Qyu-ee5PdFxSo8hns8pdsLN8tV6ORnHVKeGYqTLi3x_WHqYaTN_TE5vRDtPSCPNUvuM0LY2CEwjayKAUBZgMcAqruIgkgnTXtQkHyt9hHFJjo4zOiYhXJJQd-G17prkbS17VVCC_FPqA6o1xDgBO8W6bHeA8yDjVthB6OYp4YLkTqX5sAwg8_Da3JvkTf0ZXB__5-jUZkuUkYjgAqma5GlhKPWBuC9x_lC7SYINE6oFkFZ880s6vsjpxZGBjvn8-f-P9ZrcBv8LD_eHBy_IHQbQD2vZXb5DGovZ0r4EqLaIXpU-Qcm3m3bDP8gfVy0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Extended+Hydro-Mechanical+Coupling+Model+Based+on+Smoothed+Particle+Hydrodynamics+for+Simulating+Crack+Propagation+in+Rocks+under+Hydraulic+and+Compressive+Loads&rft.jtitle=Materials&rft.au=Mu%2C+Dianrui&rft.au=Tang%2C+Aiping&rft.au=Qu%2C+Haigang&rft.au=Wang%2C+Junjie&rft.date=2023-02-13&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=16&rft.issue=4&rft.spage=1572&rft_id=info:doi/10.3390%2Fma16041572&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ma16041572 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |