Parvoviral Left-End Hairpin Ears Are Essential during Infection for Establishing a Functional Intranuclear Transcription Template and for Efficient Progeny Genome Encapsidation
Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from...
Saved in:
Published in | Journal of Virology Vol. 87; no. 19; pp. 10501 - 10514 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.10.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Article Usage Stats
Services
JVI
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
Spotlights in the Current Issue
JVI
About
JVI
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
JVI
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0022-538X
Online ISSN:
1098-5514
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
JVI
.asm.org, visit:
JVI
|
---|---|
AbstractList | The 121-nucleotide left-end telomere of Minute Virus of Mice (MVM) can be folded into a Y-shaped hairpin with short axial ears that are highly conserved within genus
Parvovirus
. To explore their potential role(s) during infection, we constructed infectious plasmid clones that lacked one or other ear. Although these were nonviable when transfected into A9 cells, excision of the viral genome and DNA amplification appeared normal, and viral transcripts and proteins were expressed, but progeny virion production was minimal, supporting the idea of a potential role for the ears in genome packaging. To circumvent the absence of progeny that confounded further analysis of these mutants, plasmids were transfected into 293T cells both with and without an adenovirus helper construct, generating single bursts of progeny. These virions bound to A9 cells and were internalized but failed to initiate viral transcription, protein expression, or DNA replication. No defects in mutant virion stability or function could be detected
in vitro
. Significantly, mutant capsid gene expression and DNA replication could be rescued by coinfection with wild-type virions carrying a replication-competent, capsid-gene-replacement vector. To pinpoint where such complementation occurred, prior transfection of plasmids expressing only MVM nonstructural proteins was explored. NS1 alone, but not NS2, rescued transcription and protein expression from both P4 and P38 promoters, whereas NS1 molecules deleted for their C-terminal transactivation domain did not. These results suggest that the mutant virions reach the nucleus, uncoat, and are converted to duplex DNA but require an intact left-end hairpin structure to form the initiating transcription complex. The 121-nucleotide left-end telomere of Minute Virus of Mice (MVM) can be folded into a Y-shaped hairpin with short axial ears that are highly conserved within genus Parvovirus. To explore their potential role(s) during infection, we constructed infectious plasmid clones that lacked one or other ear. Although these were nonviable when transfected into A9 cells, excision of the viral genome and DNA amplification appeared normal, and viral transcripts and proteins were expressed, but progeny virion production was minimal, supporting the idea of a potential role for the ears in genome packaging. To circumvent the absence of progeny that confounded further analysis of these mutants, plasmids were transfected into 293T cells both with and without an adenovirus helper construct, generating single bursts of progeny. These virions bound to A9 cells and were internalized but failed to initiate viral transcription, protein expression, or DNA replication. No defects in mutant virion stability or function could be detected in vitro. Significantly, mutant capsid gene expression and DNA replication could be rescued by coinfection with wild-type virions carrying a replication-competent, capsid-gene-replacement vector. To pinpoint where such complementation occurred, prior transfection of plasmids expressing only MVM nonstructural proteins was explored. NS1 alone, but not NS2, rescued transcription and protein expression from both P4 and P38 promoters, whereas NS1 molecules deleted for their C-terminal transactivation domain did not. These results suggest that the mutant virions reach the nucleus, uncoat, and are converted to duplex DNA but require an intact left-end hairpin structure to form the initiating transcription complex.The 121-nucleotide left-end telomere of Minute Virus of Mice (MVM) can be folded into a Y-shaped hairpin with short axial ears that are highly conserved within genus Parvovirus. To explore their potential role(s) during infection, we constructed infectious plasmid clones that lacked one or other ear. Although these were nonviable when transfected into A9 cells, excision of the viral genome and DNA amplification appeared normal, and viral transcripts and proteins were expressed, but progeny virion production was minimal, supporting the idea of a potential role for the ears in genome packaging. To circumvent the absence of progeny that confounded further analysis of these mutants, plasmids were transfected into 293T cells both with and without an adenovirus helper construct, generating single bursts of progeny. These virions bound to A9 cells and were internalized but failed to initiate viral transcription, protein expression, or DNA replication. No defects in mutant virion stability or function could be detected in vitro. Significantly, mutant capsid gene expression and DNA replication could be rescued by coinfection with wild-type virions carrying a replication-competent, capsid-gene-replacement vector. To pinpoint where such complementation occurred, prior transfection of plasmids expressing only MVM nonstructural proteins was explored. NS1 alone, but not NS2, rescued transcription and protein expression from both P4 and P38 promoters, whereas NS1 molecules deleted for their C-terminal transactivation domain did not. These results suggest that the mutant virions reach the nucleus, uncoat, and are converted to duplex DNA but require an intact left-end hairpin structure to form the initiating transcription complex. The 121-nucleotide left-end telomere of Minute Virus of Mice (MVM) can be folded into a Y-shaped hairpin with short axial ears that are highly conserved within genus Parvovirus. To explore their potential role(s) during infection, we constructed infectious plasmid clones that lacked one or other ear. Although these were nonviable when transfected into A9 cells, excision of the viral genome and DNA amplification appeared normal, and viral transcripts and proteins were expressed, but progeny virion production was minimal, supporting the idea of a potential role for the ears in genome packaging. To circumvent the absence of progeny that confounded further analysis of these mutants, plasmids were transfected into 293T cells both with and without an adenovirus helper construct, generating single bursts of progeny. These virions bound to A9 cells and were internalized but failed to initiate viral transcription, protein expression, or DNA replication. No defects in mutant virion stability or function could be detected in vitro. Significantly, mutant capsid gene expression and DNA replication could be rescued by coinfection with wild-type virions carrying a replication-competent, capsid-gene-replacement vector. To pinpoint where such complementation occurred, prior transfection of plasmids expressing only MVM nonstructural proteins was explored. NS1 alone, but not NS2, rescued transcription and protein expression from both P4 and P38 promoters, whereas NS1 molecules deleted for their C-terminal transactivation domain did not. These results suggest that the mutant virions reach the nucleus, uncoat, and are converted to duplex DNA but require an intact left-end hairpin structure to form the initiating transcription complex. Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JVI RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0022-538X Online ISSN: 1098-5514 Copyright © 2014 by the American Society for Microbiology. For an alternate route to JVI .asm.org, visit: JVI |
Author | Peter Tattersall Lei Li Susan F. Cotmore |
Author_xml | – sequence: 1 givenname: Lei surname: Li fullname: Li, Lei organization: Departments of Laboratory Medicine, Yale University Medical School, New Haven, Connecticut, USA – sequence: 2 givenname: Susan F. surname: Cotmore fullname: Cotmore, Susan F. organization: Departments of Laboratory Medicine, Yale University Medical School, New Haven, Connecticut, USA – sequence: 3 givenname: Peter surname: Tattersall fullname: Tattersall, Peter organization: Departments of Laboratory Medicine, Yale University Medical School, New Haven, Connecticut, USA, Genetics, Yale University Medical School, New Haven, Connecticut, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23903839$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk9vEzEQxVeoFU0LN87IEpce2OJ_m_VekKoqbYMi0UNA3KyJd5y42vUu9m5QvxUfEScpFUVC4mTL7_fmje05zY585zHL3jB6wRhXHz59nV9QJiqRM_EimzBaqbwomDzKJpRynhdCfTvJTmO8p5RJOZUvsxMuKiqUqCbZzzsI227rAjRkgXbIZ74mt-BC7zyZQYjkMiCZxYh-cImpx-D8msy9RTO4zhPbhSQPsGpc3OwkINej32sJn_shgB9NgxDIMm2jCa7fG5fY9g0MSCAl7qtY64xLOeQudGv0D-QGfdemdG-gj66Gne9Vdmyhifj6cT3LvlzPlle3-eLzzfzqcpEbKYshN-WUywItZRZFIVY1CoHpUIEF5FbV1kx5WZagqF0pxqE2slJ2ygAqKyouzrKPh7r9uGqxNri7SaP74FoID7oDp58r3m30uttqoWgplEoFzh8LhO77iHHQrYsGmwY8dmPUTKYYTiWt_gdlvJK8oAl9-2dbT_38_tEEvD8AJnQxBrRPCKN6NzA6DYzeD4xmIuH8L9y4Yf_Q6VKu-Zfp3cG0cevNDxdQQ2z1_dZpVWpWJVOR2F91OtO_ |
CitedBy_id | crossref_primary_10_1007_s00705_020_04613_7 crossref_primary_10_1016_j_vetmic_2025_110374 crossref_primary_10_3390_v10020054 crossref_primary_10_1007_s00705_013_1914_1 crossref_primary_10_1007_s00705_017_3586_8 crossref_primary_10_1016_j_virusres_2014_05_008 crossref_primary_10_1016_j_isci_2024_109813 crossref_primary_10_3390_v11060562 crossref_primary_10_1099_jgv_0_001477 crossref_primary_10_1007_s11262_017_1497_0 crossref_primary_10_1099_jgv_0_000645 crossref_primary_10_1128_JVI_00443_18 crossref_primary_10_1128_jvi_00161_23 crossref_primary_10_3389_fimmu_2024_1324531 crossref_primary_10_1146_annurev_virology_031413_085444 crossref_primary_10_1016_j_virusres_2014_10_019 crossref_primary_10_1016_j_virusres_2021_198574 crossref_primary_10_1128_jvi_01118_22 crossref_primary_10_1016_j_virusres_2018_12_007 |
Cites_doi | 10.1016/0042-6822(91)90467-P 10.1128/jvi.63.7.3095-3104.1989 10.1128/JVI.78.6.3110-3122.2004 10.1128/JVI.06119-11 10.1128/JVI.73.5.3877-3885.1999 10.1128/jvi.69.9.5422-5430.1995 10.1128/JVI.01703-07 10.1016/0092-8674(79)90276-9 10.1128/JVI.01056-06 10.1128/jvi.67.2.1034-1043.1993 10.1089/10430349950017626 10.1128/JVI.72.3.2224-2232.1998 10.3791/3518 10.1128/jvi.64.4.1598-1605.1990 10.1128/jvi.67.9.5660-5663.1993 10.1101/cshperspect.a012989 10.1128/jvi.54.1.171-177.1985 10.1101/SQB.1983.047.01.086 10.1128/JVI.80.1.161-171.2006 10.1016/j.virol.2006.01.039 10.1128/JVI.78.3.1101-1108.2004 10.1073/pnas.0508477102 10.2217/fvl.10.56 10.1006/viro.1998.9520 10.1128/jvi.60.3.1170-1174.1986 10.1128/jvi.66.10.5705-5713.1992 10.1128/jvi.64.12.6166-6175.1990 10.1128/jvi.46.3.937-943.1983 10.1128/jvi.58.3.724-732.1986 10.1128/JVI.79.19.12375-12381.2005 10.1128/jvi.69.1.239-246.1995 10.1099/0022-1317-83-7-1659 10.1128/jvi.65.9.4629-4635.1991 10.1128/jvi.61.9.2807-2815.1987 10.1006/viro.1994.1363 10.1128/JVI.01450-12 10.1128/jvi.63.7.3034-3039.1989 10.1016/j.virol.2010.12.009 10.1128/JVI.78.19.10674-10684.2004 10.1128/JVI.01563-09 10.1128/JVI.00702-09 10.1006/viro.1997.8545 10.1016/j.virol.2004.03.006 10.1016/j.jviromet.2006.07.024 10.1371/journal.ppat.1001141 10.1006/viro.2000.0202 |
ContentType | Journal Article |
Copyright | Copyright © 2013, American Society for Microbiology. All Rights Reserved. 2013 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2013, American Society for Microbiology. All Rights Reserved. 2013 American Society for Microbiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7U9 8FD FR3 H94 P64 RC3 5PM |
DOI | 10.1128/JVI.01393-13 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Genetics Abstracts Virology and AIDS Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic AIDS and Cancer Research Abstracts MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1098-5514 |
EndPage | 10514 |
ExternalDocumentID | PMC3807388 23903839 10_1128_JVI_01393_13 jvi_87_19_10501 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R37 AI026109 – fundername: NIAID NIH HHS grantid: R01 AI026109 – fundername: NIAID NIH HHS grantid: AI026109 – fundername: NCI NIH HHS grantid: R01 CA029303 – fundername: NCI NIH HHS grantid: CA029303 |
GroupedDBID | --- -~X .55 .GJ 0R~ 18M 29L 2WC 39C 3O- 4.4 41~ 53G 5GY 5RE 5VS 6TJ 85S AAFWJ AAGFI AAYJJ AAYXX ABPPZ ACGFO ACNCT ADBBV ADXHL AENEX AFFNX AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CITATION CS3 D0S DIK E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 MVM N9A O9- OHT OK1 P2P RHI RNS RPM RSF TR2 UPT VH1 W2D W8F WH7 WOQ X7M Y6R YQT ZGI ZXP ~02 ~KM CGR CUY CVF ECM EIF NPM 7X8 7U9 8FD FR3 H94 P64 RC3 5PM |
ID | FETCH-LOGICAL-c445t-c76245ef01fe353bde33ec768afae2f8dfc62777a80fb812adc498f61aa9f3923 |
ISSN | 0022-538X 1098-5514 |
IngestDate | Thu Aug 21 13:56:41 EDT 2025 Fri Jul 11 04:28:00 EDT 2025 Thu Jul 10 18:48:52 EDT 2025 Thu Apr 03 06:55:47 EDT 2025 Thu Apr 24 22:53:13 EDT 2025 Tue Jul 01 01:02:25 EDT 2025 Wed May 18 15:26:14 EDT 2016 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c445t-c76245ef01fe353bde33ec768afae2f8dfc62777a80fb812adc498f61aa9f3923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://jvi.asm.org/content/jvi/87/19/10501.full.pdf |
PMID | 23903839 |
PQID | 1431294250 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | highwire_asm_jvi_87_19_10501 proquest_miscellaneous_1439220409 crossref_citationtrail_10_1128_JVI_01393_13 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3807388 crossref_primary_10_1128_JVI_01393_13 pubmed_primary_23903839 proquest_miscellaneous_1431294250 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-10-01 |
PublicationDateYYYYMMDD | 2013-10-01 |
PublicationDate_xml | – month: 10 year: 2013 text: 2013-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of Virology |
PublicationTitleAlternate | J Virol |
PublicationYear | 2013 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 Cotmore SF (e_1_3_2_2_2) 2006 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_14_2 e_1_3_2_35_2 16504232 - Virology. 2006 Jun 5;349(2):382-95 3612951 - J Virol. 1987 Sep;61(9):2807-15 9499080 - J Virol. 1998 Mar;72(3):2224-32 225040 - Cell. 1979 Jul;17(3):691-703 21331319 - Future Virol. 2010 Nov;5(6):731-743 2157046 - J Virol. 1990 Apr;64(4):1598-605 1388209 - J Virol. 1992 Oct;66(10):5705-13 8009857 - Virology. 1994 Jul;202(1):466-70 14990730 - J Virol. 2004 Mar;78(6):3110-22 8350419 - J Virol. 1993 Sep;67(9):5660-3 19955311 - J Virol. 2010 Feb;84(4):1945-56 1825254 - Virology. 1991 Mar;181(1):35-45 10196282 - J Virol. 1999 May;73(5):3877-85 2939261 - J Virol. 1986 Jun;58(3):724-32 10725205 - Virology. 2000 Mar 30;269(1):128-36 20949077 - PLoS Pathog. 2010;6(10):e1001141 10428207 - Hum Gene Ther. 1999 Jul 1;10(10):1619-32 7636987 - J Virol. 1995 Sep;69(9):5422-30 3783817 - J Virol. 1986 Dec;60(3):1170-4 7983715 - J Virol. 1995 Jan;69(1):239-46 16284249 - Proc Natl Acad Sci U S A. 2005 Nov 22;102(47):17148-53 16160164 - J Virol. 2005 Oct;79(19):12375-81 22933276 - J Virol. 2012 Nov;86(22):12187-97 21193212 - Virology. 2011 Feb 20;410(2):375-84 19587029 - J Virol. 2009 Sep;83(18):9541-53 22546707 - J Vis Exp. 2012;(62). pii: 3518. doi: 10.3791/3518 15193920 - Virology. 2004 Jun 1;323(2):243-56 16950522 - J Virol Methods. 2006 Dec;138(1-2):85-98 16956943 - J Virol. 2006 Nov;80(22):11040-54 3973977 - J Virol. 1985 Apr;54(1):171-7 2147041 - J Virol. 1990 Dec;64(12):6166-75 1870193 - J Virol. 1991 Sep;65(9):4629-35 6602687 - Cold Spring Harb Symp Quant Biol. 1983;47 Pt 2:751-62 2542617 - J Virol. 1989 Jul;63(7):3095-104 9927584 - Virology. 1999 Feb 1;254(1):169-81 14722265 - J Virol. 2004 Feb;78(3):1101-8 9168889 - Virology. 1997 May 12;231(2):267-80 6602221 - J Virol. 1983 Jun;46(3):937-43 8419637 - J Virol. 1993 Feb;67(2):1034-43 15367634 - J Virol. 2004 Oct;78(19):10674-84 23293137 - Cold Spring Harb Perspect Biol. 2013 Feb;5(2). pii: a012989. doi: 10.1101/cshperspect.a012989 16352540 - J Virol. 2006 Jan;80(1):161-71 22013064 - J Virol. 2012 Jan;86(1):69-80 2542611 - J Virol. 1989 Jul;63(7):3034-9 12075084 - J Gen Virol. 2002 Jul;83(Pt 7):1659-64 17898054 - J Virol. 2007 Dec;81(23):13015-27 |
References_xml | – ident: e_1_3_2_20_2 doi: 10.1016/0042-6822(91)90467-P – ident: e_1_3_2_12_2 doi: 10.1128/jvi.63.7.3095-3104.1989 – ident: e_1_3_2_46_2 doi: 10.1128/JVI.78.6.3110-3122.2004 – ident: e_1_3_2_33_2 doi: 10.1128/JVI.06119-11 – ident: e_1_3_2_8_2 doi: 10.1128/JVI.73.5.3877-3885.1999 – ident: e_1_3_2_35_2 doi: 10.1128/jvi.69.9.5422-5430.1995 – ident: e_1_3_2_48_2 doi: 10.1128/JVI.01703-07 – ident: e_1_3_2_7_2 doi: 10.1016/0092-8674(79)90276-9 – ident: e_1_3_2_45_2 doi: 10.1128/JVI.01056-06 – ident: e_1_3_2_44_2 doi: 10.1128/jvi.67.2.1034-1043.1993 – ident: e_1_3_2_15_2 doi: 10.1089/10430349950017626 – ident: e_1_3_2_14_2 doi: 10.1128/JVI.72.3.2224-2232.1998 – ident: e_1_3_2_27_2 doi: 10.3791/3518 – ident: e_1_3_2_39_2 doi: 10.1128/jvi.64.4.1598-1605.1990 – ident: e_1_3_2_38_2 doi: 10.1128/jvi.67.9.5660-5663.1993 – ident: e_1_3_2_3_2 doi: 10.1101/cshperspect.a012989 – ident: e_1_3_2_5_2 doi: 10.1128/jvi.54.1.171-177.1985 – ident: e_1_3_2_6_2 doi: 10.1101/SQB.1983.047.01.086 – ident: e_1_3_2_18_2 doi: 10.1128/JVI.80.1.161-171.2006 – ident: e_1_3_2_40_2 doi: 10.1016/j.virol.2006.01.039 – ident: e_1_3_2_16_2 doi: 10.1128/JVI.78.3.1101-1108.2004 – ident: e_1_3_2_19_2 doi: 10.1073/pnas.0508477102 – ident: e_1_3_2_30_2 doi: 10.2217/fvl.10.56 – ident: e_1_3_2_32_2 doi: 10.1006/viro.1998.9520 – ident: e_1_3_2_26_2 doi: 10.1128/jvi.60.3.1170-1174.1986 – ident: e_1_3_2_37_2 doi: 10.1128/jvi.66.10.5705-5713.1992 – ident: e_1_3_2_43_2 doi: 10.1128/jvi.64.12.6166-6175.1990 – ident: e_1_3_2_29_2 doi: 10.1128/jvi.46.3.937-943.1983 – ident: e_1_3_2_23_2 doi: 10.1128/jvi.58.3.724-732.1986 – ident: e_1_3_2_41_2 doi: 10.1128/JVI.79.19.12375-12381.2005 – ident: e_1_3_2_10_2 doi: 10.1128/jvi.69.1.239-246.1995 – ident: e_1_3_2_47_2 doi: 10.1099/0022-1317-83-7-1659 – ident: e_1_3_2_11_2 doi: 10.1128/jvi.65.9.4629-4635.1991 – start-page: 1 volume-title: DNA replication year: 2006 ident: e_1_3_2_2_2 – ident: e_1_3_2_36_2 doi: 10.1128/jvi.61.9.2807-2815.1987 – ident: e_1_3_2_9_2 doi: 10.1006/viro.1994.1363 – ident: e_1_3_2_4_2 doi: 10.1128/JVI.01450-12 – ident: e_1_3_2_13_2 doi: 10.1128/jvi.63.7.3034-3039.1989 – ident: e_1_3_2_24_2 doi: 10.1016/j.virol.2010.12.009 – ident: e_1_3_2_42_2 doi: 10.1128/JVI.78.19.10674-10684.2004 – ident: e_1_3_2_25_2 doi: 10.1128/JVI.01563-09 – ident: e_1_3_2_28_2 doi: 10.1128/JVI.00702-09 – ident: e_1_3_2_21_2 doi: 10.1006/viro.1997.8545 – ident: e_1_3_2_22_2 doi: 10.1016/j.virol.2004.03.006 – ident: e_1_3_2_17_2 doi: 10.1016/j.jviromet.2006.07.024 – ident: e_1_3_2_31_2 doi: 10.1371/journal.ppat.1001141 – ident: e_1_3_2_34_2 doi: 10.1006/viro.2000.0202 – reference: 19587029 - J Virol. 2009 Sep;83(18):9541-53 – reference: 19955311 - J Virol. 2010 Feb;84(4):1945-56 – reference: 1825254 - Virology. 1991 Mar;181(1):35-45 – reference: 225040 - Cell. 1979 Jul;17(3):691-703 – reference: 16950522 - J Virol Methods. 2006 Dec;138(1-2):85-98 – reference: 9927584 - Virology. 1999 Feb 1;254(1):169-81 – reference: 1870193 - J Virol. 1991 Sep;65(9):4629-35 – reference: 3612951 - J Virol. 1987 Sep;61(9):2807-15 – reference: 15367634 - J Virol. 2004 Oct;78(19):10674-84 – reference: 20949077 - PLoS Pathog. 2010;6(10):e1001141 – reference: 21193212 - Virology. 2011 Feb 20;410(2):375-84 – reference: 16352540 - J Virol. 2006 Jan;80(1):161-71 – reference: 22933276 - J Virol. 2012 Nov;86(22):12187-97 – reference: 16504232 - Virology. 2006 Jun 5;349(2):382-95 – reference: 6602687 - Cold Spring Harb Symp Quant Biol. 1983;47 Pt 2:751-62 – reference: 10725205 - Virology. 2000 Mar 30;269(1):128-36 – reference: 7983715 - J Virol. 1995 Jan;69(1):239-46 – reference: 15193920 - Virology. 2004 Jun 1;323(2):243-56 – reference: 3783817 - J Virol. 1986 Dec;60(3):1170-4 – reference: 16284249 - Proc Natl Acad Sci U S A. 2005 Nov 22;102(47):17148-53 – reference: 23293137 - Cold Spring Harb Perspect Biol. 2013 Feb;5(2). pii: a012989. doi: 10.1101/cshperspect.a012989 – reference: 22546707 - J Vis Exp. 2012;(62). pii: 3518. doi: 10.3791/3518 – reference: 2157046 - J Virol. 1990 Apr;64(4):1598-605 – reference: 14722265 - J Virol. 2004 Feb;78(3):1101-8 – reference: 21331319 - Future Virol. 2010 Nov;5(6):731-743 – reference: 8350419 - J Virol. 1993 Sep;67(9):5660-3 – reference: 8419637 - J Virol. 1993 Feb;67(2):1034-43 – reference: 16160164 - J Virol. 2005 Oct;79(19):12375-81 – reference: 2542617 - J Virol. 1989 Jul;63(7):3095-104 – reference: 10428207 - Hum Gene Ther. 1999 Jul 1;10(10):1619-32 – reference: 6602221 - J Virol. 1983 Jun;46(3):937-43 – reference: 2939261 - J Virol. 1986 Jun;58(3):724-32 – reference: 1388209 - J Virol. 1992 Oct;66(10):5705-13 – reference: 8009857 - Virology. 1994 Jul;202(1):466-70 – reference: 9168889 - Virology. 1997 May 12;231(2):267-80 – reference: 2147041 - J Virol. 1990 Dec;64(12):6166-75 – reference: 14990730 - J Virol. 2004 Mar;78(6):3110-22 – reference: 12075084 - J Gen Virol. 2002 Jul;83(Pt 7):1659-64 – reference: 10196282 - J Virol. 1999 May;73(5):3877-85 – reference: 7636987 - J Virol. 1995 Sep;69(9):5422-30 – reference: 3973977 - J Virol. 1985 Apr;54(1):171-7 – reference: 17898054 - J Virol. 2007 Dec;81(23):13015-27 – reference: 16956943 - J Virol. 2006 Nov;80(22):11040-54 – reference: 9499080 - J Virol. 1998 Mar;72(3):2224-32 – reference: 2542611 - J Virol. 1989 Jul;63(7):3034-9 – reference: 22013064 - J Virol. 2012 Jan;86(1):69-80 |
SSID | ssj0014464 |
Score | 2.2149072 |
Snippet | Article Usage Stats
Services
JVI
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley... The 121-nucleotide left-end telomere of Minute Virus of Mice (MVM) can be folded into a Y-shaped hairpin with short axial ears that are highly conserved within... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10501 |
SubjectTerms | Adenovirus Animals Base Pairing Capsid Proteins - genetics Capsid Proteins - metabolism DNA Primers - chemistry DNA Primers - genetics DNA, Viral - genetics Genetic Vectors Genome and Regulation of Viral Gene Expression Genome, Viral Mice Minute virus of mice Minute Virus of Mice - genetics Parvoviridae Infections - genetics Parvoviridae Infections - metabolism Parvoviridae Infections - virology Parvovirus Parvovirus - genetics Transcription, Genetic Transfection Viral Proteins - genetics Viral Proteins - metabolism Virus Replication |
Title | Parvoviral Left-End Hairpin Ears Are Essential during Infection for Establishing a Functional Intranuclear Transcription Template and for Efficient Progeny Genome Encapsidation |
URI | http://jvi.asm.org/content/87/19/10501.abstract https://www.ncbi.nlm.nih.gov/pubmed/23903839 https://www.proquest.com/docview/1431294250 https://www.proquest.com/docview/1439220409 https://pubmed.ncbi.nlm.nih.gov/PMC3807388 |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLbKEBI3iH8KAxkJrqKUJE7S-HKaWrXTinrRod1FjuOIoDap0nTSeCreitfg2LGTlA0Eu4na1InTnq_nz-d8RugDDwPBCA1swjLH9jmjdpRA1EqFk6Zgn8NEse0vPoezC__sMrgcDH72qpb2dTLi32_tK7mLVOEcyFV2yf6HZNubwgl4DfKFI0gYjv8k4yWrrkpZpbu2zkVW25MitWYsr7Z5YU0gYrVOKmFNdrK_SCbGdUviXNdfNSWGE3AP20wUs6Zg53R6cC7zvoXkO2ZVQ4LeapiV2GzX4KWqpQd1F8VEIesKllUJz3st-azLDcxecLaFX6YDwE1PWLba9ZP7503HtsjbBZKyNvXAqorImo66jIPiB2V6K-a22lgnMtyuJK7u9Q5IpdYrV13kHR1VX43LCJqoPYnBiDWaWxKjSvevr9q1LdcQpj1FDW6lnluY982lN02KJ9skzr7MR9Jbhqcm_WEAiO1Gwcsj1IFwn3aGtS13XC5OJa8_iaJ76L4H8Yxn0kp6uQtict_Q2svvZTo0vOhTf2LJXK1nOXSjDLX1bWHS79W-Pfdp9Rg90tLGJw2In6CBKJ6iB81OqNfP0I8OythAGWsoYwlluFLgFsq4gTJuoYxBjLgPZcxwB2XchzI-gDI2UMYA5eYuBspYQxk3UMYHUH6OLqaT1enM1puJ2Nz3g9rmYPX9QGSOmwkSkCQVhAg4GbGMCS-L0oyHIJoxi5wsAa-XpdynURa6jNEMggjyAh0VZSFeIRxxwnjgkpALiHdk93YaJoQ5Pk8zSgJniCwjm5hrpn254cs6VhG3F8Ug1FgJNXbJEH1sR28bhpk_jDs2Yo7ZbhN_u8rjaBy7NFZYHqL3RvQxWAi57McKUe53ENwTcOrBNjt_HUM9Dww6HaKXDVzahzGQG6LxAZDaAZKh_vCTIv-qmOo16l_f-co36GGnKo7RUV3txVuIAurknfoH_QIriRH1 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parvoviral+Left-End+Hairpin+Ears+Are+Essential+during+Infection+for+Establishing+a+Functional+Intranuclear+Transcription+Template+and+for+Efficient+Progeny+Genome+Encapsidation&rft.jtitle=Journal+of+virology&rft.au=Li%2C+Lei&rft.au=Cotmore%2C+Susan+F.&rft.au=Tattersall%2C+Peter&rft.date=2013-10-01&rft.pub=American+Society+for+Microbiology&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=87&rft.issue=19&rft.spage=10501&rft.epage=10514&rft_id=info:doi/10.1128%2FJVI.01393-13&rft_id=info%3Apmid%2F23903839&rft.externalDocID=PMC3807388 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon |